
NinjaScript Code-Breaking Changes for NinjaTrader 7

Revision 11, October 11, 2010

General

 Data type for volume changed from int to long for the following methods and properties

 TickSize is no longer reflective of splits. For splits use this:

 Bars.GetSessionBar.Time now reflects the session end time’s timestamp instead of 12:00 AM
 BarsPeriod.Id and BarsPeriod.Value should not be used without additional logic in the

Add() method. Logic should be placed to filter the period type to ensure compatibility with new
period types. Please use the following:

 CurrentBar internal pointers are now updated earlier. This ensures that accessing bars across
multiple series will be in sync regardless of which BarsInProgress context you may be working
out of.

o For historical, pointers for all bar series with the same timestamp will be updated before
OnBarUpdate() will be triggered.

o For real-time, pointers for all bar series of the same instrument will be updated before
OnBarUpdate() will be triggered.

 User parameters are no longer marked by [Category("Parameters")]. Please use this:

Note: You should not use category names that are the same as any internal NinjaTrader
categories besides the default “Parameters” category.

 Bars.SessionBegin and Bars.SessionEnd are deprecated. Please use this:

double tickSizeSplitAdjusted = TickSize /

Bars.Instrument.MasterInstrument.Splits.GetSplitFactor(Bars.GetSessionDate(Ti

me[0]));

[GridCategory("<AnyText>")]

BarsArray[int barSeries].Session.GetNextBeginEnd(DateTime time, out DateTime

sessionBegin, out DateTime sessionEnd)

GetCurrentAskVolume()

GetCurrentBidVolume()

MarketDataEventArgs.Volume

MarketDepthEventArgs.Volume

AddKagi(string instrumentName, PeriodType basePeriodType, int

basePeriodTypeValue, int reversal, ReversalType reversalType, MarketDataType

marketDataType);

AddRenko(string instrumentName, int brickSize, MarketDataType

marketDataType);

AddPointAndFigure(string instrumentName, PeriodType basePeriodType, int

basePeriodTypeValue, int boxSize, int reversal, PointAndFigurePriceType

pointAndFigurePriceType, MarketDataType marketDataType);

AddLineBreak(string instrumentName, PeriodType basePeriodType, int

basePeriodTypeValue, int lineBreakCount, MarketDataType marketDataType);

 BarColorSeries should not be used. Please use this:

 BarColor no longer colors the entire bar. It will color the bar body only. To color the bar outline
please use CandleOutlineColor.

 DataSeries objects now default to storing only the last 256 data points with
MaximumBarsLookBack.TwoHundredFiftySix. If you need more stored points please use this:

 Pen objects now have a minimum width of 1

 Some previously undocumented draw method signatures have been removed. Please see the
Help Guide article of your particular draw method for a list of acceptable signatures that need to
be used.

 TriggerCustomEvent()signature has changed. Please use this:

 When working with custom DataSeries objects, do NOT access a DataSeries value on a bar
where you have not called DataSeries.Set() since you can run into exceptions

o It is advisable to always call .Set() and use a default value you can filter for in your
code even on the bars you do not wish to set a value for

 ChartControl.ChartStyle.Pen cannot be set. Please instead use the property you are
interested in directly:

 Bars.GetSessionDate() is no longer publicly exposed. Please use this instead:

 Bars.GetSessionBar() is now deprecated. Please use this instead:

NinjaScript Indicators

 Wrapper generator has been changed. NinjaScript archives need to be regenerated with the
new wrappers.

o Open the indicator in the NinjaScript Editor, recompile, then re-export the NinjaScript
o If your distribution method was through NinjaTrader backups you will need to recreate

the backup files with NinjaTrader 7 to get the new wrappers for the indicators

 “//” in string literals will work now. Example:

 If overriding the Plot method, you will need to accommodate for the possibility of running on
the new non-equidistant charts*. If these changes are not made, you may run into exceptions
on non-equidistant charts.

ColorSeries[int barsAgo]

TriggerCustomEvent(CustomEvent customEvent, int barsInProgress, object state)

[Description("Chris Carolan’s Net-Lines reversal pattern described at

http://carolan.org/indicators/")]

myDataSeries = new DataSeries(this, MaximumBarsLookBack.Infinite);

ChartControl.ChartStyle.Pen.Color = Color.Transparent;

Bars.GetTradingDayFromLocal(DateTime time)

Bars.GetDayBar(int sessionsAgo)

o For examples and best practices, please see either the Pivots, RegressionChannel, or
ZigZag system indicators

o Iterating through bars should now be done with this code:

o x/y positions should now be accessed by this code:

* Non-equidistant charts do not have fixed distances between each bar like they do in traditional (equidistant) charts. Instead they will
have a fixed x-axis timeline where every inch along the axis represents the same amount of time. Benefits of this chart type include being
able to gauge momentum on non-time based charts like ticks or volume by visualizing how long it takes to finish building the next bar.

NinjaScript Strategies

 IExecution.IOrder property will now reflect the order state at the time of OnExecution()
meaning it could return values ahead of the currently being processed IExecution.

o Ex: There can be discrepancies between IExecution.Order.Filled and
IOrder.Filled as accessed during order placement

 IOrder objects are now unique throughout the lifetime of a strategy
o Do NOT hold onto .Token values since they will change as the strategy goes from

historical to live
o To check for equality you can directly compare IOrders. Example:

o IOrder.Action has been renamed to IOrder.OrderAction

 All pending orders are processed after OnBarUpdate() now. Before only orders targeting that
particular BarsInProgress would process

 Manual exit orders (ExitLong()/ExitLongLimit()/etc) no longer automatically amend
quantity as new fills add to the existing position

 OnPositionUpdate() will now only trigger when a position has changed

 BarsRequired is skipped in the rolled forward period of a walk forward optimization

 BarsSinceEntry() returns proper values in relation to multi-series strategies and multiple entry
signals. If you used this before you may need to adjust your logic.

 BarsSinceExit() now reports -1 instead of erroneous reports of 0. Please revise your logic to
reflect this.

 When working with indicators in a strategy, if you run into exceptions or returns of unexpected
values, make sure you have followed the new .Set() requirements discussed above in General.
Also ensure that Update() is called in any method within your indicator that returns values.

for (int idx = this.LastBarIndexPainted; idx >=

Math.Max(this.FirstBarIndexPainted, this.LastBarIndexPainted); idx--)

int x = ChartControl.GetXByBarIdx(BarsArray[0], idx);

int y = ChartControl.GetYByValue(this, val);

if (entryOrder == order)

