
1Contents

1

© 2023 NinjaTrader, LLC

Table of Contents

Foreword 0

Part I Welcome to NinjaTrader 30

Part II Video Library 31

Part III Release Notes 44

... 441 8.1.2.0

... 622 8.1.1.7

... 743 8.0

.. 768.0.28.0

.. 768.0.27.1

.. 888.0.26.1

.. 1018.0.25.0

.. 1078.0.24.3

.. 1168.0.23.2

.. 1318.0.22.2

.. 1428.0.21.1

.. 1558.0.20.1

.. 1658.0.19.1

.. 1908.0.18.1

.. 2038.0.17.2

.. 2318.0.16.3

.. 2568.0.15.1

.. 2668.0.14.2

.. 2768.0.13.1

.. 2828.0.12.0

.. 2878.0.11.1

.. 2998.0.10.0

.. 2998.0.9.0

.. 3068.0.8.0

.. 3138.0.7.1

.. 3288.0.6.1

.. 3368.0.5.2

.. 3448.0.4.0

.. 3508.0.3.0

.. 3588.0.2.0

.. 3648.0.1.0

Part IV Risk Disclosures 376

Part V Risks of Electronic Trading with NinjaTrader 377

Part VI Terms of Service 379

Part VII Copyrights 386

NinjaTrader 82

© 2023 NinjaTrader, LLC

Part VIII Introduction 391

... 3911 Getting Started

... 3922 Getting Help & Support

... 3933 Learning to Use NinjaTrader

... 3954 Using 3rd Party Add-Ons

Part IX Configuration 399

... 3991 Installation

.. 399Minimum System Requirements

.. 400Installation Guide

.. 400Clear Browser Cache

... 4012 Connecting

.. 401General

... 409Creating your ow n Skin

.. 410Log In

.. 411Trading Mode

.. 412Playback Connection

.. 412Multi-provider Connections

... 412Connecting to Multi-provider Connections

... 415Connecting to Kinetick - End Of Day (Free)

... 416External Data Feed Connection

... 416Simulated Data Feed Connection

... 4183 Options

.. 418Enabling/Disabling Multi-provider Mode

.. 420Trading

.. 424Strategies

.. 428Automated trading interface

.. 431Market data

... 434Splits and Dividends

... 435Merge Policy

... 438Real-time Tick Filter

... 439Multiple Connections

... 4414 Performance Tips

Part X Operations 445

... 4461 Advanced Trade Management (ATM)

.. 448Server Side vs Local ATMs

.. 468ATM Strategy

... 469ATM Strategy Parameters

... 474ATM Strategy Selection Mode

... 479Stop Strategy

... 481Auto Breakeven

... 483Auto Trail

... 485Manage ATM Strategy Templates

... 487Tutorial: ATM Strategy Example #1

... 492Tutorial: ATM Strategy Example #2

... 497Advanced Options

... 498Auto Chase

... 501Auto Reverse

3Contents

3

© 2023 NinjaTrader, LLC

... 503Shadow Strategy

... 504FAQ

.. 510Server Side ATMs

... 514Server Side Stop Strategy

... 518Manage Server Side ATM Templates

.. 519Auto Close Position

... 5212 Alerts

.. 521Using Alerts

.. 522Alerts Dialog

.. 525Configuring Alerts

.. 542Condition Builder

.. 555Alerts Examples

... 5883 Alerts Log

.. 588Using the Alerts Log Window

.. 592Alerts Log Properties

.. 595Window Linking

... 5954 Automated Trading

.. 595Automated Trading Interface (ATI)

... 596What can I do and how ?

... 598Commands and Valid Parameters

... 602Initialization

... 603File Interface

... 603Order Instruction Files (OIF)

... 604Information Update Files

... 605DLL Interface

... 606Functions

... 608TradeStation Email Integration

... 609Running concurrent strategies in the same market

... 609Set Up

... 614Symbol Mapping

... 614Order Handling Options

... 617Stop Order Handling

... 619Workspace Options

.. 622Running NinjaScript Strategies

... 622Setting Real-Time Strategy Options

... 622Strategy Position vs. Account Position

... 623Syncing Account Positions

... 629Running a NinjaScript Strategy from a Chart

... 636Running a NinjaScript Strategy from the Strategies Tab

... 641Working w ith Strategy Templates

... 6465 Backup & Restore

.. 646Creating a Backup Archive

.. 650Restoring a Backup Archive

... 6526 Charts

.. 653Creating a Chart

.. 655Navigating a Chart

.. 666Chart Panels

.. 671Working with Objects on Charts

.. 674Working with Price Data

.. 689Working with Multiple Data Series

.. 693Bar Types

.. 701Chart Styles

NinjaTrader 84

© 2023 NinjaTrader, LLC

.. 713Working with Indicators

.. 720Working with Drawing Tools & Objects

.. 739Working with Automated Strategies

.. 745Saving Chart Defaults and Templates

.. 752Data Box

.. 760Cross Hair

.. 764Trading from a Chart

.. 764Chart Properties

.. 769Reload Historical Data

.. 770How Bars are Built

.. 773How Trade Executions are Plotted

.. 774Break at EOD

.. 777Order Flow +

... 777Order Flow Volumetric Bars

... 793Order Flow Cumulative Delta

... 798Order Flow VWAP

... 803Order Flow Volume Profile

... 863Order Flow Trade Detector

... 868Order Flow Market Depth Map

.. 876Tick Replay

... 879Tick Replay Indicators

.. 884COT

.. 890Wiseman

... 8947 Commissions

.. 894Working With Commission Templates

.. 898Applying Commission Templates

... 8998 Control Center

.. 900New Menu

.. 903Tools Menu

.. 905Workspaces Menu

.. 908Connections Menu

.. 910Help Menu

.. 912Orders Tab

.. 919Strategies Tab

.. 926Executions Tab

.. 931Positions Tab

.. 937Accounts Tab

.. 948Log Tab

.. 951Messages Tab

.. 953Connection Status

... 9549 Database

.. 954Database Operations

... 95910 Data Grids

.. 960Working with Data Grids

... 96211 Depth Chart

.. 962Using the Depth Chart Window

.. 966Depth Chart Properties

.. 969Window Linking

... 96912 FX Correlation

.. 969Using the FX Correlation Window

.. 972FX Correlation Properties

.. 974Window Linking

5Contents

5

© 2023 NinjaTrader, LLC

... 97513 Historical Data

.. 975Loading Historical Data

.. 977Data by Provider

.. 983Importing

.. 990Exporting

.. 992Editing

.. 996Download

... 99814 Hot Keys

.. 998Working with Hot Keys

.. 1002Trading with Hot Keys

... 101015 Hot List Analyzer

.. 1010Using the Hot List Analyzer

.. 1015Customizing the Hot List Analyzer

.. 1015Hot List Analyzer Properties

... 101816 Instrument Lists

.. 1018Working with Instrument Lists

.. 1022Updating Splits and Dividends

... 102417 Instruments

.. 1024Instrument Types

.. 1025Searching for Instruments

.. 1027Managing Instruments

.. 1028Editing Instruments

.. 1035Rolling Over Futures Contracts

.. 1037Adding Splits and Dividends

.. 1037TradeStation Symbol Mapping

.. 1040Importing a List of Stock Symbols

... 104218 Level II

.. 1042Using the Level II Window

.. 1047Level II Properties

.. 1050Window Linking

... 105119 Market Analyzer

.. 1051Creating a Market Analyzer Window

.. 1056Working with Instrument Rows

.. 1064Working with Columns

.. 1072Dynamic Ranking and Sorting

.. 1073Creating Cell and Filter Conditions

.. 1083Market Analyzer Properties

.. 1086Working with Templates

.. 1090Performance Tips

.. 1091Reloading Indicators & Columns

.. 1091Window Linking

... 109320 Market Watch

.. 1093Display Overview

.. 1094Working with Instrument Tiles

.. 1096Market Watch Properties

... 109921 News

.. 1099News Window

.. 1103News Properties

... 110522 Option Chain

.. 1106Display Overview

NinjaTrader 86

© 2023 NinjaTrader, LLC

.. 1110Submitting Orders

.. 1111Properties

... 111523 Order Entry

.. 1116Attaching Orders To Indicators

.. 1120Simulated Stop Orders

.. 1131Order State Definitions

.. 1132FIFO Optimization

.. 1134Working With Forex

.. 1142Where do your orders reside?

.. 1143Trade Controls

... 1144Closing a Position or ATM Strategy Position

... 1145Position Display

... 1147Price Selector

... 1148Quantity Selector

... 1151TIF Selector

.. 1153Basic Entry

... 1153Display Overview

... 1162Submitting Orders

... 1168Modifying and Cancelling Orders

... 1171Managing Positions

... 1172Properties

.. 1175Chart Trader

... 1176Order & Position Display

... 1182Hidden View

... 1183Submitting Orders

... 1191Modifying and Cancelling Orders

... 1193Attach to Indicator

... 1196Chart Trader Properties

.. 1199FX Pro

... 1200Display Overview

... 1210Submitting Orders

... 1216Modifying and Cancelling Orders

... 1219Managing Positions

... 1219Properties

.. 1223FX Board

... 1223Display Overview

... 1231Working w ith Instrument Tiles

... 1236Submitting Orders

... 1239Modifying and Cancelling Orders

... 1243Managing Positions

... 1245Properties

.. 1249Order Ticket

... 1249Display Overview

... 1253Submitting Orders

... 1256Properties

.. 1258SuperDOM

... 1259Price Ladder Display

... 1268Static vs Dynamic Price Ladder Display

... 1271Order Display

... 1276Submitting Orders

... 1288Modifying and Cancelling Orders

... 1293Managing Positions

... 1295Using SuperDOM Columns

... 1313SuperDOM Templates

7Contents

7

© 2023 NinjaTrader, LLC

... 1315Working w ith Indicators

... 1324Properties

... 133024 Playback Connection

.. 1330Set Up

.. 1335Playback

.. 1339Data Files

... 133925 Risk

.. 1339Using the Risk w indow

... 134326 Simulator

.. 1343The Sim101 Account

.. 1345Multiple Simulation Accounts

.. 1345Live/Simulation Environment

.. 1345Global Simulation Mode

.. 1346Trading in Simulation

... 134727 Strategy Analyzer

.. 1347Understanding the Layout

.. 1350Backtest a Strategy

.. 1358Optimization

... 1365Genetic Algorithm

... 1370Optimization Fitness Metrics

.. 1373Walk Forward Optimization

.. 1378Multi-Objective Optimization

.. 1383AI Generate

.. 1387Understanding Historical Fill Processing

.. 1390Basket testing multiple instruments

.. 1393Understanding Backtest Logs

.. 1396Reviewing Performance Results

.. 1398Monte Carlo Simulation

... 1398Running a Monte Carlo Simulation

.. 14022D & 3D Optimization Graphs

.. 1404Discrepancies: Real-Time vs Backtest

.. 1405Strategy Parameter Templates

.. 1406Strategy Analyzer Properties

.. 1409Working with Historical Trade Data

... 141028 Strategy Builder

.. 1410Builder Screens

.. 1425Condition Builder

.. 1445Actions

... 145429 Time & Sales

.. 1454Using the Time & Sales Window

.. 1458Time & Sales Properties

.. 1464Window Linking

... 146430 Trade Performance

.. 1465Using Trade Performance

.. 1468Performance Displays

.. 1477Statistics Definitions

.. 1492Profit and Loss Calculation Modes

.. 1493Trade Performance Properties

... 149631 Trading Hours

.. 1496Using the Trading Hours w indow

... 150132 Windows

NinjaTrader 88

© 2023 NinjaTrader, LLC

.. 1502Using Window Linking

.. 1503Using the Instrument Selector

.. 1506Using the Overlay Instrument Selector

.. 1508Using Tabs

.. 1513Sharing Content

.. 1518Printing Content

.. 1518Using Color Pickers

Part XI NinjaScript 1523

... 15231 Code Breaking Changes

... 15362 NinjaScript Best Practices

... 15663 Distribution

.. 1566Considerations For Compiled Assemblies

.. 1570Import

.. 1570Export

.. 1575Remove NinjaScript Assembly

.. 1575Export Problems

.. 1578Protection/DLL Security

.. 1580Commercial Distribution

... 1580Licensing/User Authentication

... 1580Best Practices for Distribution

... 1582Distribution Procedure

... 15854 Editor

.. 1585Compile Error Codes

... 1586CS0006

... 1586CS0019

... 1587CS0021

... 1588CS0029

... 1589CS0103

... 1589CS0200

... 1590CS0201

... 1590CS0234

... 1591CS0246

... 1591CS0428

... 1592CS0443

... 1592CS1002

... 1593CS1061

... 1593CS1501

... 1594CS1502

... 1595CS1503

... 1595CS1513

... 1596CS1525

... 1596NoDoc

.. 1596NinjaScript Editor Components

.. 1601NinjaScript Explorer

.. 1609NinjaScript Wizard

.. 1612Code Snippets

.. 1622Compile Errors

.. 1623Intelliprompt

.. 1625Output

.. 1633Visual Studio Debugging

.. 1637Editor Keyboard Shortcuts

9Contents

9

© 2023 NinjaTrader, LLC

... 16405 Educational Resources

.. 1640AddOn Development Overview

... 1645Developing Add Ons

... 1646Creating Your Ow n AddOn Window

... 1660Other Uses for an Addon

.. 1669C# Method (Functions) Reference

.. 1670Developing for Tick Replay

.. 1674Developing Indicators

... 1676Advanced - Custom Draw ing

... 1676Set Up

... 1682Entering Calculation Logic

... 1689Compiling

... 1689Using

... 1690Advanced - Custom Plot Colors via Thresholds

... 1690Set Up

... 1696Entering Calculation Logic

... 1700Compiling

... 1700Using

... 1701Intermediate - Historical Custom Data Series

... 1701Set Up

... 1707Entering Calculation Logic

... 1711Compiling

... 1711Using

... 1712Intermediate - Your ow n SMA

... 1712Set Up

... 1718Entering Calculation Logic

... 1722Compiling

... 1722Using

... 1724Beginner - Indicator on Indicator

... 1724Set Up

... 1730Entering Calculation Logic

... 1733Compiling

... 1733Using

... 1734Beginner - Using price variables

... 1735Set Up

... 1740Entering Calculation Logic

... 1744Compiling

... 1744Using

... 1745Developing Outside of the NinjaScript Editor

.. 1745Developing Strategies

... 1746Intermediate - RSI w ith Stop Loss & Profit Target

... 1746Set Up

... 1750Entering Strategy Logic

... 1753Compiling

... 1754Beginner - Simple MA Cross Over

... 1754Set Up

... 1760Creating the Strategy via the Wizard

... 1774Creating the Strategy via Self Programming

... 1774Compiling

... 1775The Strategy Development Process

... 1776Working w ith Accounts

.. 1776Historical Order Backfill Logic

.. 1780Multi-Threading Consideration for NinjaScript

.. 1783Multi-Time Frame & Instruments

NinjaTrader 810

© 2023 NinjaTrader, LLC

.. 1801NinjaScript Lifecycle

.. 1807Using 3rd Party Indicators

.. 1809Using ATM Strategies

.. 1810Using BitmapImage Objects w ith Buttons

.. 1813Using Historical Bid/Ask Series

.. 1814Using Images and Geometry w ith Custom Icons

.. 1818Using SharpDX for Custom Chart Rendering

.. 1847Working with Brushes

.. 1856Working with Chart Object Coordinates

.. 1857Working with Pixel Coordinates

.. 1859Working with Price Series

.. 1862Reference Samples

... 1862Indicator

... 1862Calculating the highest high or low est low for a specif ied time range

... 1863Changing fonts for draw objects

... 1863Coloring a region

... 1864Creating a user-defined parameter type (enum)

... 1864Creating your ow n Level II data book (Accessing market depth)

... 1865Draw Objects

... 1865
Ensuring indicator plots are valid before programmatically accessing

them

... 1866Exposing indicator values that are not plots

... 1867Getting indicator values from a specif ied time

... 1867Manipulating DateTime objects

... 1868Manipulating string objects

... 1869Multi-Colored Plots

... 1869Removing and Custom Formatting an Indicator’s Chart Label

... 1870Using a secondary series as an input series for an indicator

... 1870Using a Series or DataSeries object to store calculations

... 1871Using a TypeConverter to Customize Property Grid Behavior

... 1872Using custom events to output the current Level II data book

... 1873Using StreamReader to read from a text f ile

... 1873Using StreamWriter to w rite to a text f ile

... 1874Using System.IO File properties to w rite to and read from a text f ile

... 1874Using Try-Catch Blocks

... 1875Creating Chart WPF (UI) Modif ications from an Indicator

... 1876Strategy

... 1876Backtesting NinjaScript Strategies w ith an intrabar granularity

... 1877Entering on one time frame and exiting on another

... 1878Getting PnL from an ATM strategy

... 1878Halting a Strategy Once User Defined Conditions Are Met

... 1879Keeping orders alive

... 1880Modifying the price of stop loss and profit target orders

... 1880Monitoring for and trading a breakout

... 1881Monitoring Stop-Loss and Profit Target Orders

... 1882Plotting from w ithin a NinjaScript Strategy

... 1882Removing draw objects from the chart

... 1883Resetting values at the beginning of new trading sessions

... 1883Rounding values to the nearest tick size

... 1884Scaling out of a position

... 1885Separating logic to either calculate once on bar close or on every tick

... 1885Stopping a strategy after consecutive losers

... 1886Trading crossovers

... 1887Using a time f ilter to limit trading hours

11Contents

11

© 2023 NinjaTrader, LLC

... 1887Using CancelOrder() method to cancel orders

... 1888Using multiple entry/exit signals simultaneously

... 1888
Using OnOrderUpdate() and OnExecution() methods to submit

protective orders

... 1889Using IsRising and IsFalling conditions in the Strategy Builder

... 1890Using trade performance statistics for money management

.. 1891Tips

... 1891Adding Indicators to Strategies

... 1892Checking for Null References

... 1893Creating User Defined Input Parameters

... 1895Debugging your NinjaScript Code

... 1896Floating-Point Arithmetic

... 1898Formatting numbers

... 1900How do I resolve NinjaScript Programming Errors?

... 1901Make sure you have enough bars in the data series you are accessing

... 1903Order Types

... 1904Parameter sequencing

... 1905Referencing the correct bar

... 1907Strategy Position vs. Account Position

... 1908TraceOrders

... 1910User Definable Color Inputs

... 1910Using [] brackets

... 19126 Language Reference

.. 1913Alphabetical Reference

.. 1913Common

... 1914AddDataSeries()

... 1920AddHeikenAshi()

... 1923AddKagi()

... 1926AddLineBreak()

... 1929AddPointAndFigure()

... 1933AddRenko()

... 1935AddVolumetric()

... 1939BarsArray

... 1940BarsInProgress

... 1941BarsPeriods

... 1942CurrentBars

... 1944Alert, Debug, Share

... 1945Alert()

... 1946ClearOutputWindow ()

... 1947Log()

... 1949PlaySound()

... 1950Print()

... 1952PrintTo

... 1954RearmAlert()

... 1955SendMail()

... 1956Share()

... 1957Analytical

... 1958ApproxCompare()

... 1959CountIf()

... 1960CrossAbove()

... 1961CrossBelow ()

... 1962GetCurrentAsk()

... 1964GetCurrentAskVolume()

... 1966GetCurrentBid()

NinjaTrader 812

© 2023 NinjaTrader, LLC

... 1968GetCurrentBidVolume()

... 1970GetMedian()

... 1971HighestBar()

... 1972IsFalling()

... 1973IsRising()

... 1973Least Recent Occurrence (LRO)

... 1974Low estBar()

... 1975Most Recent Occurrence (MRO)

... 1977Slope()

... 1978TickSize

... 1979ToDay()

... 1979ToTime()

... 1981Attributes

... 1982Brow sableAttribute

... 1983CategoryOrderAttribute

... 1986DisplayAttribute

... 1987NinjaScriptPropertyAttribute

... 1989RangeAttribute

... 1990TypeConverterAttribute

... 1991XmlIgnoreAttribute

... 1992Bars

... 1994BarsSinceNew TradingDay

... 1994GetAsk()

... 1995GetBar()

... 1996GetBid()

... 1997GetClose()

... 1998GetDayBar()

... 1999GetHigh()

... 2000GetLow ()

... 2001GetOpen()

... 2001GetSessionEndTime()

... 2002GetTime()

... 2003GetVolume()

... 2004IsFirstBarOfSession

... 2005IsFirstBarOfSessionByIndex()

... 2006IsLastBarOfSession

... 2007IsResetOnNew TradingDay

... 2008IsTickReplay

... 2009PercentComplete

... 2010TickCount

... 2010ToChartString()

... 2011Charts

... 2012ChartBars

... 2015Bars

... 2015Count

... 2016FromIndex

... 2017GetBarIdxByTime()

... 2018GetBarIdxByX()

... 2019GetTimeByBarIdx()

... 2019Panel

... 2020Properties

... 2025ToChartString()

... 2026ToIndex

... 2027ChartControl

13Contents

13

© 2023 NinjaTrader, LLC

... 2030AxisXHeight

... 2031AxisYLeftWidth

... 2033AxisYRightWidth

... 2034BarMarginLeft

... 2035BarsArray

... 2036BarSpacingType

... 2037BarsPeriod

... 2039BarWidth

... 2040BarWidthArray

... 2041CanvasLeft

... 2042CanvasRight

... 2044CanvasZoomState

... 2046ChartPanels

... 2047CrosshairType

... 2048FirstTimePainted

... 2050GetBarPaintWidth()

... 2051GetSlotIndexByTime()

... 2053GetSlotIndexByX()

... 2053GetTimeBySlotIndex()

... 2054GetTimeByX()

... 2055GetXByBarIndex()

... 2056GetXByTime()

... 2057Indicators

... 2058IsScrollArrow Visible

... 2059IsStayInDraw Mode

... 2060IsYAxisDisplayedLeft

... 2061IsYAxisDisplayedOverlay

... 2062IsYAxisDisplayedRight

... 2063LastSlotPainted

... 2064LastTimePainted

... 2065MouseDow nPoint

... 2066PresentationSource

... 2066Properties

... 2070SlotsPainted

... 2071Strategies

... 2072TimePainted

... 2072ChartingExtensions

... 2073ConvertFromHorizontalPixels

... 2074ConvertFromVerticalPixels

... 2075ConvertToHorizontalPixels

... 2076ConvertToVerticalPixels

... 2077ChartPanel

... 2079ChartObjects

... 2080H (Height)

... 2081IsYAxisDisplayedLeft

... 2083IsYAxisDisplayedOverlay

... 2084IsYAxisDisplayedRight

... 2085MaxValue

... 2086MinValue

... 2087PanelIndex

... 2088Scales

... 2090W (Width)

... 2091X (Coordinate)

... 2092Y (Coordinate)

NinjaTrader 814

© 2023 NinjaTrader, LLC

... 2094ChartScale

... 2095GetPixelsForDistance()

... 2097GetValueByY()

... 2098GetValueByYWpf()

... 2100GetYByValue()

... 2101GetYByValueWpf()

... 2103Height

... 2104IsVisible

... 2105MaxMinusMin

... 2106MaxValue

... 2107MinValue

... 2108PanelIndex

... 2109Properties

... 2112ScaleJustif ication

... 2112Width

... 2114Rendering

... 2115D2DFactory

... 2116DirectWriteFactory

... 2116DxExtensions

... 2117ToDxBrush()

... 2118ToVector2()

... 2119ForceRefresh()

... 2120IsInHitTest

... 2121IsSelected

... 2123IsVisibleOnChart()

... 2124MaxValue

... 2125MinValue

... 2125OnCalculateMinMax()

... 2127OnRender()

... 2132OnRenderTargetChanged()

... 2137PanelUI

... 2137RenderTarget

... 2139SetZOrder

... 2140ZOrder

... 2141FormatPriceMarker()

... 2141IsAutoScale

... 2142IsOverlay

... 2143IsSeparateZOrder

... 2143ScaleJustif ication

... 2144Stroke Class

... 2148UserControlCollection

... 2151Draw ing

... 2155Draw .Andrew sPitchfork()

... 2157Andrew sPitchfork

... 2159Draw .Arc()

... 2161Arc

... 2162Draw .Arrow Dow n()

... 2166Arrow Dow n

... 2167Draw .Arrow Line()

... 2169Arrow Line

... 2170Draw .Arrow Up()

... 2174Arrow Up

... 2174Draw .Diamond()

... 2178Diamond

15Contents

15

© 2023 NinjaTrader, LLC

... 2179Draw .Dot()

... 2183Dot

... 2183Draw .Ellipse()

... 2186Ellipse

... 2186Draw .ExtendedLine()

... 2189ExtendedLine

... 2189Draw .FibonacciCircle()

... 2191FibonacciCircle

... 2192Draw .FibonacciExtensions()

... 2194FibonacciExtensions

... 2194Draw .FibonacciRetracements()

... 2196FibonacciRetracements

... 2197Draw .FibonacciTimeExtensions()

... 2199FibonacciTimeExtensions

... 2200Draw .GannFan()

... 2201GannFan

... 2202Draw .HorizontalLine()

... 2204HorizontalLine

... 2204Draw .Line()

... 2207Line

... 2207Draw .PathTool()

... 2210PathTool

... 2211Draw .Polygon()

... 2214Polygon

... 2215Draw .Ray()

... 2217Ray

... 2217Draw .Rectangle()

... 2220Rectangle

... 2221Draw .Region()

... 2223Region

... 2223Draw .RegionHighlightX()

... 2225RegionHighlightX

... 2226Draw .RegionHighlightY()

... 2228RegionHighlightY

... 2228Draw .RegressionChannel()

... 2230RegressionChannel

... 2232Draw .RiskRew ard()

... 2234RiskRew ard

... 2235Draw .Ruler()

... 2237Ruler

... 2237Draw .Square()

... 2241Square

... 2242Draw .Text()

... 2244Text

... 2245Draw .TextFixed()

... 2247TextFixed

... 2249Draw .TimeCycles()

... 2251TimeCycles

... 2251Draw .TrendChannel()

... 2253TrendChannel

... 2254Draw .Triangle()

... 2256Triangle

... 2257Draw .TriangleDow n()

... 2261TriangleDow n

NinjaTrader 816

© 2023 NinjaTrader, LLC

... 2262Draw .TriangleUp()

... 2266TriangleUp

... 2266Draw .VerticalLine()

... 2268VerticalLine

... 2269Brushes

... 2269Allow RemovalOfDraw Objects

... 2269BackBrush

... 2271BackBrushAll

... 2273BackBrushes

... 2274BackBrushesAll

... 2275BarBrush

... 2276BarBrushes

... 2277CandleOutlineBrush

... 2277CandleOutlineBrushes

... 2278Draw Objects

... 2281IDraw ingTool

... 2284PriceLevels

... 2287RemoveDraw Object()

... 2288RemoveDraw Objects()

... 2288Instruments

... 2289Instrument

... 2290Exchange

... 2291Expiry

... 2291FullName

... 2292GetInstrument()

... 2293MasterInstrument

... 2294Compare()

... 2295Currency

... 2295Description

... 2296Dividends

... 2296Exchanges

... 2297FormatPrice()

... 2298InstrumentType

... 2299MergePolicy

... 2300Name

... 2300GetNextExpiry()

... 2301PointValue

... 2302RolloverCollection

... 2302RoundToTickSize()

... 2303RoundDow nToTickSize()

... 2303Splits

... 2304TickSize

... 2304Url

... 2305ISeries<T>

... 2307Series<T>

... 2312Reset()

... 2313PriceSeries<double>

... 2315Close

... 2316Closes

... 2317High

... 2318Highs

... 2319Input

... 2320Inputs

... 2321Low

17Contents

17

© 2023 NinjaTrader, LLC

... 2322Low s

... 2323Median

... 2324Medians

... 2325Open

... 2326Opens

... 2327Typical

... 2328Typicals

... 2329Value

... 2330Values

... 2331Weighted

... 2332Weighteds

... 2332TimeSeries<DateTime>

... 2333Time

... 2334Times

... 2334VolumeSeries<double>

... 2335Volume

... 2336Volumes

... 2337Count

... 2337GetValueAt()

... 2339IsValidDataPoint()

... 2340IsValidDataPointAt()

... 2341MaximumBarsLookBack

... 2343OnBarUpdate()

... 2345BarsPeriod

... 2355Calculate

... 2356Count

... 2357CurrentBar

... 2358IsDataSeriesRequired

... 2359IsFirstTickOfBar

... 2360IsResetOnNew TradingDays

... 2361IsTickReplays

... 2363Update()

... 2365OnConnectionStatusUpdate()

... 2367ConnectionStatusEventArgs

... 2368OnFundamentalData()

... 2369FundamentalDataEventArgs

... 2371OnMarketData()

... 2373MarketDataEventArgs

... 2375OnMarketDepth()

... 2376MarketDepthEventArgs

... 2378OnStateChange()

... 2382SetState()

... 2383State

... 2385SessionIterator

... 2387ActualSessionBegin

... 2388ActualSessionEnd

... 2389ActualTradingDayEndLocal

... 2390ActualTradingDayExchange

... 2391CalculateTradingDay()

... 2392GetNextSession()

... 2394GetTradingDay()

... 2395GetTradingDayBeginLocal()

... 2396GetTradingDayEndLocal()

... 2397IsInSession()

NinjaTrader 818

© 2023 NinjaTrader, LLC

... 2399IsNew Session()

... 2400IsTradingDayDefined()

... 2400SimpleFont

... 2402ApplyTo()

... 2403ToDirectWriteTextFormat()

... 2403System Indicator Methods

... 2406Valid Input Data for Indicator Methods

... 2408Accumulation/Distribution (ADL)

... 2409Adaptive Price Zone (APZ)

... 2410Aroon

... 2411Aroon Oscillator

... 2412Average Directional Index (ADX)

... 2413Average Directional Movement Rating (ADXR)

... 2414Average True Range (ATR)

... 2415Balance of Pow er (BOP)

... 2416Block Volume

... 2417Bollinger Bands

... 2419BuySell Pressure

... 2420BuySell Volume

... 2422Camarilla Pivots

... 2426CandleStickPattern

... 2428Chaikin Money Flow

... 2429Chaikin Oscillator

... 2430Chaikin Volatility

... 2431Chande Momentum Oscillator (CMO)

... 2432Choppiness Index

... 2433Commitment Of Traders (COT)

... 2434Commodity Channel Index (CCI)

... 2435Correlation

... 2437Current Day OHL

... 2438Darvas

... 2439Directional Movement (DM)

... 2440Directional Movement Index (DMI)

... 2441Disparity Index

... 2441Donchian Channel

... 2442Double Stochastics

... 2444Dynamic Momentum Index (DMIndex)

... 2445Ease of Movement

... 2446Fibonacci Pivots

... 2449Fisher Transform

... 2450Forecast Oscillator (FOSC)

... 2451Keltner Channel

... 2452KeyReversalDow n

... 2453KeyReversalUp

... 2454Linear Regression

... 2455Linear Regression Intercept

... 2456Linear Regression Slope

... 2457MA Envelopes

... 2458Maximum (MAX)

... 2459McClellan Oscillator

... 2460Minimum (MIN)

... 2461Momentum

... 2462Money Flow Index (MFI)

... 2463Money Flow Oscillator

19Contents

19

© 2023 NinjaTrader, LLC

... 2464Moving Average - Double Exponential (DEMA)

... 2465Moving Average - Exponential (EMA)

... 2466Moving Average - Hull (HMA)

... 2467Moving Average - Kaufman's Adaptive (KAMA)

... 2468Moving Average - Mesa Adaptive (MAMA)

... 2469Moving Average - Simple (SMA)

... 2470Moving Average - T3 (T3)

... 2472Moving Average - Triangular (TMA)

... 2473Moving Average - Triple Exponential (TEMA)

... 2474Moving Average - Triple Exponential (TRIX)

... 2475Moving Average - Variable (VMA)

... 2476Moving Average - Volume Weighted (VWMA)

... 2477Moving Average - Weighted (WMA)

... 2478Moving Average - Zero Lag Exponential (ZLEMA)

... 2479Moving Average Convergence-Divergence (MACD)

... 2481Moving Average Ribbon

... 2481Net Change Display

... 2482n Bars Dow n

... 2484n Bars Up

... 2485On Balance Volume (OBV)

... 2486Order Flow Cumulative Delta

... 2489Order Flow Volumetric Bars

... 2493Order Flow VWAP

... 2497Parabolic SAR

... 2498Percentage Price Oscillator (PPO)

... 2499Pivots

... 2502Polarized Fractal Eff iciency (PFE)

... 2503Price Oscillator

... 2504Prior Day OHLC

... 2505Psychological Line

... 2506Range

... 2507Range Indicator (RIND)

... 2508Rate of Change (ROC)

... 2509Regression Channel

... 2511Relative Spread Strength (RSS)

... 2512Relative Strength Index (RSI)

... 2513Relative Vigor Index

... 2514Relative Volatility Index (RVI)

... 2515R-squared

... 2516Standard Deviation (StdDev)

... 2517Standard Error (StdError)

... 2518Stochastics

... 2519Stochastics Fast

... 2521Stochastics RSI (StochRSI)

... 2521Summation (SUM)

... 2522Sw ing

... 2524Time Series Forecast (TSF)

... 2525Trend Lines

... 2526True Strength Index (TSI)

... 2527Ultimate Oscillator

... 2528Volume (VOL)

... 2529Volume Moving Average (VOLMA)

... 2530Volume Oscillator

... 2531Volume Rate of Change (VROC)

NinjaTrader 820

© 2023 NinjaTrader, LLC

... 2532Volume Up Dow n

... 2533Vortex

... 2534Williams %R

... 2535Wiseman Alligator

... 2536Wiseman Aw esome Oscillator

... 2537Woodies CCI

... 2539Woodies Pivots

... 2541ZigZag

... 2543TradingHours

... 2543Get

... 2544GetPreviousTradingDayEnd()

... 2545Holidays

... 2546Name

... 2546PartialHolidays

... 2547Sessions

... 2548TimeZoneInfo

... 2549Clone()

... 2550Description

... 2550DisplayName

... 2552IsVisible

... 2553Name

... 2553TriggerCustomEvent()

.. 2558Add On

... 2560NinjaTrader Controls

... 2561AccountSelector

... 2564AtmStrategySelector

... 2567InstrumentSelector

... 2569IntervalSelector

... 2571TifSelector

... 2574QuantityUpDow n

... 2577Account

... 2581AccountItem

... 2582AccountItemUpdate

... 2583AccountStatusUpdate

... 2584All

... 2585Cancel()

... 2586CancelAllOrders()

... 2587Change()

... 2588Connection

... 2588ConnectOptions

... 2590CreateOrder()

... 2592Denomination

... 2593Executions

... 2594ExecutionUpdate

... 2596Flatten()

... 2596Get()

... 2597Name

... 2598Orders

... 2599OrderUpdate

... 2601Positions

... 2602PositionUpdate

... 2604SimulationAccountReset

... 2605Strategies

... 2606Submit()

21Contents

21

© 2023 NinjaTrader, LLC

... 2607BarsRequest

... 2611Request()

... 2612MergePolicy

... 2614Connection

... 2615CancelAllOrders()

... 2616Connect()

... 2618ConnectionStatusUpdate

... 2620Disconnect()

... 2620Options

... 2621PriceStatus

... 2622Status

... 2623ReloadAllHistoricalData()

... 2625PlaybackConnection

... 2625IInstrumentProvider Interface

... 2626Instrument

... 2627IIntervalProvider Interface

... 2628BarsPeriod

... 2628INTTabFactory Interface

... 2629CreateParentWindow ()

... 2629CreateTabPage()

... 2630IWorkspacePersistence Interface

... 2631Restore()

... 2632Save()

... 2632WorkspaceOptions

... 2633NTTabPage Class

... 2635Cleanup()

... 2636GetHeaderPart()

... 2637Restore()

... 2637Save()

... 2637Alert and Debug Concepts

... 2640AlertCallback()

... 2642RearmAlert()

... 2642AtmStrategy

... 2643ControlCenter

... 2644FundamentalData

... 2648MarketData

... 2651MarketDepth

... 2653New sItems

... 2654New sSubscription

... 2656NTMenuItem

... 2657NTMessageBoxSimple.Show ()

... 2659NTWindow

... 2661NumericTextBox

... 2662OnWindow Created()

... 2665OnWindow Destroyed()

... 2666OnWindow Restored()

... 2668OnWindow Saved()

... 2669StartAtmStrategy()

... 2670StrategyBase

... 2671PropagateInstrumentChange()

... 2672PropagateIntervalChange()

... 2673TabControl

... 2675TabControlManager

.. 2677Bars Type

NinjaTrader 822

© 2023 NinjaTrader, LLC

... 2678AddBar()

... 2679ApplyDefaultBasePeriodValue

... 2680ApplyDefaultValue

... 2681BuiltFrom

... 2682DefaultChartStyle

... 2683GetInitialLookBackDays()

... 2684GetPercentComplete()

... 2685Icon

... 2686IsRemoveLastBarSupported

... 2686IsTimeBased

... 2687OnDataPoint()

... 2690RemoveLastBar()

... 2690SetPropertyName

... 2691SessionIterator

... 2692UpdateBar()

.. 2693Chart Style

... 2694BarWidth

... 2694BarWidthUI

... 2695ChartStyleType

... 2696Dow nBrush

... 2697Dow nBrushDX

... 2698GetBarPaintWidth()

... 2699Icon

... 2700IsTransparent

... 2701OnRender()

... 2701SetPropertyName()

... 2702TransformBrush()

... 2703UpBrush

... 2704UpBrushDX

.. 2705Drawing Tool

... 2707AddPastedOffset()

... 2708Anchors

... 2710AttachedTo

... 2710ChartAnchor

... 2713CopyDataValues()

... 2714DisplayName

... 2715Draw ingTool

... 2715Draw nOnBar

... 2716GetPoint()

... 2717IsBrow sable

... 2717IsEditing

... 2718IsNinjaScriptDraw n

... 2719IsXPropertiesVisibile

... 2720IsYPropertyVisibile

... 2720MoveAnchor()

... 2721MoveAnchorX()

... 2722MoveAnchorY()

... 2723Price

... 2723SlotIndex

... 2724Time

... 2724UpdateFromPoint()

... 2725UpdateXFromPoint()

... 2725UpdateYFromPoint()

... 2726ConvertToVerticalPixels()

23Contents

23

© 2023 NinjaTrader, LLC

... 2727CreateAnchor()

... 2728DisplayOnChartsMenus

... 2728Dispose()

... 2729Draw ingState

... 2730Draw nBy

... 2731GetAttachedToChartBars()

... 2731GetClosestAnchor()

... 2732GetCursor()

... 2733GetSelectionPoints()

... 2734Icon

... 2735IgnoresSnapping

... 2736IgnoresUserInput

... 2736IsAttachedToNinjaScript

... 2737IsGlobalDraw ingTool

... 2737IsLocked

... 2738IsUserDraw n

... 2738OnBarsChanged()

... 2739OnMouseDow n()

... 2740OnMouseMove()

... 2742OnMouseUp()

... 2743SupportsAlerts

... 2744ZOrderType

.. 2745Import Type

... 2745OnNextInstrument()

... 2746OnNextDataPoint()

.. 2747Indicator

... 2748AddLine()

... 2750AreLinesConfigurable

... 2751Line Class

... 2752Lines

... 2753AddPlot()

... 2759ArePlotsConfigurable

... 2760Displacement

... 2761PlotBrushes

... 2762Plots

... 2763BarsRequiredToPlot

... 2764DisplayInDataBox

... 2765Draw HorizontalGridLines

... 2766Draw OnPricePanel

... 2766Draw VerticalGridLines

... 2767IndicatorBaseConverter

... 2770IsChartOnly

... 2770IsSuspendedWhileInactive

... 2772PaintPriceMarkers

... 2772Show TransparentPlotsInDataBox

.. 2773Market Analyzer Column

... 2774CurrentText

... 2774CurrentValue

... 2775DataType

... 2775FormatDecimals

... 2776IsEditable

... 2776OnRender()

... 2778PriorValue

.. 2778Optimization Fitness

NinjaTrader 824

© 2023 NinjaTrader, LLC

... 2779OnCalculatePerformanceValue()

... 2779Value

.. 2780Optimizer

... 2780NumberOfIterations

... 2781OnOptimize()

... 2781OptimizationParameters

... 2782RunIteration()

... 2782SupportsMultiObjectiveOptimization

.. 2783Performance Metrics

... 2784Format()

... 2785OnAddTrade()

... 2785OnCopyTo()

... 2786OnMergePerformanceMetric()

... 2786PerformanceUnit

... 2787Values

.. 2788Share Service

... 2789CharacterLimit

... 2790CharactersReservedPerMedia

... 2791Icon

... 2791UseOAuth

... 2792IsConfigured

... 2793IsDefault

... 2794IsImageAttachmentSupported

... 2794OnAuthorizeAccount()

... 2795OnShare()

... 2796Signature

.. 2797Strategy

... 2802Account

... 2802AddChartIndicator()

... 2804AddPerformanceMetric()

... 2805ATM Strategy Methods

... 2805AtmStrategyCancelEntryOrder()

... 2806AtmStrategyChangeEntryOrder()

... 2807AtmStrategyChangeStopTarget()

... 2808AtmStrategyClose()

... 2809AtmStrategyCreate()

... 2812GetAtmStrategyEntryOrderStatus()

... 2812GetAtmStrategyMarketPosition()

... 2813GetAtmStrategyPositionAveragePrice()

... 2814GetAtmStrategyPositionQuantity()

... 2815GetAtmStrategyRealizedProfitLoss()

... 2815GetAtmStrategyStopTargetOrderStatus()

... 2817GetAtmStrategyUnrealizedProfitLoss()

... 2818GetAtmStrategyUniqueId()

... 2818BarsRequiredToTrade

... 2820BarsSinceEntryExecution()

... 2821BarsSinceExitExecution()

... 2823ChartIndicators

... 2823CloseStrategy()

... 2825ConnectionLossHandling

... 2827DaysToLoad

... 2827DefaultQuantity

... 2828DisconnectDelaySeconds

... 2828EntriesPerDirection

25Contents

25

© 2023 NinjaTrader, LLC

... 2830EntryHandling

... 2832Execution

... 2835ExitOnSessionCloseSeconds

... 2836IncludeCommission

... 2837IncludeTradeHistoryInBacktest

... 2838IsAdoptAccountPositionAw are

... 2839IsExitOnSessionCloseStrategy

... 2840IsFillLimitOnTouch

... 2841IsInstantiatedOnEachOptimizationIteration

... 2846IsInStrategyAnalyzer

... 2846IsTradingHoursBreakLineVisible

... 2847IsWaitUntilFlat

... 2848NumberRestartAttempts

... 2848OnAccountItemUpdate()

... 2849AccountItemEventArgs

... 2851OnExecutionUpdate()

... 2856OnOrderTrace()

... 2857OnOrderUpdate()

... 2862OnPositionUpdate()

... 2865OptimizationPeriod

... 2865Order

... 2870IsTerminalState()

... 2872Order Methods

... 2874Managed Approach

... 2885Advanced Order Handling

... 2891CancelOrder()

... 2893ChangeOrder()

... 2895EnterLong()

... 2896EnterLongLimit()

... 2897EnterLongMIT()

... 2899EnterLongStopLimit()

... 2900EnterLongStopMarket()

... 2902EnterShort()

... 2903EnterShortLimit()

... 2905EnterShortMIT()

... 2906EnterShortStopLimit()

... 2908EnterShortStopMarket()

... 2909ExitLong()

... 2911ExitLongLimit()

... 2913ExitLongMIT()

... 2915ExitLongStopLimit()

... 2917ExitLongStopMarket()

... 2919ExitShort()

... 2921ExitShortLimit()

... 2923ExitShortMIT()

... 2925ExitShortStopLimit()

... 2927ExitShortStopMarket()

... 2929GetRealtimeOrder()

... 2931SetParabolicStop

... 2935SetProfitTarget()

... 2938SetStopLoss()

... 2941SetTrailStop()

... 2944Unmanaged Approach

... 2948CancelOrder()

NinjaTrader 826

© 2023 NinjaTrader, LLC

... 2948ChangeOrder()

... 2948IgnoreOverfill

... 2949IsUnmanaged

... 2950SubmitOrderUnmanaged()

... 2952OrderFillResolution

... 2953OrderFillResolutionType

... 2954OrderFillResolutionValue

... 2955PerformanceMetrics

... 2956Plots

... 2958Position

... 2959AveragePrice

... 2959GetUnrealizedProfitLoss()

... 2960Instrument

... 2961MarketPosition

... 2961Quantity

... 2962PositionAccount

... 2963AveragePrice

... 2964GetUnrealizedProfitLoss()

... 2965Instrument

... 2965MarketPosition

... 2966Quantity

... 2966Positions

... 2968PositionsAccount

... 2970RealtimeErrorHandling

... 2973RestartsWithinMinutes

... 2973SetOrderQuantity

... 2974Slippage

... 2975StartBehavior

... 2976StopTargetHandling

... 2977StrategyBaseConverter

... 2980SystemPerformance

... 2980AllTrades

... 2981LongTrades

... 2981RealTimeTrades

... 2982ShortTrades

... 2982TestPeriod

... 2983TimeInForce

... 2984TraceOrders

... 2985Trade

... 2988TradeCollection

... 2990TradesCount

... 2990EvenTrades

... 2992GetTrades()

... 2992LosingTrades

... 2993TradesPerformance

... 2996AverageBarsInTrade

... 2996AverageEntryEff iciency

... 2997AverageExitEff iciency

... 2997AverageTimeInMarket

... 2998AverageTotalEff iciency

... 2998Currency

... 2999GrossLoss

... 2999GrossProfit

... 3000LongestFlatPeriod

27Contents

27

© 2023 NinjaTrader, LLC

... 3000MaxConsecutiveLoser

... 3001MaxConsecutiveWinner

... 3001MaxTimeToRecover

... 3002MonthlyStdDev

... 3002MonthlyUlcer

... 3003NetProfit

... 3003Percent

... 3004PerformanceMetrics

... 3005Pips

... 3006Points

... 3006ProfitFactor

... 3007RSquared

... 3007RiskFreeReturn

... 3008SharpeRatio

... 3008SortinoRatio

... 3009Ticks

... 3010TotalCommission

... 3010TotalQuantity

... 3011TotalSlippage

... 3011TradesCount

... 3012TradesPerDay

... 3012WinningTrades

... 3013TradesPerformanceValues

... 3014AverageEtd

... 3015AverageMae

... 3015AverageMfe

... 3016AverageProfit

... 3016CumProfit

... 3017Draw dow n

... 3017LargestLoser

... 3018LargestWinner

... 3018ProfitPerMonth

... 3019StdDev

... 3019Turnaround

... 3020Ulcer

... 3020WaitForOcoClosingBracket

.. 3021SuperDOM Column

... 3022MarketDepth

... 3024OnMarketData()

... 3025OnOrderUpdate()

... 3026OnPositionUpdate()

... 3027OnPropertyChanged()

... 3027OnRender()

... 3029OnRestoreValues()

... 30297 SharpDX SDK Reference

.. 3031SharpDX

... 3032Color

... 3042Color3

... 3043Color4

... 3044DisposeBase

... 3045Dispose()

... 3046IsDisposed

... 3047Matrix3x2

... 3048RectangleF

NinjaTrader 828

© 2023 NinjaTrader, LLC

... 3050Size2F

... 3051Vector2

.. 3052SharpDX.Direct2D1

... 3054AntialiasMode

... 3055ArcSegment

... 3056ArcSize

... 3056Brush

... 3058Opacity

... 3058Transform

... 3059BrushProperties

... 3060CapStyle

... 3061Draw TextOptions

... 3062Ellipse

... 3063FigureBegin

... 3063FigureEnd

... 3064FillMode

... 3066GeometrySink

... 3067AddArc()

... 3068AddLine()

... 3069AddLines()

... 3070BeginFigure()

... 3070Close()

... 3071EndFigure()

... 3072SetFillMode()

... 3073GradientStop

... 3074GradientStopCollection

... 3076ColorInterpolationGamma

... 3077ExtendMode

... 3078GradientStopCount

... 3079LinearGradientBrush

... 3081EndPoint

... 3082GradientStopCollection

... 3082StartPoint

... 3083LinearGradientBrushProperties

... 3084MeasuringMode

... 3085PathGeometry

... 3087FigureCount

... 3088FillContainsPoint()

... 3088GetBounds()

... 3089Open()

... 3090SegmentCount

... 3090StrokeContainsPoint()

... 3091RadialGradientBrush

... 3095Center

... 3095GradientOriginOffset

... 3096GradientStopCollection

... 3097RadiusX

... 3097RadiusY

... 3098RadialGradientBrushProperties

... 3099RenderTarget

... 3101AntialiasMode

... 3101Draw Ellipse()

... 3102Draw Geometry()

29Contents

29

© 2023 NinjaTrader, LLC

... 3104Draw Line()

... 3105Draw Rectangle()

... 3106Draw Text()

... 3108Draw TextLayout()

... 3110FillEllipse()

... 3111FillGeometry()

... 3112FillRectangle()

... 3113Transform

... 3113SolidColorBrush

... 3115Color

... 3116StrokeStyle

... 3118DashCap

... 3118DashesCount

... 3119DashOffset

... 3119DashStyle

... 3121EndCap

... 3121GetDashes()

... 3123LineJoin

... 3124MiterLimit

... 3124StartCap

... 3125StrokeStyleProperties

... 3127Sw eepDirection

.. 3127SharpDX.DirectWrite

... 3128TextFormat

... 3130Flow Direction

... 3131FontFamilyName

... 3132FontSize

... 3132FontStretch

... 3134FontStyle

... 3135FontWeight

... 3137ParagraphAlignment

... 3138ReadingDirection

... 3139TextAlignment

... 3140WordWrapping

... 3140LineMetrics

... 3142TextLayout

... 3144GetLineMetrics()

... 3145MaxHeight

... 3145MaxWidth

... 3146Metrics

Index 0

NinjaTrader 830

© 2023 NinjaTrader, LLC

1 Welcome to NinjaTrader

The NinjaTrader Help Guide is your reference to product features descriptions and detailed

instructional content on their use. Instructional content is delivered via text, images and video

where applicable. This Help Guide also serves as a reference to NinjaScript used in the

development of automated trading systems (strategies) and custom indicators.

In addition to this Help Guide, NinjaTrader hosts multiple live on-line training sessions per
week on various aspects of our product.

Additional information and a schedule of upcoming training events.

Thank you for choosing NinjaTrader.

Good trading,
NinjaTrader Customer Service

https://ninjatrader.com/futures/livestreams

Video Library 31

© 2023 NinjaTrader, LLC

2 Video Library

Within the Help Guide are numerous videos providing a step by step tour through the
NinjaTrader Platform. Select your area of interest below to view an expanded list of all
available topics within each category.

Order Entry

Trade Controls Overview
The Trade Controls Overview video provides a walkthrough of various trade
management features which can be accessed in a variety of order-entry windows.
Several order-entry windows are shown in the video to show the commonalities in
how trade controls operate in NinjaTrader.

Chart Trader Overview
Chart Trader allows orders and positions to be entered and managed directly
within a chart window. Advanced Trade Management strategies can be employed
directly in the Chart Trader window. Orders and positions on multiple instruments
can be managed within a single chart window, as well. This video covers the
basics of enabling and using Chart Trader, including a visual method of placing
Limit and Stop orders.

SuperDOM Order Submission Overview
This video covers submitting new orders in the SuperDOM.

SuperDOM Position Management Overview

NinjaTrader 832

© 2023 NinjaTrader, LLC

The SuperDOM Position Management Overview video covers scaling in, scaling

out, and closing positions directly in the SuperDOM.

SuperDOM Order Modification Overview
This video shows the ways in which resting orders can be modified directly in the

SuperDOM.

Attach to Indicator Overview
The Attach to Indicator feature allows resting orders to be attached to indicator
plots, automatically updating an order's price as the indicator value changes. This
feature can be used to partially automate entries, exits, stop losses, and profit
targets. The Attach to Indicator Overview video provides working examples of
using this feature in Chart Trader and the SuperDOM.

Overview of the Basic Entry and FX Pro Windows
The Basic Entry and FX Pro windows conveniently group order-entry and market

analysis features into compact windows which function in similar ways. This video

explores the layout and basic features of both window.

Video Library 33

© 2023 NinjaTrader, LLC

Advanced Trade Management (ATM) Strategies

Advanced Trade Management Overview
Advanced Trade Management Strategies, also referred to as ATM Strategies,
provide a layer of discretionary automation to manage a position's exit orders
without the need to make continual manual modifications. The Advanced Trade
Management Overview video introduces and defines ATM Strategies, while
demonstrating a simple ATM setup.

ATM Stop Strategies
ATM Stop Strategies provide additional functionality for the stop losses placed by
an ATM Strategy, including auto-breakeven, auto-trail, and Simulated Stop orders.

ATM Additional Options and Strategy Selection Modes
Additional options for ATM Strategies include Auto-Reverse and Auto-Chase
features, and the ability to specific the order type used for profit targets and stop
losses. ATM Strategy Selection Modes determine the behavior of the ATM Strategy
Control List after placing an order.

Advanced Trade Management Examples
In the final Advanced Trade Management video, several real-world examples are
created and saved as templates for later use, showing many core ATM features in
use in a live market.

NinjaTrader 834

© 2023 NinjaTrader, LLC

SuperDOM

SuperDOM Display Overview
The SuperDOM displays five levels of market depth on a price ladder, and allows

for the entry and management of orders and positions, as well as the use of

Advanced Trade Management Strategies. The SuperDOM Display Overview video

covers the layout and basic functionality of the SuperDOM.

Static vs. Dynamic Price Ladder
Two versions of the SuperDOM are available: Static and Dynamic. This video

covers the difference between the two.

Working with Indicators on the SuperDOM
The Working with Indicators video provides an overview of configuring technical
indicators on the SuperDOM. Just like charts, the SuperDOM can display a wide
range of price- and volume-based indicators, and allows resting orders to be
attached to indicator plots moving in real-time.

Video Library 35

© 2023 NinjaTrader, LLC

SuperDOM Columns Overview
The SuperDOM Columns Overview shows how additional columns can be added

to a SuperDOM window to display profit and loss, volume, notes, or any

information configured in a custom column created via NinjaScript.

Control Center

Control Center Overview
The Control Center acts as the primary window in NinjaTrader, providing access
to all trading windows, performance reporting, and other features of the platform.
This video provides an overview of the Control Center's layout and menus.

Control Center Tabbed Display and Account Data
The Control Center's tabbed layout provides quick access to Orders, Positions,
Accounts, Strategies, and Executions. The Control Center Tabbed Display and
Account Data video covers navigating Control Center tabs, as well as managing
and editing connected brokerage accounts.

NinjaTrader 836

© 2023 NinjaTrader, LLC

Market Analyzer

Market Analyzer Display Overview
The Market Analyzer is NinjaTrader's answer to the traditional quote sheet, adding
a wide range of functionality to extend the features of traditional quote sheets, such
as the ability to view indicator values, create alerts, and link to charts and order-
entry windows for instant instrument switching. The Market Analyzer Display video
covers these features in detail.

Market Analyzer Columns and Indicators
The Market Analyzer can be configured with a wide range of pre-built and custom

columns and indicators. This video demonstrates applying and configuring these

items.

Alerts

Overview of Alerts
Alerts can be configured on Charts or Market Analyzer windows, allowing you to
set custom actions to take when predefined conditions are met in the market,
including automatically placing orders or sharing messages via social media. This
video covers configuring and testing alerts using the Simulated Data Feed.

Alerts Examples

Video Library 37

© 2023 NinjaTrader, LLC

In this video, a few real-world examples of alerts are set up in a Chart and Market
Analyzer to show the Alerts feature in action.

Charts

Creating Charts Overview
NinjaTrader charts feature a wide range of advanced features and options, which
are covered in several videos. The Creating Charts Overview provides a
walkthrough of creating a new chart or duplicating an existing chart.

Navigating Charts Overview
The Navigating Charts Overview video picks up where the Creating Charts video
left off, showing you how to manage instruments, navigate chart windows, and
manipulate the viewable area of charts.

Working With Indicators on Charts
Technical indicators plot mathematical derivatives of price action graphical on
charts. Over 100 indicators come preloaded with NinjaTrader and can be applied
right away. Additionally, custom indicators can be developed via NinjaScript or
obtained through third-party vendors for an even greater array of indicator
selections.

NinjaTrader 838

© 2023 NinjaTrader, LLC

Chart Panels and Objects Overview
Charts can contain numerous objects, including bars series, indicator plots,
Drawing Objects, and execution plots. The Chart Panels and Objects Overview
video shows how to manage, drag and drop, or copy and paste chart objects.

Chart Drawing Objects
Drawing Objects allow you to mark any area of a chart panel in a variety of ways.
Numerous Drawing Objects are available for use right away, including several
Fibonacci tools, and additional Drawing Objects can be created via NinjaScript or
obtained from third-party vendors.

Working with Price Data on Charts
Charts allow you to view price data in a wide variety of formats, including different
Chart Styles, Bar Types, and intervals. This video provides an overview of setting
up price data to your liking on a chart.

Market Data Windows

Video Library 39

© 2023 NinjaTrader, LLC

FX Board Display
The FX Board allows forex traders to view a wide range of forex instruments at a
glance, using an advanced interface to quick enter, exit, and manage trades on
numerous instruments from within a single window. The FX Board Display video
covers the layout and primary functions of the FX Board.

Level II Window Overview
The Level II window presents a complete view of market depth events for an
instrument, displaying all 10 levels of depth, including the price, size, volume, and
spread of each order. This video covers the basics of opening, populating, and
reading the Level II window.

Time & Sales Window Overview
The Time & Sales window can be used to view granular details about all orders
being filled at the exchange for a particular instrument. This video provides an
overview of the layout and basic operation of the Time & Sales window.

Miscellaneous

Window Management Overview
NinjaTrader windows include common features to increase workflow and
workspace efficiency. The Window Management Overview video covers such
topics as creating and editing tabs within windows, and duplicating existing content
in new windows.

NinjaTrader 840

© 2023 NinjaTrader, LLC

Hot List Analyzer Overview
The Hot List Analyzer screens equity instruments based on a variety of criteria
with over 30 filters. For example, this window can be used to spot the most active,
highest gaining, or highest losing stocks of the day on an individual exchange. This
video shows how to set up and populate the Hot List Analyzer.

Share and Print Overview
Sharing content such as positions and chart screenshots is an integral feature in
NinjaTrader. The Share and Print Overview video covers linking social media
accounts to NinjaTrader and sharing content from a variety of windows within the
platform.

Trade Performance Overview
The Trade Performance window provides robust reporting on the performance of
completed trades, including a number of graphs covering popular performance
metrics. The Trade Performance Overview video provides a high-level overview of
using the Trade Performance window and it's various filters to view meaningful
performance reports.

Video Library 41

© 2023 NinjaTrader, LLC

Playback Connection
The Playback connection allows you to use Market Replay data, or historical data,

to play back market action from previous days. This video provides an overview of

downloading Market Replay data, setting up the Playback connection, and playing

data back at different speeds.

Strategy Builder Overview
The Strategy Builder is used to generate NinjaScript based strategies for

automated systems trading. This video provides an overview of creating a

strategy.

Strategy Backtesting and Optimization

Strategy Analyzer Overview
NinjaScript strategies can be backtested and optimized to test theoretical strategy
performance on historical data within the Strategy Analyzer. The Strategy Analyzer
Overview covers the basic layout of the Strategy Analyzer, and individual test
types will be covered in greater detail in future videos.

Backtesting Strategies

NinjaTrader 842

© 2023 NinjaTrader, LLC

The Backtesting Strategies video walks through the process of configuring,

running, and analyzing the results of a standard strategy backtest in the Strategy

Analyzer. All configurable backtest properties are covered in this video.

Optimizing Strategies
Strategy optimizations allow you to iterate over a pre-defined range of strategy

input values to determine the combination of property values which score highest

on a chosen performance metric. The Optimizing Strategies video covers the

aspects of optimizations which differ from standard backtests.

Understanding Walk-Forward Optimization
Walk-Forward Optimization combines the features of optimizations and standard

backtests. This Backtest Type performs an optimization over a pre-defined date

range, then applies the optimal parameter combinations to a standard backtest

over another pre-defined date range.

Understanding Multi-Objective Optimization
Multi-Objective Optimization uses Pareto Analysis to find a set of possible input-

value combinations which score higher or lower on individual metrics (of which

there can be many), but for which there are no obviously superior alternatives on

all metrics tested. This video introduces the goals of Multi-Objective Optimization

and explains the concept of the Pareto Frontier.

Video Library 43

© 2023 NinjaTrader, LLC

Understanding the Genetic Algorithm
The Genetic Algorithm is an optional optimization engine which leverages

evolutionary theory to find optimal combinations of strategy input parameters

through multi-generational crossover and mutation, focusing on the fittest

individuals in each generation.

NinjaTrader 844

© 2023 NinjaTrader, LLC

3 Release Notes

NinjaTrader release notes can be found below, if you have any questions on a specific

release please contact platformsupport@ninjatrader.com

Version Released

8.1.2.0 October 25, 2023

8.1.1.7 March 4, 2023

3.1 8.1.2.0

8.1.2.0 Release Date
October 25, 2023

Features

SuperDOM Pulling/Stacking column

Feature #2873

mailto:platformsupport@ninjatrader.com

Release Notes 45

© 2023 NinjaTrader, LLC

The Pulling/Stacking column is a customizable display that indicates the changes in the

market depth based on user settings or if a reset notification is received. For example, in

NinjaTrader 846

© 2023 NinjaTrader, LLC

the screenshot above the sell depth at 4520.75 was initially at 91, but dropped to 84

resulting in a display of -7.

Within the columns settings you can change the reset to occur on bid/ask change or when

no longer receiving depth data at that level. Additionally, you can adjust reset tolerance and

color settings.

SuperDOM Recent column

Feature #2874

The Recent column is a customizable display that indicates the recent volume that

occurred at the bid or ask prices. For example, in the above screenshot we can see a

volume of 1 occurred at the bid price and a volume of 4 occurred at the ask.

Within the column's settings you can change the reset to occur when the bid/ask change

or when the price returns. Additionally, you can adjust the reset tollerance and color

settings.

Selected indicators label displays in bold/italic

Feature #2894

Release Notes 47

© 2023 NinjaTrader, LLC

Often times multiple indicators can be loaded on a chart and it can be difficult to know

what plot is for what indicator and settings. Now you can select the indicator plot and it's

label will display in bold and italic to easily and quickly identify it.

Options on Futures data available with NinjaTrader connection

Feature #1633

NinjaTrader 848

© 2023 NinjaTrader, LLC

To match Web Trader, NinjaTrader Desktop can now also display option on futures data

with the NinjaTrader connection.

Additional columns available with Option Chain

Feature #2882

Release Notes 49

© 2023 NinjaTrader, LLC

Additional columns were added to the option chain for additional analysis and to match

what's available on Web Trader.

Unlimited number of columns can be added to the Option Chain

Feature #6010

NinjaTrader 850

© 2023 NinjaTrader, LLC

Previously only 4 columns could be added to the Option Chain. Now it is possible to

enable all available columns to display at the same time.

Chart objects can be sent to back/front

Feature #197

Release Notes 51

© 2023 NinjaTrader, LLC

Selecting and right clicking on a chart object now gives the ability to quickly send the

object to the front or back of the chart.

Symbology Display Style can be managed within Properties

Feature #6579

NinjaTrader 852

© 2023 NinjaTrader, LLC

You can now make Symbology Display Style changes directly within the platform,

eliminating the need to access the Client Dashboard for this task. This can be done under

Tools> Options> General.

Updated compiler to use Roslyn

Feature #1642

This enhancement now grants you the flexibility to leverage C# features up to version 8,

providing even more versatility in your scripting endeavors.

Workspace loading indicator

Feature #4451

An animated NinjaTrader icon now displays while workspaces are loading at startup to

help reassure everything is in motion and processing smoothly.

Warning: Some custom scripts that reference old versions of Newtonsoft will need the

references updated to Newtonsoft 13

Iss

ue

#

Stat

us

Cate

gory

Comments

601

8

Fixe

d

Alert

s

After an alert sent by a NinjaScript was cleared

from the output window it will re-appear in new

Alert windows

334

1

Fixe

d

Back

up &

Rest

ore

Custom instruments were not saved in backup

file

371

9

Fixe

d

Back

up &

Rest

ore

Backup reminder prompt did not open the

backup window

443

8

Fixe

d

Back

up &

Database was not properly backing

up/restoring

Release Notes 53

© 2023 NinjaTrader, LLC

Rest

ore

247 Fixe

d

Char

t

Resolved a scenario where the data series

window could open unexpectedly

322 Fixe

d

Char

t

Print chart function wasn't working

411

1

Fixe

d

Char

t

Mini data had display issue with a large list of

indicators

748

1

Fixe

d

Coin

base

Level 2 data stopped working

656

0

Fixe

d

Conti

nuu

m/C

QG,

Orde

rs

Resolved a scenario where an order that was

correctly sent got rejected with an incorrect

tick value

363 Fixe

d

Cont

rol

Cent

er

Client Dashboard did not load with some set-

ups

225

3

Fixe

d

Cont

rol

Cent

er

Intermittently the Watch button wasn't

detecting if a stream was live

279

2

Fixe

d

Cont

rol

Cent

er

WebView Task Bar icon was missing

289

7

Fixe

d

Cont

rol

Cent

er

Client Dashboard could require multiple

attempts to load

NinjaTrader 854

© 2023 NinjaTrader, LLC

289

8

Fixe

d

Cont

rol

Cent

er

Client Dashboard didn't have a header title

296

5

Fixe

d

Cont

rol

Cent

er

Exception in Vimeo interactions when no data

is received

459

0

Fixe

d

Cont

rol

Cent

er

In product announcements were not received

if no multi-provider connections were created

465

8

Fixe

d

Cont

rol

Cent

er

Gross Realized PnL calculated incorrectly

when a lost connection restored

501

2

Fixe

d

Cont

rol

Cent

er

WebView instances stayed running after

closing NinjaTrader

716

1

Fixe

d

Cont

rol

Cent

er

Multiple part fills resulted in unexpected gross

realized PnL values

457

0

Fixe

d

Data

base

Error occurred with new database if server

side ATMs were used

343

5

Fixe

d

Draw

ing

Tool

Line drawing tool 45 degree snap could place

second anchor in wrong location

463

6

Fixe

d

Draw

ing

Tool

Global drawing objects disappeared from

charts when a template was applied

Release Notes 55

© 2023 NinjaTrader, LLC

577

3

Fixe

d

Draw

ing

Tool,

Work

spac

es

Resolved a scenario where a global drawing

tool and a multi-data series chart resulted in a

lock up

735

9

Fixe

d

Fore

x.co

m

Forex.com demo accounts could not be

connected to

174 Fixe

d

Fore

x.co

m,

Orde

rs

Order updates for DFT instruments, which are

not supported, were not being ignored

225

7

Fixe

d

Histo

rical

Data

Wind

ow

Always showed in numerical format

170 Fixe

d

Histo

rical

Data

Wind

ow,

Char

ts

Excluded historical data showed in charts and

added Changed rows in Historical Data

window

611

5

Fixe

d

Indic

ator

Indicators were not able to plot on first bar

when only one bar of data was loaded

294

8

Fixe

d

Instal

ler

"Repair" installation ignores custom folder and

breaks the installation

209 Cha

nged

Instr

ume

nts

Symbology display styles updated for Options

on Futures and Index instruments

225

8

Fixe

d

Instr

ume

Instruments at times were not rolling over

NinjaTrader 856

© 2023 NinjaTrader, LLC

nts

681

9

Cha

nged

Instr

ume

nts

Rollover window text updated and link included

for more information

343

7

Fixe

d

Inter

activ

e

Brok

ers

Resolved a scenario that prevented some

non-US users to not be able to load data

164

4

Fixe

d

Kinti

eck,

Optio

n

Chai

n

Some expirations didn't show any strike prices

469

6

Cha

nged

Log

In

When reCaptcha is needed it now shows

immediately and wait time to log in has been

reduced to 15 seconds

286

8

Cha

nged

Log

In

Added icon to show entered password

137

5

Fixe

d

Log

In

After log in attempts with incorrect credentials,

first log in with correct credentials showed an

error still

183

8

Cha

nged

Log

In

Updated Google sign in authorization

225

4

Fixe

d

Log

In

Recaptcha window was too small when

displayed images to verify

467

0

Fixe

d

Log

In

Closing Recaptcha window prevented ability to

log in

496

1

Fixe

d

Log

In

Resolved a scenario where log in failed as

task canceled

Release Notes 57

© 2023 NinjaTrader, LLC

518

8

Fixe

d

Log

In

Style fixes to log in window

495

5

Cha

nged

Mark

et

Analy

zer,

Work

spac

es

Add SPK to Market Analyzer in default

workspaces

288

1

Fixe

d

Mark

et

Analy

zer,

Ninja

Scrip

t

Resolved s scenario where a custom script

didn't properly display with blank values

320 Fixe

d

Ninja

Scrip

t

Resolved a scenario where a 'Message sent

successfully' log wasn't displayed

226

5

Cha

nged

Ninja

Scrip

t

NTDirect.dll was no longer working. It has

been removed and support has been dropped

342

9

Fixe

d

Ninja

Scrip

t

Calling a barsAgo index of 1 when CurrentBar

is 0 displayed an unexpected bar

380

2

Fixe

d

Ninja

Scrip

t

Scripts referencing HLCCalculationMode

enum could not be exported/imported as an

assembly

295

7

Cha

nged

Ninja

Scrip

t

Added additional precision to cryptocurrency

volume

472

9

Fixe

d

Ninja

Scrip

t

AddDataSeries on pre-rollover instrument

using custom trading hours failed with

incorrect error message

NinjaTrader 858

© 2023 NinjaTrader, LLC

875

3

Cha

nged

Ninja

Scrip

t

Updated Newtonsoft to version 13

428

7

Cha

nged

Ninja

Scrip

t

Edito

r

Only Visual Studio 2019 or 2022 are now

supported

400

9

Fixe

d

Ninja

Scrip

t

Edito

r

Some system indicators could not properly be

copied

343

1

Fixe

d

Ninja

Scrip

t,

Draw

ing

Tool

There was inconsistency with start/end time

errors with @Lines and @Shapes

362 Fixe

d

Orde

r

TIF selector was not preventing using of invalid

dates

326 Fixe

d

Orde

r

Flow

+

Order Flow Volume Profile drawing tool plotted

above price bars if drawn before the first Split

date

380

5

Fixe

d

Orde

r

Flow

+

There was an incorrect blank cell on Order

Flow + Volumetric Bars when using Diagonal

Imbalance

469

8

Fixe

d

Orde

rs

A token not being able to renew prevented

order/position updates

470

0

Fixe

d

Orde

rs

A part filled order that was then canceled still

showed as pending cancel

Release Notes 59

© 2023 NinjaTrader, LLC

500

6

Fixe

d

Orde

rs,

Serv

er

Side

ATM

Attempting to use locally simulated orders with

server side with server side ATMs didn't show

an error

169 Fixe

d

Play

back

Playing back with historical data and switching

instruments caused time to skip

697

0

Cha

nged

Play

back

Playback account's settings can now be

independently changed from the local

simulation account

655

2

Fixe

d

Play

back,

Char

t

Daily charts displayed the session high/low

prior to reaching the levels

580

0

Fixe

d

Play

back,

Indic

ator

Resolved a scenario where an error occurred

with the Price Line indicator and switching

between Playback and a live connection

329 Fixe

d

Play

back,

Ninja

Scrip

t

Incorrect prints of bar indexes could occur

when disabling and re-enabling strategy via the

Strategy tab that was generated in a chart

406 Cha

nged

Regi

onali

zetio

n

Buy/sell buttons locations are now

regionalized for Korea and can be changed

under Options> Trading

704 Cha

nged

Regi

onali

zetio

n

Primary and secondary buy/up & sell/down

colors have been regionalized for Korea

540

8

Fixe

d

Serv

er

Resolved a scenario where order updates

were delayed

NinjaTrader 860

© 2023 NinjaTrader, LLC

Side

ATM

298 Fixe

d

Shar

e

Adap

ter

Could not send email while using a Hotmail

account

164

3

Fixe

d

Shar

e

Adap

ter

Connect Button for Gmail Share Service is

Collapsed in NinjaTrader Desktop

628

7

Cha

nged

Shar

e

Adap

ter

Removed Twitter/X share service

933 Fixe

d

Strat

egies

Orders using isLiveUntilCancelled false

couldn't be cancelled with CancelOrder()

225

5

Fixe

d

Strat

egy

Copying and pasting a multi-data-series

strategy it could change to the secondary

series

342

7

Fixe

d

Strat

egy

There was inconsistency between sound files

played for orders filled via SetStopLoss() and

SetProfitTarget()

542

6

Fixe

d

Strat

egy

When clicking 'View code' in Strategy Builder,

SMA() did not show when assigning it to a

custom Series using a different custom series

as input for SMA()

658

7

Fixe

d

Strat

egy

Resolved a scenario where SetParabolicStop

could move an order further away

168 Fixe

d

Strat

egy

Analy

zer

A Walk Forward optimization with Break At

EOD off duplicated results from Friday into the

weekend

Release Notes 61

© 2023 NinjaTrader, LLC

178 Fixe

d

Strat

egy

Analy

zer

Some inputs could not be modified after an

optimization if Optimize Data Series was set

to True

225

9

Fixe

d

Strat

egy

Analy

zer

Genetic optimization with a generation size of

2 got stuck running and did not complete

405

2

Fixe

d

Strat

egy

Analy

zer

Clicking 'View' in the View Strategy column of

an AI Generate optimization with an

aggregated basket test resulted in an error

453

0

Fixe

d

Strat

egy

Analy

zer

BarsSinceNewTradingDay could be negative

10,000+ when running Genetic Optimization

with

IsInstantiatedOnEachOptimizationIteration=fal

se

164

5

Fixe

d

Supe

rDO

M

PnL Freezes when hovering mouse over the

Dynamic SuperDOM

605

1

Fixe

d

TD

Amer

itrad

e

Resolved an 'object reference not set to an

instance of an object' error when connecting

464

1

Fixe

d

Tick

Repl

ay,

Indic

ator

Swing indicator OnPriceChange showed

different results than OnBarClose when Tick

Replay was enabled

534

5

Fixe

d

Trad

e

Perfo

rman

ce

Some regions/timezone settings prevented

reports from running

NinjaTrader 862

© 2023 NinjaTrader, LLC

542

1

Fixe

d

Trad

e

Perfo

rman

ce

In some scenarios trades could show with the

wrong timezone

556

8

Fixe

d

Trad

e

Perfo

rman

ce

PC Region settings set to Poland prevented

reports from running

602

6

Fixe

d

Trad

e

Perfo

rman

ce

Resolved a scenario where historical MIT

orders caused an error

610

7

Fixe

d

Trad

e

Perfo

rman

ce

Resetting a template did not reset AI Generate

properties

224

6

Cha

nged

Work

spac

es

Removed Eurex instruments from the default

workspaces

3.2 8.1.1.7

See additional patch notes at the bottom

8.1.1.0 Release Date
March 4, 2023

Features

User based log in with associated plans and add-ons

The new Log In screen adds a layer of security while removing the need for license keys.

Account plans and power-ups enabled within the Client Dashboard or imported will be

Release Notes 63

© 2023 NinjaTrader, LLC

associated with the username. There no longer is a need for a license key. Upgrading

NinjaTrader will import entitlements from your old license or you can import the license

within the Client Dashboard.

Users who signed up for a demo account with the Sign in with Google/Apple feature can

quickly connect by selecting those options. Live accounts require a Username and

Password.

Warning: The log in credentials are only to provide access to your account,

entitlements, and server side ATM templates. Any multi-provider connections,

NinjaTrader 864

© 2023 NinjaTrader, LLC

NinjaScripts, workspaces, etc saved to your local computer will be available to any log

in to your local computer.

Trading Mode window

After logging in, you will be presented with a Trading Mode screen. The status of your live

or simulation account will be display here and you can select how you would like to

continue. You can now connect to Live and only have your live account available,

preventing trading to the simulation account in error.

The Trading Mode screen will not display when Multi-provider mode is enabled.

Multi-provider mode

Multi-provider mode can be enabled or disabled under Tools> Options> General. When

enabled, you will have the ability to configure and connect to other providers. Additionally,

the local simulation accounts will be available to trade. The Trading Mode screen will be

skipped so you can manage what connection(s) you want to connect to under the

Connections menu.

When disabled, you can opt-in to use server side ATMs (beta). The local simulation

account will be disabled, so you can connect to the server side simulation account when

you desire.

Release Notes 65

© 2023 NinjaTrader, LLC

Warning: Multi-provider connections are available to any user that logs in to your local

computer. If other NinjaTrader users are connecting from your computer, it is

recommended to configure your connections to Ask password on connect.

Server side ATMs (beta)

Under Tools> Options> Strategies, you can opt in to use server side ATMs with the

NinjaTrader connection. They are only available with the NinjaTrader connection and are

disabled when Multi-provider is enabled. Server side ATMs will continue to function, even

when you are not connected to NinjaTrader. Templates are saved to the server and can

be used on any device you log in to. There are differences in functionality between the new

server side ATMs and the previous local ATMs. Ensure to review the Server Side vs

Local ATMs section of the help guide to ensure your orders will function as you

intend.

NinjaTrader 866

© 2023 NinjaTrader, LLC

Warning: When an entry order is submitted with a server side ATM the stop loss and

target will display as Suspended, indicating they will not become active until the entry is

filled. The orders can be modified before the entry is filled. Any scripts that check order

state should be tested to ensure the new order state doesn't result in unintended

results.

Server side Trade Performance reports

Trade Performance reports for the NinjaTrader connection are pulled from the server.

NinjaTrader will no longer require to be connected as orders are filled to give accurate

reports.

Client Dashboard access

Under Tools there is a link to the Client Dashboard. The Client Dashboard can be used to

change your plan, add plan power-ups, perform transfers, view your statements, etc.

Release Notes 67

© 2023 NinjaTrader, LLC

Customizable contract month display format

NinjaTrader can now display contract months in a format of your choosing. The

Symbology Display Style can be selected within the Client Dashboard and will be applied

to the Desktop, Web, and Mobile platforms.

Messages tab

NinjaTrader 868

© 2023 NinjaTrader, LLC

The Messages tab will display important messages to your account. An indication of how

many unread messages there are will be displayed within the tab.

Iss

ue

#

Stat

us

Cate

gory

Comments

154

50

Don

e

Alert

s

Alerts window did not allow numeric value to

be compared with numeric value

153

87

Fixe

d

Alert

s,

Strat

egy

Build

er

Disable BarsAgo & Offset for CrossAbove /

Below in Strategy Builder and Alerts as only

the series is ever compared

155

55

Fixe

d

Orde

r

Flow

+

Volumetric Bars buy imbalance boxes could

appear outside candle box

147

60

Cha

nged

Conti

nuu

m/C

QG

Web API now uses oAuth based

authentication

Release Notes 69

© 2023 NinjaTrader, LLC

153

49

Fixe

d

Inter

activ

e

Brok

ers,

Char

t

Multiple Change Order requests on paper

account caused chart window to freeze

153

09

Fixe

d

Ninja

Scrip

t

Edito

r,

Strat

egy

Renaming strategy that changes parameter

names caused compile errors

154

16

Fixe

d

Ninja

Scrip

t

Edito

r

Resolved a scenario where clicking on a

compile error resulted in an error

154

40

Fixe

d

Ninja

Scrip

t

Edito

r,

Work

spac

es

Tabs could scroll unexpectedly when

switching between them from a saved

workspace

155

37

Fixe

d

Shar

eAda

pter

iCloud share service could not send

messages

154

18

Fixe

d

Strat

egy

Analy

zer

Backtest type reverted when selecting a

strategy

154

57

Fixe

d

Work

spac

es

Closing default workspace on new install could

prevent proper creation of new savable

workspace

NinjaTrader 870

© 2023 NinjaTrader, LLC

155

61

Fixe

d

Work

spac

es

Warning of closing default workspaces did not

function as expected

8.1.1.1 Release Date
March 8, 2023

Iss

ue

s #

Sta

tus

Cat

eg

ory

Comments

61

7

Fix

ed

Ch

arts

Setting Symbology Display Style to Exchange

resulted in daily charts being slow to load

76

1

Fix

ed

Dat

a

Historical data was saving based on Symbology

Display Style

39

0

Fix

ed

Log

In

Google and Apple log ins could fail

36

6

Ch

ang

ed

Log

In

Log In window now saves username by default

39

9

Fix

ed

Log

In

Log in error was not removed when attempting to

log in again

62

6

Ch

ang

ed

Log

In

Changed "Need help?" To "Forgot Username? |

Forgot Password?" on Log In window

65

0

Ch

ang

ed

Log

In

Optimized the log in experience and added a

loading indicator

38

9

Fix

ed

Ninj

aSc

ript

NinjaScript Add-Ons would fail to load if it utilized

NinjaTrader.Cbi.License.MachineId

Release Notes 71

© 2023 NinjaTrader, LLC

40

1

Fix

ed

Ninj

aSc

ript

NinjaScript Add-Ons would fail to load if it utilized

Newtonsoft.Json

8.1.1.2 Release Date
March 22, 2023

Iss

ue

s #

St

atu

s

Categor

y

Comments

14

26

Fix

ed

ATMs Deleting an ATM template set the ATM

dropdown to None on all windows

15

3

Ad

de

d

Log In A captcha was added to allow log in after too

many failed log ins from IP address

40

9

Fix

ed

NinjaTra

der

Connect

ion

Resolved a scenario where users with a live

account couldn't access a simulation account

13

91

Fix

ed

NinjaTra

der

Connect

ion

Resolved a scenario where Account Type

was locked to Simulation

14

44

Fix

ed

NinjaTra

der

Connect

ion

After many connections drops the application

could crash

12

17

Fix

ed

NinjaTra

der

Connect

ion

Configured connection name could change

14

06

Fix

ed

NinjaTra

der

Connect

Resolved a scenario where position and order

updates received an error that they were for

an unknown symbol

NinjaTrader 872

© 2023 NinjaTrader, LLC

ion,

Orders

16

41

Fix

ed

NinjaTra

der

Continu

um,

SuperD

OM

Resolved a scenario where some accounts

that should be available in the SuperDOM

were disabled

8.1.1.3 Release Date
March 28, 2023

Iss

ue

s #

St

atu

s

Categor

y

Comments

19

41

Fix

ed

Logs Security fix for local tracing

18

46

Fix

ed

NinjaTra

der

Connect

ion

Last trade events could be marked with

incorrect bid/ask prices

8.1.1.4 Release Date
April 27, 2023

Iss

ue

s #

St

atu

s

Categor

y

Comments

20

73

Ch

an

ge

d

Continu

um,

CQG

Updated a CQG Server Certificate. All users

connecting via Continuum or CQG are

required to update to this version on or before

June 23th, 2023.

22

52

Fix

ed

NinjaTra

der

In some scenarios account name didn't

display as expected

Release Notes 73

© 2023 NinjaTrader, LLC

Connect

ion,

Multi-

provider

13

55

Fix

ed

Trade

Perform

ance

Resolved multiple scenarios that could cause

no results to be returned

8.1.1.5 Release Date
May 1, 2023

Iss

ue

s #

St

atu

s

Categor

y

Comments

33

19

Fix

ed

NinjaTra

der

Connect

ion

Resolved a scenario where stop limit orders

would get an error

8.1.1.6 Release Date
May 16, 2023

Iss

ue

s #

St

atu

s

Categor

y

Comments

34

84

Fix

ed

ATMs Resolved a scenario that applied a previously

selected ATM to a stop limit order

32

99

Fix

ed

Trade

Perform

ance

Resolved additional scenarios that could

cause no results to be returned

8.1.1.7 Release Date
June 6, 2023

NinjaTrader 874

© 2023 NinjaTrader, LLC

Iss

ue

s #

St

atu

s

Categor

y

Comments

46

00

Fix

ed

ATMs,

Chart

Trader

ATM strategies attached to stop limit orders

did not deploy on Chart Trader

22

62

Fix

ed

Connect

ions

Resolved a scenario where a connection

would not save

37

29

Fix

ed

Control

Center

Watch button didn't show when live at times

and could error when selecting

41

13

Fix

ed

NinjaTra

der

Connect

ion

Preemptive property updates to prevent

connection issues

46

05

Fix

ed

Trade

Perform

ance

Multiple fixes to reports, report values, and

errors

3.3 8.0

NinjaTrader release notes can be found below, if you have any questions on a specific

release please contact platformsupport@ninjatrader.com

Version Released

8.0.28.0 April 27, 2023

8.0.27.1 November 29, 2022

8.0.26.1 April 27, 2022

8.0.25.0 October 19, 2021

8.0.24.3 March 10, 2021

8.0.23.2 November 16, 2020

mailto:platformsupport@ninjatrader.com

Release Notes 75

© 2023 NinjaTrader, LLC

8.0.22.2 June 2, 2020

8.0.21.1 February 25, 2020

8.0.20.1 December 5, 2019

8.0.19.1 September 23, 2019

8.0.18.1 May 6, 2019

8.0.17.2 January 28, 2019

8.0.16.3 October 16, 2018

8.0.15.1 July 30, 2018

8.0.14.2 May 24, 2018

8.0.13.1 March 26, 2018

8.0.12.0 January 30, 2018

8.0.11.1 December 6, 2017

8.0.10.0 November 7, 2017

8.0.9.0 September 12, 2017

8.0.8.0 July 26, 2017

8.0.7.1 June 6, 2017

8.0.6.1 April 17, 2017

8.0.5.2 March 6, 2017

8.0.4.0 January 31, 2017

8.0.3.0 January 9, 2017

8.0.2.0 December 5, 2016

NinjaTrader 876

© 2023 NinjaTrader, LLC

8.0.1.0 November 14, 2016

3.3.1 8.0.28.0

8.0.28.0 Release Date
April 27, 2023

Iss

ue

#

Sta

tus

Cat

ego

ry

Comments

20

72

Ch

ang

ed

Con

tinu

um,

CQ

G

Updated a CQG Server Certificate. All users

connecting via Continuum or CQG are required to

update to this version on or before June 30th,

2023.

3.3.2 8.0.27.1

Attention 32-Bit Users:

· 64-bit has become the standard for applications in the Windows environment

· As we continue to modernize our desktop platform and clearing up performance related

confusions around 32 vs 64 bit NinjaTrader Desktop usage

· NinjaTrader 8.0.27.0 will be solely a 64-bit Windows application, this means the

installation directory will change from C:\Program Files (x86) to C:\Program Files

· To initiate the update simply follow the installer and restart the PC.

8.0.27.1 Release Date
December 19, 2022

Issue

#

Status Category Comments

15439 Fixed Control

Center

Email to support could fail

15466 Fixed Options

Chain

Options did not display

https://ninjatrader.com/PlatformDirect

Release Notes 77

© 2023 NinjaTrader, LLC

15526 Fixed Interactive

Brokers,

Charts

There was a gap of data on charts

from when connecting

15527 Fixed NinjaScript Resolved a scenario where

importing a script resulted in an

error

8.0.27.0 Release Date
November 29, 2022

Features

SQLite Database technology

Database

Feature #15258

We have updated our core internal database technology from the deprecated Microsoft

SQL CE to SQLite. Supported / documented NinjaScript code will not be impacted by this

change; however if you have specifically developed your Add-On to call or interact with the

Microsoft SQL CE database you should review and update code for compatibility.

Added ability to roll positions from Control Center position grid

Orders, Position Display

Feature #14350

NinjaTrader 878

© 2023 NinjaTrader, LLC

On the Positions tab of the Control Center you can now right click on Futures position and

select Roll Position. This will send a Market order to exit the position in the current contract

month and send another Market order in the next contract month to roll your position.

Historical Data window tabs unified and displays prior to connecting to Playback

Historical Data Window, Playback

Feature #15305

The Historical Data Window has now been unified into a single tab for simplicity. Now you

can view what data is already loaded while deciding what data to download.

Additionally, the Historical Data Window will now appear before connecting to Playback.

This will enable you to view what Market Replay data is loaded and download desired data

before continuing.

Place Lines at 45 Degree Increments

DrawingTool

Release Notes 79

© 2023 NinjaTrader, LLC

Feature #15263

With the line drawing tools, after placing the first anchor, you can hold SHIFT on the

keyboard and move the mouse around to adjust the line in 45 degree increments. This is

based on chart scaling at the time the line is placed.

Added Save-As Option When Closing Default Workspace

Workspaces

Feature #15222

Now when modifying a default workspace, which cannot be save, you will be asked if you

would like to save it as a different name

Added Property to Show Number of Trades on Strategies Tab

Control Center, Strategy

Feature #15351

NinjaTrader 880

© 2023 NinjaTrader, LLC

The Number of Trades column in the Strategies tab will display the number of Real-time &

Historical trades that occurred with the enabled strategy. This column is disabled by

default, but can be enabled by right clicking on the Strategies tab of the Control Center and

selecting Properties.

All System NinjaScript types can be exported

NinjaScript Editor

Feature #14665

Previously only indicators from System NinjaScript could be exported. Now all System

NinjaScript types can be exported to allow successful exports. For example an indicator

that references a share service could now successfully be exported.

Issue

#

Status Category Comments

14914 Fixed Alerts German translation was missing

in the Alerts window

15277 Fixed Alerts, Chart Vertical lines incorrectly showed

as available for alerts on a chart

15239 Fixed ATI OIF files could generate

unhandled exception when

sending several OIFs

15245 Fixed ATI Orders submitted via external

application using the DLL interface

Release Notes 81

© 2023 NinjaTrader, LLC

could incorrectly labeled as OIF

files

15214 Fixed ATM

Strategies

Add target feature added target to

first target price even after first

target was already filled

15320 Fixed ATM

Strategies

Auto Breakeven could use entry

price rather than new avg entry

price as trigger when scaling into

ATM

15357 Fixed ATM

Strategies

ATM and Stop Strategy templates

saved with only a blank character

cause the platform to malfunction

15338 Fixed Bars Futures instrument bars request

could get stuck when time range

requested outside of valid

contracts

15061 Fixed Chart Repeated Instrument Quick

Searches could slow down Quick

Search display

15278 Fixed Chart Plot executions could show up in

multiple languages when

switching to Russian

15292 Fixed Chart Unhandled exception could be

thrown when loading up

workspace and connecting to data

feed

15371 Fixed Chart Indicator dialog modal window

could display out of screen

boundary

15280 Fixed Chart Trader Instrument selected on Chart

Trader does not remain in place

on a chart with multiple tabs that

have a secondary data series

NinjaTrader 882

© 2023 NinjaTrader, LLC

15355 Chang

ed

Chart

Trader,

Orders

Default Quantity for Stocks

changed from 100 to 1

15215 Chang

ed

Chart,

Drawing

Fibonacci drawing objects

selection improvements

15303 Fixed Chart,

Drawing

Drawing tools do not allow you to

use scroll wheel to continue

plotting

15326 Fixed Chart,

NinjaScript

DrawingTools

GetAttachedToChartBars()

method returns previous

instrument switched from chart

after returning to the attached

Instrument

15401 Fixed Control

Center

Collapsed Control Center showing

just icons could show drop-down

text after restart

15337 Fixed Control

Center,

NinjaScript

Opening strategy dialog and

connection dialog could cause

deadlock

15218 Chang

ed

Control

Center,

Strategy

Analyzer

Removed tool-tip timeout on

Strategy Parameters

15166 Fixed CQG Live MIT orders could not be

changed by NinjaScript

15408 Fixed CQG,

Continuum

Unexpected duplicate order

update message could be

received

15078 Fixed CQG,

NinjaScript

WebAPI connections could miss

strategy OnPositionUpdate()

iterations when entering a position

Release Notes 83

© 2023 NinjaTrader, LLC

15261 Fixed CQG,

NinjaScript

SetTrailStop() could see errors

stating the price was the same on

live/paper accounts

15189 Fixed Database,

Strategy

Instrument rollover does not

switch strategy instruments on

strategies tab

15283 Fixed Drawing,

DrawingTool

Only some Global Drawing

Objects reappeared on a

recreated chart prior to a platform

restart

15289 Fixed Drawing,

Rithmic

NullReferenceException could be

seen restoring workspace with

drawing objects on Rithmic

connection

15098 Fixed Forex.com Forex.com executions from

several days prior could be

repeated

15175 Fixed Forex.com Current daily bar could be

incorrect for Forex.com

15350 Chang

ed

Forex.com Order URL updated

15354 Fixed FXCM Unknown order type could be seen

from FXCM when trade was

closed in TradingStation

15272 Fixed Indicator BOP indicator did not have a

ZeroLine

15246 Chang

ed

Indicator CurrentDayOHL / PriorDayOHLC

Price Marker formatting

improvement for treasury futures

14730 Fixed Indicator,

Log

If the Indicator label is removed,

errors in the log now show

indicator class name

NinjaTrader 884

© 2023 NinjaTrader, LLC

15008 Fixed Indicator HMA did not plot as expected

during high volatility on certain bar

types

15206 Fixed Indicator Parabolic SAR Input series

change was not reflected

15390 Fixed Indicator Correlation plot contained gaps

when both series have same time

frame with same trading hours

15368 Remov

ed

Installer Removed 32-bit installer

15027 Fixed Instruments Exception thrown when opening a

chart of auto added instrument

15036 Fixed Instruments Selecting multiple instruments to

add to a list and hitting enter only

added the first instrument

15213 Fixed Instruments Instrument selector search issue

for multi-strings

15229 Fixed Instruments Editing auto added futures

instrument forces user to define

month

15399 Chang

ed

Interactive

Brokers

Updated required version of

Trader Workstation & IB Gateway

to 10.19-1c

15365 Fixed Interactive

Brokers

Option position updates missing

15380 Fixed Interactive

Brokers,

Strategy

OnOrderUpdate() called twice for

same order

15299 Fixed Kinetick,

Data

Real-time tick timestamps could

be different than historical in some

scenarios

Release Notes 85

© 2023 NinjaTrader, LLC

15242 Fixed NinjaScript Modifying order quantity to 0 could

result in stuck order instead of

UnableToChangeOrder error

15282 Fixed NinjaScript Strategy containing TimeEditorKey

property could result in unhandled

exception

15347 Fixed NinjaScript Draw.Triangle does not have auto-

scale applied when drawn on

chart if auto-scale is set to true in

NS

15216 Fixed NinjaScript

Editor

Debug warning could trigger when

it should not

15306 Fixed NinjaScript

Editor

Compiling could lock up editor

15358 Fixed NinjaScript

Editor

Excluding Strategy throws

unhandled exception

15309 Fixed NinjaScript

Editor,

Strategy

Renaming strategy could cause

compile errors on parameter

name changes

15265 Added NinjaScript,

Property

Grids

Browsable attribute on indicator

having class scope

15362 Fixed NinjaScript,

Strategy

Analyzer

IsInStrategyAnalyzer is false for

Optimizations

15300 Fixed Order Flow

+, Chart

Order Flow Volume Profile plots

on wrong bar for current session

when using the CME RTH Trading

Hours

15391 Fixed Order Flow

+,

NinjaScript

AddVolumetric() could trigger

outside template TradingHours

NinjaTrader 886

© 2023 NinjaTrader, LLC

15284 Fixed Playback,

Chart

Tick chart could build a wrong bar

between merge of historical and

Playback data

15264 Fixed Rithmic,

Position

Display

Unexpected position updates

could be received

15343 Fixed Rithmic,

Position

Display

Position updates could be missed

15318 Fixed Rithmic,

ATM

Strategies

 Too many order change/cancel

requests could be sent

15122 Chang

ed

ShareAdapte

r

Updated SMTP client for sending

emails

15247 Chang

ed

ShareAdapte

r

Implemented SMTP changes for

Google

15288 Chang

ed

ShareAdapte

r

Outlook SMTP config updated

14994 Fixed Strategy,

Playback

Strategy with 52 added data series

caused playback controller to stop

15219 Fixed Strategy

Analyzer

Strategy Analyzer Optimization

displays double values for

Increment on integer inputs if

typed in the main field

15322 Fixed Strategy

Analyzer

Trades on chart did not always

show

15259 Fixed Strategy

Builder

Gui.CategoryOrder not applying

properly to indicators

15394 Fixed Strategy

Builder

Adding draw ruler action would not

compile

Release Notes 87

© 2023 NinjaTrader, LLC

15400 Chang

ed

Strategy

Builder,

Alerts

Disabled lookback period of 0 on

CrossAbove and CrossBelow as it

is unusable

15329 Fixed Strategy,

Templates

Strategy templates saving could

erroneously include contract

15345 Fixed Strategy,

Templates

Strategy could be enabled on

invalid Instrument

15116 Fixed SuperDOM Fast mouse scroll actions could

be ignored

14993 Fixed TD

Ameritrade

Synchronize Account Strategy

order could be rejected for Sell

Short and TIF = GTC

15317 Fixed TD

Ameritrade

Strategy and ATM submitting stop

and target could leave an

erroneous Stop Loss order in

Initialized state

15366 Fixed TD

Ameritrade

Market order submitted to stock

which is halted did not reflect that

the order was rejected

15367 Fixed TD

Ameritrade

Closing an opening position with

an offsetting order did not cause

position update to be reflected

15274 Fixed Trade

Performance

Filter options couldn't be

unchecked

15375 Fixed Vendor

licensing

Vendor license timed out when

fetching a big number of licenses

15037 Fixed Workspaces Window size could not be

increased if workspace was

opened prior to additional monitor

setup

NinjaTrader 888

© 2023 NinjaTrader, LLC

3.3.3 8.0.26.1

8.0.26.1 Release Date
June 22, 2022

Features

NinjaTrader Watch icon added

Feature #15285

In the top right corner of the Control Center a watch icon was added to

connect more directly with our daily live events. When events are

streamed live, this will be indicated via green coloring.

Iss

ue

#

Stat

us

Cate

gory

Comments

152

67

Fixe

d

Draw

ing

Drawing objects removed with

RemoveDrawObject() could remain in the

Drawing Objects list until object is redrawn

152

49

Fixe

d

Ninja

Scrip

t

Trendlines indicator could display message

after disconnect/reconnect that was targeted

only for Strategy Analyzer

152

94

Adde

d

Rith

mic

Added Apex connect points

152

64

Fixe

d

Rith

mic

Out of sequence position updates could occur

152

71

Fixe

d

Work

spac

es

Unexpected behavior deleting

_Workspaces.xml file

152

98

Fixe

d

Work

spac

es,

Strat

egy

Strategies would not be shown in new

workspace unless Strategies tab was

duplicated

Release Notes 89

© 2023 NinjaTrader, LLC

8.0.26.0 Release Date
April 27, 2022

Features

Support FairX Exchange

Feature #15190

Support for the FairX Exchange was added, available products are TEC, LTEC, B5, LB5

and OIL.

TDA login authorization over WebView2

TDA Adapter

Feature #15072

TDA users can now login and authorize their accounts over WebView2, this includes

Windows 11 users.

Default workspaces are now accessible in own subfolder Control Center

Workspaces menu

Workspaces

NinjaTrader 890

© 2023 NinjaTrader, LLC

Feature # 15104

With Tools > Options > General > Preferences > Show Default Workspaces folder

checked, the default workspaces shipped with NinjaTrader Desktop will always be

accessible in a dedicated folder under Workspaces.

Language menu improved to show new target language non translated

Control Center

Feature # 15181

When switching NinjaTrader Desktop to a new language, the new target language is now

non-translated making it more intuitive to select.

Korean language support added (Beta)

Localization

Feature # 15044

Support for Korean was added, please report any improvement suggestions via

platformsupport@ninjatrader.com

mailto:platformsupport@ninjatrader.com

Release Notes 91

© 2023 NinjaTrader, LLC

Issue # Status Category Comments

15053 Fixed Adapter,

Coinbase

ADAUSD is Missing historical

data, throws Cast Error when

opening Historical Data

Manager

14826 Fixed Adapter,

CQG

CQG WebApi with Sim

License Key: " Order Received

order for unknown account"

'16984730'

15047 Fixed Adapter,

cTrader

Modifying working order in

cTrader is not reflected in NT

15121 Fixed Adapter,

Forex.com

Close Operation could time out

with large number of orders

14953 Fixed Adapter,

FXCM

MIT orders could be cancelled

after connection loss and

reconnect on FXCM Demos

only

14954 Fixed Adapter,

FXCM

Market Data mapping issue

when Trading CFDs with

FXCM in UK Time Zone

15160 Fixed Adapter,

Gain

Gain CFD resolution could be

failing due to backend changes

15049 Fixed Adapter,

Interactive

Brokers

NinjaTrader would not update

position on IB Liquidation

15063 Fixed Adapter,

Interactive

Brokers

Interactive Brokers Auto Logon

has issues when the

password contains certain

non-alphanumeric characters

15101 Fixed Adapter,

Interactive

Brokers

Interactive Brokers CZK

denominations do not show in

platform

NinjaTrader 892

© 2023 NinjaTrader, LLC

15109 Fixed Adapter,

Interactive

Brokers

Interactive Brokers: Auto

Logon will not populate

credentials in Gateway 981.3g

15048 Added Adapter,

Rithmic

Updated Rithmic API to version

11.3.0.0

14981 Changed Adapter,

TD

Ameritrad

e

User who is able to place short

entries through TDA (TOS)

cannot in NinjaTrader

14923 Fixed Adapter,

TD

Ameritrad

e

Every tick reported as daily

candle with Hong Kong SAR

regional settings

15178 Fixed Alerts Alert always triggers when

opening Workspace, if alert is

applied to background chart

tab

14658 Fixed ATI Moving OIF files to incoming

folder results in no action

15040 Fixed ATM

Strategies

Hovering over ATM Strategy

Info would not reflect

modification

15042 Fixed ATM

Strategies

Reversal Order is affected by

'Chase' option and may cause

multiple ATM entries

14813 Fixed ATM

Strategies,

Order

Entry

Order entry windows would not

show working ATM's if custom

ATM was selected then

canceled

15076 Fixed Backup &

Restore

Backup could fail if the backup

folder is set to a mobile drive's

root directory

Release Notes 93

© 2023 NinjaTrader, LLC

14999 Fixed Chart Time and Date Entries in the

Mini Data Box could be

duplicated

15006 Fixed Chart Chart would not relocate

properly using Windows +

Shift + Cursor

14951 Fixed Chart White grid lines show incorrect

color with Dark Skin applied.

14983 Fixed Chart Chart stuck 'loading' when

chart tab is switched prior to

historical reload completion

15148 Fixed Chart Unable to change instruments

in multiple panel charts

15195 Fixed Chart NullReferenceException in

rendering when running

strategy

14942 Fixed Chart,

Bars

Weekly, monthly and yearly

charts didn't respect trading

hours definition on intraday

realtime/playback data

14864 Fixed Chart,

Drawing

Extended Lines and Rays on

non-equidistant charts will

'slide' over the chart when

scrolling past today

15179 Fixed Chart,

Drawing

Tool,

NinjaScript

Polygon and Path Draw

Objects could disappear on

reloading NinjaScript

14988 Fixed Chart,

NinjaScript

A strategy ZOrder property is 0

by default, when the default

should be 10001

NinjaTrader 894

© 2023 NinjaTrader, LLC

15153 Fixed Chart,

NinjaScript

Andrew's Pitchfork disappears

when anchors are out of view

14936 Fixed Chart,

NinjaScript

Setting plot values to

double.MinValue on some

visible bars causes d2d error

15184 Fixed Chart,

NinjaScript

COT indicator updated

mappings

14840 Fixed Chart,

Strategy

Strategy with

AddChartIndicator, puts

indicator on wrong panel when

changing instruments

15106 Fixed Chart,

SuperDO

M

SuperDOM/Charts could

become unresponsive when

duplicating SuperDOM

15170 Fixed Connectio

ns, FXCM

Configuring FXCM connection

while platform language is

Portuguese could result in

error

15073 Added Control

Center

Direct video guides link in Help

menu

14995 Fixed Control

Center

Window maximized on a non-

primary screen will incorrectly

expand onto an additional

screen

15124 Changed Control

Center

Improved error messaging on

attempting to Import Non-NT8

zip file

15127 Fixed Control

Center

Orders Tab Filter by

Instrument would not uncheck

15168 Fixed Control

Center

Orders Tab Filter prevents any

orders shown on restart

Release Notes 95

© 2023 NinjaTrader, LLC

15177 Added Control

Center

Help menu link to live events

14937 Fixed Control

Center

Minimizing modal forms could

cause undesirable behavior

14959 Fixed Control

Center

Tab key does not switch

between 'Max Order Size' and

'Max Position Size'

15097 Fixed Core Print orientation default should

be Landscape

14935 Fixed Database,

Instrument

s

Changing Instrument

Properties of instrument

applied to chart causes NT to

become unresponsive

15173 Fixed DrawingT

ool

Global Drawing Objects could

be duplicated when using the

'Save As' to save a workspace

15103 Fixed DrawingT

ool

Reload NinjaScript can

temporarily hide drawing

objects attached to "all charts"

15089 Added Installer Safe mode entry made

available to Start menu

14934 Fixed Instrument

s

Typing ̂or @, into chart,

correctly selects list but

excludes those instruments

15207 Fixed Instrument

s

Instrument Selector Displays

placeholder after deleting

instrument from list

14903 Fixed Localizatio

n

IBKR and BarChart adapters

report incorrect historical data

and executions if Windows

number format is non-default

NinjaTrader 896

© 2023 NinjaTrader, LLC

15167 Fixed Market

Analyzer

Unhandled exception when

removing Blank rows in Market

Analyzer

15183 Fixed Market

Analyzer

Market Analyzer would not add

previously added master

instrument

15079 Changed NinjaScript Remove Requirement for all

VS's needing to be closed, to

launch VS from NT

14972 Fixed NinjaScript Unmanaged Orders on

primary Series Canceled,

Secondary are not, on start up

Multi Time Frame

14998 Fixed NinjaScript TimeEditorKey uses Text

editing cursor when mouse

over arrow buttons

15000 Fixed NinjaScript Path and Polygon drawing

tools could have error after

recompile/reload

15002 Fixed NinjaScript Volume Up Down indicator

would not display when

Language is set to Italian

15016 Fixed NinjaScript When StopCancelClose takes

place, call the order

"StopCancelClose"

15045 Fixed NinjaScript Strategy with 1 tick added

series could cancel stoploss

when Tick Replay is used in

Strategy Analyzer

15058 Fixed NinjaScript No .cs file is generated in the

StrategyAnalyzerLogs folder

when backtesting a strategy in

a subfolder

Release Notes 97

© 2023 NinjaTrader, LLC

15060 Fixed NinjaScript Error exporting strategy that

includes indicator in sub-

folder/sub-namespace cannot

export

15080 Fixed NinjaScript Strategy using Collection

Editor cannot be reloaded after

recompiling

15081 Changed NinjaScript Managed Approach Internal

Handling Rules log reporting

improved

15117 Fixed NinjaScript COT indicator not plotting new

week's data after holiday/New

Year

15157 Fixed NinjaScript TrendLines indicator throws

error in OnCalculateMinMax

when viewed in Strategy

Analyzer chart

14882 Fixed NinjaScript AddOn that adds an image to

ControlCenter crashes on

second import

15038 Fixed NinjaScript @Pivots.cs causes invalid

index error on blank chart

15046 Fixed NinjaScript Tick counter shows repeating

decimals when shown as a

percentage

15050 Fixed NinjaScript Backups with large paths can

be created, but cannot be

restored

15055 Fixed NinjaScript MA Envelopes indicator

generates error when Period is

set to 1

NinjaTrader 898

© 2023 NinjaTrader, LLC

15064 Fixed NinjaScript Bar Timer does not work with

Visibility check box as

expected.

14977 Fixed NinjaScript

Editor

NinjaScript editor unsaved

changes message box on exit

could not be getting proper

focus

15107 Changed NinjaScript

Editor

There is an "Exclude from

Compilation" button in the

NinjaScript Editor's subfolders

that does no operation

15108 Fixed NinjaScript

Editor

NinjaScript Editor throws an

error message regarding code

that is commented out

14900 Fixed NinjaScript

Editor

Moving script with enum to

new folder throws object

reference not set to instance of

object error

15119 Fixed NinjaScript

Editor,

Visual

Studio

Integration

Editor could fail to find Visual

Studio 2022 installation

14869 Fixed NinjaScript

,

DrawingT

ool

Regression Channel with

either Extend Left or Extend

Right selected could disappear

from chart if end points are

outside of the viewable chart

window

15033 Fixed NinjaScript

, Strategy

Strategy instace could be

missing from strategies tab but

applied on chart

15128 Fixed NinjaScript

, Strategy

Changing indicator panels

while using AddChartIndicator

could behave differently when

Release Notes 99

© 2023 NinjaTrader, LLC

enabled from a Chart vs.

Control Center

14883 Fixed NinjaScript

, Strategy

Wait until flat not consistently

submitting working historical

orders that reach real-time

15174 Fixed NinjaScript

, Strategy

Issues enabling

AdoptAccountPositionAware

strategies

15034 Fixed NinjaScript

, Strategy

Analyzer

Browsable /

NinjaScriptProperty Attributes

could throw error in SA

Optimization

15186 Fixed NinjaScript

, Strategy

Analyzer

Strategy Analyzer view model

could have issue accessing

indicator found in two

obfuscated assemblies

15096 Fixed Order

Entry

Position Close algorithm could

be triggered than once on

same position

15067 Fixed Order

Flow +

OrderFlow Cumulative Delta

indicator could have incorrect

values when applied to 5 day

chart

15056 Fixed Order

Flow +

OrderFlow Volume Profile set

to Price causes charting

freeze when zooming in

15069 Fixed Playback Market replay data replays

slow on maximum speed

since 10-18-2021

15068 Fixed Playback,

Strategy

Analyzer

Strategy Analyzer 'Run' should

be disabled in Playback mode

NinjaTrader 8100

© 2023 NinjaTrader, LLC

15043 Changed Strategy StopTargetHandling default

should .PerEntryExecution

15099 Fixed Strategy

Analyzer

Strategy Analyzer 'Optimize

On' property changes when

changing strategies

14891 Fixed Strategy

Analyzer

Include Commission and

Default Quantity do not persist

in Strategy Analyzer after WS

reopen

14962 Fixed Strategy

Analyzer

Strategy Analyzer does not

use default template and

preset using Open in New

Strategy Analyzer from Log

grid

15111 Fixed Strategy

Analyzer

A strategy that adds indicators

that draw objects to the chart

is throwing a

NullReferenceException in the

strategy analyzer.

15125 Added Strategy

Builder

IsFirstTickOfBar added to

Strategy Builder

15165 Fixed Strategy

Builder

Strategy Builder could be

unable to repopulate saved

To / Subject fields from a

share service

14816 Fixed Strategy

Builder

Strategy Builder: Changing an

input then clicking Cancel,

does not cancel change

14912 Fixed Strategy

Builder

Passing a secondary series to

MACD in the strategy builder

results in bars ago error

14990 Fixed Strategy

Builder

Strategy Builder could throw

an error when opening a

Release Notes 101

© 2023 NinjaTrader, LLC

Condition Builder with platform

in Italian

15113 Fixed Strategy

Builder

Strategy Builder Trailing

Stop(s) can select irrelevant

calculation modes of Price and

Currency.

15075 Fixed Strategy,

Kinetick

Unable to connect to Kinetick

with strategies on strategies

tab

15150 Fixed Trading

Hours

Trading Hours holiday

segment duplicate holidays

reporting improved

14782 Fixed UI On certain setups indicator

selector starts in wrong

position

15149 Fixed Workspac

es

After switching to a workspace

using the Alert Log, Shift-F3

causes both workspaces to

appear as one

3.3.4 8.0.25.0

8.0.25.0 Release Date
October 19, 2021

Attention TD Ameritrade Users:

· The legacy account authorization mode cannot be supported on Windows 11, as such TDA

users are advised to continue using Windows 10 until further notice.

Issue # Status Category Comments

15020 Added Adapter,

Authorizati

on

Implemented OAuth using the

default browser for cTrader

connection and Twitter share

NinjaTrader 8102

© 2023 NinjaTrader, LLC

adapters to support Windows

11.

14858 Fixed ATM

Strategies

Scaling into a position twice

with ATM Strategy using Auto

Breakeven between entries

could result in stops not

respecting ATM Strategy

Selection Mode

14894 Fixed ATM

Strategies

After an ATM strategy closes,

the quantity field could not be

reloaded from the template

14849 Fixed Bars,

Market

Analyzer,

Playback

AddDataSeries in Indicator MA

column would cause playback

to hang on connect

14888 Fixed Basic

Entry, FX

Pro, Order

Ticket,

SuperDO

M

Order entry windows would not

always retain the selected

account after restarting

14867 Fixed Kinetick,

Options

Loading an option chain on a

stock symbol could cause

connection losses

14941 Fixed Chart,

ChartTrad

er

Escape key could not cancel

order modification if Instrument

overlay displays while

modifying an order

14853 Fixed Chart,

Chart

Trader

Order could alternate between

multiple instances of the same

indicator when using 'Attach

To Indicator' feature

14964 Fixed Chart,

DrawingTo

ol

Text drawing tool does not

initially show in all charts

Release Notes 103

© 2023 NinjaTrader, LLC

14889 Fixed Chart,

DrawingTo

ol

Ruler in Currency mode

doesn't show negative

14968 Fixed Chart,

DrawingTo

ol, Alerts

Trend Channel plots could not

be selected in Alerts Condition

Builder

14904 Fixed Chart,

NinjaScript

Closing Chart with Indicator

could throw an unhandled

exception

14943 Fixed Chart,

Workspac

es

Connecting to data provider

while Workspace is loading

could re-size panels

14851 Fixed Control

Center

Control Center and Account

Data window would not

respect column sorting on

workspace load

14945 Fixed CQG,

Orders

MIT order could be triggered,

then showed it successfully

canceled, but later could report

filled

14905 Fixed Depth

Chart

Depth Chart price could not be

rounded to instrument tick-size

14970 Fixed Indicator Enhanced COT defaults and

plot names

14948 Done Installer NinjaTrader Desktop icon and

splash-screen updated to

remove version mention

14878 Changed Instrument

s,

AutoRollov

er

Non workspace used

instruments from instrument

lists should be updated silently

in AutoRollover window

NinjaTrader 8104

© 2023 NinjaTrader, LLC

14938 Fixed Interactive

Brokers

Various 09-21 future expiries

could be reported as 12-99

14896 Added Interactive

Brokers

Updated supported version to

Trader Workstation 985.1g &

Gateway 981.3c

14887 Fixed Interactive

Brokers

Initial Margin would not

populate

14865 Fixed Interactive

Brokers

NinjaTrader would not

reconnect to Gateway after

Auto-Restart occurs.

14846 Fixed Interactive

Brokers

Unfilled Market Orders

submitted before the Open

could throw an error on

reconnect

14793 Fixed Interactive

Brokers

Reconnect could fail when

using multiple Gateway

connections

14867 Fixed Kinetick,

Options

Loading an option chain on a

stock symbol could cause

connection losses

15012 Fixed Licensing Vendor Licensing could be

unable to delete or modify

licenses

14815 Fixed Market

Analyzer,

NinjaScript

,

TickRepla

y

Market Analyzer Indicator

column calling hosted indicator

with added series could

produce incorrect values

14824 Fixed NinjaScript BarsRequest Open could not

match chart for current bar

when Update is not subscribed

Release Notes 105

© 2023 NinjaTrader, LLC

14758 Fixed NinjaScript Calling SetState from an

Indicator or Strategy allows

OBU to run in terminated

14984 Fixed NinjaScript Alert Log Entries from

Candlestick Pattern Indicator

could be hard to read

14979 Fixed NinjaScript Removed debug prints from

Darvas indicator

14910 Fixed NinjaScript

, Drawing

Tool

OnRender() could be

processed for DrawingObjects

not present on chart after NS

was reloaded

14956 Fixed NinjaScript

,

ShareAda

pter

NinjaTrader.Core.Globals.Sen

dMail() cc parameter is not

sending the email.

14916 Fixed NinjaScript

, Strategy

Using SetTrailStop with

OrderFillResolution could

incorrectly throw an error

about an invalid stop price

15003 Changed NinjaScript

, Strategy

Changed

SampleMultiTimeFrame and

SampleMultiInstrument to

follow best practices with

indicator instantiation

14974 Fixed NinjaScript

, Strategy

Submitting unmanaged orders

in State.Realtime could cause

freezes

14866 Fixed NinjaScript

, Tick

Replay

Failed to call 'Add' method

could result in

NullReferenceException

14952 Fixed Order

Flow +

Order Flow Volume Price

Profile could not print letters on

NinjaTrader 8106

© 2023 NinjaTrader, LLC

open of 1440 minute bar

14881 Fixed Playback Market Replay Data could be

missing Market Depth Data

14783 Fixed Playback Replay bar could be

misaligned with physical bar

index

14821 Fixed Playback,

Strategy

Playback connection could

freeze while running a Multi

Series strategy

15018 Removed ShareAda

pter

StockTwits share service

support on hold

15005 Fixed Simulator Simulator to roll accounts at

new CME session end time

14925 Fixed Strategy Adding a strategy to a custom

Range Chart then editing

Strategy from Control Center

tab, could modify the strategy

data series

14920 Fixed Strategy

Builder

Attempting to use a user

variable as an offset to a price

could not initially show the

selected variable

14831 Fixed Strategy

Builder

Strategy Builder folders were

expanded by default when

should be collapsed.

14967 Fixed Strategy

Builder,

DrawingTo

ol

Strategy Builder: Y values for

drawing tools do not maintain

their value when edited

14922 Fixed Strategy,

Workspac

es

Saving Workspace loses

disabled strategy when

connected to IQFeed

Release Notes 107

© 2023 NinjaTrader, LLC

14839 Fixed Strategy,

Workspac

es

Strategy could be enabled on

chart but not the strategies tab

when switching workspace

3.3.5 8.0.24.3

8.0.24.3 Release Date
June 15, 2021

Iss

ue

#

Stat

us

Cate

gory

Comments

149

08

Fixe

d

FXC

M

Updated to latest ForexConnect API to support

https connect points

149

46

Fixe

d

Work

spac

es

Overwriting existing workspace could be

incomplete

8.0.24.2 Release Date
April 1, 2021

Iss

ue

#

Stat

us

Cate

gory

Comments

148

36

Adde

d

Rith

mic

Added the ability to connect with futures.de

148

70

Fixe

d

Strat

egy

Build

er

Could not use Set for Period input on

indicators

8.0.24.1 Release Date
March 12, 2021

NinjaTrader 8108

© 2023 NinjaTrader, LLC

Iss

ue

#

Stat

us

Cate

gory

Comments

148

54

Fixe

d

Strat

egy

Intermittently CloseStrategy() did not close

positions

148

61

Fixe

d

Strat

egy

Build

er

Reopening a strategy and editing it's actions

resulted in an error

8.0.24.0 Release Date
March 10, 2021

Features

Enhancements to take advantage of additional levels of depth

SuperDOM, Depth Chart, Order Flow +

Feature #14781

Order Flow Market Depth Map had a setting added called Number of levels to track, which

can be configured to track more than the default 10 levels of depth.

Depth Chart now is enabled for futures and cryptocurrency instruments.

SuperDOM columns performance has been enhanced to handle more levels of depth.

Multiple data providers offer more than 10 levels of depth. NinjaTrader Continuum & CQG

have begun adding more levels of depth on popular instruments.

Release Notes 109

© 2023 NinjaTrader, LLC

Multiple workspaces will open at startup only when opted in to do so

Workspaces

Feature #14761

One of the main causes of increased resources being used is multiple workspaces

running at the same time and most people don't even realize that is occurring. To help

boost performance, NinjaTrader now will only open multiple workspaces at start up for

users who opt into doing so. No action is needed to only open 1 workspace at start up. To

opt in for multiple workspaces, go to the Control Center> General and enable Reopen all

previously open workspaces at startup.

Commissions template values can now be applied to Realized PnL

Commissions

Feature #14726

Viewing realized PnL when flat from your order entry windows can now be shown in Gross

realized PnL or Total PnL. Within order entry windows, the property previously named

Show gross realized PnL when flat has been renamed to Show realized PnL when flat. By

default it will continue to show Gross realized PnL. To show Total PnL, within the Control

Center go to Tools> Trading and enable Use total PnL for Show realized PnL when flat.

NinjaTrader 8110

© 2023 NinjaTrader, LLC

Iss

ue

#

Stat

us

Cate

gory

Comments

147

85

Fixe

d

Alert

s

Alerts Log filter was not filtering

147

65

Fixe

d

ATM

Strat

egies

Close operation failed with MIT targets

147

77

Fixe

d

ATM

Strat

egies

ATM stop strategy template could disappear

and ATM reverted to Custom after an hour of

inactivity

146

75

Fixe

d

Char

t

Global Cross-hair did not update with small

movements

146

88

Fixe

d

Char

t

Duplicating Chart Window then quickly closing

via task bar resulted in an error

146

97

Fixe

d

Char

t

Renko bars failed to draw on Volumetric

charts

147

05

Cha

nged

Char

t

Charts could not be panned when Center price

on scale was used, now it will disable so that it

can be panned

147

06

Fixe

d

Char

t

Opening a new chart with a template applied

prevented the chart from showing it was

loading

147

62

Fixe

d

Char

t

Indicator Displacement caused chart to scale

incorrectly

146

62

Fixe

d

Char

t

Trad

er

Pressing escape did not cancel an order move

operation

146

92

Fixe

d

Char

t

Using Display selected ATM strategy only did

not show all orders when ATM selection was

Release Notes 111

© 2023 NinjaTrader, LLC

Trad

er

set to None

146

93

Fixe

d

Char

t

Trad

er

Positions markers did not display in fractions

for instruments quoted in fractions

147

51

Fixe

d

Char

t,

Draw

ingT

ools

Placing a draw object then changing

instrument then changing instrument back to

original did not show that draw object.

147

47

Fixe

d

Char

t,

Draw

ingT

ools

Drawing objects placed on a holiday in the

future could display on the wrong bar

147

49

Fixe

d

Char

t,

Ninja

Scrip

t

RemoveDrawObjects did not remove global

draw objects if chart using indicator was on

background tab

148

11

Fixe

d

Conn

ectio

ns

Migrating NinjaTrader 7 connections could

result in duplicate Kinetick EOD connections

147

70

Fixe

d

Cont

rol

Cent

er

Connection status stayed green in Accounts

tab when disconnected

147

74

Fixe

d

Cont

rol

Cent

er

Restoring English Workspace in German

resulted in an error

147

39

Fixe

d

Data

base

Some instruments had incorrect information

after resetting instruments

NinjaTrader 8112

© 2023 NinjaTrader, LLC

147

69

Fixe

d

Data

base

Realized PnL could show previous value if

new value was not received

147

89

Fixe

d

FXC

M

Realized PnL in accounts tab could report

incorrectly

148

08

Fixe

d

Indic

ator

Woodies Pivots line widths settings did not

work

147

95

Fixe

d

Instr

ume

nts

Futures instruments could be created without

any contract months defined

147

36

Fixe

d

Inter

activ

e

Brok

ers

Disconnects from overnight prevented real-

time data from coming in

147

63

Fixe

d

Inter

activ

e

Brok

ers

Incorrect settings in Traders Workstation

could cause space-bar to be entered

repeatedly

147

79

Fixe

d

Inter

activ

e

Brok

ers

Resolved some instruments that showed with

the wrong contract month

147

50

Fixe

d

IQFe

ed,

Data

Volume for indexes did not update in real-time

147

52

Fixe

d

Kinet

ick

Instruments on NASDAQCM caused a

disconnect/reconnect loop

147

54

Fixe

d

Kinet

ick,

Char

t

Bid/ask/last tick data on the same panel could

plot incorrectly

Release Notes 113

© 2023 NinjaTrader, LLC

146

96

Fixe

d

Kinet

ick,

Char

t

Reloading data could result in missing bid/ask

tick data

144

40

Fixe

d

Licen

sing

Timezone affected free trial start/end date for

3rd party add-ons

146

89

Fixe

d

Local

izatio

n

Resolved an error that occurred when

adjusting some settings after setting the

language to Spanish

146

90

Fixe

d

Local

izatio

n,

Alert

s

Alerts with @Nombre in the Text field would

not save when language was set to Spanish

146

87

Fixe

d

Ninja

Scrip

t,

Draw

ingT

ool

Draw.TextFixed opacity could no longer

change if set to 90% or greater

147

07

Fixe

d

Ninja

Scrip

t,

Rith

mic

Account.PositionUpdate did not show flat

positions for Rithmic

146

06

Cha

nged

Optio

ns

Simulation accounts now always calculate as

FIFO and the FIFO setting was removed since

it only affected simulation accounts

146

21

Fixe

d

Orde

r

Flow

+

Order Flow Volume Profile week/month

started on wrong day for some timezones

147

01

Fixe

d

Orde

r

Order Flow Volume Profile using a week

profile period did not display correctly with

additional data series

NinjaTrader 8114

© 2023 NinjaTrader, LLC

Flow

+

147

66

Fixe

d

Orde

r

Flow

+

Order Flow Market Depth property, Number of

levels to track, did not persist with workspace

change

147

45

Fixe

d

Orde

r

Flow

+,

Indic

ators

Various indicators with weekly or monthly

reset now match logic for weekly/monthly bars

147

44

Fixe

d

Play

back,

Strat

egy

Rewinding Playback caused strategy

indicators to be removed

147

78

Fixe

d

Play

back,

Strat

egy

Adding a 1 tick series to a strategy would only

pull 5 days of data for the historical tick series

when applied in Playback

148

14

Fixe

d

Regi

onali

zatio

n

Italian language resources updated

146

82

Fixe

d

Strat

egy,

Char

t

Repeatedly enabling then disabling strategy

could cause chart to lockup

141

88

Fixe

d

Strat

egy

Disconnected accounts were listed in the

Account drop-down of the Strategy window

147

08

Fixe

d

Strat

egy

Resolved a scenario where a strategy could

show multiple times on the Strategies tab

Release Notes 115

© 2023 NinjaTrader, LLC

147

10

Fixe

d

Strat

egy

Resolved a case where an error in

OnExecutionUpdate was not handled properly

147

42

Fixe

d

Strat

egy

Connection loss could result in a disabled

strategy showing as enabled

147

71

Fixe

d

Strat

egy

Resolved a scenario where a rejected

modified order did not stop the strategy since

the order was rolled back

147

99

Fixe

d

Strat

egy

ExitOnSessionClose did not execute on last

session of chart if market was open

148

01

Fixe

d

Strat

egy

Analy

zer

Attempting to view Walk Forward Optimization

results in a new instance of the Strategy

Analyzer caused an error on next run

146

32

Fixe

d

Strat

egy

Build

er

Indicators without plots incorrectly showed as

available

147

46

Don

e

Strat

egy

Build

er

User inputs could prevent entering value in

some situations

147

73

Fixe

d

Strat

egy

Build

er

Numeric value was missing for order

submission quantity

147

75

Fixe

d

Strat

egy

Build

er

Offset field could become disabled

147

96

Fixe

d

Strat

egy

Build

er

Resolved some scenarios of user inputs not

being able to be entered/modified as expected

NinjaTrader 8116

© 2023 NinjaTrader, LLC

147

92

Fixe

d

Strat

egy,

Char

t

Strategy using AddChartIndicator left

indicators on chart when calling CloseStrategy

148

02

Fixe

d

Strat

egy,

Trad

e

Perfo

rman

ce

Strategy Performance window did not close

when strategy was disabled in chart

146

43

Fixe

d

TD

Amer

itrad

e

Resolved a scenario where an error resulted

in real-time data not coming in

146

64

Fixe

d

TD

Amer

itrad

e

Buying power was not displaying

146

73

Fixe

d

Work

spac

es

Workspace changes were not saved when

exiting if a workspace was restored and then

it's name was too long

146

96

Fixe

d

Char

t,

Work

spac

es

Workspace couldn't load some instruments on

charts if database was deleted

3.3.6 8.0.23.2

8.0.23.2 Release Date
December 14, 2020

Iss

ue

#

Status Categ

ory

Comments

Release Notes 117

© 2023 NinjaTrader, LLC

14

72

1

Fixed Backu

p &

Restor

e

Importing backups from 8.0.22.2 that

included historical data resulted in an error

14

72

9

Fixed Drawin

gTool,

Chart

Rolling over a futures that had drawing

objects on the chart resulted in the objects

not being visible

14

56

2

Fixed Drawin

gTool,

Templ

ates

Drawing objects with the setting Attach to -

Local in the template were removed when

changing instruments

14

73

5

Fixed Drawin

gTool,

Templ

ates

Attach to - All Charts setting was not saved

when using a template

14

73

3

Fixed NinjaS

cript

With a managed approach, close position

occurred after entry order when reversing

14

72

3

Fixed Playba

ck,

Strateg

y

Strategies in Playback could show order of

executions incorrectly

14

72

4

Fixed Super

DOM

Horizontal grid lines were wider than

expected

8.0.23.1 Release Date
November 23, 2020

Iss

ue

#

Statu

s

Categor

y

Comments

147

17

Fixed Rithmic Resolved a scenario that prevented

connecting and resulted in an 'account

NinjaTrader 8118

© 2023 NinjaTrader, LLC

already exists' error

147

15

Fixed Interactiv

e Brokers

Positions did not display when submitted

to a master FA account

147

14

Fixed Strategy Strategies did not disable upon manual

position close

147

12

Fixed Control

Center

Auto Rollover still popped up when

unchecking instrument and pressing done

8.0.23.0 Release Date
November 16, 2020

Features

.NET 4.8 Upgrade

General

Feature #14630

NinjaTrader 8 is built utilizing Microsoft's .NET framework. Microsoft recommends

upgrading to .NET Framework 4.8 to receive the highest level of performance, reliability,

security, and long-term support from Microsoft. This update is expected to be entirely

transparent as most users already have .NET framework 4.8 automatically installed via

windows update. When installing NinjaTrader, it will prompt you if you need to install .NET

4.8, and if required, you can download it here. Additionally, as a result of this update,

Windows 8.1 becomes the minimum supported operating system.

New default playback mode 'Playback from selected'

Playback

Feature #14287

This new mode will load historical data up to the selected time frame and start playback

from there. This will increase the speed of changing times for users who don't have

scripts or strategies that need to process each data event as it comes in.

https://dotnet.microsoft.com/download/dotnet-framework/thank-you/net48-web-installer

Release Notes 119

© 2023 NinjaTrader, LLC

Auto rollover notification

Instruments, DataBase

Feature #14599

A pop up will now appear when starting NinjaTrader or opening a workspace while there is

an instrument in the instrument list or workspace that has rolled over. This will help ensure

that the latest contracts are loaded with ease.

COT instrument mapping added to Instrument editor

Indicator, Instruments

Feature #14552

Mapping for COT data has been added to the Instrument editor to allow adding COT

mapping for newly created instruments or adding to existing ones. For some instruments

that do not have COT data you could map to related instruments if desired. For example,

you could map COT data from a mini contract to a micro.

NinjaTrader 8120

© 2023 NinjaTrader, LLC

Added extended backwards option for Andrew's Pitchfork

DrawingTool

Feature #14553

The extend lines back property adds additional functionality to Andrew's Pitchfork for your

technical analysis needs.

Interactive Broker auto reconnects after daily restart

Interactive Brokers

Feature #14510

Release Notes 121

© 2023 NinjaTrader, LLC

Both Traders Workstation and Gateway connections will now auto reconnect after their

daily restart.

Issu

e #

Statu

s

Cate

gory

Comments

1438

3

Fixed Alerts Time based conditions reverted to Data

Series when condition was re-opened

1447

0

Fixed Alerts Changing an indicators label removed it

from an alert condition

1447

3

Fixed ATM

Strate

gies

The 2nd modification to TIF GTD within ATM

parameters was not reflected in the entry

window's TIF

1447

6

Fixed ATM

Strate

gies

If an order partially filled at the target then

filled at the stop, the target could not be

canceled

1458

1

Fixed ATM

Strate

gies

Stop strategies could not be re-enabled after

using the right click menu to make changes

to breakeven properties

1445

3

Fixed Back

up &

Resto

re

There was an error exporting scripts when a

PC was set to use Belgian Dutch as the

language

1465

3

Fixed Bars Line break bars could have an unexpected

spike

1456

8

Fixed Chart Global crosshairs applied time scroll into

margins

1457

8

Fixed Chart Indicator plot did not correctly scale when

using overlay scale justification and auto

scale

NinjaTrader 8122

© 2023 NinjaTrader, LLC

1464

7

Fixed Chart The text for z-levels did not match the text

color property

1446

7

Fixed Chart,

Ninja

Script

Duplicating a chart with an indicator which

uses public variables doubled the value

1399

5

Fixed Chart,

Strate

gy

Strategy added indicators could only plot on

primary panel

1447

1

Fixed Contr

ol

Cente

r

Using a non-Gregorian calendar resulted in

a crash

1454

4

Fixed Contr

ol

Cente

r

Opening with no internet connection resulted

in a crash

1463

8

Fixed Contr

ol

Cente

r

Selecting Repair DB then Reset DB caused

an error

1464

1

Fixed Contr

ol

Cente

r

Exporting a strategy caused the cursor to

change unexpectedly

1466

9

Fixed Contr

ol

Cente

r

Resolved a scenario where a file could still

be in use after exiting and trying to start

NinjaTrader again

1463

7

Fixed CQG GTD orders restored incorrect date with

WebApi

1464

4

Fixed CQG The message indicating an account is not

enabled for data was not displaying

Release Notes 123

© 2023 NinjaTrader, LLC

1465

1

Fixed CQG OnPositionUpdate could report incorrect

position when account was flat

1467

4

Fixed CQG,

Strate

gy

Chart could lock up if a multi data series

strategy that didn't use the second series

moved a stop

1444

9

Fixed CQG,

Order

s

Leaving WebAPI connected over night

prevented an OCO order from being

modified the next day

1451

5

Fixed CQG,

Order

s

WebAPI ATMs using MIT for profit would not

cancel the stop when target was filled

1450

4

Fixed Drawi

ngTo

ol

When using 'stay in draw mode' and double

clicking on placed text to modify it there

could be an error

1452

1

Fixed Drawi

ngTo

ol

Trend Channel snapped inconsistently to

OHLC price when parallel Y value was

modified

1453

5

Fixed Drawi

ngTo

ol

Drawing objects with visible set to disabled

reappeared when an interval was changed

1456

2

Fixed Drawi

ngTo

ol

Drawing objects could be removed when

switching instruments when using some

settings and default template settings

together

1464

2

Fixed Drawi

ngTo

ol

Risk Reward drawing tool did not set ratio

when drawn from code

1463

1

Fixed Drawi

ngTo

ol,

Temp

lates

Draw objects were not updated when using

2nd template on same object

NinjaTrader 8124

© 2023 NinjaTrader, LLC

1451

8

Fixed Indica

tor

Candlestick pattern Inverted Hammer /

Shooting star were incorrect

1460

1

Fixed Indica

tor,

Drawi

ngTo

ol

Risk Reward drawing object did not properly

update price levels when called from an

indicator using Calculate.PriceChange

1449

6

Fixed Instru

ment

s

Changing instrument type on instrument

creation caused an error

1449

7

Fixed Instru

ment

s

Pasting symbol mapping for an instrument

did not work on first attempt

1454

9

Fixed Instru

ment

s

Select an instrument that was already

selected did not update selected instrument

text properly

1466

0

Fixed Instru

ment

s

When a stock chart is open, removing that

instrument via the Instruments window

caused a crash

1462

8

Fixed Instru

ment

s,

Chart

Added instruments did not appear in

instrument list of existing charts

1449

0

Fixed Intera

ctive

Broke

rs

Connection interruption while requesting

historical data resulted in no data

1452

2

Fixed Intera

ctive

Broke

rs,

Strate

gy

Strategy Position did not update in

Strategies tab of the Control Center

Release Notes 125

© 2023 NinjaTrader, LLC

1453

3

Fixed Intera

ctive

Broke

rs,

Time

and

Sales

No shapshot data came through for illiquid

contracts

1450

3

Fixed Kineti

ck,

IQFee

d,

Optio

ns

Futures options did not have the point value

applied

1461

1

Fixed Kineti

ck,

Optio

n

Chain

AAPL options failed to load

1449

5

Fixed Kineti

ck,

Optio

ns

Ticksize for treasury options were incorrect

1443

2

Fixed Kineti

ck,

Super

DOM

Using multiple connections and experiencing

a disconnect could result in a bad depth

data

1448

6

Fixed Kineti

ck,

Super

DOM

Depth volume would not update from an

order until the scroll wheel was used

1453

0

Fixed Marke

t

Analy

zer

Column sorting by description did not work

1450

5

Fixed News

,

Instrument link did not work with the News

window

NinjaTrader 8126

© 2023 NinjaTrader, LLC

Wind

ow

Linkin

g

1430

6

Fixed Ninja

Script

ExitOnSessionClose did not close historical

positions when using Wait Until Flat

1446

2

Fixed Ninja

Script

Was unable to retrieve type info for

'NinjaTrader.NinjaScript.AddOnBase' from

assembly 'NinjaTrader.Custom'

1453

9

Fixed Ninja

Script

Input indicator with secondary series did not

trigger on bar update properly when days to

load changed

1461

6

Fixed Ninja

Script

Profit target was not submitted every other

time when strategy was disabled/re-enabled

if a simulated stop was used

1465

7

Fixed Ninja

Script

Editor

Resolved a scenario where compile could

become disabled

1444

8

Fixed Ninja

Script

,

Chart

Trade

r

Chart Trader would immediately re-render

chart for order modification events even

when Chart Trader was disabled

1455

0

Fixed Order

Flow

+

Order Flow VWAP had an error when bars

had no volume

1455

4

Fixed Order

Flow

+

Order Flow Volume Profile setting Show

POC didn't work with Price profile type

1459

3

Fixed Order

Flow

+

Order Flow Volume Profile would only

render a single line if multiple lines were at

the same level

Release Notes 127

© 2023 NinjaTrader, LLC

1461

3

Fixed Order

Flow

+

Order Flow VWAP could have wrong weekly

start time

1463

4

Fixed Order

Flow

+

Order Flow Volume Profile failed to plot

when splits and dividends were updated

1463

3

Fixed Playb

ack,

Strate

gy,

Chart

Start/end dates listed in Strategy

Performance reflected start/end date of

original chart, not playback start/end dates

1460

3

Fixed Rithm

ic

Connection could get stuck if there was a

large amount of events being downloaded

1467

1

Fixed Rithm

ic

Instruments MGC, HO, and RB could have

position return with a different exchange

1467

8

Chan

ged

Rithm

ic

Add UProfitTrader connection points

1458

0

Chan

ged

Share

Adapt

er

StockTwits character limit was increased to

1,000

1457

1

Fixed Share

Adapt

er

StockTwits share service caused an error

when creating for the second time

1448

0

Fixed Simul

ator,

Optio

ns

Realized PnL and cash value did not match

when trading options in simulation

1457

7

Fixed Strate

gy

SetTrailStop incorrectly amended stop price,

if an added data series was for a contract

older than 1 expiration ago

1462

0

Fixed Strate

gy

A multi-series script that submitted one

order, canceled it, then submitted a second

NinjaTrader 8128

© 2023 NinjaTrader, LLC

order ignored the second order when run on

historical data

1465

4

Fixed Strate

gy

Mismatched calculation mode between

SetStopLoss/SetProfitTarget caused

incorrect exit order quantity

1465

9

Fixed Strate

gy

Resolved a scenario where instrument

property was not disabled correctly when

strategy was enabled

1468

4

Fixed Strate

gy

Quickly disabling/enabling a strategy could

result in it's state being our of sync between

the Control Center and chart

1438

5

Fixed Strate

gy

Analy

zer

Moving a column then adding another

column caused the first column to revert

1446

4

Fixed Strate

gy

Analy

zer

Analysis graph could draw incorrectly when

plotting scaled in/out position by entry time

1446

9

Fixed Strate

gy

Analy

zer

Duplicating window with multiple tabs with

charts resulted in errors

1447

4

Fixed Strate

gy

Analy

zer

If Region Format was set to English

(Germany) the leading zero and comma

was stripped from input display

1448

5

Fixed Strate

gy

Analy

zer

Duplicating window with a new tab that was

not ran resulted in an error

1452

8

Fixed Strate

gy

ExitOnSessionClose orders did not have

slippage applied

Release Notes 129

© 2023 NinjaTrader, LLC

Analy

zer

1455

1

Fixed Strate

gy

Analy

zer

Optimization failed on strategies that enter

with no exits when using certain Optimize

settings

1457

5

Fixed Strate

gy

Analy

zer

Bars.Count for a secondary series of a

strategy changed between backtest runs

1454

2

Fixed Strate

gy

Builde

r

An indicator offset was not applied with

crossAbove/crossBelow operator

1454

0

Fixed Strate

gy

Builde

r

The bars ago for current bar check defaulted

to 1 rather than the passed bars ago value

when a variable was used for an offset

1454

1

Fixed Strate

gy

Builde

r

Using a numeric value could result in an

error

1461

4

Fixed Strate

gy

Builde

r

Assigning value of an added data series to a

custom series would not compile

1439

3

Fixed Strate

gy,

Chart

Settings IsOverlay to false did not plot

indicators to sub panel

1450

8

Fixed Strate

gy,

Contr

ol

Cente

r

Strategies added to Strategies tab of the

Control Center didn't appear when opening

workspace

NinjaTrader 8130

© 2023 NinjaTrader, LLC

1466

6

Fixed Strate

gy,

Order

s

A strategy which submits a stop loss and

exits on session close would submit a stop

loss if strategy was enabled while market

was closed

1448

1

Fixed Super

DOM

ZT was missing depth volume for every

other tick

1444

5

Fixed Super

DOM,

Indica

tor

Indicators would report historical data as

real-time data

1458

2

Fixed TD

Ameri

trade

Disabling then re-enabling an internet

connection prevented a proper reconnect

1455

6

Fixed TD

Ameri

trade

Attempting to connect to accounts from

countries unsupported by the API caused a

crash

1459

8

Fixed TD

Ameri

trade

Resolved a scenario where live order events

came in on a simulation license causing

errors

1456

0

Fixed TD

Ameri

trade,

Order

s

An order was rejected if it was being

authenticated while the access token was

being refreshed

1453

8

Fixed TD

Ameri

trade,

Strate

gy

Profit Target was not submitted with

SetProfitTarget if no SetStopLoss was used

1394

3

Fixed Tick

Repla

y,

Chart

Indicator using Correlation as input series

could return incorrect values in TickReplay

Release Notes 131

© 2023 NinjaTrader, LLC

1439

5

Fixed Tick

Repla

y,

Ninja

Script

There could be missing ticks when

transitioning from historical tick replay data

to real-time data

1440

9

Fixed Tick

Repla

y,

Ninja

Script

TickReplay indicators diverged from

Calculate.OnBarClose instance on transition

to real-time

1450

1

Fixed Work

space

s

Closing a workspace that had an options

instrument that wasn't in the db caused an

error

1451

1

Fixed Work

space

s

Resolved a scenario where using 'Save

workspace as' did not properly save it

1457

3

Fixed Work

space

s

Databox disappeared when saving over the

original workspace it was opened in

3.3.7 8.0.22.2

8.0.22.2 Release Date
June 15, 2020

Issu

e #

Stat

us

Categ

ory

Comments

145

06

Fixed Drawi

ngTool

Global drawing tools would not save when

closing and saving from another workspace

8.0.22.1 Release Date
June 3, 2020

Issu

e #

Stat

us

Categ

ory

Comments

NinjaTrader 8132

© 2023 NinjaTrader, LLC

144

92

Fixed Drawi

ngTool

Global drawing tools duplicated when saving

the workspace

8.0.22.0 Release Date
June 2, 2020

Features

Added new TD Ameritrade API

TD Ameritrade

Feature #14132

TD Ameritrade is requiring that we migrate to a new API, which has been implemented

and is released in beta. The API has a lot of similarities between the old, with overall

functionality expected to be the same. The new API does add option support for equities

and utilizes a new connection type which is only available with supported operating

systems, Windows 8 and newer. Please report any issues seen via

platformsupport@ninjatrader.com.

Note: At this time you may see duplicate executions if you disconnect and reconnect in the

same session.

Added COT Indicator

mailto:platformsupport@ninjatrader.com

Release Notes 133

© 2023 NinjaTrader, LLC

Indicator

Feature #13802

The COT indicator plots data from the Commitment of Traders reports. These are weekly

reports (best viewed on a weekly chart) that come out each Friday showing Tuesday's

open interest from market participants. These reports are available for many futures

instruments. For more information, please see the COT section of the help guide.

Note: You must enable "Download COT data at startup" within Tools> Options> Market

data for this indicator to plot.

The Rithmic adapter now support plug-in connection for shared market data

Rithmic

Feature #14439

This mode should only be enabled if instructed by your data provider, it allows re-use of a

single market data login between multiple platforms on the same computer and requires

some setup prior to use.

NinjaTrader 8134

© 2023 NinjaTrader, LLC

Add support for additional Coinbase cryptocurrencies

Coinbase, Instruments

Feature #14437

Cryptocurrency pairs can only be properly added if a 3 digit cryptocurrecny code is

supported for it. The following cryptocurrecny codes are now available, adding additional

support for Coinbase instrument pairs.

ALG (ALGO), ATM (ATOM) DSH (DASH), EOS, KNC, LNK (LINK), OXT, REP, XLM, XRP,

XTZ

Translations improvements

Localization

Feature #14460

NinjaTrader can be localized to many languages including Spanish, German, French,

Russian, Portuguese, Russian, Chinese, and Italian. Language selection can be changed

via Tools > Options > General > “Language” option in NinjaTrader. These translations

have been improved as part of continual refinement.

Issu

e #

Stat

us

Categ

ory

Comments

Release Notes 135

© 2023 NinjaTrader, LLC

144

02

Fixed Accou

nt

Data

Net Liquidation value on stocks was

incorrect

144

41

Fixed Alerts,

Works

paces

When using 'Save As' on a workspace with

active alerts, the alerts would not trigger until

the workspace was closed and reopened

144

56

Fixed ATM

Strate

gies

When creating a custom ATM, but then

selecting cancel, the custom ATM could

become active

144

83

Fixed BarCh

art,

Bars

Non-last qualifying trades showed in

historical data after a recent change from

BarChart

144

11

Fixed Chart SPI 06-20 had an incorrect session break on

a day of early close

144

05

Fixed Chart,

bars

Data was removed from chart upon

reconnecting to data feed for ASX index

futures instruments

144

28

Fixed Chart,

Drawi

ngTool

,

NinjaS

cript

Global draw objects created from NinjaScript

could duplicate when instrument was

switched by linked Market Analyzer

143

55

Fixed Chart,

Templ

ate,

Indicat

or

When opening a new chart with a template

applied that had an indicator, an error

occurred if the instrument was switched

while still loading

143

57

Fixed Conne

ctions,

Strate

gy

An enabled strategy became disabled when

using multiple connections and the second

connection disconnected

NinjaTrader 8136

© 2023 NinjaTrader, LLC

143

51

Chan

ged

Contro

l

Center

Removed tool tip timeout from Strategies tab

142

59

Fixed Contro

l

Center

Updated an error dialog that instructed to

reinstall when a reinstall is not needed

143

82

Fixed Contro

l

Center

Changing risk template on a simulation

account did not show a message that a

restart would be needed

144

61

Fixed Contro

l

Center

Changing account denomination resulted in

multiple pop ups

144

00

Fixed Contro

l

Center

,

Datab

ase

Find feature did not work in the "Rollover

futures instruments" grid

144

07

Fixed CQG,

Contin

uum

Some WebAPI errors caused a disconnect

when not necessary

140

88

Fixed CQG,

Contin

uum

Resolved incorrectly mapper settlement and

last close prices with Web API

143

96

Fixed Drawi

ngTool

Switching between series with different

"Show global draw objects" settings then

setting a drawing to global could show an

invalid error

143

65

Fixed Drawi

ngTool

, Chart

Drawing tools could be removed when

rolling over, switching instruments, then

going back to the original unrolled instrument

143

62

Fixed Drawi

ngTool

Drawing tools could move to other

instruments when changing instruments

Release Notes 137

© 2023 NinjaTrader, LLC

, Chart then rolling over

144

57

Fixed Drawi

ngTool

, Chart

Copy and pasting a drawing tool with a

template set to left scale justification

resulted in an error

143

79

Fixed eSigna

l

Pakistan stocks displayed incorrect date

stamp on Monday daily bars

144

14

Fixed FXCM,

Accou

nt

Data

Realized PnL did not show upon connecting

or reconnecting

143

98

Fixed Histori

cal

Data

Windo

w

Downloading data while a chart was loading

could result in request getting stuck

143

45

Fixed Hot

Key

CTRL+SHIFT+TAB hot key did not work if

'Show tabs' was disabled

143

59

Fixed Indicat

or,

Chart

Trader

Applying FX Tile caused Chart Trader to

switch to Sim101

143

46

Fixed Indicat

or,

NinjaS

cript

Editor

Indicator variable settings could reset to

default when adding additional variables to

indicator

143

42

Fixed Instru

ments

Deleting instruments from recently used

instrument list resulted in instrument list

closing

143

94

Fixed Instru

ments

Forex and cryptocurrency instruments could

have master symbols that were invalid

NinjaTrader 8138

© 2023 NinjaTrader, LLC

138

13

Chan

ged

Interac

tive

Broker

s

The required version of Traders Workstation

has been updated to 978.2c

143

14

Fixed Interac

tive

Broker

s,

Conne

ctions

Auto connect did not work with a simulation

license if a market data window was open

144

58

Fixed Interac

tive

Broker

s,

Option

Chain

Strike prices would not populate for custom

NSE instruments

143

12

Fixed Market

Analyz

er

Auto sort could resort instruments that have

the same value when refreshing

144

16

Fixed Market

Analyz

er

The "Profit loss" and "Traded Contracts"

columns did not reset when Sim101 was

reset

143

18

Fixed Market

Analyz

er,

Indicat

or

VolUpDown indicator column did not

populate on Mondays

143

71

Fixed NinjaS

cript

Exporting a strategy with dependent

indicators would error if PC's OS language

was set to Hungarian

142

91

Fixed NinjaS

cript

Editor

Using 'Save as' on a strategy was not

creating a new class name

143

90

Fixed NinjaS

cript

Renaming a sub folder would lose scripts

excluded from compilation

Release Notes 139

© 2023 NinjaTrader, LLC

Editor

144

30

Fixed NinjaS

cript,

Drawi

ngTool

Draw.Arc with template overload did not use

template settings

144

01

Fixed NinjaS

cript,

Proper

ty Grid

Using a GroupName with a colon resulted in

an error

143

91

Fixed Optimi

zation

Fitnes

s

MinAvgMae optimization fitness metric was

using Max MAE value

142

50

Fixed Order

Flow +

Order Flow Volume Profile would not plot

with some interval and session template

settings when started

144

63

Fixed Output

Windo

w

Minimizing the output window then

attempting to open a new one did not bring

the existing output window forward

143

39

Fixed Strate

gy

Multi-instrument strategies did not take

some trades when a more granular series

was added of each instrument

143

48

Fixed Strate

gy

Closing chart with a strategy calculating

could keep strategy in Control Center

144

22

Fixed Strate

gy

A sell stop order could get an error that it

was above the close price when it was not

144

31

Fixed Strate

gy

An unmanaged strategy that had it's position

reversed when transitioning from historical

to real-time had mismatched trades

143

21

Fixed Strate

gy

Backtests had no results when first running

with no data then running again while

connected for data

NinjaTrader 8140

© 2023 NinjaTrader, LLC

Analyz

er

143

23

Fixed Strate

gy

Analyz

er

A resource heavy strategy could get an

error when opening an optimization's result

in a new window

143

37

Fixed Strate

gy

Analyz

er

Closing a Strategy Analyzer window during

start-up could result in an error

143

77

Fixed Strate

gy

Analyz

er

Trade and Execution prices could show 2

minus signs if price was negative

143

80

Fixed Strate

gy

Analyz

er

Strategy performance did not sort by entry or

exit price consistently

143

81

Fixed Strate

gy

Analyz

er

Launching a chart from Strategy

Performance could result in an error

143

88

Fixed Strate

gy

Analyz

er

Backtesting a strategy that uses a

DayOfWeek parameter could result in a

crash

144

08

Fixed Strate

gy

Analyz

er

Sorting by quantity did not work as expected

144

12

Fixed Strate

gy

Analyz

er

AI Generate could have an error when

clicking on indicators

Release Notes 141

© 2023 NinjaTrader, LLC

144

55

Fixed Strate

gy

Analyz

er

Strategy Analyzer chart froze when

minimizing window after a backtest was run

144

65

Fixed Strate

gy

Analyz

er

Resolved a scenario where a chart tab

would have contents transparent when

switching between other windows

143

64

Fixed Strate

gy

Builder

Compiling a strategy that called an index

instrument not mapped yet caused an error

144

04

Fixed Strate

gy

Builder

A couple options had some invalid drop

down settings

143

41

Fixed Strate

gy,

Chart

Opening strategies settings quickly after

applying could result in a lock up and error

when trying to close

143

97

Fixed Strate

gy,

Contro

l

Center

Removing a strategy from the Control

Center then restarting without saving the

workspace resulted in the strategy returning

143

52

Fixed Super

DOM

Order entry window did not regain focus

after dismissing global sim mode message

box

144

47

Fixed Super

DOM

Adjusting active ATM strategy orders while a

new ATM is selected generated inaccurate

order quantities

144

42

Fixed TD

Amerit

rade,

Strate

gy

Syncing a short position while flat could

send a sell order rather than a sell short

order

NinjaTrader 8142

© 2023 NinjaTrader, LLC

143

99

Fixed Tick

Replay

, Bars

Chart could be missing most recent bar

when using Tick Replay and changing

session templates

144

25

Fixed Trade

Perfor

mance

Trade Performance window date was based

on PC time zone, not NinjaTrader time zone

3.3.8 8.0.21.1

8.0.21.1 Release Date
March 23, 2020

Issu

e#

Statu

s

Catego

ry

Comments

1437

6

Fixed Chart Some combinations of tick chart values

and data series resulted in a crash

1408

8

Fixed Market

Analyze

r

Resolved some scenarios where Net

Change columns showed incorrect values

1435

6

Fixed Rithmic Could not connect to Rithmic US West

System

8.0.21.0 Release Date
February 25, 2020

Features

Added a quick search enhancement to the instrument selector

Instruments

Feature #13754

The new quick search shows instant results to quickly look for and change instruments

without having to open a search.

Release Notes 143

© 2023 NinjaTrader, LLC

Added 'Show account numbers and balances' setting which can be disabled to

hide these values

Account Data, Options

Feature #13492

Private account values can now be hidden from view by unchecking the 'Show account

number and balances' property. This gives the ability to have additional privacy when

sharing your screen or using NinjaTrader around others.

Added setting to always 'Ask password on connect'

Connections

NinjaTrader 8144

© 2023 NinjaTrader, LLC

Feature #13057

Enabling 'Ask password on connect' will make it so your account password is not saved

and the password will need to be manually entered each time you connect.

Enhanced AI Generate for use with third party indicators

Strategy Analyzer

Feature #13928

The AI Generate feature has now been expanded to allow the use of 3rd party single

series indicators

Release Notes 145

© 2023 NinjaTrader, LLC

Expanded 'Number of strikes' settings to include '64' and 'All'

Option Chain

Feature #14235

Additional settings have been added to allow additional levels of strikes to view.

NinjaTrader 8146

© 2023 NinjaTrader, LLC

Added Short Option Value and Long Option Value columns to Accounts tab

Account Data

Feature #14231

Long/Short option values can now be displayed within the Accounts tab by right clicking on

the Accounts grid, selecting Properties, and checking Long option value and/or Short

option value.

NinjaTrader Brokerage customers now can view account Initial, Intraday and Net

Liquidation account values

Continuum, Account Data

Feature #13657

Release Notes 147

© 2023 NinjaTrader, LLC

Multiple account data values (Unrealized PnL, Initial Margin, Excess Initial Margin, Intraday

Margin, Excess Intraday Margin, Net Liquidation) will now be calculated and displayed for

NinjaTrader brokerage customers using the NinjaTrader Continuum connection.

Note: If upgrading NinjaTrader the database must be reset to access these account

values.

Added support for PnL currency conversion of the Hong Kong Dollar

Account Data

Feature #13799

When trading instruments that have the Hong Kong Dollar currency (such as the HSI &

MHI), the PnL will now convert to the accounts denomination

Major improvements on Spanish translations

Localization

Feature #14189

Added improvements to Spanish translations to provide a more complete experience for

Spanish speaking clients.

Issu

e#

Statu

s

Categ

ory

Comments

140

35

Fixed Accou

nt Data

Resolved a scenario where partially filled

orders were not properly reflected

142

66

Fixed Alerts Active alerts pop up warning could show

after the workspace was already closed

143

03

Fixed Alerts,

Orders

When enabling an alert which submitted a

market order it could send an order both

when selecting Apply and Ok

143

04

Fixed Alerts,

Orders

Order Submitted as part of an alert could

get stuck in a submitted state

142

40

Fixed ATM

Strateg

ies

ATM Strategy which used a Simulated Stop

failed to close

NinjaTrader 8148

© 2023 NinjaTrader, LLC

142

43

Fixed ATM

Strateg

ies,

Orders

Native OCO orders could get multiple

cancel requests, resulting in an error

142

62

Fixed Bars Reloading bars could intermittently result in

a crash

142

07

Fixed Chart Go To function on live charts did not

function correctly with secondary data

series applied

142

60

Fixed Chart Indicator plot justification set to Overlay

could be moved out of visual range

143

25

Fixed Chart Scrolling to the first bar on the chart then

compressing the time axis caused the

chart to lose the ability to click and drag

142

09

Fixed Chart,

Indicat

or

Copied indicators shared the same Z-order

level

142

22

Fixed Code

Wizard

,

NinjaS

cript

New scripts could be named with existing

NinjaScript names, resulting in an error

140

88

Fixed Contin

uum,

CQG,

Market

Analyz

er

Net change columns displayed incorrectly

with WebAPI

142

97

Fixed Contin

uum,

CQG,

Orders

WebAPI OCO orders when modified could

incorrectly show an unknown order

message

Release Notes 149

© 2023 NinjaTrader, LLC

142

61

Fixed CQG,

Strateg

y,

Orders

High frequency order changes could result

in an error

142

88

Fixed cTrade

r

cTrader instruments in database could

have wrong trading hours

142

85

Fixed Data Preferred connection setting for options

was not working

142

16

Fixed Drawin

gTool

Trend Channel snapping after modification

resulted in Y values rounded to an

unexpected price

143

10

Fixed Drawin

gTool

Applying a template to a drawing object

placed by a script set DrawnBy property to

null

143

02

Fixed Drawin

gTool,

Alerts

Arc drawing tool was incorrectly set to not

support alerts

142

44

Fixed Drawin

gTool,

Chart

Drawing objects did not appear in drawing

object window if panel was scaled

opposite

142

45

Fixed Drawin

gTool,

Chart

Resolved an error that could occur when

left, right, then left clicking once again on a

drawing object

142

20

Fixed Drawin

gTool,

Works

paces

Existing Region Highlight Y Drawing

Objects disappeared when set as global

142

90

Fixed FXCM,

Orders

A rejected order change that was then

changed again before the error came in

would get stuck in pending

142

69

Fixed Indicat

or,

Multi series indicator which draws global

drawing objects could have duplicate

NinjaTrader 8150

© 2023 NinjaTrader, LLC

Drawin

gTool

objects when applied to another chart with

a different instrument

140

99

Chan

ged

Installe

r

Updated the error received when a

database is for a newer version than what

is installed

142

29

Fixed Interact

ive

Broker

s

Orders submitted from Traders

Workstation would not cancel in

NinjaTrader

142

33

Fixed Interact

ive

Broker

s

Could not connect if there was a working

order submitted from Traders Workstation

142

49

Fixed Interact

ive

Broker

s

A position on N225 displayed with the

wrong expiry

142

93

Fixed Interact

ive

Broker

s

A forced disconnect could still show as

connected

142

01

Fixed Interact

ive

Broker

s, Data

Stocks traded on the Bolsa de Madrid

exchange would not get data

142

12

Fixed Interact

ive

Broker

s,

Orders

Flatten everything when used with option

positions was unable to close the option

position

142

53

Fixed Interact

ive

Broker

s,

Orders

Option orders could get a rejection

Release Notes 151

© 2023 NinjaTrader, LLC

142

04

Fixed IQFeed Resolved a scenario where a lost

connection resulted in a crash

142

05

Fixed IQFeed Last Price did not update after

disconnecting then reconnecting

142

41

Fixed Market

Analyz

er

An error occurred when selecting an

instrument after adding it to a blank row

142

02

Fixed NinjaS

cript

RemoveDrawObject did not work

historically

142

18

Fixed NinjaS

cript

Split Entries did not have fully protected

position when strategy was re-enabled with

ImmediatelySubmit

142

56

Fixed NinjaS

cript

Resolved a scenario where removing a

drawing tool placed by an indicator

removed the indicator when it shouldn't

142

65

Fixed NinjaS

cript

Removing plots from an indicator applied to

an unopened workspace locked up the

chart when opening the workspace

142

84

Fixed NinjaS

cript

Using the TrendLine indicator in a strategy

could result in an error

142

38

Fixed Option

Chain

Option Chain did not rollover

142

19

Fixed Option

Chain,

Kinetic

k

Option Chain could get an error when

disconnecting from Kinetick End Of Day

(Free)

142

26

Fixed Order

Flow +

Volumetric bars delta percent statistic with

positive values could have no color gradient

142

50

Fixed Order

Flow +

Order Flow Volume Profile would not plot

the profile until time since the session

NinjaTrader 8152

© 2023 NinjaTrader, LLC

started was greater than data series

interval

142

67

Fixed Order

Flow +

Resolved a scenario where Order Flow

Volume Profile got an OnBarUpdate error

143

17

Fixed Playba

ck,

Alerts

Alert rearm seconds was not respected

when connected to Playback

137

88

Fixed Playba

ck,

NinjaS

cript

Resolved a scenario where resource heavy

scripts could cause Playback to stop

updating

141

77

Fixed Playba

ck,

NinjaS

cript

Historical data for added series was not

loading when connected to Playback

142

74

Fixed Playba

ck,

Strateg

y

Enabling a strategy which uses

ExitOnSessionClose and

ImmediatleySubmit did no close historical

position when expected

143

00

Fixed Rithmi

c

Could not connect to Rithmic 01

(Singapore) system

142

54

Fixed Strateg

y

When loading a template, then loading

another template, the original template

value stayed applied

135

82

Fixed Strateg

y

Analyz

er

Back tests using High Order Fill Resolution

of 1 tick could see positive slippage

143

07

Chan

ged

Strateg

y

Analyz

er

Removed tool tip timeout

Release Notes 153

© 2023 NinjaTrader, LLC

141

97

Fixed Strateg

y

Analyz

er

An error occurred when restoring Strategy

Analyzer with AI Generate selected

142

21

Fixed Strateg

y

Analyz

er

AddChartIndicator() could fail for AI

generated script containing

CandleStickPattern

142

48

Fixed Strateg

y

Analyz

er

When optimizing a strategy that uses

enums, if you compile before a test with the

strategy selected in the optimizer, it no

longer iterates the enums

142

68

Fixed Strateg

y

Analyz

er

Incorrect error showed when there were

too many parameters to optimize

142

70

Fixed Strateg

y

Analyz

er

AI generated strategy generated

MovingAverageRibbon code incorrectly,

causing compile errors

142

82

Fixed Strateg

y

Analyz

er

An out of focus Strategy Analyzer chart

could go transparent

143

20

Fixed Strateg

y

Analyz

er,

Chart

Trading template applied to a backtest was

not applied to a chart spawned from

Executions/Trades send to Chart

141

82

Fixed Strateg

y

Builder

Custom series named after an indicator

caused a crash

141

86

Fixed Strateg

y

Builder

Custom Series name used in Action could

be changed, causing compile errors

NinjaTrader 8154

© 2023 NinjaTrader, LLC

142

79

Fixed Strateg

y

Builder

ExitOnSessionCloseSeconds could be left

blank, resulting in compile errors

143

15

Fixed Strateg

y

Builder

Variables could incorrectly be named

slippage, resulting in an error

143

09

Fixed Super

DOM

The X to cancel all bid or ask orders

showed when no account was selected

142

73

Chan

ged

TD

Ameritr

ade

Order submit wait time was increased to

reduce timeouts

142

52

Fixed TD

Ameritr

ade

Ticks came in with incorrect time stamps

when time zone was set to UTC

142

03

Fixed TD

Ameritr

ade,

Data

Some custom instruments would not load

historical data

143

05

Fixed TD

Ameritr

ade,

Hot

Key,

Orders

Placing orders with Hot Keys could

unexpectedly get overbought/oversold

errors

142

47

Fixed TD

Ameritr

ade,

Orders

An error could occur when canceling

orders with a TIF or DAY

142

57

Fixed TD

Ameritr

ade,

Strateg

y

Resolved a scenario where a market order

would get an error

Release Notes 155

© 2023 NinjaTrader, LLC

142

28

Fixed Works

paces

Resolved a scenario where loading a

workspace and closing a chart before it

loaded resulted in an error

3.3.9 8.0.20.1

8.0.20.1 Release Date
December 23, 2019

Attention TD Ameritrade Users:

· For TD Ameritrade uses there is a new connection process to authorize the username

and password. To continue to connect you must update to NinjaTrader 8.0.20.0 or

newer by December 31, 2019. See the link here for more information

Issu

e#

Statu

s

Catego

ry

Comments

1424

6

Fixed TD

Ameritr

ade,

Orders

Session is now renewed every hour to

ensure order submission works as

expected

8.0.20.0 Release Date
December 5, 2019

Features

Added options support for Kinetick, IQFeed, and Interactive Brokers (beta)

Kinetick, IQFeed, Interactive Brokers, Options

Feature #13676

With Kinetick, IQFeed, and Interactive Brokers you can now access options on futures

and equities. At this time these features are in beta.

https://ninjatrader.com/Advisories/TD-Ameritrade-Upgrade-NT8

NinjaTrader 8156

© 2023 NinjaTrader, LLC

Major improvements on Portuguese translations and sound files

Localization

Feature #14185

Added improvements to Portuguese translations provide a more complete experience for

Portuguese clients.

Issu

e#

Statu

s

Catego

ry

Comments

1408

3

Fixed Alerts Clicking an Alert Dialog box caused the

box to move off screen

1411

3

Fixed Alerts Alerts Log did not save column settings

1401

4

Fixed Alerts,

Chart

Corrupt alert could prevent other alerts on

the same chart from working

1409

0

Fixed ATI CLOSESTRATEGY command did not

close orders or position from Atm Strategy

1398

1

Fixed ATM

Strategi

es

Target Chase activated without the target

being touched

Release Notes 157

© 2023 NinjaTrader, LLC

1400

2

Done ATM

Strategi

es

Reverse at stop/target orders would get

canceled on disconnect and get stuck on

cancel submitted

1412

9

Fixed ATM

Strategi

es

ATM strategy template was not saving

when Chase if Touched was applied/taken

off

1416

4

Fixed ATM

Strategi

es

An ATM with 'MIT enabled for Profit' would

submit the MIT target order with a stop

price of zero if position was added to an

active ATM strategy

1413

5

Chan

ged

Backup

&

Restor

e

Improved handling of references for

backup/restore process

1400

9

Fixed Chart Resolved a scenario where cross hair

cursor icon was incorrect after restarting

1404

5

Fixed Chart Dragging a data series from one chart to

another did not keep bar width from

originating chart

1405

5

Fixed Chart X axis label was missing on minute chart

with some scaling settings

1407

3

Fixed Chart Resolved an error that could occur when

the data box was saved off screen in a

workspace

1407

7

Fixed Chart 'No time scroll' cross hair setting did not

display associated hot key

1413

3

Fixed Chart Chart templates would grow in size from

saving information unrelated to the

template

1403

8

Fixed Chart,

Windo

w

Duplicate in new window while using

instrument link could lose track of panel

index

NinjaTrader 8158

© 2023 NinjaTrader, LLC

Linking,

NinjaSc

ript

1406

2

Fixed Control

Center

Removing three DLLs which were applied

to a chart would cause a crash

1415

2

Fixed Control

Center,

Commi

ssions

Executions tab commission column did

not honor account denomination property

1402

7

Fixed Core Failed to process install file error now auto

repairs so it should only occur once

1412

3

Added CQG Added Open Interest with WebAPI

1414

2

Fixed CQG WebAPI would not display real time index

data

1414

5

Fixed CQG Resolved a scenario where some

WebAPI orders would be accepted at a

different price

1414

6

Fixed CQG WebAPI would not attempt to reconnect

after a lost connection

1401

8

Fixed Depth

Chart

Property presets were not applied at start-

up

1410

1

Fixed Drawin

gTool

Resetting a drawing object template

caused drawing object to disappear

1412

5

Fixed Drawin

gTool

Moving the ruler tool outside of chart

boundaries resulted in a loop of errors

1413

8

Fixed FXCM Resolved a scenario where connection

loss could get stuck

1408

1

Fixed Historic

al Data

Some import errors did not display in the

format expected

Release Notes 159

© 2023 NinjaTrader, LLC

Windo

w

1403

6

Fixed Hot

Key,

Market

Watch

Market Watch hot key was not listed under

Global Hot Keys

1410

2

Fixed Interacti

ve

Brokers

Bars with a volume of zero would show

with a volume of one

1416

0

Fixed Interacti

ve

Brokers

Resolved a scenario where orders would

return to an incorrect contract month that

does not exist

1414

9

Fixed Interacti

ve

Brokers

Orders submitted at an invalid forex prices

did not throw order rejection/error

1396

6

Fixed Interacti

ve

Brokers

,

NinjaSc

ript

Stop order was unexpectedly canceled

when disabling a strategy

1405

0

Fixed Interacti

ve

Brokers

,

Positio

n

Display

VX futures positions did not show up on

order entry position display

1411

9

Fixed Licensi

ng

3rd Party Licensing incorrectly accepted

user defined IDs with spaces

1418

7

Fixed Licensi

ng

Vendor licensing filter by Name returned

no results

NinjaTrader 8160

© 2023 NinjaTrader, LLC

1411

5

Fixed Localiz

ation,

Commi

ssions

Commissions Dialog Instrument Type

was not localized

1396

7

Fixed Market

Analyze

r

Resolved a scenario where configured

indicator name didn't update as expected

1406

5

Fixed Market

Analyze

r

Cross above/below cell conditions did not

work as expected

1412

7

Fixed Market

Analyze

r

Bar graph percent did not properly span

full column width

1413

9

Fixed Market

Analyze

r

Bar graph did not show negative values

1414

0

Fixed Market

Analyze

r

Bar graph tooltip value was not rounded

1406

0

Fixed Market

Analyze

r,

Indicato

r

Correlation indicator produced error when

applied

1396

5

Fixed NinjaSc

ript

Resolved a scenario where canceling a

stop order from a strategy resulted in an

error

1406

7

Fixed NinjaSc

ript

Switching tabs could lose cursor position

1416

3

Fixed NinjaSc

ript

Resolved a scenario where a DLL

included in a backup file did not get added

to Bin/Custom on restore

Release Notes 161

© 2023 NinjaTrader, LLC

1396

9

Fixed NinjaSc

ript

Updated SampleOnOrderUpdate to track

all execution and ensure the fills match

before submitting stop market and limit

orders

1411

2

Fixed NinjaSc

ript

Editor

Importing NinjaScript file will caused focus

of NinjaScript tab to change

1417

0

Fixed NinjaSc

ript

Editor

Find window remained visible when

changing workspaces

1399

6

Fixed NinjaSc

ript,

ATM

Strategi

es

GetAtmStrategyRealizedProfitLoss

sometimes reported 0 after

AtmStrategyClose was used

1405

3

Fixed NinjaSc

ript,

Chart

Global draw objects placed by script

plotted incorrectly on lower time frame

charts

1384

8

Fixed Option

Chain

'Loading...' could stay stuck after

disconnect

1409

7

Fixed Options

Chain

Middle ruler jumped around as new

market data came in

1408

4

Fixed Order

Flow +

Order Flow Volume Profile POC and

Value Area lines extended outside of

trading hours

1410

4

Fixed Order

Flow +

Order Flow Volume Profile price profile

could plot letters from outside of trading

hours

1410

5

Fixed Order

Flow +

Order Flow Volume Profile price boxes

overlapped when profile alignment was

set to right

NinjaTrader 8162

© 2023 NinjaTrader, LLC

1410

8

Fixed Order

Flow +

Order Flow Volume Profile could cause

chart to lag when 'Display mode' was set

to 'Outline'

1416

7

Fixed Order

Flow +

Order Flow Volume Profile composite

profile trading hours property did not affect

the profile

1417

1

Fixed Order

Flow +

Order Flow Volume Profile Initial Balance

accounted for 1 extra bar of data

1419

2

Fixed Order

Flow +

Order Flow Volumetric bars did not apply

gradient to statistic values in some

scenarios

1417

3

Fixed Perfor

mance

Recent instruments could retain

unnecessary information

1401

2

Chan

ged

Perfor

mance,

Chart

Improved performance for 1440 minute

charts

1404

1

Fixed Perfor

mance,

Chart

Unchecking 'Equidistant bar spacing'

could result in lag

1405

4

Fixed Playba

ck

 Start and End Dates did not save when

disconnecting and reconnecting

1406

8

Fixed Playba

ck

A multi-series strategy behaved differently

if applied on the strategies tab vs a chart

1410

3

Fixed Playba

ck,

NinjaSc

ript

ImmediatelySubmit was submitting

duplicate orders in Playback

1415

4

Fixed Playba

ck,

NinjaSc

ript

Strategy using CloseStrategy() caused a

freeze

Release Notes 163

© 2023 NinjaTrader, LLC

1408

7

Fixed Playba

ck,

Strateg

y,

Trade

Perfor

mance

Error occurred when viewing real-time

trade performance in Playback

1415

0

Fixed Positio

n

Display

Submitting an order to an invalid

instrument resulted in a crash

1416

2

Fixed Stock

Import

Could not import stocks to create

instruments with numbers

1397

2

Fixed Strateg

y

Analyze

r

Opening AI Generate Strategy Analyzer

result in new Strategy Analyzer resulted in

an error

1397

6

Fixed Strateg

y

Analyze

r

Parameters tool-tip in the Log showed the

parameters for the wrong test

1399

0

Fixed Strateg

y

Analyze

r

Double clicking a Walk Forward result in

the Log resulted in the Order, Execution,

and Trades displays do not populating

1399

8

Fixed Strateg

y

Analyze

r

Performance value in Results grid did not

match value in summary during

optimization

1403

2

Fixed Strateg

y

Analyze

r

Backtests with a high order fill resolution

of 1 tick resulted in an error

1405

1

Fixed Strateg

y

Monte Carlo report for

MaxConsecutiveWinners and

MaxConsecutiveLosers were reversed

NinjaTrader 8164

© 2023 NinjaTrader, LLC

Analyze

r

1412

0

Fixed Strateg

y

Analyze

r

Optimizer could get an error when running

off historical data with some sets of data

and settings

1412

4

Fixed Strateg

y

Analyze

r

Compiling reset some parameter settings

1414

8

Fixed Strateg

y

Analyze

r

Backtest with a commission template

applied and 'Display' set to 'Percent'

incorrectly formatted commission value

after a restart

1415

1

Fixed Strateg

y

Analyze

r

Resetting strategy template then running a

backtest changed parameter values after

backtest

1404

6

Fixed Strateg

y

Builder

Using an indicator as an input resulted in a

compile error

1414

3

Fixed Strateg

y

Builder

Order Flow + indicators were incorrectly

available in the Strategy Builder

1417

9

Fixed Strateg

y

Builder

User defined inputs would allow quotation

marks when it should not

1418

1

Fixed Strateg

y

Builder

Creating an action which sets custom

series to its value 1 bar ago would change

after a restart and reopening of the

strategy in Strategy Builder

1416

6

Fixed Strateg

y

Using system indicator names for user

inputs was incorrectly allowed

Release Notes 165

© 2023 NinjaTrader, LLC

Builder

1414

7

Fixed Strateg

y, Chart

Unchecking enabled on a strategy applied

to chart, then removing the strategy

without OK/Apply caused chart to retain

strategy

1408

0

Fixed SuperD

OM

Dynamic SuperDOM could not select ATM

drop down reliably

1412

1

Fixed SuperD

OM

Resolved a scenario where there could be

a bars ago error when loading an indicator

1403

3

Fixed SuperD

OM,

NinjaSc

ript

Indicator that adds a daily series would

not load

1411

1

Fixed SuperD

OM,

Windo

w

Linking

Window linking passed through to other

workspaces when 'Global link button

across workspaces' was disabled

1406

4

Fixed Tick

Replay,

Strateg

y

Enabling a strategy with Tick Replay after

a restart resulted in a crash

1409

3

Fixed Tick

Replay,

Bars

Resolved a scenario where some scripts

saved in a workspace with Tick Replay

resulted in an error

1407

4

Fixed Worksp

aces

DataBox was left off screen when opening

workspace and clicking yes to move

windows to primary monitor

3.3.10 8.0.19.1

8.0.19.0 Release Date
September 23, 2019

NinjaTrader 8166

© 2023 NinjaTrader, LLC

Attention IQFeed Users:

· For NinjaTrader 8.0.19.0, it is mandatory that you update to the latest IQFeed 6.1 client.

Attention developers:

· When working with D2DFactory to create Direct X resources, this must be done from
the charts UI thread otherwise there will be a performance impact. This is now enforced
in 8.0.19.0. If your script does not follow this policy it will not be compatible with 8.0.19.0
and a log error will be thrown. Please contact platformsupport@ninjatrader.com if any
questions.

Features

Added Option Chain and support for Options

Option Chain

Feature #13844

Options support has been added and can be accessed with the new Option Chain window

for users utilizing NinjaTrader Continuum connection and have enabled ‘Web API’ (Beta).

Linking with order entry windows and selecting a bid or ask quote within the option window

will load the option into the order entry window for order placement. See the Option Chain

section for more information.

mailto:platformsupport@ninjatrader.com

Release Notes 167

© 2023 NinjaTrader, LLC

Added Web API support for NinjaTrader Continuum in Beta

NinjaTrader Continuum

Feature #13421

The new Web API adds support for options to NinjaTrader Continuum

cTrader available in beta

cTrader

Feature #13895

With an enabled license key you can now access your cTrader 'netting' account(s) in

NinjaTrader. This is currently in beta.

NinjaTrader 8168

© 2023 NinjaTrader, LLC

Order Flow Volumetric enhancements

Order Flow +

Feature # 13614

Multiple features have been added to further increase customization and functionality.

The candlestick can now be centered on plot.

A Size filter property has been added to only include values greater than the threshold.

Delta SL & Delta SH have been added to the bar statistics to measure how long since the

delta touched the high/low of the bar.

Imbalance can now be calculated horizontally.

Bar volume distribution can now be set to the right of the bar.

Release Notes 169

© 2023 NinjaTrader, LLC

Order Flow VWAP enhancements

Order Flow +

Feature # 13611

Multiple features have been added to further increase customization on functionality.

A Reset interval can now be set to Sessions, Weeks, or Months.

Each standard deviation can now have color and opacity individually set.

NinjaTrader 8170

© 2023 NinjaTrader, LLC

Added FX Correlation Window

FX Correlation

Feature # 13661

The FX Correlation window is used to display a correlation between multiple forex

instruments. Values close to 1 indicate movement in the same direction. Values close to -

1 indicate movement in opposite directions. Values near 0 indicate no correlation. See the

FX Correlation section for more information.

Release Notes 171

© 2023 NinjaTrader, LLC

Added Correlation indicator

Indicator

Feature # 13755

The correlation indicator will plot the correlation of the data series to a desired instrument.

Values close to 1 indicate movement in the same direction. Values close to -1 indicate

movement in opposite directions. Values near 0 indicate no correlation.

Added additional hot keys

Hot Key

Feature # 13534

The new hot keys make working with NinjaTrader faster and easier.

Charts - Auto scale and return for charts

Workspaces - Save all Workspaces

Templates - Load/ Save as../ Save as default

NinjaTrader 8172

© 2023 NinjaTrader, LLC

Added recently used colors to the top of the color picker

UI

Feature # 13700

Now the most recently used colors used are placed at the top of the color picker, making it

easier to quickly select frequently used colors.

Added save as default button

Templates

Feature # 13672

Save as default has been added to the Indicator, Strategy, Strategy Analzyer, and Drawing

tool template dialogs for a more intuitive experience.

Release Notes 173

© 2023 NinjaTrader, LLC

Issu
e#

Sta
tus

Catego
ry

Comments

137

81

Fix

ed

Alerts,

Market

Analyz

er

Resolved a scenario where

CrossAbove/Below alert did not trigger when

expected

139

80

Fix

ed

ATM

Strate

gies

Stop strategy logic did not resume when

manually disconnecting/reconnecting

136

79

Fix

ed

Barch

art,

Charts

Historical data was not loading for tick based

charts from midnight to the current time

138

51

Fix

ed

Bars Kagi chart style rendered lines when brush

was set to transparent

139

89

Fix

ed

Bars,

Order

Flow +

A renko chart with Order Flow Cumulative

Delta applied could get an error

138

40

Fix

ed

BarsT

ype

Point and figure chart with Price set to Highs

and Lows could display large erroneous bars

NinjaTrader 8174

© 2023 NinjaTrader, LLC

139

41

Ch

an

ge

d

Chart Improved performance for charts which have

lots of rendering

139

63

Ch

an

ge

d

Chart Optimized crosshair performance

137

23

Fix

ed

Chart Renaming a chart tab that isn't the active tab

resulted in an error

137

38

Fix

ed

Chart Zoom in selection box could draw into x and y

axes

137

68

Fix

ed

Chart Compressed chart with Nymex Energy RTH

template caused unreadable time axis

137

98

Fix

ed

Chart Charts were missing data around rollover date

with UTC+8

138

21

Fix

ed

Chart PnF charts could time-stamp a session close

bar with the next days time

138

33

Fix

ed

Chart Resolved a scenario where removing a

second data series from a chart resulted in an

error

139

45

Fix

ed

Chart Expanding the price axis too far resulted in the

time scales disappearing

139

47

Fix

ed

Chart Typing numbers in a chart less than 10 would

change the minute interval rather than return

invalid instrument

139

59

Fix

ed

Chart Resolved a scenario where removing a

second data series, that was using imported

data, resulted in an error

139

26

Fix

ed

Chart,

Drawin

Show global drawing objects set to false could

result in duplicate drawing tool names

Release Notes 175

© 2023 NinjaTrader, LLC

gTools resulting in conflictions

137

84

Fix

ed

Chart

Trader

, Hot

Key

Modifying orders with Hot Keys were slow to

display change on Chart Trader

138

05

Fix

ed

Chart,

Strate

gy

Loading a strategy template allowed the

strategy to be enabled when disconnected

resulting in an error

135

96

Fix

ed

City

Index

Resolved a scenario where attempting to

trade an unmapped CFD had unexpected

results

137

34

Fix

ed

City

Index,

Orders

Positions were not volume weighted

139

60

Fix

ed

CoinB

ase

Resolved a scenario where converting time

zones for L2 timestamps resulted in an error

139

02

Fix

ed

Conne

ctions

An error occurred when trying to edit an

account while connecting

138

27

Ch

an

ge

d

Contro

l

Center

Changed display of strategy parameter tooltips

on Strategies tab to match Strategy Analzyer

139

01

Fix

ed

Contro

l

Center

Getting Connected window could be on top of

error when incorrect credentials were entered

139

31

Fix

ed

Contro

l

Center

Removed erroneous Add Account right click

menu item from Accounts tab

137

92

Fix

ed

Contro

l

Center

When connected to Playback Filter by list

showed Sim101 rather than Playback

NinjaTrader 8176

© 2023 NinjaTrader, LLC

,

Playba

ck

137

47

Fix

ed

Data

Grids

Multi-Line tool-tips did not display as expected

137

43

Fix

ed

Data

Grids,

Orders

Orders grid multi-line rejected messages did

not display as expected

136

81

Fix

ed

Data,

Playba

ck

When downloading current day data at times it

would not download to the current time

137

24

Fix

ed

Drawin

gTool

Anchor values changed when attaching to all

charts

139

10

Fix

ed

Drawin

gTool

Andrew's Pitchfork did not display when chart

anchors were far out of range

138

38

Fix

ed

Drawin

gTool,

Chart

Global drawing objects were merged into old

contracts on reload of historical data

139

54

Fix

ed

Drawin

gTool,

Works

paces

Resolved some scenarios where global

drawing objects would duplicate or no longer

be global when working with multiple

workspaces

137

87

Fix

ed

eSigna

l, Data

Historical data was not downloaded for

yesterday when equidistant bar spacing was

enabled

137

46

Ch

an

ge

d

FXCM Changed addresses to https

138

47

Fix

ed

Histori

cal

Data

Excluded bars were not excluded on reload of

historical data

Release Notes 177

© 2023 NinjaTrader, LLC

Windo

w

138

75

Fix

ed

Histori

cal

Data

Windo

w

Cryptocurrency historical data would not

import with decimals for volume

137

32

Fix

ed

Histori

cal

Data

Windo

w,

Playba

ck

Unexpected contracts showed in Historical

Data 'Edit' window when using the Playback

connection

138

98

Fix

ed

Hotlist

Analyz

er

Workspace with more than 1 Hotlist window

would not retain the name of the Hotlist

selected on restart

136

90

Fix

ed

Indicat

or

Running ROC on Cumulative Delta resulted in

an error

137

53

Fix

ed

Indicat

or

Wiseman indicators did not display an

indicator name in the "Configured" list after

their "Label" setting text was removed

137

63

Fix

ed

Indicat

or

Block Volume's real-time value did not match

it's historical value

138

84

Ch

an

ge

d

Interac

tive

Broker

s

New adapter is out of beta

139

16

Fix

ed

Interac

tive

Broker

s

Resolved a scenario where an error from

modifying the order quantity did not show a

pop up error

NinjaTrader 8178

© 2023 NinjaTrader, LLC

138

99

Fix

ed

Interac

tive

Broker

s,

Data

Real-time data could be a tick off what was

expected with beta

138

18

Fix

ed

Interac

tive

Broker

s,

Strate

gies

Unmanaged multi instrument strategies

submitting orders to 10 instruments caused

strategy position to become out of sync

137

89

Fix

ed

Instru

ments

Tick size addition 0.00000001 was not working

as expected

137

97

Fix

ed

Instru

ments

Changes made to copied instrument lists

could be reflected in the original list

136

87

Fik

ed

Kinetic

k, Data

Last Close was not loading for some

instruments after workspace was closed and

reopened

137

02

Fix

ed

Kinetic

k,

News

Resolved a scenario where a crash could

occur while News window was open

138

17

Ch

an

ge

d

Kinetic

k,

IQFee

d

Improved daily bar handling for after hours

charting

137

22

Fix

ed

Market

Analyz

er

After setting the background for the grid once it

could not be reset to another color and

retained it's value

137

48

Fix

ed

Market

Analyz

er

Removing cell while scroll-bar was visible

could result in an error

137

93

Fix

ed

Market

Analyz

Enable color distribution setting could change

foreground color unexpectedly

Release Notes 179

© 2023 NinjaTrader, LLC

er

137

94

Fix

ed

Market

Analyz

er

T & S trend column did not update when

changing the rows instrument

138

14

Fix

ed

Market

Analyz

er

Updating a row from a valid instrument to an

invalid one continued to show values from

previous instrument

139

37

Fix

ed

Market

Analyz

er

Resolved a scenario where adjusting indicator

column settings was not reflected in the label

137

80

Fix

ed

Market

Analyz

er,

Works

paces

Column widths did not save in workspace

138

66

Fix

ed

Market

Analyz

er,

Works

paces

Saving workspace with an invalid instrument in

the Market Analyzer resulted in an error

136

89

Fix

ed

Market

Watch

,

Market

Analyz

er

Market Watch and Market Analyzer

ChartNetChange column did not use max

available scale range at times

139

40

Fix

ed

NinjaS

cript

Importing a script that has a warning when

importing, the warning could not be selected

since Import Successful window was on top

139

79

Fix

ed

NinjaS

cript,

Strate

gy

Builder

A strategy built in the Builder with an action to

print Volume with a multiplier applied would not

compile

NinjaTrader 8180

© 2023 NinjaTrader, LLC

139

51

Fix

ed

NinjaS

cript,

Chart

Strategies with ImmediatelySubmit

resubmitted orders after disconnecting then

reconnecting when strategy was applied to a

chart

139

93

Fix

ed

NinjaS

cript,

Tick

Replay

Resolved a scenario where GetTime()

resulted in an error when connecting on

startup

137

04

Fix

ed

NinjaS

cript

Editor

Lock up could occur when compiling then

opening a new NinjaScript Editor, Chart, or

Strategies dialog window

139

42

Fix

ed

NinjaS

cript

Editor

Error could occur if compile was pressed

repeatedly

139

73

Fix

ed

NinjaS

cript

Editor

Qty selector pad could be available for the

NinjaScript editor indicator wizard

138

90

Fix

ed

NinjaS

cript

Editor,

NinjaS

cript

Opening NinjaScript Editor with bad 3rd party

dll loaded resulted in a crash

137

17

Fix

ed

NinjaS

cript,

Chart

IsOverlay could not be set in State.Configure

137

33

Fix

ed

NinjaS

cript,

Chart

Using the global drawing object overload

caused duplicated objects when switching

instruments if the window was linked

138

82

Fix

ed

NinjaS

cript,

Indicat

or

ZigZag indicator was returning incorrect bar

values for the HighBar and LowBar method

Release Notes 181

© 2023 NinjaTrader, LLC

140

00

Fix

ed

NinjaS

cript,

Drawin

gTool

A NinjaScript that utilizes DrawingTool

templates could have an error when reloading

NinjaScripts or opening the workspace

139

49

Ch

an

ge

d

Orders Conversion Rate logic for CFD executions will

prioritize the CFD currency rate over the FX

currency rate

140

26

Fix

ed

Orders Restored execution rate could be erroneously

updated after a disconnect and reconnect

139

57

Ch

an

ge

d

Order

Flow +

Improved Order Flow Market Depth Map

performance

136

78

Fix

ed

Order

Flow +

Order Flow Volume Profile indicator with a

template which sets a color to default resulted

in an error

138

04

Fix

ed

Order

Flow +

Volume Profile could cause region to go out of

sync with plots at times

138

20

Fix

ed

Order

Flow +

Order Flow Cumulative Delta values were off

relative to Order Flow Volumetric at beginning

of session

139

04

Fix

ed

Order

Flow +

When Volumetric bar's text was hidden some

rows could be highlighted together in one color

139

29

Fix

ed

Order

Flow +

Resolved a scenario where the first real-time

drawn Order Flow Volume Profile would

disappear once the bar closed

139

46

Fix

ed

Order

Flow +

Order Flow Volume Profile with Price profile

did not plot the z

139

53

Fix

ed

Order

Flow +

Volumetric bar used with a secondary non-

volumetric bar would result in the secondary

NinjaTrader 8182

© 2023 NinjaTrader, LLC

series width getting stuck on 1 when

compressing and decompressing

137

96

Fix

ed

Order

Flow

+,

Drawin

g

Drawing an Order Flow Volume Profile which

has a default template already set rendered

the tool on top of bars rather than behind

139

30

Fix

ed

Market

Analyz

er

Fixed 'Calculating...' text alignment

137

82

Fix

ed

Playba

ck

Resolved some scenarios where Playback

controller did not display

139

20

Fix

ed

Playba

ck

Playback would play beyond the end data

when PC had German date/region settings

139

48

Fix

ed

Playba

ck,

Histori

cal

Data

Playback data did not show in the Historical

Data window on first download

138

10

Fix

ed

Playba

ck,

Strate

gy

Resolved a scenario where enabling a

strategy while connected to playback resulted

in a crash

138

97

Fix

ed

Risk On a new installation orders submitted to sim

account with NinjaTrader Brokerage Default

Risk template applied threw an error on order

submission

138

24

Fix

ed

Region

alizatio

n,

Histori

cal

Data

Windo

w

Importing data with language set to Spanish

resulted in an error

Release Notes 183

© 2023 NinjaTrader, LLC

137

67

Fix

ed

Region

alizatio

n,

Strate

gy

Analyz

er

Optimization results right click context menu

text could be cutoff in German

137

35

Fix

ed

Region

alizatio

n, Tool

Tips

Some tool-tips were not localized properly

136

84

Fix

ed

Region

aliztion

,

Contro

l

Center

Log and trace files failed to send when

platform language was set to German

138

67

Fix

ed

Rithmi

c,

Instru

ments

Opening chart for ZQ 08-19 resulted in an

error

138

50

Ch

an

ge

d

Share

Adapte

r

Changed Sender Display Name to From

Name

138

54

Ch

an

ge

d

Share

Adapte

r

Updated default AOL Mail settings

135

74

Fix

ed

Strate

gy

Strategy on renko bar would cancel

SetProfitTarget & SetTrailingStop orders on

1st trailing stop modification

135

94

Fix

ed

Strate

gy

An error could occur after enabling then

disabling a strategy and attempting to change

it's properties

NinjaTrader 8184

© 2023 NinjaTrader, LLC

137

13

Fix

ed

Strate

gy

Resolved some scenarios where no strategy

is selected when opening the strategies

window

137

31

Fix

ed

Strate

gy

Resetting Sim101 account then re-enabling a

strategy resulted in an error

135

95

Fix

ed

Strate

gy

Analyz

er

Stop limit orders could fill outside bar on gap

scenarios in backtesting

136

95

Fix

ed

Strate

gy

Analyz

er

Custom performance metrics did not work for

multi-instrument optimization combined row

138

03

Fix

ed

Strate

gy

Analyz

er

Viewing optimization result on second open

returned 0’s

138

07

Fix

ed

Strate

gy

Analyz

er

When changing from Backtest to Optimize the

strategy that was selected was lost and

defaults to the first in the list

138

19

Fix

ed

Strate

gy

Analyz

er

Optimizer results were not copying over

optimized data series value correctly

138

29

Fix

ed

Strate

gy

Analyz

er

Could attempt to open combined results which

resulted in an error

138

31

Fix

ed

Strate

gy

Analyz

er

Resolved a scenario where running an

Optimization on a strategy with drawings

could result in an error

Release Notes 185

© 2023 NinjaTrader, LLC

138

37

Fix

ed

Strate

gy

Analyz

er

Resolved a scenario where if NinjaScript

Editor was open it would be brought in front of

other windows by Strategy Analyzer actions

138

42

Fix

ed

Strate

gy

Analyz

er

Error occurred when clicking View Strategy in

Optimization results

138

74

Fix

ed

Strate

gy

Analyz

er

A genetic optimization that optimized doubles

could give parameters that are outside of the

step range

138

88

Fix

ed

Strate

gy

Analyz

er

Multile screens with different DPI settings

caused irregular behavior

138

87

Fix

ed

Strate

gy

Analyz

er

Error could occur when hovering mouse over

NinjaTrader windows in the Taskbar while in

Strategy Analyzer

138

94

Fix

ed

Strate

gy

Analyz

er

Opening a walk forward optimization in a new

tab resulted in an error if it was from the view

results window

139

05

Fix

ed

Strate

gy

Analyz

er

Chart display had an unexpected right click

context menu on the toolbar

139

61

Fix

ed

Strate

gy

Analyz

er

Right-clicking in the Strategy Analyzer Log

without selecting a row resulted in an error

139

75

Fix

ed

Strate

gy

Clicking a result of AI Generate then selecting

Display Chart had Sample ATM Strategy listed

in the top left of the chart

NinjaTrader 8186

© 2023 NinjaTrader, LLC

Analyz

er

139

82

Fix

ed

Strate

gy

Analyz

er

AI Generated strategy which used

CrossBelow and Close Series would not

compile

139

84

Fix

ed

Strate

gy

Analyz

er

AI Generate Trade Result listed Strategy as

Sample ATM

139

86

Fix

ed

Strate

gy

Analyz

er

Strategy Analyzer Column Result listed

SampleATMStrategy on AI Generate Run

139

87

Fix

ed

Strate

gy

Analyz

er

Log filters were not working

136

96

Fix

ed

Strate

gy

Analyz

er,

NinjaS

cript

Calling RemoveDrawObject did not not

remove objects from chart in backtest or

optimization

137

83

Fix

ed

Strate

gy

Builder

DEL key did not work for manually entered

strings

137

76

Fix

ed

Strate

gy

Builder

When using a Custom Series CrossAbove

Numeric value an error occurred

137

77

Fix

ed

Strate

gy

Builder

When adding a data series a current bar

check was not added resulting in an error

Release Notes 187

© 2023 NinjaTrader, LLC

137

85

Fix

ed

Strate

gy

Builder

Quantity input had to be deleted before a new

value could be entered

137

16

Fix

ed

Strate

gy,

Contro

l

Center

DaysToLoad set in SetDefaults was not

applied when adding a strategy to the

Strategies tab

138

81

Fix

ed

Strate

gy,

Contro

l

Center

Resolved a scenario where a position update

on the Strategies grid resulted in an error

138

16

Fix

ed

Strate

gy,

Order

Flow +

Order Flow Cumulative Delta values

incorrectly reported in strategy script when

session line crossed

135

72

Fix

ed

Super

DOM

Changing properties of a column and applying

it affected the width of all columns

137

03

Fix

ed

Super

DOM

Reloading historical data with volume column

applied failed to load

137

06

Fix

ed

Super

DOM

Volume column width modified on reload of

historical data

137

09

Fix

ed

Super

DOM

Modifying the size of the price ladder when a

column is applied then adding another column

reset the price ladder size

138

22

Fix

ed

Super

DOM

A column set to invisible then back to visible

did not display

138

60

Fix

ed

Super

DOM

Position entry marker was not updated on

account change

138

72

Fix

ed

Super

DOM

Resetting sim account caused bid and ask

values to not display until scrolled

NinjaTrader 8188

© 2023 NinjaTrader, LLC

139

08

Fix

ed

Super

DOM

Increased rendering performance when using

indicators and resolved a deadlock scenario

139

11

Fix

ed

Super

DOM

Resolved a scenario where a configured

indicator display name did not update

139

33

Fix

ed

Super

DOM

Orders tab filter was not maintained when

duplicating window

139

13

Fix

ed

Super

DOM,

Templ

ates

Resolved a scenario where a template

resulted in an error

137

25

Fix

ed

Super

DOM,

ATM

Strate

gies

ATM Target +- buttons were not selectable if

ATM strategy was submitted with "Select

active ATM strategy template on order

submission"

138

91

Fix

ed

Templ

ates,

Orders

Flow +

Using a template could result in Volumetric

bars loading with wrong chart style

139

44

Fix

ed

Tick

Replay

, Order

Flow +

Reloading NinjaScript while using Tick Replay

and Order Flow Cumulative Delta could result

in an error

138

26

Fix

ed

Trade

Perfor

mance

,

NinjaS

cript

The label for EntryTime was labeled as

ExitTime in ToString

139

23

Fix

ed

UI Resolved an error that could be caused by a

corrupt UI file

140

05

Fix

ed

Works

paces,

Closing background workspace caused

Databox to disappear

Release Notes 189

© 2023 NinjaTrader, LLC

Chart

8.0.19.1 Release Date
October 18, 2019

Issu

e #

St

at

us

Categ

ory

Comments

138

57

Fix

ed

Transl

ations

Updated various Portuguese translations

140

40

Fix

ed

CQG/

Contin

uum

Web

API

Fixed various issues account and order issues

140

42

Fix

ed

IQ

Feed

Fixed incorrect handling for tick-based charts

140

43

Fix

ed

Order

Flow +

-

VWAP

Fixed 'session' reset of VWAP in certain

scenarios

140

52

Fix

ed

Transl

ations

Fixed F1 links to go to appropriate translated

help resources

140

56

Fix

ed

Barch

art

Resolved a real-time data issue

140

58

Fix

ed

Chart Global drawing objects could no longer change

visibility after switching instruments

140

69

Fix

ed

IQ

Feed

Historical bars were timestamped incorrectly

for minute bars

140

70

Fix

ed

Order

Flow +

VWAP

Standard deviation lines would appear in the

Drawing Objects dialog even when disabled

NinjaTrader 8190

© 2023 NinjaTrader, LLC

140

78

Fix

ed

IQ

Feed

Resolved 'Illegal characters in path' error when

attempting to connect

140

98

Fix

ed

Kinetic

k

Resolved an issue where the current daily bar

would not be refreshed properly on open of a

new chart

141

00

Fix

ed

UI Configuring a connection with the same name

could cause conflicts

141

06

Fix

ed

UI Resolved error "The given key was not present

in the dictionary" error on connecting to a

provider under a certain scenario

3.3.11 8.0.18.1

8.0.18.0 Release Date
May 6, 2019

Features

Added Market Watch

Market Watch

Feature #13434

With the new Market Watch window you can quickly see the net change throughout the

session, since last close. At the top right of each tile you will see the price with the net

change below it in points and percent.

Release Notes 191

© 2023 NinjaTrader, LLC

Added an Automatic Strategy Generator (Experimental)

Strategy Analyzer

Feature #13039

Automatically generate a NinjaScript strategy with the new experimental* “AI Generate”

backtest type. Configure any number of indicators and/or candle stick patterns to be

considered and sit back while NinjaTrader does all the work. After running the AI Generate

it will list for you the best strategies from the results. Selecting View will then pull up the

strategy code in the NinjaScript Editor so you can view it and save it if desired.

*This is a NinjaTrader experimental feature that may or may not evolve over time.

NinjaTrader 8192

© 2023 NinjaTrader, LLC

Added Equivolume charts

Charts

Feature #13444

With equivolume bars you you can easily see which bars received the largest volume

(indicated by being the widest) and which bars received the least volume (indicated by

being the thinnest) in comparison to the other bars in view.

Added automatic "Trend Lines" indicator

Indicators

Release Notes 193

© 2023 NinjaTrader, LLC

Feature #13315

When a high swing is followed by a lower high swing, a trend line high is automatically

plotted. When a low swing is followed by a higher low swing, a trend line low is

automatically plotted.

Added the ability to submit an ATM order on Alert's Actions

Alerts, ATM Strategies

Feature #13398

With Submit An Order you can now select a saved ATM strategy to apply to the order.

NinjaTrader 8194

© 2023 NinjaTrader, LLC

Added Price Box plot style

Chart, Indicators

Feature #13561

The Price Box plot style will display just a price box in the y-axis, without plots on the bars.

Release Notes 195

© 2023 NinjaTrader, LLC

Added NinjaScript Editor support for Visual Studio 2019

NinjaScript Editor

Feature #13666

NinjaScript Editor now supports Visual Studio 2019 and will default to that if multiple

versions are installed

General updates to sound files and new regionalized sounds

Localization

Feature #13469

Some new modern voices have been added and are available in multiple languages

Iss

ue#

Stat

us

Category Comments

133

21

Fixe

d

Alerts Alert objects could change unexpectedly

in multi-series scenario

NinjaTrader 8196

© 2023 NinjaTrader, LLC

135

05

Fixe

d

Alerts Volume alerts using arithmetic offsets

fired without applying the offset

135

97

Fixe

d

Alerts Resolved a scenario where on condition

reversed alert did not rearm properly after

resume/restart

135

65

Fixe

d

ATM

Strategies

Resolved a scenario where using

currency mode did not submit stop as

expected

136

22

Fixe

d

ATM

Strategies

, Chart

Trader

Resolved a scenario where modifying a

stop that was submitted in another

window resulted in an error

136

24

Fixe

d

Backup &

Restore

An error occurred when restoring from a

foreign language backup file

135

30

Fixe

d

Chart Background image could not be changed

if corrupt image file was selected

135

68

Fixe

d

Chart Charting a stock instrument with no

default exchange selected and displaying

the mini databox resulted in an error

136

25

Fixe

d

Chart Resolved a scenario where chart would

freeze when removing a drawing object

136

35

Fixe

d

Chart Transparent plots with both negative and

positive values caused lagging in the

chart

136

69

Fixe

d

Chart Resolved a scenario where loading

historical executions resulted in an error

135

10

Fixe

d

Chart

Trader

Chart Trader could be too small in width

on duplicated chart window

136

13

Fixe

d

Chart

Trader

Chart became unresponsive when an

ATM stop with reverse was modified

more than once

Release Notes 197

© 2023 NinjaTrader, LLC

135

09

Fixe

d

Chart,

Strategy

VWAP could be missing regions when

hosted in strategy enabled from the

Control Center

136

21

Fixe

d

Chart,

Template

s

Setting Show Tabs to False in a chart

template could cause tabs to go missing

unexpectedly

136

17

Fixe

d

Coinbase Disconnect could result in a crash

136

26

Fixe

d

Coinbase Resolved an error that occurred from

real-time data

136

62

Fixe

d

Control

Center

Email successfully sent message was

marked as an error rather than an alert

136

71

Fixe

d

CQG,

SuperDO

M

Instruments with no volume could not

scroll down in the SuperDOM

136

10

Fixe

d

DrawingT

ool

Calling draw tools which use PriceLevels

with templates from compiled assembly

could fail to get price levels from template

135

29

Fixe

d

FXCM,

Orders

Resolved a scenario where positions did

not update

135

52

Fixe

d

G2,

Orders

Resolved a scenario where past orders

would be logged again unexpectedly

136

00

Fixe

d

Indicator Drawing Tool Tile did not display the Path

icon correctly

136

12

Fixe

d

Indicator Swing Input unexpectedly could be used

when BarsArray was passed as an input

135

58

Adde

d

Instrumen

ts

Added tick size of 0.00000001

135

20

Fixe

d

Instrumen

ts

Instrument selector could show CFD and

index prefix unexpectedly

NinjaTrader 8198

© 2023 NinjaTrader, LLC

135

55

Fixe

d

Instrumen

ts

Improved instrument type search filter to

better give the results expected by default

136

65

Fixe

d

Interactive

Brokers,

Market

Analyzer

Some instruments would not receive

fundamental data that was expected

135

86

Fixe

d

Kinetick Historical data requests for the ZT could

result in an error

135

16

Fixe

d

Market

Analyzer

Blank row dividers for chart columns

unexpectedly had less opacity when

selected

136

15

Cha

nged

Market

Analyzer

Net Change did not display fractional

prices for points display mode

136

18

Fixe

d

Market

Analyzer

Adding an indicator column then changing

the indicators property caused the name

to unexpectedly change

136

53

Fixe

d

Market

Analyzer

Date columns had an error when value

did not exist

136

60

Fixe

d

Market

Analyzer

Resolved a scenario where columns

could show '…' unexpectedly

135

87

Fixe

d

Market

Analyzer,

Alerts

Alerts that are checked against an

indicator value and a numeric value did

not rearm on reversal of the condition

135

11

Fixe

d

NinjaScrip

t

Strategies with a secondary series

prevented Strategies tab Filter Only

Active Strategies option from being

disabled

136

05

Fixe

d

NinjaScrip

t

Resolved a scenario where a valid

NinjaScript import file failed to import

136

33

Fixe

d

NinjaScrip

t

Strategy indicator could get stuck in

calculating after dragging and dropping an

Release Notes 199

© 2023 NinjaTrader, LLC

indicator

135

49

Fixe

d

NinjaScrip

t Editor

Renaming file did not rename the name

property

136

38

Fixe

d

NinjaScrip

t, ATM

Strategies

AtmStrategyCreate could submit orders

to non-primary series despite

BarsInProgress check

135

51

Cha

nged

Order

Flow +

Changed Order Flow Volume Profile tick

resolution error text to be more clear

136

03

Fixe

d

Order

Flow +

Order Flow Trade Detector could throw

an error when hovering over a marker

136

16

Fixe

d

Order

Flow +

Selecting Order Flow Volume Profile

resulted in an error on DST switch

135

07

Fixe

d

Playback Resolved a scenario where historical

data could be removed that was older

than the Playbacks start date

135

81

Fixe

d

Playback,

Chart

Switching trading hours could result in

opening bar to display incorrectly

136

01

Fixe

d

Playback,

DrawingT

ool

Resolved a scenario where drawing

objects could be removed when

opening/closing workspaces

136

41

Fixe

d

Playback,

DrawingT

ool

Global drawing objects drawn on

historical bars while connected to live

data could be removed from closed

workspace when you connect/play

playback data

135

69

Fixe

d

Playback,

Strategy

Strategy could not enable on playback

after terminated

135

71

Fixe

d

Playback,

Strategy

Rewinding playback could duplicate

strategy added chart indicators

NinjaTrader 8200

© 2023 NinjaTrader, LLC

136

23

Cha

nged

ShareAda

pter

Default SMTP config settings for Yahoo

were updated

135

62

Fixe

d

Skins,

Strategy

Builder

When using the dark skin, strategies

listed in Strategy Builder were unreadable

135

32

Fixe

d

Strategy Changing the time-frame for multiple

active strategy instances could leave

parts of the instances disabled

135

47

Fixe

d

Strategy Date field remained active after strategy

was enabled

135

67

Fixe

d

Strategy SetParabolicStop could move the order to

the wrong side of the market resulting in

an error

135

85

Fixe

d

Strategy Resolved a scenario where reloading

NinjaScripts resulted in duplicates of

strategy indicators

135

88

Fixe

d

Strategy Resolved a scenario where enabled

strategies showed as not enabled

135

64

Fixe

d

Strategy

Analyzer

False date picker error could occur after

clicking reset through the templates.

136

47

Fixe

d

Strategy

Analyzer

Strategy Analyzer optimization results

tool tip could display in an unexpected

format

136

50

Fixe

d

Strategy

Analyzer

When using the strategy optimizer if you

closed a secondary window while

optimizing it would result in a crash

135

06

Cha

nged

Strategy

Builder

Improved performance for compiling or

opening scripts

135

13

Fixe

d

Strategy

Builder

Cancel button could trigger program

unresponsive pop-up for large strategy

Release Notes 201

© 2023 NinjaTrader, LLC

135

76

Fixe

d

Strategy

Builder

Condition builder embedded indicator

parameters would not visually update

136

28

Fixe

d

Strategy

Builder

An error could occurred when adding an

indicator with simple font

136

64

Fixe

d

Strategy

Builder

Checking for first bar of the session

resulted in an unneeded check

135

54

Fixe

d

Strategy,

Chart

Strategy hosted indicator regions could

disappear on reload

135

48

Fixe

d

Strategy,

Workspac

es

Strategies still showed on chart of

workspace when the strategy was saved

to a new workspace

135

42

Fixe

d

SuperDO

M

Could show more indicator lines than

expected

135

44

Fixe

d

SuperDO

M

Adding two instances of Bollinger resulted

in an error

135

70

Fixe

d

SuperDO

M

Column configuration lost selection upon

applying changes

135

79

Fixe

d

SuperDO

M

Indicator Instances duplicated when

changing calculate settings

136

06

Fixe

d

SuperDO

M

Resolved a scenario where the previous

ATM template was retained unexpectedly

136

08

Fixe

d

SuperDO

M

An unexpected error could occur when

applying an indicator the license was not

enabled for

136

67

Fixe

d

SuperDO

M,

Licensing

An ATM template could stick if the

workspace was closed then the license

key was switch from live to free edition

135

78

Fixe

d

SuperDO

M,

Playback

Resolved some scenarios where the

SuperDOM did not display as expected

while Playback was paused

NinjaTrader 8202

© 2023 NinjaTrader, LLC

134

89

Fixe

d

TD

Ameritrad

e, Orders

In some scenarios the position size was

reported incorrectly

135

80

Fixe

d

Time and

Sales

A Time and Sales which was open prior

to a disconnect/reconnect, upon

reconnect only printed as above ask

136

40

Fixe

d

Trade

Performa

nce

Avg MAE on Summary tab was missing

trade size adjustment when summary

displayed in pips

136

51

Fixe

d

Trade

Performa

nce

Trade Performance presets did not load

with new window

135

99

Fixe

d

UI Fixed message box text for instrument

roll over

136

30

Fixe

d

UI,

Controle

Center

Preferred connection real-time default

selection was missing for Cryptocurrency

136

36

Fixe

d

UI,

Indicators

Resolved a scenario where the indicator

properties window could open partially out

of view

135

50

Fixe

d

UI, ATM

Strategies

Custom stop strategy tool tip text was

missing

136

56

Fixe

d

Workspac

es

Switching workspaces that had a databox

could result in a freeze

135

57

Fixe

d

Workspac

es

Resolved a scenario where 'Save

Workspace' confirmation dialog did not

work as expected

136

58

Fixe

d

Workspac

es

Resolved a scenario where saving and

closing workspaces with defaults names

could open an unexpected workspace

8.0.18.1 Release Date

Release Notes 203

© 2023 NinjaTrader, LLC

June 4, 2019

Issu

e#

Stat

us

Category Comments

137

41

Fixe

d

Commissi

ons, Risk

Risk and Commissions templates did not

update on start up

137

42

Fixe

d

FXCM,

Position

Display

Resolved a scenario where account

could fall out of sync from live account

137

39

Fixe

d

Interactive

Brokers,

Data

Real time T̂ICK data only updated in

positive values

137

45

Fixe

d

Reginaliz

ation,

TopStep

Trader

Connection name translated poorly when

platform language was set to Spanish

137

44

Fixe

d

Strategy

Analyzer

Could not open optimization result in new

tab/window

3.3.12 8.0.17.2

8.0.17.0 Release Date
January 28, 2019

Features

Added Drawing tool tile indicator

Indicators

Feature # 13389

The Drawing tool tile indicator adds the ability to have a floating tile in the chart that can be

customized to quickly access the most commonly used drawing tools.

NinjaTrader 8204

© 2023 NinjaTrader, LLC

Added Text message via email Share Adapter

Options

Feature # 13131

The Text message via email feature come preconfigured with typical setting for most

major mobile phone providers so you can share item to your mobile phone with SMS or

MMS messages.

Release Notes 205

© 2023 NinjaTrader, LLC

Added Enable color distribution column property

Market Analyzer

Feature # 13193

This column property will function like a heat map to allow easy identification of where

values fall on a scale or compared to one another by distributing a range of colors.

Added Go to... ability to chart scroll-bar right click menu

Chart

Feature # 13367

NinjaTrader 8206

© 2023 NinjaTrader, LLC

The Go to... feature will enable you to quickly move to the specified time on a chart.

Added a Days until rollover column

Market Analyzer

Feature # 13293

This column creates an easy visualization of when futures are set to rollover and can be

used with an alert to notify when it's time to rollover.

Release Notes 207

© 2023 NinjaTrader, LLC

Added a property to set an image as a background for the chart

Chart

Feature # 13240

A custom background image can now be applied to charts to help easily differentiate

charts or enhance the visual appeal.

NinjaTrader 8208

© 2023 NinjaTrader, LLC

Added ability to duplicate a window, including all it's tabs

Core

Feature # 13399

The ability to duplicate an entire window and all it's tabs greatly reduces the time to

recreate a window's set up.

Release Notes 209

© 2023 NinjaTrader, LLC

Added Hollow Candlestick Chart style

Chart

Feature # 13435

Hollow candlesticks can color the outline/wicks the up/down bar colors and has a

separate color for doji bars, all with a transparent center.

NinjaTrader 8210

© 2023 NinjaTrader, LLC

Added 'Path' Drawing Tool

DrawingTool

Feature # 13270

The path drawing tool adds the ability to plot multiple connecting lines without it needing to

be a shape.

Release Notes 211

© 2023 NinjaTrader, LLC

Added Net change max up and down columns

Market Analyzer

Feature # 13094

These columns will display the max and min the net change has been for the session.

NinjaTrader 8212

© 2023 NinjaTrader, LLC

Added T & S trend column

Market Analyzer

Feature # 13062

This column will show a colored display indicating a history of where orders filled in

comparison to the bid and ask price

Added Collapse all regions & Expand all regions hot keys for the NinjaScript Editor

Hot Key, NinjaScript Editor

Feature # 13255

With these hot keys you can quickly expand and collapse all regions to make it easier

getting to what you need.

Release Notes 213

© 2023 NinjaTrader, LLC

Order Flow Volume Profile in composite mode now has Display in margin option

Order Flow +

Feature # 13316

With the Display in margin option you will be able to plot the profile without overlapping the

bars when using composite mode.

NinjaTrader 8214

© 2023 NinjaTrader, LLC

Added the ability to copy an instrument list

Instruments

Feature # 13199

Copying an instrument list can be used to quickly duplicate an existing list that you may

want to make some adjustments to for a new list.

Release Notes 215

© 2023 NinjaTrader, LLC

Share email adapter is preconfigured with SMTP settings for common providers

Options

Feature # 13128

The email share adapted now includes common settings for the most popular providers,

making adding a provider even easier.

NinjaTrader 8216

© 2023 NinjaTrader, LLC

Added historical data support from NinjaTrader servers for Coinbase

Coinbase

Feature # 13410

With NinjaTrader servers you will be able to access historical data faster and get tick data.

Release Notes 217

© 2023 NinjaTrader, LLC

Added support for XAGUSD/XAUUSD commodity CFD's

Interactive Brokers, Instruments

Feature # 13329

Although commodities are not supported, these popular instruments can now be

accessed as CFDs and will properly route to the commodity CFD in Traders Workstation.

Added support for distributing NinjaScripts that include workspace files

NinjaScript

13299

Similar to how templates can be included with NinjaScript packages, now workspaces

could be included.

Added SizeFilter overload for Volumetric bars

Order Flow +, NinjaScript

Feature # 13274

Now the SizeFilter for Volumetric bars will be accessible with NinjaScript.

Added Italian language support

Regionalization

NinjaTrader 8218

© 2023 NinjaTrader, LLC

Feature # 13391

You can now configure NinjaTrader for Italian

Iss

ue

#

Stat

us

Categ

ory

Comments

132

04

Fixe

d

Alerts Percent offsets did not work as expected

133

27

Fixe

d

Alerts Arithmetic decimal offsets were not allowed

134

42

Fixe

d

Alerts Rearm of On condition reversed was not

working as expected when there were multiple

conditions

134

04

Fixe

d

Attach

Order

To

Indicat

or

Increasing the quantity of an order attached to

an indicator did not inherent attached function

132

17

Fixe

d

Bars Resolved some scenarios where loading bars

could result in an error

133

71

Fixe

d

Basic

Entry

Price selector lost fractional value when

deselected

132

09

Cha

nge

d

Chart Send to > Chart feature now sends to the

Data Series so the desired chart type/template

can be selected

132

33

Fixe

d

Chart Chart templates/duplicate chart tab did not

retain fixed left scale of indicator

133

94

Fixe

d

Chart In some scenarios the chart style icon could

be incorrect

Release Notes 219

© 2023 NinjaTrader, LLC

133

97

Fixe

d

Chart There was no visual cue on the Global Cross

Hair which would indicate which chart the

mouse cursor was hovering over

134

91

Fixe

d

Chart,

NinjaS

cript

Resolved a scenario where custom bar types

wouldn't properly scale

133

23

Fixe

d

Chart

Trade

r

Resolved some scenarios where Chart Trader

could be re-sized incorrectly

132

60

Fixe

d

Chart

Trade

r,

Indicat

or

FXTile panel could be overlapped by Chart

Trader panel

132

80

Fixe

d

Chart,

Drawi

ngToo

l

Switching data series and then removing all

drawing objects from a chart could affect the

previous data series

133

87

Fixe

d

Chart,

Indicat

or

Adding an indicator while NinjaScript was

reloading could result in an error

132

86

Fixe

d

Chart,

Strate

gy

Strategy could plot on incorrect input series on

multi-series chart

132

69

Fixe

d

Coinb

ase

Resolved a scenario that resulted in repeated

disconnects and reconnects

132

75

Fixe

d

Coinb

ase

Resolved a scenario that prevented download

of more than a week of minute data

133

36

Fixe

d

Coinb

ase

Daylight savings time could prevented data

from downloading

134

60

Fixe

d

Coinb

ase

Historical daily bars were time stamped 1 day

off

NinjaTrader 8220

© 2023 NinjaTrader, LLC

133

34

Fixe

d

Contin

uum,

CQG

Resolved a scenario where a time zone

setting prevented connecting during daylight

savings time change

132

59

Cha

nge

d

Contr

ol

Cente

r

Made Send to support window not modal and

added CC to self option

132

84

Fixe

d

Contr

ol

Cente

r

Email support could say the message sent

when it did not

133

14

Cha

nge

d

Contr

ol

Cente

r

Updated format of the Help menu

132

58

Fixe

d

Contr

ol

Cente

r,

NinjaS

cript

When more scripts were exported than the

size of the window there was no scroll-bar to

see the additional scripts

133

13

Fixe

d

Core When having a modal window open then

switching programs then going back to

NinjaTrader, the modal window would not pull

into the front

134

31

Fixe

d

Core Made tool tips more consistent

132

83

Fixe

d

Drawi

ngToo

l

Resolved a scenario where Region highlight

could result in an error

133

26

Fixe

d

Drawi

ngToo

l,

Work

space

Drawing Object Attached to All charts with

Visible unchecked did not retain unchecked

setting on relaunch

Release Notes 221

© 2023 NinjaTrader, LLC

132

90

Cha

nge

d

Forex.

com

Updated connection options to always use G2

as that is now the only option from Forex.com

132

97

Fixe

d

Forex.

com

Resolved a scenario that where a connection

loss occurred resulting in a crash

132

97

Fixe

d

Forex.

com,

Data

When connecting a historical gap could

appear on chart if using a chart series preset

133

06

Fixe

d

Forex.

com,

Chart

After loading a tick chart then switching to

another chart type the Loading text would not

remove once complete

131

86

Fixe

d

Forex.

com,

NinjaS

cript

Resolved a scenario where canceled

simulation orders could result in an error

132

43

Fixe

d

FX

Board

Futures instruments added to the Forex list

would get added to the FX Board tiles

collection

134

08

Fixe

d

FX

Pro

If no instrument was selected, open orders

would show on the orders grid

132

24

Fixe

d

FXCM Resolved a case where some accounts could

not connect

132

98

Fixe

d

FXCM

,

Order

s

Orders could be slower than with previous

releases

132

52

Fixe

d

Indicat

or

ZigZag could not run on an input series that

produced negative values

133

88

Fixe

d

Indicat

or

Candlestick indicator had an error if strength

was set to 0

NinjaTrader 8222

© 2023 NinjaTrader, LLC

134

03

Fixe

d

Indicat

or

Typing to select indicator in available list didn't

always work

134

23

Fixe

d

Indicat

or

FX Tile error text flashed on while changing to

valid instrument

134

33

Fixe

d

Indicat

or

Added text indicating Woodie's CCI panel

requires minimum 3 daily bars to calculate if

less than 3 are available

134

62

Fixe

d

Indicat

or,

Chart

Indicator with IsOverlay=False and

DrawOnPricePanel=True would draw objects

in indicator panel rather than price panel

134

93

Fixe

d

Install

er

Reinstall did not recompile as expected

134

87

Fixe

d

Install

er

A large cache could cause upgrade to take

long

134

02

Cha

nge

d

Instru

ments

Addition of 0.000005 as tick size

134

40

Fixe

d

Instru

ments

,

NinjaS

cript

Resolved a scenario where updating

instruments quickly after rolling over futures

resulted in a error

133

86

Cha

nge

d

Intera

ctive

Broke

rs

Notification from Traders Workstation no

longer send as alerts or errors, which resulted

in pop ups

134

22

Fixe

d

Intera

ctive

Broke

rs

Resolved a scenario that prevented

connecting

134

84

Cha

nge

Intera

ctive

For equities, if a market maker ID is not

received the selected exchange will display as

Release Notes 223

© 2023 NinjaTrader, LLC

d Broke

rs,

Level

II

Windo

w

the market maker

134

68

Fixe

d

Intera

ctive

Broke

rs,

Instru

ments

YM 03-19 showed as YM 12-99

135

02

Fixe

d

Intera

ctive

Broke

rs,

Instru

ments

VX 03-19 failed to load

134

25

Fixe

d

Intera

ctive

Broke

rs,

Order

s

Resolved a scenario where part filled logs

were duplicated

130

56

Cha

nge

d

IQFee

d

Supported Client Software version updated to

6.0.1.1

134

83

Fixe

d

IQFee

d

A disconnect then reconnect could result in

data not resubscribing when using multiple

connections

133

00

Fixe

d

Kineti

ck

Resolved a scenario were a reconnect was

not attempted after a lost connection

134

81

Fixe

d

Kineti

ck

Disconnecting during a connection loss could

result in an error

NinjaTrader 8224

© 2023 NinjaTrader, LLC

132

36

Fixe

d

Kineti

ck,

Work

space

s

Connecting to Kinetick EOD from the 'Get

connected' screen would load the default

workspace after each open

132

27

Fixe

d

Licen

sing

Resolved a scenario where settings didn't fully

update when changing licenses

133

33

Fixe

d

Licen

sing

Vendor licensing allowed blank name which

couldn't be managed

133

69

Cha

nge

d

Locali

zation

Refined Simplified Chinese Mandarin

localization

134

05

Fixe

d

Locali

zation

,

Instru

ments

Instrument type in instrument manager could

display incorrectly

134

49

Fixe

d

Locali

zation

, Log

English logs could show localized resources

132

34

Fixe

d

Marke

t

Analy

zer

Label cell did not work properly after drag and

drop when non-text columns were applied

132

91

Fixe

d

Marke

t

Analy

zer

Resolved some rendering errors for Chart -

Net change

134

67

Fixe

d

Marke

t

Analy

zer,

NinjaS

cript

Resolved a scenario where a custom column

was not terminated after the window was

closed

Release Notes 225

© 2023 NinjaTrader, LLC

134

75

Fixe

d

Marke

t

Analy

zer,

Playb

ack

Chart - Net Change did not plot when

connected to Playback

133

65

Fixe

d

NinjaS

cript

Resolved a scenario where accessing the

Strategies window repeatedly resulted in an

error

134

18

Fixe

d

NinjaS

cript

BarsRequest could return incorrect bars if

Global Merge Policy was different from

BarsRequest Merge Policy

134

28

Cha

nge

d

NinjaS

cript

Monte Carlo simulation is now multi-threaded

132

31

Fixe

d

NinjaS

cript

Editor

Resolved links for compile errors that went to

pages with no documentation

132

35

Fixe

d

NinjaS

cript,

Chart

Resolved a scenario where auto scaling a

chart could result in an error

134

88

Fixe

d

NinjaS

cript,

Chart

Draw.TextFixed in sub panel moved on time

axis scroll

130

96

Fixe

d

NinjaS

cript,

Drawi

ngToo

l

Updating the end anchor from NinjaScript

could fail on multi-series chart

134

32

Fixe

d

NinjaS

cript,

Drawi

ngToo

l

Resolved a scenario where rendering a

rectangle resulted in an error

NinjaTrader 8226

© 2023 NinjaTrader, LLC

134

97

Fixe

d

NinjaS

cript,

Work

space

s

When restoring a workspace,

OnWindowRestored() was called before

OnWindowCreated

134

41

Fixe

d

Optio

ns,

Data

Tick filtering did not work as expected

132

45

Cha

nge

d

Order

Flow

+

Updated Order Flow Market Depth Map default

settings to improve visualization

132

61

Fixe

d

Order

Flow

+

Order Flow Volume Profile on a tick chart

could cause a rendering error

132

63

Fixe

d

Order

Flow

+

In some scenarios the Order Flow Volume

Profile's Extended naked POC extended when

it shouldn't have

132

76

Fixe

d

Order

Flow

+

Order Flow Volume Profile type price plotted

some letters too early on minute resolution

132

77

Fixe

d

Order

Flow

+

Order Flow+ Volume Profile Composite did

not plot with certain settings

132

89

Fixe

d

Order

Flow

+

Order Flow Volume Profile added addition line

labels

133

08

Fixe

d

Order

Flow

+

Order Flow Volume Profile could plot monthly

profiles a day early

133

81

Fixe

d

Order

Flow

+

In some scenarios Order Flow Volume Profile

price charts could show the C for close out of

line

Release Notes 227

© 2023 NinjaTrader, LLC

134

00

Fixe

d

Order

Flow

+

Order Flow Market Depth Map extend last

known value printed incorrectly in fast moving

markets

134

70

Fixe

d

Order

Flow

+

Volumetric bars could return different values in

code vs chart if a gap in price occurred

134

06

Fixe

d

Order

Flow

+,

Chart

Resolved a scenario where chart became

unresponsive after switching the instrument

134

30

Fixe

d

Order

Flow

+,

Playb

ack

Order Flow Cumulative Delta could see

discrepancies when reloaded in Playback

133

77

Fixe

d

Order

Flow

+,

Tick

Repla

y

Order Flow + Volume Profile indicator plot was

displaced when used with Tick Replay

133

64

Fixe

d

Order

s

Orders tab would not update Quantity when a

strategy order was submitted to secondary

series

134

20

Fixe

d

Order

s

GTD orders were not handled as expected

133

76

Cha

nge

d

Outpu

t

Windo

w

Added Copy to right click menu of the

NinjaScript Output window

132

87

Fixe

d

Playb

ack

Rewinding Playback with an alert attached to a

multi-series indicator resulted in an error

NinjaTrader 8228

© 2023 NinjaTrader, LLC

134

55

Fixe

d

Playb

ack

Playback could get stuck when daylight

savings ends with some time zones

134

98

Fixe

d

Playb

ack

Controller end date could be before start date

in some scenarios

132

15

Fixe

d

Simul

ator,

Trade

Perfor

manc

e

Simulator MAE/MFE/ETD could change after

end of day

133

93

Fixe

d

Strate

gy

In some scenarios draw methods would not

plot if the strategy was applied in a chart then

enabled in the Control Center

134

17

Fixe

d

Strate

gy

Resolved a scenario that resulted in a double

canceling of an order which then caused a

crash

134

51

Fixe

d

Strate

gy

When running 2 strategies on the same

instrument, if 1 was disabled the 2nd stopped

updating it's PnL values on the Strategies tab

134

63

Fixe

d

Strate

gy

Calling EnterLong() and then ExitLongLimit()

could result in an error

131

92

Fixe

d

Strate

gy

Analy

zer

When loading an Optimization from a log,

Summary results did not match the Results

grid, when using High Order Fill Resolution

132

18

Fixe

d

Strate

gy

Analy

zer

Sending a log from a backtest to an already

open NinjaScript Editor resulted in an error

133

24

Fixe

d

Strate

gy

Analy

zer

Adding Results Columns to an Optimization

caused column misalignment

Release Notes 229

© 2023 NinjaTrader, LLC

133

79

Fixe

d

Strate

gy

Analy

zer

Walk forward optimization Start/End column

disappeared when setting display to points

134

09

Fixe

d

Strate

gy

Analy

zer

When switching between multiple instruments

results of a strategy that draws text an error

could occur

134

11

Fixe

d

Strate

gy

Builde

r

Setting VolumeUpDown as Input in Momentum

caused a duplicate instantiation

134

94

Fixe

d

Strate

gy

Builde

r

Condition Builder showed some indicators that

are not available in the Condition Builder

133

03

Fixe

d

Strate

gy,

Order

s

Resolved a scenario where specific settings

resulted a simulated stop became a real stop

when the strategy transitioned to real time

132

95

Fixe

d

Strate

gy,

Templ

ates

Running an Optimization then setting a

template was not working as expected

134

48

Fixe

d

Strate

gy,

Templ

ates

Strategies applied on the Strategies tab of the

Control Center could change renko brick size

when enabled, if a strategy template exists

132

82

Fixe

d

Super

DOM

Column width was not maintained after a

restart

134

74

Fixe

d

Super

DOM,

ATM

Strate

gies

Resolved a scenario where the APQ column

could get an error if using an ATM in a fast

moving market

NinjaTrader 8230

© 2023 NinjaTrader, LLC

132

50

Fixe

d

Super

DOM,

NinjaS

cript

Resolved a scenario where reloading

NinjaScripts could get stuck

132

88

Fixe

d

TD

Amerit

rade

Resolved a scenario where an additional day

of data would download unexpectedly

134

72

Fixe

d

TD

Amerit

rade,

Chart

Some time zones could prevent charts from

updating

134

19

Fixe

d

Trade

Perfor

manc

e

Performance analysis grid on weekly period

during holiday could display incorrectly

132

56

Fixe

d

Work

space

s

Switching between workspaces that had a

data box caused the data box to become blank

134

38

Fixe

d

Work

space

s

Resolved a scenario where saving a

workspace with same name as a previously

saved workspace, they were combined

8.0.17.1 Release Date
February 6, 2019

Iss

ue

#

Stat

us

Categor

y

Comments

135

33

Fixe

d

Order

Flow +

Order Flow Market Depth Map did not plot

above last price

135

22

Fixe

d

NinjaScri

pt,

Drawing

Tool

Renamed Path NinjaScript access to

PathTool to prevent potential compile

conflicts

Release Notes 231

© 2023 NinjaTrader, LLC

135

37

Fixe

d

Localizati

on

When NinjaTrader was set to ‘Spanish’,

mail to support did not work as intended

135

46

Fixe

d

NinjaScri

pt

References to an older version of

Newtonsoft would result in an error

8.0.17.2 Release Date
February 14, 2019

Iss

ue

#

Stat

us

Categor

y

Comments

135

60

Fixe

d

Control

Center,

Playback

Resolved account handling for a few

scenarios

135

595

Cha

nge

d

Drawing

Tool

Improved Path tool double click to end

function

3.3.13 8.0.16.3

8.0.16.0 Release Date
October 16, 2018

Features

Added additional features to Order Flow + items

Order Flow +

Feature # 13084

The Order Flow Depth Map now has a real-time display that graphs the highest depth

volume seen at each price level for the bar type it is applied to (1 second in the example

below). This creates a simple visualization of where the largest depth is.

NinjaTrader 8232

© 2023 NinjaTrader, LLC

Volumetric bars now have a profile view to easily identify where the largest volumes

occurred.

Release Notes 233

© 2023 NinjaTrader, LLC

Order Flow Volume Profile using large composite modes such as month will build from

the start of the month rather than a month back from the current date.

NinjaTrader 8234

© 2023 NinjaTrader, LLC

Order Flow Volume Profile with a Price Profile Type will now show an O and a C to

represent the open and close.

Added the ability to resize the Chart Trader

Chart Trader

Feature #13132

Now the Chart Trader size can be adjusted to your preference.

Release Notes 235

© 2023 NinjaTrader, LLC

Added templates for Indicators

Indicator

Feature #13129

Added the ability to save templates for indicators to more easily manage different

configurations of indicators for your needs.

NinjaTrader 8236

© 2023 NinjaTrader, LLC

Added Fibonacci and Camarilla Pivots

Indicator

Feature #12834

Pivot indicators calculate areas of potential support and resistance based on values from

the prior trading session.

Release Notes 237

© 2023 NinjaTrader, LLC

Added Choppiness Index

Indicator

Feature #12779

The Choppiness Index is an indicator that determined if the market is choppy (trading

sideways) or not choppy (trading within a trend in either direction). A high value is more

choppy. A lower value indicates the market is trending.

Added Vortex

Indicator

Feature #12780

The Vortex is an oscillator used to identify trends. A bullish signal triggers when the VIPlus

line crosses above the VIMinus line. A bearish signal triggers when the VIMinus line

crosses above the VIPlus line.

NinjaTrader 8238

© 2023 NinjaTrader, LLC

Added Block volume

Indicator

Feature #13069

Block Volume can track how many block trades occurred within a bar. It can display the

number of block trades or the total volume of the block trades. This could even be used to

count how many ticks occurred within a bar. Historical tick data is required to historically

calculate this indicator.

Release Notes 239

© 2023 NinjaTrader, LLC

Added FX Tile

Indicator

Feature #13071

The FX Tile display a tile similar to the tiles in the FX Board, directly on the chart. It will

display the spread, can be moved around, and can even be used to place order when

Chart Trader is enabled.

NinjaTrader 8240

© 2023 NinjaTrader, LLC

Added Psychological Line

Indicator

Feature #12778

The Psychological Line displays a ratio of what percent of bars were up bars over a

specified number of bars. A higher ratio may indicate the price is more likely to drop. A

lower ratio may indicate the price is more likely to rise.

Release Notes 241

© 2023 NinjaTrader, LLC

Improved icons

UI

Feature #13130

Implemented new icons to further increase the clean and sleek feel of the platform.

Added Chart - Mini column

Market Analyzer

NinjaTrader 8242

© 2023 NinjaTrader, LLC

Feature #12893

The Chart - Mini displays a user specified span of time for a quick view of the market. The

time does relate across rows. So, if it is 1:05pm and it has a 5 minute span, it will display

the last 5 minutes from 1:00pm to 1:05pm

Added Chart - Net change column

Market Analyzer

Feature #13101

The Chart - Net change column is a quick visualization to see the movement of the net

change for the session. The start of the column is the session open and the end is the

session close. The time does not relate across rows.

Added a Depth Chart for cryptocurrencies

Depth Chart

Feature #12326

The Depth Chart is a utility for cryptocurrencies that shows an aggregated view of the

current order box. This creates an easy display to measure the resistance per side for the

price to move.

Release Notes 243

© 2023 NinjaTrader, LLC

Added the ability to disable global simulation mode directly from the warning

message

Orders

Feature #13067

Previously when global simulation mode was enabled and you would select a live account

you would have to click through the Control Center to disable global simulation mode. Now

it can be done quickly and easily, right from the warning dialog.

Added icon to access the QTY Pad

Order

Feature #13048

The QTY Pad was a feature often missed since it was accessed by middle mouse

clicking. Now we have added a button to access the QTY Pad, which can quickly adjust

your order quantity and has the ability to configure the available options.

NinjaTrader 8244

© 2023 NinjaTrader, LLC

Added option to match data series width for indicators using a bar plot style

Chart, Indicator

Feature #12303

Often times when using an indicator that uses a Bar Plot style, you want the width to

match the data series. Setting it and then adjusting the charts compression would then

result in them not matching again. Now there is an option to have it dynamically match.

Release Notes 245

© 2023 NinjaTrader, LLC

Updated required version of Traders Workstation for Interactive Brokers to 973

and added the ability to enable additional functionality that is in beta

Interactive Brokers

Feature #13053

Beta function can be enabled within the connections properties.

NinjaTrader 8246

© 2023 NinjaTrader, LLC

The following functionality has been implemented for beta.

· Unfiltered real-time data

· Support for linked accounts

· Improved level II data handling

· The equities volume multiplier is now applied to all equities

· Added the ability to remove equities volume multiplier by adding |||||1 to the instruments

symbol mapping

Release Notes 247

© 2023 NinjaTrader, LLC

Added the ability to use the greatest right side margin when it is set in both a

script and the chart

Chart, NinjaScript

Feature #13070

Prior if a script set a right side margin and you had a custom right side margin they could

conflict with each other. Now we have added the ability to use the greatest margin.

Issu

e #

Sta

tus

Catego

ry

Comments

1295

1

Fix

ed

Alerts Alerts could not be set to occur at the same

time each day

1314

7

Fix

ed

Bars Requesting bars with GetBars could yield

wrong data

1304

2

Fix

ed

Chart Cross hair cursor on X-Axis on future date

did not show the date

1306

8

Fix

ed

Chart Multi-data series charts sometimes would

not plot the session break line

1313

8

Fix

ed

Chart Ray line using 1st series price copied to 2nd

series price if chart had multiple data series

NinjaTrader 8248

© 2023 NinjaTrader, LLC

in the same pane

1317

8

Fix

ed

Chart Chart interval selector cut off portion of

window when too many intervals were used

1318

1

Fix

ed

Chart In some scenarios using Default 24x5

Trading hours on the CL resulted in missing

daily bars for Mondays

1320

7

Fix

ed

Chart Panels heights on charts could be

minimized all the way down, preventing

ability to properly adjust the panel

1303

8

Fix

ed

Chart,

Data

In some scenarios historical data was not

being requested up to the current date

1307

7

Fix

ed

Chart,

Indicato

r

Woodies CCI could have an error when

switching data series

1309

0

Fix

ed

Chart,

NinjaSc

ript

Additional spacing for text at the bottom left

of the chart applied to panels that did not

have the NinjaTrader copy write text

1316

7

Fix

ed

CoinBa

se,

Chart

Volume chart type did not display as

expected

1302

3

Fix

ed

Coinba

se,

Data

Real time volume was not including full

volume

1319

4

Fix

ed

Commi

ssions

Resolved an error that could occur when

changing commissions templates

1311

6

Fix

ed

Control

Center,

Orders

In some scenarios simulated orders to a live

account did not show the stop price In the

Orders tab

1302

5

Fix

ed

Databa

se

Resolved a scenario where after removing a

custom bar type a multi-data series chart

may not roll over

Release Notes 249

© 2023 NinjaTrader, LLC

1304

7

Fix

ed

Drawin

gTool

Drawing object properties could not be

guaranteed accessible when an indicator

accessed the collection in State.Terminated

on chart close

1312

1

Fix

ed

Drawin

gTool

Order Flow Volume Profile Drawing tool did

not work correctly when in UTC+02 time

zone

1318

5

Fix

ed

Drawin

gTool

Ruler drawing tool rounded incorrectly for

instruments whose ticksize has more than 6

fractional digits

1320

1

Fix

ed

Drawin

gTool

Applying a template to a Polygon resulted in

the object disappearing

1314

2

Ch

ang

ed

eSignal Updated supported eSignal client to

12.9.4919.1048

1307

8

Fix

ed

eSignal,

Data

Real-time and historical forex volume did not

match

1310

5

Fix

ed

Forex.c

om

Resolved a scenario where an ATM's stop

could successfully change but showed as

Change Submitted then couldn't be

canceled

1315

5

Do

ne

Forex.c

om

Forex.com connection was removed from

beta

1302

0

Fix

ed

FXCM Update FXCM API to 1.6

1306

4

Fix

ed

FXCM,

Orders

Orders and executions could show more

than 1 event update

1306

0

Fix

ed

Historic

al Data

Window

Was unable to import MetaStock data

NinjaTrader 8250

© 2023 NinjaTrader, LLC

1320

6

Fix

ed

Hot Key Hot keys to switch snap mode did not

function while drawing an object

1308

7

Fix

ed

Hot

Key,

Chart

Trader

Some order entry Hot Keys stopped working

when Chart Trader was hidden

1303

3

Fix

ed

Indicato

r

Resolved some scenarios that resulted in

the Chalkin money flow displaying incorrect

values and incorrect x-axis scaling

1310

0

Fix

ed

Indicato

r

In the indicator properties window, extended

the ability to click the 'i' to show the

description for a selected indicator to

configured indicators

1311

9

Fix

ed

Indicato

r

Pivots indicators could not be run on top of

bars with secondary daily type

1316

9

Ch

ang

ed

Indicato

r

Rearranged the properties to some of the

newer indicators for consistency

1304

4

Fix

ed

Indicato

r, Tick

Replay

When using Volume profile with TickReplay

and split session trading hours an error

could occur

1300

0

Fix

ed

Interacti

ve

Brokers

US equities did not have a multiplier applied

for volume when only the default exchange

was selected

1318

8

Fix

ed

Level II

Window

Tracking market makers did not work if the

connection displayed them with lower case

letters

1305

4

Ch

ang

ed

Localiz

ation

Translated additional areas of the platforms

for the available languages

1321

2

Fix

ed

Localiz

ation,

Pivot indicators could select incorrect

PivotRange depending on localization

Release Notes 251

© 2023 NinjaTrader, LLC

Indicato

r

1307

4

Fix

ed

Market

Analyze

r

Blank name property for indicator column

resulted in an error

1308

9

Fix

ed

Market

Analyze

r

Indicator column title displayed

inconsistently on workspace/template

restore

1313

3

Fix

ed

Market

Analyze

r

VWAP column did not use decimals

1318

0

Fix

ed

Market

Analyze

r

Bar graph colors for indicator columns got

set to blank when selecting two bar graph

indicator columns in a row

1322

2

Fix

ed

Market

Analyze

r

Historical multi-series NinjaScript bar

processing was not working as expected

1294

1

Fix

ed

NinjaSc

ript

Resolved a scenario where a NinjaScript

error could not be accessed until the

indicator properties window was closed

1311

0

Fix

ed

NinjaSc

ript

Foreign language characters in class

names generated incorrect code

1314

1

Fix

ed

NinjaSc

ript

SetStopLoss / SetProfitTarget orders could

get stuck in Initialized when a strategy

attempted to resume with

ImmediatelySubmit

1319

1

Fix

ed

NinjaSc

ript

Resolved a scenario where exporting

NinjaScript resulted in an error

1307

9

Fix

ed

NinjaSc

ript

Editor

Save as had stopped updating NinjaScript

name property

NinjaTrader 8252

© 2023 NinjaTrader, LLC

1310

4

Fix

ed

NinjaSc

ript

Editor

When a Find dialog was open in the

NinjaScript editor, it was on top of all non

modal windows

1317

7

Fix

ed

NinjaSc

ript

Editor

After closing a tab the Ctrl + Tab keyboard

combination resulted in an error

1303

4

Fix

ed

NinjaSc

ript,

Chart

Reload all historical data stoped secondary

series in a script from updating on another

chart

1307

5

Fix

ed

NinjaSc

ript,

Drawin

gTool

Default templates for text drawing object

could shift text placement when used in a

script

1318

3

Fix

ed

NinjaSc

ript,

Drawin

gTool

Resolved some scenarios where regions

were misaligned or did not plot

1319

0

Fix

ed

NinjaSc

ript,

Order

Flow +

Bars.BarsSinceNewTradingDay was not

resetting as expected on Volumetric bars

1319

8

Fix

ed

Order Simulated GTD orders did not work

correctly

1309

2

Fix

ed

Order

Flow +

Order Flow Volume Profile's Extended

Naked Point of Control feature did not work

in some cases

1311

3

Fix

ed

Order

Flow +

Cumulative Delta returned a 0 on first live

tick

1313

4

Fix

ed

Order

Flow +

Order Flow Depth Map historical could have

some blank areas

1314

5

Fix

ed

Order

Flow +

Order Flow Volume Profile with limited tick

data caused session rendering to be off

Release Notes 253

© 2023 NinjaTrader, LLC

1319

6

Fix

ed

Order

Flow +

Volumetric bars didn't properly work with

cryptocurrencies

1320

3

Fix

ed

Order

Flow +

OrderFlow VolumeProfile would not display

initial balance lines in some scenarios

1315

7

Fix

ed

Playbac

k,

Adapter

Resovled a scenario where recording data

for Playback stopped real-time data from

coming in.

1286

2

Fix

ed

Properti

es

Grids

When typing to select an item, was not able

to append what is typed to more precisely

select an item

1317

2

Fix

ed

Strategi

es,

Orders

Disabling and enabling strategies could

result in orders stuck in state Initialized or

CancelPending

1302

4

Fix

ed

Strateg

y

In some scenarios simulation orders did not

cancel when a strategy was disabled

1317

3

Fix

ed

Strateg

y

Updating strategy properties from strategy

grid to chart could fail

1321

0

Fix

ed

Strateg

y

Changing hosted indicator properties while

strategy was running resulted in an error

1298

6

Fix

ed

Strateg

y

Analyze

r

Optimizer enums got set to their coded

values and ignored user values on the

details run

1308

0

Fix

ed

Strateg

y

Analyze

r

During the optimizer details run, invalid

information could be sent to the output

window and logs

1311

1

Fix

ed

Strateg

y

Analyze

r

Changing user input type from double to int

caused error between optimizations

NinjaTrader 8254

© 2023 NinjaTrader, LLC

1311

4

Fix

ed

Strateg

y

Analyze

r

Walk Forward Optimization did not show an

error if there were no properties to optimize

1312

4

Fix

ed

Strateg

y

Analyze

r

Could not us Volumetric bars with a base

period type of Range

1313

7

Fix

ed

Strateg

y

Analyze

r

Saving a backtest template after an

optimization caused standard backtests to

change and use optimization parameters

1302

7

Ch

ang

ed

Strateg

y

Builder

Renamed some stop / target names to be

more clear

1308

1

Fix

ed

Strateg

y

Builder

Adding an additional data series and setting

an internal variable resulted in an error

1310

2

Fix

ed

Strateg

y

Builder

Setting a variable action with an offset

referencing a 2nd data series resulted in an

error

1300

3

Fix

ed

Trade

Perform

ance

When Windows was using UK date

formatting, Trade Performance's start and

end dates became invalid after 24 hour

1316

2

Fix

ed

Trade

Perform

ance

Filters would reset when selecting Generate

1320

5

Fix

ed

Trade

Perform

ance

Display mode was not persisted and did not

save to the workspace

1316

4

Fix

ed

Trading

Hours

In some scenarios using the Add Monday

through Friday feature for sessions would

not save to the template

Release Notes 255

© 2023 NinjaTrader, LLC

1310

6

Fix

ed

Window

Linking,

Chart

Interval linking to color Link All did not work

with charts

1309

7

Fix

ed

Worksp

aces

Resolved a scenario that could result in a

saved workspace being blank

8.0.16.1 Release Date
October 17, 2018

Iss

ue

#

St

at

us

Category Comments

132

49

Fix

ed

NinjaScrip

t

Resolved an unintentional code breaking

change

8.0.16.2 Release Date
October 29, 2018

Iss

ue

#

St

at

us

Category Comments

132

94

Ch

an

ge

d

Chart Reduced chart panel minimum height

132

57

Fix

ed

Chart

Trader

Width did not persist when hiding/unhiding

132

51

Fix

ed

Interactive

Brokers

With beta functions enabled position

updates could show on the wrong expiry

132

68

Fix

ed

Market

Analyzer

Chart - Net change did not properly function

when opened before the session start

NinjaTrader 8256

© 2023 NinjaTrader, LLC

132

62

Fix

ed

Trade

Performan

ce

In some scenarios filters could become

unchecked unexpectedly

8.0.16.3 Release Date
November 2, 2018

Iss

ue

#

St

at

us

Category Comments

133

28

Fix

ed

Chart Resolved a scenario where chart borders

would not display as expected

3.3.14 8.0.15.1

8.0.15.0 Release Date
July 30, 2018

Fe

atu

re

#

Sta

tus

Categ

ory

Comments

123

51

Add

ed

Order

Flow +

Added Order Flow Volume Profile indicator

123

81

Add

ed

Order

Flow +

Added Order Flow Volume Profile drawing tool

129

16

Add

ed

Coinba

se

Added Cryptocurrency support via Coinbase

(See the Coinbase connection guide here)

127

98

Add

ed

Drawin

g

Added Polygon drawing tool

128

73

Add

ed

Drawin

g

Added Time Cycles drawing tool

https://ninjatrader.com/ConnectionGuides/Coinbase-Connection-Guide

Release Notes 257

© 2023 NinjaTrader, LLC

127

77

Add

ed

Indicat

or

Added McClellan Oscillator indicator

128

18

Add

ed

Indicat

or

Added Relative Vigor Index indicator

129

09

Add

ed

Indicat

or

Added Wiseman Awesome Oscillator

indicator

129

10

Add

ed

Indicat

or

Added Wiseman Alligator indicator

129

11

Add

ed

Indicat

or

Added Wiseman Fractal indicator

128

71

Add

ed

NinjaS

cript

Editor

Added an animated icon to show when

compiling in the NinjaScript editor

128

82

Add

ed

NinjaS

cript

Added overload for NinjaScript:

AddDataSeries(string instrumentName),

allowing same Bars Period with a different

instrument

130

14

Add

ed

Strateg

y

Added Parabolic Stop support for NinjaScript

129

37

Add

ed

Strateg

y

Analyz

er

Added Max Strength optimization metric

129

67

Add

ed

Strateg

y

Analyz

er

Added Probability statistic to the summary tab

123

05

Add

ed

Works

paces

Added automatic backup of saved

workspaces which can be restored under

Tools > Database Management

NinjaTrader 8258

© 2023 NinjaTrader, LLC

129

38

Add

ed

Chart,

Indicat

or

Added "Calculating..." label for when indicators

are still processing historical data

129

42

Add

ed

Historic

al Data

Added data importer for tickdata.com

Issu
e #

Stat
us

Categor
y

Comments

127

22

Ch

ang

ed

Alerts Improved Alert Pop Up message formatting

128

55

Fix

ed

Alerts Resolved scenario where alerts using global

drawing objects no longer functioned after a

restart

128

84

Fix

ed

Alerts Removed invalid drawing objects pop up that

could occur when rolling over

129

21

Fix

ed

Alerts Reloading NinjaScript in a chart resulted in

alerts tied to indicators or drawing objects to

stop working

129

77

Fix

ed

Alerts Exporting from Alerts log to Excel caused the

time to be exported incorrectly

128

54

Fix

ed

ATM

Strateg

ies

Resolved some scenarios where adjusting

settings could result in a TIF error

129

70

Fix

ed

ATM

Strateg

ies

Modified stop value was not respected when

scaling in with an ATM that uses simulated

stops

129

52

Fix

ed

BarTyp

e

Heiken Ashi based on tick bars created

different, rather than modified, bars

126

66

Fix

ed

Chart Increasing a chart's days to load did not

function if it was increased by less than 4 days

Release Notes 259

© 2023 NinjaTrader, LLC

127

94

Fix

ed

Chart In some scenarios moving an indicator to a

different panel could leave an empty panel

128

61

Fix

ed

Chart Price marker disappeared on non-equidistant

chart when more granular series reached right

edge of screen

128

69

Fix

ed

Chart When equidistant was set to false multi-series

charts with time-based and daily series used

wrong series for latest bar

128

78

Fix

ed

Chart Chart bars refresh could result in incorrect

panel values

129

75

Fix

ed

Chart Incorrect dates were shown with global cross-

hairs when the cursor was along the x-axis

128

60

Fix

ed

Chart Orders on instruments that display values as

fractions did not display order as a fraction

when modifying

129

79

Fix

ed

CQG,

Contin

uum,

Conne

ctions

Resolved a case where some order states

prevented a connection

129

68

Fix

ed

Data Metastock MASTER file was not recognized by

File Explorer

129

74

Fix

ed

Data There was no pop up error when attempting to

import Metastock data using the 64-bit version

129

72

Fix

ed

Drawin

g

When snapping Trend Channel to price it

would move in tick increments away from

copied price instead of snapping to tick

boundaries

128

63

Fix

ed

Drawin

gTool

Moving draw objects could change anchor

points on multi-series chart

NinjaTrader 8260

© 2023 NinjaTrader, LLC

128

76

Fix

ed

Drawin

gTool

Resolved an error that occurred when drawing

a vertical line to an empty panel

130

11

Fix

ed

Drawin

gTool,

Templa

tes

Saving a brush to a Text drawing tool's default

template overrode brush values passed into

NinjaScript

129

47

Fix

ed

eSignal

, Data

For some instruments level II data would not

update

129

32

Fix

ed

FXCM,

Orders

Resolved a scenario where a filled order

showed as active/working

128

90

Fix

ed

Indicat

or

Auto Scale option within the Price Line

indicator was showing last price as "0" on a

reconnect

128

94

Fix

ed

Indicat

or

Volume profile indicator did not draw for non-

intraday periods

129

03

Fix

ed

Indicat

or

Displacement did not work properly in

Regression Channel indicator

129

07

Fix

ed

Indicat

or

Indicators with multiple DataSeries could

intermittently see 'null' reference during

'SetState'

129

25

Fix

ed

Indicat

or

Woodies CCI had incorrect panel values

129

80

Fix

ed

Indicat

or

The Darvas indicator was not creating a well

formed Darvas box

130

04

Ch

ang

ed

Indicat

or

Updated CandleStickPattern indicator to be

consistent and optimized

129

46

Fix

ed

Indicat

or,

Chart

When Indicators were active and multiple

linked charts switch instruments at the same

time an error occurred

Release Notes 261

© 2023 NinjaTrader, LLC

128

66

Fix

ed

Instrum

ents

Splits were not sorted when changes were

applied in instruments dialog

128

81

Fix

ed

Instrum

ents

Pop up dialog for if instrument had server

changes had incorrect icon + label text

129

15

Fix

ed

Instrum

ents

Resolved a scenario where option to add an

instrument to a list displayed the wrong

instrument if using multiple tabs

129

62

Fix

ed

Instrum

ents

Resolved a scenario where if an instrument

was incorrectly defined it caused a crash

rather than just an error

129

40

Fix

ed

Interact

ive

Broker

s

Currently building daily bar was missing for

forex instruments

128

65

Fix

ed

Interact

ive

Broker

s, Data

Level II data for live accounts was different

than paper accounts and Trader Workstation

128

89

Fix

ed

Interact

ive

Broker

s, Data

Real-time forex bid tick data differed from real-

time last tick data

129

87

Fix

ed

Interact

ive

Broker

s,

Orders

Resolved an error that could occur if an order

was terminal and then was also attempted to

be canceled

128

48

Fix

ed

IQFeed Optimized loading logic so that historical data

which is not available is not requested,

resulting in a longer load time

128

41

Fix

ed

Market

Analyz

er

Indicator column logic did not support

DisplayName override

NinjaTrader 8262

© 2023 NinjaTrader, LLC

128

45

Fix

ed

Market

Analyz

er

Columns would format to the instrument

currency instead of the account currency

128

53

Ch

ang

ed

Market

Analyz

er

Added up and down action buttons to

configured section in the object dialog

129

90

Fix

ed

Market

Analyz

er

Total Row was not formatted the same way as

column data

126

30

Fix

ed

NinjaS

cript

Charts could stop loading and display return to

present icon in some scenarios in which a

script quickly updates a draw object

129

17

Fix

ed

NinjaS

cript

Resolved a null check for areaBrushDevice

that could result in an error

129

48

Fix

ed

NinjaS

cript

Indicators window could list duplicate

instances for strategy added indicators

129

64

Fix

ed

NinjaS

cript

Block comments on non-NinjaScript properties

caused them to be treated as

NinjaScriptProperty in generated code

129

66

Fix

ed

NinjaS

cript

If the Dot Dash Style was selected for a

NinjaTrader.Gui.Stroke the stroke would not

render

129

76

Fix

ed

NinjaS

cript

The ReadOnly attribute did not work for

strategies on a chart

122

80

Fix

ed

NinjaS

cript

Editor

Collapsed regions could expand unexpectedly

when editing document

128

75

Ch

ang

ed

NinjaS

cript

Editor

Updated Actipro (Third Party Component used

for NinjaScript Editor and Output Window)

Release Notes 263

© 2023 NinjaTrader, LLC

130

13

Fix

ed

NinjaS

cript,

Market

Analyz

er

Load data based on bars did not work for a

multi-time frame series indicator

128

44

Fix

ed

Order

Flow +

Depth Map and Trade Detector were

incorrectly available in the Market Analyzer and

Strategy Builder

128

92

Fix

ed

Order

Flow +

Resolved support for some bar types on

Volumetric and made code more consistent

with other scripts

129

20

Fix

ed

Order

Flow +

Order Flow Cumulative Delta did not work on

non-intraday charts

129

44

Fix

ed

Order

Flow +

Order Flow indicators no longer suspend

when inactive as it could affect the values

130

08

Fix

ed

Order

Flow +

Order Flow Cumulative Delta on Line Break

charts would not form new bars

130

10

Fix

ed

Output

Windo

w

Resolved an error that occurred when a

window was closed that was printing many

lines

126

56

Fix

ed

Perfor

mance

Resolved a rare scenario in which quickly

working with indicators could increase

memory that would not clear

128

50

Fix

ed

Playba

ck

When no Playback data is available to

download for the selected instrument/date,

there was no message saying no data

128

43

Fix

ed

Playba

ck,

NinjaS

cript

Replaying historical data and using

Position.GetUnrealizedProfitLoss could cause

Playback to lockup

128

36

Fix

ed

ShareA

dapter

Facebook share service discontinued

NinjaTrader 8264

© 2023 NinjaTrader, LLC

129

19

Fix

ed

Simulat

or

Newly created local simulation accounts now

have a prefix of 'Sim'

129

18

Fix

ed

Strateg

y

Resolved a scenario where a high fill

resolution series that is more granular than

primary bars prevented limit orders from filling

128

30

Fix

ed

Strateg

y

Analyz

er

Walk forward optimization displayed chart with

incorrect series

129

05

Fix

ed

Strateg

y

Analyz

er

Small values were not populating properly in

the results grid when displaying percent data

129

27

Fix

ed

Strateg

y

Analyz

er

Profit values did not display consistently when

display type was set to percent

129

28

Fix

ed

Strateg

y

Analyz

er

When running a strategy with slippage set to

0, it will show in the optimizer row but not in

the summary for that row

129

89

Fix

ed

Strateg

y

Analyz

er

Performance metric value R2 was not

functioning as expected

129

01

Fix

ed

Strateg

y

Builder

Configurations using input variables in the

condition builder could result in an error

129

02

Fix

ed

Strateg

y

Builder

Setting stop or target values to an indicator

resulted in an error

129

84

Fix

ed

Strateg

y

When making an indicator created in the

Condition Builder plot to a chart, the reference

Release Notes 265

© 2023 NinjaTrader, LLC

Builder to the plotting indicator was lost in NinjaScript

129

97

Fix

ed

Strateg

y

Builder

Combined Results were lost when duplicated

to new tab

130

01

Fix

ed

Strateg

y

Builder

Resolved an error that could occur when

viewing code that used counter conditions

128

87

Fix

ed

Super

DOM

SuperDOM Quantity Pad 'Apply' button did not

update pop-up list when pressed

129

88

Fix

ed

Super

DOM

Columns could reduce width when connecting

and selecting accounts

130

02

Fix

ed

Super

DOM,

Playba

ck

Volume Column did not reload data in

Playback

128

85

Fix

ed

TD

Ameritr

ade,

Historic

al Data

Windo

w

Daily historical data downloaded today's data

with tomorrow's timestamps

129

91

Fix

ed

Trade

Perfor

mance,

Playba

ck

Was unable to filter out Playback execution

once disconnected

129

22

Fix

ed

Windo

w

Linking

When using the arrow keys in the Alerts dialog

to switch instruments, linked windows would

not switch instruments

111

76

Fix

ed

Works

paces

A crash could occur when switching

workspaces while printing to output and

connecting

NinjaTrader 8266

© 2023 NinjaTrader, LLC

8.0.15.1 Release Date
August 1, 2018

Issu
e #

Stat
us

Categor
y

Comments

130

41

Fix

ed

Order

Flow +

Order Flow Volume Profile reverted custom

right side margin when applied

130

49

Fix

ed

Order

Flow +

Restoring Order Flow Volume Profile drawing

tool instance from workspace would

sometimes fail

130

50

Fix

ed

Order

Flow +

Order Flow Volume Profile Indicator could

include more underlying minute data then

expected

130

51

Fix

ed

Order

Flow +

Order Flow Volume Profile could throw an

exception when multiple load requests were

pending

130

52

Fix

ed

Interact

ive

Broker

s, Data

Reverted fix for 12865 due to unexpected side

effects

3.3.15 8.0.14.2

8.0.14.0 Release Date
May 24, 2018

Fea

tur

e #

St

at

us

Category Comments

127

63

Ad

de

d

Indicator Added Moving Average Ribbon

127

81

Ad

de

Indicator Added Disparity Index

Release Notes 267

© 2023 NinjaTrader, LLC

d

127

82

Ad

de

d

Indicator Added Money Flow Oscillator

127

50

Ad

de

d

Indicator Added Price Line

127

56

Ad

de

d

Indicator Added Net Change Display

127

13

Ad

de

d

Instrument

s

Added Tadawul exchange support

Iss

ue

#

St

at

us

Category Comments

126

43

Fix

ed

Alerts Indicator alerts under certain conditions

were not rearming on condition reverse

126

96

Fix

ed

Alerts Alerts set to rearm 'on bar close' for multi-

series indicators would rearm on each tick

127

72

Fix

ed

Alerts Alerts based on Trend Channel drawing tool

did not trigger on extended portion

128

21

Fix

ed

Alerts Resolved a scenario where Action template

did not save screen-shot action

126

62

Fix

ed

ATM

Strategies

Resolved a scenario where an error

resulted in a crash

128

29

Fix

ed

ATM

Strategies

ATMs with a GTD TIF was not applying the

desired date

NinjaTrader 8268

© 2023 NinjaTrader, LLC

126

89

Fix

ed

Backup &

Restore

Restoring a workspace with a NinjaScript

Editor window could result in a hang

126

94

Fix

ed

BarsType Was unable to create new bars types when

custom type with BarsPeriodType 32768 or

greater existed

125

78

Fix

ed

Chart Charts could become unresponsive when

three 1 tick data series were requested

126

31

Fix

ed

Chart Horizontal grid lines set to fixed was unable

to set a value lower then 1

126

42

Fix

ed

Chart Setting a chart panel's scaling to consider

the entire date range did not work for

indicator panels

127

29

Fix

ed

Chart Resolved a scenario where Access

Violation exceptions could occur as Chart

properties were modified

127

31

Fix

ed

Chart Heiken Ashi bars produced a bar every tick

when Break at EOD was unchecked

127

58

Fix

ed

Chart Data box window ignored unchecked

'Always on top' property setting when

closed then reopened

127

67

Fix

ed

Chart Data series dialog will now will load all

public defined brushes defined in custom

ChartStyle's

127

68

Fix

ed

Chart X-axis and scroll bar could render

incorrectly on weekly charts

128

08

Fix

ed

Chart Chart was stuck with "Loading..." text when

provider does not support instrument type

127

32

Fix

ed

Chart,

Indicator

Resolved a scenario where removing then

re-adding an indicator while connecting and

loading resulted in an error

Release Notes 269

© 2023 NinjaTrader, LLC

128

35

Fix

ed

Control

Center,

Regionaliz

ation

Lock up could occur on language selection

change

126

26

Fix

ed

Control

Center,

Strategy

Within the Strategies tab with Filter only

active strategies enabled, having strategies

selected then disabling them could result in

a disabled strategy still showing

127

96

Fix

ed

Control

Center,

Strategy

Strategy grid could miss flagging scenarios

where children instruments were out of

sync

128

32

Fix

ed

Control

Center,

Strategy

Time in force field would not populate when

using GTD

126

54

Fix

ed

CQG,

Continuu

m, Orders

Resolved a scenario in which an order error

would repeat if a change request was made

for the same price and quantity

128

11

Fix

ed

DrawingT

ool

Gann Fan drawing tool did not use snap

modes

127

40

Fix

ed

DrawingT

ool,

NinjaScrip

t

Compiling then reloading NinjaScripts on a

chart could remove some drawing objects

custom levels

128

06

Fix

ed

eSignal,

Data

Some instruments were unable to receive

data although symbol mapping was correct

127

10

Fix

ed

eSignal,

Instrument

s

Custom mapped exchanges were ignored

127

23

Fix

ed

Forex.co

m, Data

Resolved a scenario in which an error

would occur when requesting data

126

46

Fix

ed

FX Board,

FX Pro

CFD spread calculation was off

NinjaTrader 8270

© 2023 NinjaTrader, LLC

128

04

Fix

ed

FXCM When running overnight, the next daily bar

would not plot with NinjaTrader historical

data servers

127

09

Fix

ed

G2 An error that was unknown could result in a

crash

127

36

Fix

ed

G2 Historical data could duplicate bar volume

on session break

128

38

Fix

ed

G2 It was possible to make two G2

connections, which is not supported

126

75

Fix

ed

G2 Real-time data was not received while

using a simulation license

126

99

Ch

an

ge

d

G2 Native historical data volume and real-time

volume changed to 10K

127

17

Ch

an

ge

d

G2 Instrument look up changed to find entry

with exact string

127

25

Fix

ed

G2 In some scenarios unaccounted for order

updates resulted in an order with a price of

zero

126

41

Fix

ed

Google Google discontinued

128

05

Fix

ed

Hot Key Custom Orders Hot Keys could be entered

with Hot Keys already in use

127

55

Fix

ed

Indicator NaN value was produced for @stdError for

the upper and lower plots on the first bar of

a chart

126

50

Fix

ed

Indicator,

Chart

Indicators with indicator-as-input could have

bad historical values when loading and

Release Notes 271

© 2023 NinjaTrader, LLC

switching tabs

126

87

Fix

ed

Indicator,

Drawing

Tools,

Chart

In some scenarios an indicator drawn

Regression Channel would change

direction when scrolling a multi-series chart

left and right

126

61

Fix

ed

Instrument

s, Orders

Changing rollover date removed trade

history

124

16

Fix

ed

Interactive

Brokers,

Orders

Externally submitted orders outside of

NinjaTrader were unable to be canceled or

modified

126

97

Fix

ed

IQFeed,

Data

In some scenarios bid and ask data would

not complete downloading

124

82

Fix

ed

Market

Analyzer

Quickly adding labels and blank rows result

in an error

125

85

Fix

ed

Market

Analyzer

Resolved a scenario where adjusting a

columns settings reduced the columns

width

125

99

Fix

ed

Market

Analyzer

An invalid selection of an input series was

available for non-indicator columns

125

76

Fix

ed

Market

Analyzer,

NinjaScrip

t

Bar graph columns did not display the

correct color after reloading NinjaScript if

the value of CurrentBar did not change

between MarketData events

126

44

Fix

ed

NinjaScrip

t

Was unable to cleanup objects terminated

when a tab was removed

126

69

Fix

ed

NinjaScrip

t

Tick Replay could doubling Input[0] values

in certain hosted scenarios

127

97

Fix

ed

NinjaScrip

t

Resolved a scenario where an indicator

would get an error as additional data series

were added to the chart and objects were

moved to different panels

NinjaTrader 8272

© 2023 NinjaTrader, LLC

128

15

Fix

ed

NinjaScrip

t

Creating preset then changing Indicator

plots caused error on selecting indicator in

indicator dialog

127

41

Fix

ed

NinjaScrip

t

Dash style and opacity can now be set with

PriceLevel constructor

127

37

Fix

ed

NinjaScrip

t Editor

Adjusted transparency of collapsible region

background highlighting

128

27

Fix

ed

NinjaScrip

t Editor

Resolved a scenario where an error could

occur when a strategy was removed from

the NinjaScript Editor

128

26

Fix

ed

Oanda,

FXCM

The next days daily bar did not plot as

expected when running overnight

126

67

Fix

ed

Options Auto close position did not include the ability

to define seconds

124

50

Fix

ed

Order

Flow +

Resolved some scenarios that would result

in missing data or incorrect values

126

40

Fix

ed

Order

Flow +

Resolved a scenario where Order Flow

VWAP did not reset on session breaks

126

79

Fix

ed

Order

Flow +

Multi-Series Order Flow Plus indicators

were not suspending when inactive

127

11

Fix

ed

Order

Flow +

Resolved a scenario where Order Flow

Cumulative Delta could cause an exception

127

47

Fix

ed

Order

Flow +

Resolved some scenarios where Trade

Detector would throw an error

127

74

Fix

ed

Order

Flow +

Resolved a scenario where Volumetric bar

stats could be incorrectly colored on

current bar

127

57

Fix

ed

Order

Flow +,

Using Order Flow VWAP in the Strategy

Builder resulted in an error

Release Notes 273

© 2023 NinjaTrader, LLC

Strategy

Builder

127

06

Fix

ed

Playback,

Chart

In some scenarios zooming in and out the

chart prevented execution markers from

displaying

126

81

Fix

ed

Playback,

Indicator

Indicator loading another indicator or series

could see an error when rewinding

playback

126

74

Fix

ed

Regionaliz

ation,

NinjaScrip

t

Set() method could throw exception in

OnStateChange() if Language was set to a

non-English language

126

20

Fix

ed

Simulator,

ATM

Strategies

, Orders

Resolved a scenario where snapshot data

could unexpectedly move a stop strategy

126

70

Fix

ed

Strategy Darvas box indicator when used in a

strategy showed 0 for lower level

127

95

Fix

ed

Strategy Strategies did not adopt account position if

they canceled orders on start up

126

51

Fix

ed

Strategy

Analyzer

Slippage was not rounding to tick size

128

17

Fix

ed

Strategy

Analyzer

Log incorrectly displayed Data series

column for previous tests

126

24

Fix

ed

Strategy

Analyzer

Switching to the chart display when no

back-test was ran resulted in a transparent

chart

126

11

Fix

ed

Strategy

Builder

When certain indicators set as an input

series the code generated would result in a

compile error

NinjaTrader 8274

© 2023 NinjaTrader, LLC

126

28

Fix

ed

Strategy

Builder

An indicator with an enum defined in a

class inside a namespace resulted in a

compile error

127

43

Fix

ed

Strategy

Builder

Condition Builder did not perform type

checking when adding grouped conditions

127

54

Fix

ed

Strategy

Builder

Was not able to select an added data

series as an input

127

61

Fix

ed

Strategy

Builder

Copying then unlocking a Strategy Builder

script prevented the strategy from being

loaded by double-clicking the error output

127

71

Fix

ed

Hot Key Recently modified quantity value did not

update until the control was unfocused,

potentially impacting Hot Key order entry

125

38

Fix

ed

Strategy,

Tick

Replay

Strategies that added a chart indicator and

were using Tick Replay resulted in an error

126

71

Fix

ed

TD

Ameritrad

e

Updated connectivity handling for more

resiliency

126

00

Fix

ed

TD

Ameritrad

e

Resolved a scenario where historical data

requests could result in an error

126

36

Fix

ed

TD

Ameritrad

e, Data

Friday and weekends daily data was not

displaying

127

65

Fix

ed

TD

Ameritrad

e, Data

Added data throttling of 2 historical data

requests per second

127

93

Fix

ed

TD

Ameritrad

e, Data

No longer throws an error as no data is

available when returned from an historical

data request

Release Notes 275

© 2023 NinjaTrader, LLC

128

19

Fix

ed

TD

Ameritrad

e, Data

Historical data downloaded today's data

with tomorrow's timestamps

127

16

Fix

ed

Tick

Replay

Closing NinjaTrader while Tick Replay was

loading resulting in freezing

127

19

Fix

ed

Tick

Replay,

Strategy

In some strategy configurations, Tick

Replay could be defaulted back to disabled

unexpectedly

127

60

Fix

ed

Time and

Sales

Changes made to the properties grid were

lost when changing context menu

properties

127

14

Fix

ed

Trade

Performan

ce

Strategies set to immediately submit had

incorrect trade matching if strategy was

already in a position when started

127

69

Fix

ed

Trade

Performan

ce

Journal did not sort by date as expected

128

25

Fix

ed

Trading

Hours

Templates could add rows with same start

and end time

125

84

Fix

ed

Workspac

es, Chart

Resolved a case where closing NinjaTrader

while the workspace was still loading

resulted in an error

128

22

Fix

ed

Workspac

es, Data

Closing a workspace while data is loading

could result in errors

8.0.14.1 Release Date
May 30, 2018

Iss

ue

#

St

at

us

Category Comments

NinjaTrader 8276

© 2023 NinjaTrader, LLC

128

57

Fix

ed

Playback,

ATM

Strategies

ATM stop market orders being simulated on

playback did not execute

128

02

Fix

ed

Chart Corrected default screenshot file name

generation

8.0.14.2 Release Date
June 14, 2018

Iss

ue

#

St

at

us

Category Comments

128

67

Fix

ed

Forex.co

m

Forex.com adapter could restore an order

incorrectly on reconnect

129

12

Fix

ed

NinjaScrip

t

Resolved an error on scripts that required

'OnRenderTargetChanged' to process after

state 'Configure', which is now guaranteed

129

23

Fix

ed

Indicator Invalid operation exception could be thrown

be thrown during Chart Panel rendering for

indicators

3.3.16 8.0.13.1

8.0.13.0 Release Date
March 26, 2018

Summary
In addition to standard bug fixes in this release, we have implemented various performance

optimizations related to chart rendering.We have also been iterating on the 'Order Flow +'

tools launched in preview last release. Additionally, we identified a help guide documentation

inconsistency for NinjaScript developers resulting in the following advisory being posted:

Notice for NinjaScript developers overriding OnRender

Is

s

u

Sta

tus

Categ

ory

Comments

https://ninjatrader.com/Advisories/NinjaScript-Developers-Overriding-OnRender

Release Notes 277

© 2023 NinjaTrader, LLC

e

#

12

46

8

Add

ed

Indicato

r

Added total volume and price to hover values in

Order Flow Trade Detector

12

59

4

Ch

ang

ed

Interact

ive

Broker

s

Removed Forex 'Lot Size' setting from

connection configuration as it can be

configured manually per account

12

46

2

Ch

ang

ed

Indicato

r

Removed 'Plot current value only' from

CurrentDayOHL as it is a duplicate function of

changing the plots to Horizontal lines

12

58

6

Ch

ang

ed

Indicato

r,

NinjaSc

ript

Order Flow Cumulative Delta previously shared

its DeltaType enum with Volumetric Bars which

was not ideal for exporting NinjaScript.

NinjaScript developers whom utilized the

preview release of 'Order Flow +' will require a

small signature update: Order Flow Cumulative

Delta

12

50

6

Ch

ang

ed

Indicato

r,

NinjaSc

ript

Order Flow VWAP now uses Trading Hours

template to set custom start/end time.

NinjaScript developers whom utilized the

preview release of 'Order Flow +' will require a

small signature update: Order Flow VWAP

12

49

7

Ch

ang

ed

Chart Implemented various chart rendering

performance optimizations

12

47

4

Ch

ang

ed

Indicato

r

Implemented Order Flow Trade Detector

performance optimizations and resolved

alignment on second charts

12

46

9

Fix

ed

Indicato

r

Order Flow Cumulative Delta could have

plotted unexpectedly after reloading a chart

NinjaTrader 8278

© 2023 NinjaTrader, LLC

12

47

2

Fix

ed

Indicato

r

Order Flow Cumulative Delta could not be used

as the input to another indicator

12

43

0

Fix

ed

Indicato

r

Resolved various Order Flow Market Depth

Map display issues

12

44

6

Fix

ed

CQG,

NinjaSc

ript

Fast order changes could be rejected from a

strategy using SetTrailStop in fast moving

market

12

46

4

Fix

ed

Chart,

Bars

Type

Polished various Order Flow Volumetric

parameters and resolved various loading

issues

12

47

6

Fix

ed

Indicato

r

Resolved some scenarios where Order Flow

VWAP could plot unexpectedly

12

45

3

Fix

ed

Chart Global Cross Hair on two or more charts with

an indicator's scale justification set to left could

cause the 2 charts to report different times

12

48

0

Fix

ed

Chart Changing series via toolbar quick selector

could fail in some multi-series chart scenarios

12

49

0

Fix

ed

Chart Disconnecting then reconnecting with a multi-

series equidistant chart could sometimes result

in 'MultiEqSaveTimes' error reported in the log

12

54

1

Fix

ed

Chart In some scenario the chart could get stuck

loading after disconnect/reconnect cycle

12

48

9

Fix

ed

Chart

Trader

Using the keyboard 'Enter' button on an order

modification on Chart Trader would use a prior

QTY value

12

42

Fix

ed

Chart,

BarsTy

Line break charts with second base periods did

not wait the specified time to receive the close

Release Notes 279

© 2023 NinjaTrader, LLC

7 pe value

12

55

4

Fix

ed

Chart,

Drawin

gTool

Drawing tools did not appear in list when copied

from chart with different data series

12

53

9

Fix

ed

Drawin

gTool

Draw objects copied between charts will no

longer have offsets applied as it does for repeat

copies to the same chart

12

54

0

Fix

ed

Esignal Equity volume had incorrect multiplier applied

12

50

3

Fix

ed

Indicato

r

Changing the font of the chart had no effect on

BarTimer, VolumeCounter, and TickCounter

12

36

7

Fix

ed

NinjaSc

ript

Implemented convenience method

DrawObjects.ToList() which should be used

when iterating over Drawing Objects in the

chart

12

53

0

Fix

ed

Indicato

r

NinjaScript draw objects could disappear when

deleting a separate indicator from a chart with

an overlay scale justification

12

50

1

Fix

ed

Indicato

r

Some Indicators wouldn't draw if bar time was

the same for multiple bars

12

50

2

Fix

ed

Indicato

r

Volume Counter indicator did not work with

Volumetric and Heiken Ashi Bars

12

57

7

Fix

ed

Indicato

r

When multiple overlay indicators shared a

secondary panel and one of them was made

invisible the others could be moved to the

primary panel

12

54

Fix

ed

Interact

ive

Forex position in sub accounts were not shown

when connected to adviser account

NinjaTrader 8280

© 2023 NinjaTrader, LLC

7 Broker

s

12

55

3

Fix

ed

Kinetic

k

Resolved a case were a connection loss would

reconnect but not stream market data

12

39

4

Fix

ed

Market

Analyz

er

Alerts could trigger when cross above/below

conditions were not true

12

42

6

Fix

ed

Market

Analyz

er

Input series price type was not saved in

workspace or presets

12

48

7

Fix

ed

News If an instrument list filter was applied, it would

not restore properly on loading the workspace

12

51

3

Fix

ed

NinjaSc

ript

Region and Plots could be misaligned for bars

with same time-stamp

12

51

6

Fix

ed

NinjaSc

ript

Regression channel could draw improperly if a

multi-series indicator was used as the input

12

40

8

Fix

ed

NinjaSc

ript

Saving an indicator in Visual Studio removed

the indicator from the editor and created a temp

folder

12

49

6

Fix

ed

Playba

ck

Historical Playback's Go To feature would not

adjust chart time for proper playback

12

34

9

Fix

ed

Playba

ck

In some scenarios if a script got an error then

play was pushed on Playback a crash could

occur

12

42

4

Fix

ed

Share

Adapter

Emailing to support could result in an error if

files were too large of character length was too

long

Release Notes 281

© 2023 NinjaTrader, LLC

12

55

9

Fix

ed

Strategi

es

MIT profit order could not be adjusted using

AtmStrategyChangeStopTarget

12

21

9

Fix

ed

Strategi

es

In some scenarios on historical fill backtesting,

2 orders filling on the same bar could yield an

unexpected price for one of the two orders

12

52

5

Fix

ed

Strategi

es

Uniquely named order could be ignored per

EntriesPerDirection despite flat position on

multi-series strategy

12

21

2

Fix

ed

Strategi

es

In a back-test stop limit orders had slippage

applied that should only be for market orders

12

55

1

Fix

ed

Strategi

es

Properties with the same name but different

group names resulted in only one appearing in

the Optimizer

12

56

4

Fix

ed

Strategi

es

Slippage on market orders was stricter than

expected and didn't account for bars full

low/high

12

42

5

Fix

ed

Strategi

es

Strategy templates would load correctly but

display incorrectly in Strategies tab

12

43

5

Fix

ed

Strateg

y

Builder

Selecting next and back repeatedly could result

in an error

12

40

3

Fix

ed

SuperD

OM

Resolved a scenario in which canceling orders

from a strategy could result in a null reference

error

12

41

5

Fix

ed

SuperD

OM

When using a specific license configuration, it

was not possible to select non-futures

instruments in the Dynamic SuperDOM

12

35

Fix

ed

TD

Ameritr

Resolved some cases in which data would not

stream as expected

NinjaTrader 8282

© 2023 NinjaTrader, LLC

4 ade

12

41

3

Fix

ed

TD

Ameritr

ade

External GTD orders did not properly receive

the associated date

12

54

5

Fix

ed

TD

Ameritr

ade

News headlined were being requested too

frequently

12

42

8

Fix

ed

Time

and

Sales

Below bid/Above ask highlights were not being

detected

12

45

8

Fix

ed

Works

paces

Default End Of Day workspace would save

although a custom workspace was saved

8.0.13.1 Release Date
March 29, 2018

Is

s

u

e

#

Sta

tus

Categ

ory

Comments

12

36

7

Fix

ed

NinjaSc

ript

DrawObject.ToList() method returned a

parameter type that clashed with the LINQ

extension method for .ToList(), which is already

in use by NinjaScript could result in a compile

error

12

36

8

Fix

ed

Chart Trying to select a custom ChartStyle in the

DataSeries dialog when you had custom

ChartStyles installed would result in errors

3.3.17 8.0.12.0

Release Date
January 30, 2018

Release Notes 283

© 2023 NinjaTrader, LLC

Feat

ure

#

Sta

tus

Catego

ry

Comments

119

43

Ad

de

d

Bars

Type

Added Order Flow - Volumetric Bars. This

feature requires a lifetime license. This

feature is in preview/beta.

122

64

Ad

de

d

Indicator Added Order Flow - Depth Map. This feature

requires a lifetime license. This feature is in

preview/beta.

122

75

Ad

de

d

Indicator Added Order Flow - VWAP. This feature

requires a lifetime license. This feature is in

preview/beta.

122

00

Ad

de

d

Indicator Added Order Flow - Cumulative Delta. This

feature requires a lifetime license. This

feature is in preview/beta.

122

74

Ad

de

d

Indicator Added Order Flow - Trade Detector. This

feature requires a lifetime license. This

feature is in preview/beta.

124

00

Ad

de

d

Instrum

ents

Added support for exchanges: SHFE

(ShangHai Futures Exchange), DCE

(DaLian Commodity Exchange), CZCE

(ZhengZhou Commodity Exchange), SHSE

(ShangHai Security Exchange), SZSE

(ShenZhen Security Exchange)

121

68

Ad

de

d

Localiza

tion

Added 'Chinese (Simplified)' localization

Issu

e #

Sta

tus

Catego

ry

Comments

123

17

Fix

ed

Alerts Selecting an alert generated from an

indicator in the Alerts window could result in

an error

NinjaTrader 8284

© 2023 NinjaTrader, LLC

123

77

Fix

ed

Alerts Restored Price Type selection on Alerts,

Ask/Bid "price type" were no longer be

selectable

123

20

Fix

ed

ATM

Strategi

es

ATM strategy only did not display the correct

position color when using Display selected

ATM strategy only mode in combination with

simultaneous virtual long and short position.

123

33

Fix

ed

ATM

Strategi

es

A stack overflow message could occur

when using reverse at stop and reverse at

target simultaneously on the same ATM

strategy

123

44

Fix

ed

ATM

Strategi

es

ATM stop strategy parameter behaved as

tick mode when it should have been pip

mode when editing an active ATM strategy

via the right-click menu

122

46

Fix

ed

Bars,

NinjaScr

ipt

Resolved a scenario where multiple inflight

requests for historical data on the same

instrument with different request periods

(e.g. 5 days back vs 10 days back) could

result in data corruption.

123

16

Fix

ed

Chart Data box would freezes when generating

new workspace with "Save As"

123

24

Fix

ed

Chart Interval selector did not show custom bar's

names as expected

123

57

Fix

ed

Chart When using some combinations of time

frames the global crosshair did not work as

expected

123

79

Fix

ed

Chart Disabling Break at EOD prevented renko

and range bars from loading data before the

end of last year

123

95

Fix

ed

Chart Reordering chart tabs that have strategies

with plots running in the background resulted

in error messages and lost bars

Release Notes 285

© 2023 NinjaTrader, LLC

123

68

Fix

ed

Chart,

Indicator

In some dialogs restoring indicators presets

continued to use previously saved settings

123

78

Fix

ed

Control

Center,

Strategy

Generating a Trade Performance then

disabling a strategy and disconnecting

quickly would still showed the strategy as

enabled

123

53

Fix

ed

CQG Minor CQGT API Update required to fix

wrong formatting on T̂RIN

123

71

Fix

ed

Data Importing data between a source time zone

with a daylight saving times and a target

timezone without daylight savings could

result in a incorrect historical data

123

86

Fix

ed

Drawing Drawing objects with chart anchors in the

future were removed when disconnecting

from a live data feed

100

13

Fix

ed

Drawing

Tool

Resolved a scenario where drawing tools

would fail to draw when called from a script

123

21

Fix

ed

Drawing

Tool

Resolved a scenario of a

D2DERR_WRONG_STATE error

123

72

Fix

ed

Drawing

Tool

Moving a horizontal line was not updating the

end anchor price in the properties

123

87

Fix

ed

Drawing

Tool

Trend Channel displays the Trend and

Parallel in both the Properties and Levels

123

28

Fix

ed

eSignal,

Simulat

or

An error could occur when modifying a profit

target or stop loss while the chart was

loading

123

52

Fix

ed

FX Pro CFD prices displayed with incorrect

rounding

123

29

Fix

ed

Google,

Market

Analyzer

Loading fundamental data in some cases

resulted in an error

NinjaTrader 8286

© 2023 NinjaTrader, LLC

123

31

Fix

ed

In

Product

Announ

cement

Resolved a scenario where in product

announcements could be repeated

123

96

Fix

ed

Interacti

ve

Brokers

Modifying externally placed orders would get

stuck in pending change

124

02

Fix

ed

Level II

Window

Enabling Size divided by 100 (stocks only)

did not persist after a restart

123

15

Fix

ed

Localiza

tion,

Alerts

Alerts log did not show indicator alerts in

several languages

123

64

Fix

ed

NinjaScr

ipt

Resolved a case where removing a blank

line of code resulted in errors

123

99

Fix

ed

NinjaScr

ipt

Control Center and add-ons were not being

closed as expected when shutting down

NinjaTrader

122

97

Fix

ed

Orders High frequency order changes triggered

from SetTrailStop could cause order change

rejections on the provider

123

43

Fix

ed

Orders Max Position Size would at times incorrectly

restrict ATM orders that were valid

123

48

Fix

ed

Playbac

k

Unchecking Playback current day only could

prevent Playback controller from functioning

as expected

123

55

Fix

ed

Strategi

es

Argument Exception errors occurred when

many strategies were enabled all at once

123

42

Fix

ed

Strategy In some scenario's High Order Fill

Resolution would cancel a profit target or

stop loss before intended

Release Notes 287

© 2023 NinjaTrader, LLC

123

61

Fix

ed

Strategy In some scenarios modifying the quantity of

stop market orders would fill the original

size

123

39

Fix

ed

Strategy

Analyzer

Optimization fitness options were not saved

with Multi-Objective Optimization template

123

50

Fix

ed

Strategy

Builder

Using variables that held the name 'True' or

'False' at the beginning of the variable name

were incorrectly handled

123

54

Fix

ed

TD

AMERIT

RADE

Resolved some scenarios of data

streaming/connection losses and improved

reconnection handling

123

47

Fix

ed

TD

AMERIT

RADE

IndexOutOfRangeExceptions could result in

data no longer streaming

123

75

Fix

ed

Tick

Replay

Multi-series Tick Replay with

Calculate.OnBarClose could give wrong

values for bid/ask historically

123

65

Fix

ed

Trade

Perform

ance

When generating a Trade Performance

report NinjaTrader could become

unresponsive

123

66

Fix

ed

Worksp

aces

Strategies were removed from strategies tab

after multiple restarts

3.3.18 8.0.11.1

8.0.11.0 Release
December 6, 2017

Fea

ture

#

St

at

us

Category Comments

103

14

Ch

an

Chart Cross-hair performance

improvements

NinjaTrader 8288

© 2023 NinjaTrader, LLC

ge

d

122

24

Ad

de

d

Chart Trader,

Hot Key

Added a Chart Trader (Hidden) Hot

Key

122

21

Ch

an

ge

d

CQG,

Continuum

Updated CQG and Continuum adapter

to version 7.00.704. CQG/Continuum

adapter is in beta

120

98

Ad

de

d

Rithmic Added Rithmic "MDP 3.0 Summary"

connection point option

122

62

Ad

de

d

ShareAdapter Added support for 280 characters to

Twitter share adapter

Issu

e #

St

at

us

Category Comments

123

02

Fix

ed

eSignal Futures contracts in 2018 did not

provide real-time data. Required

update for eSignal users

122

45

Fix

ed

TD

AMERITRADE

Resolved some scenarios where

orders would get stuck in Submitted or

ChangeSubmitted

123

12

Fix

ed

Account Data There was no message that a

reconnect is required when changing

account denomination

121

86

Fix

ed

Account

Performance

Sharpe / Sortino ratio were not

calculating as expected

121

90

Fix

ed

Alerts Display text was inconsistent for

numeric value conditions between

Release Notes 289

© 2023 NinjaTrader, LLC

Chart alert and Market Analyzer alert

122

15

Fix

ed

Alerts Indicators created on close could not

trigger alerts using ask/bid price type

122

37

Fix

ed

Alerts In cases of having lots of alerts that

were enabled at start up the dialog

window could be too large to select

desired options

122

94

Fix

ed

ATM Strategies Could not fully disconnect after

entering ATM

122

79

Fix

ed

ATM Strategies Auto trail did not work as expected

when the stop was manually modified

120

86

Fix

ed

ATM

Strategies,

Attach Order

To Indicator,

SuperDOM

Indicator tracking disable warning

didn't trigger as expected

121

80

Fix

ed

ATM

Strategies,

Orders

Exiting ATMs which were scaled in

with exit orders which had part fills

could get an error

121

64

Fix

ed

Bars Tick based charts could change with

some combinations of 'Merge policy'

and 'Break at EOD'

121

22

Fix

ed

Chart Multi series chart could exhibit

incorrect plot behavior

121

33

Fix

ed

Chart Multi-series equidistant chart had

unexpected plot behavior in future

121

34

Fix

ed

Chart Bar time series repositioned when

switching tabs

121

41

Fix

ed

Chart Auto scale was not working properly

on displaced plots

NinjaTrader 8290

© 2023 NinjaTrader, LLC

121

67

Fix

ed

Chart Data Series Label changed when

switching instruments

121

74

Fix

ed

Chart Heikin-Ashi preset days to load as 3

rather than 5 on first load

121

75

Fix

ed

Chart Adjusting the vertical scale at first

would move in the wrong direction

121

78

Fix

ed

Chart Down bar outline did not work for

Open/Close chart style

121

94

Fix

ed

Chart Some Trading hours with similar

start/end times going from this year to

the next time-stamped yearly bars

differently

122

05

Fix

ed

Chart Chart rendering to a software bitmap

resulted in an error

122

08

Fix

ed

Chart Pivot label box not wide enough to

display some larger fonts

122

26

Fix

ed

Chart Always On Top chart with Indicators

dialog open still received text input and

opened instrument selector overlay

122

29

Fix

ed

Chart In some scenarios of drawing into the

future on multi-time frame charts

performance could degrade

122

30

Fix

ed

Chart Removed unexpected opacity setting

from Chart Properties> Lines

122

35

Fix

ed

Chart Selecting panel top/bottom borders to

re-size could be difficult

122

41

Fix

ed

Chart Using the interval link and then

selecting a weekly chart prevented

linking from working

Release Notes 291

© 2023 NinjaTrader, LLC

122

81

Fix

ed

Chart In some scenarios custom chart

intervals were not switching the

interval

122

95

Fix

ed

Chart In some scenarios the scroll-bar could

be lost on non-equidistant charts

123

13

Fix

ed

Chart Same time-stamped indicator plots

only showed plot value in the Mini Data

Box for the first time-stamp

122

10

Fix

ed

Chart Trader On multi instrument charts, non-

market orders could not be placed to

non-primary data series

121

88

Fix

ed

Chart, Drawing Draw objects could be unselectable

on high bar spacing non equidistant

chart setups

121

20

Fix

ed

Chart,

Indicators

Changing indicator input series could

result in plots not being drawn in

correct panel

121

14

Fix

ed

Chart,

NinjaScript

In some scenarios OnRender() index

error resulted in a blurry chart

122

52

Fix

ed

Chart,

NinjaScript

Resolved some scenarios where

resizing or dragging a chart with

scripts using OnRender could get an

error

122

56

Fix

ed

Chart,

Playback

In some scenarios switching between

a data provider and playback could

result in a gap on the chart

122

58

Fix

ed

Commissions Commissions were not applying to

Chart Strategy Performance reports

122

71

Fix

ed

Control Center Orders tab did not allow arranging or

removing of Instrument column

NinjaTrader 8292

© 2023 NinjaTrader, LLC

121

40

Fix

ed

Control Center,

Orders

Resolved some scenarios of orders

from past days showing in the Control

Center

121

60

Fix

ed

Control Center,

Strategy

Strategy grid was not updating when

editing strategy to an instrument list

120

93

Fix

ed

Data Grids In some scenarios Filter By Account

did not work as expected

123

00

Fix

ed

Database Resetting the data base showed an

error in the trace on simulation

accounts

119

59

Fix

ed

DrawingTool Regression channel anchors were not

working as expected on daily charts or

higher

120

84

Fix

ed

DrawingTool Drawing objects did not adopt snap to

bar snap mode

121

01

Fix

ed

DrawingTool Global drawing objects moved over

time

121

24

Fix

ed

DrawingTool Resolved some scenarios of region

index out of range errors

121

35

Fix

ed

DrawingTool Modifying global TrendChannel could

freeze the chart

121

48

Fix

ed

DrawingTool Region could not be aligned with Plot

as expected

122

32

Fix

ed

External Custom instruments had an error

upon opening chart when connected

to External

121

65

Fix

ed

Forex.com Could not connect to multiple

Forex.com connections when using

NinjaTrader's historical data servers

Release Notes 293

© 2023 NinjaTrader, LLC

121

36

Fix

ed

Google LSE instruments were not able to be

mapped as expected

122

63

Fix

ed

Google Switching between daily and monthly

charts could result in only 1 bar

122

66

Fix

ed

Google DAX30 symbols with 'Xetra' exchange

enabled did not load

122

68

Fix

ed

Google Index instruments could not be loaded

outside US region

121

31

Fix

ed

Indicator Custom preset caused missing

'panels' in the 'panel' property drop

down list

121

51

Fix

ed

Indicator ZigZag could not displace

121

92

Fix

ed

Indicator Regression Channel's Upper and

Lower bands became improperly

scaled when another indicator with

ScaleJustification set to Overlay was

applied to the same pane

122

51

Fix

ed

Indicator Value Plot property was blank for

indicators with unnamed plots

122

53

Fix

ed

Indicator The only selectable plot for Volume

Up/Down was the up plot

122

83

Fix

ed

Installer Resolved a scenario where a

migration would not complete

121

37

Fix

ed

Instruments In some scenarios the Point Value for

index and stock instruments could be

set to something other than 1

121

57

Fix

ed

Instruments MICD, MIJY, MISF futures were not

rolling over

NinjaTrader 8294

© 2023 NinjaTrader, LLC

120

88

Fix

ed

IQFeed,

Kinetick

In some scenarios some ticks were

not being received

122

85

Fix

ed

Localization Resolved a scenario where a backup

couldn't be completed with some

localization settings

120

79

Fix

ed

Market

Analyzer,

Interactive

Brokers

Live accounts were not populating PnL

columns

121

56

Fix

ed

News The news reading pane would not

show when Show Reading Pane was

checked

121

00

Fix

ed

NinjaScript In some scenarios exported

assemblies could not import

121

18

Fix

ed

NinjaScript Profit Targets and Stop Losses

submitted to the secondary instrument

expired and canceled

121

76

Fix

ed

NinjaScript In some scenarios assemblies with

drawing tools could not apply

templates

121

91

Fix

ed

NinjaScript Bars.PercentComplete did not work

across session boundaries

122

09

Fix

ed

NinjaScript Resolved a scenario where strategies

could crash on loading

122

11

Fix

ed

NinjaScript Resolved some scenarios of

NinjaScript labels not displaying as

expected

122

17

Fix

ed

NinjaScript Resolved a scenario where adjusting

a property grid on a multi instrument

strategy could result in an error

Release Notes 295

© 2023 NinjaTrader, LLC

121

19

Ch

an

ge

d

NinjaScript CreateOrder() method has added

TimeInForce and OrderEntry

parameters. The older signature is

now deprecated but will remain for

backwards compatibility

122

40

Fix

ed

NinjaScript Resolved a scenario where applying a

template made from an enabled

strategy could result in an error

122

48

Fix

ed

NinjaScript Resolved some scenarios where

indicators adding a data series could

result in lock ups

122

49

Fix

ed

NinjaScript Accessing Instrument outside

OnBarUpdate context could trigger

Index exception

122

73

Fix

ed

NinjaScript VolumeZones was not properly set to

IsChartOnly=True

122

76

Fix

ed

NinjaScript Custom namespace folders displayed

in incorrect order

122

46

Fix

ed

NinjaScript,

Bars

In some scenarios or requesting bars

the number of bars returned could

change when reloading historical data

121

29

Fix

ed

NinjaScript,

Strategy

BarsInProgress value changed inside

OnBarUpdate with multi-series

strategies

121

84

Fix

ed

Orders Unexpected order price occurred on

error when reusing an old OCO ID

122

97

Fix

ed

Orders High frequency order changes could

cause order change rejections on the

provider

122

34

Fix

ed

Playback Resolved some scenarios where

drawing objects would be removed

NinjaTrader 8296

© 2023 NinjaTrader, LLC

when moving the slider forward or

disconnecting

121

54

Fix

ed

Strategy In some scenarios Synchronize All

Strategies did not sync as expected

121

62

Fix

ed

Strategy Resolved a scenario where a strategy

would lock up the Control Center if ran

there but if ran from a chart it worked

121

66

Fix

ed

Strategy Strategies grid was not loading default

Days to Load

121

70

Fix

ed

Strategy Disabling/enabling strategies that track

and cancel orders could get error and

have orders stuck in CancelPending

122

36

Fix

ed

Strategy Canceling applying a template to an

enabled strategy could unexpectedly

make properties editable

123

07

Fix

ed

Strategy Adding indicators from a strategy

would always apply to the first panel

121

15

Fix

ed

Strategy

Analyzer

Walk Forward Optimization slippage

was not populating

121

77

Fix

ed

Strategy

Analyzer

Resolved a scenario where double

clicking on strategy results resulted in

a value cannot be null error

121

96

Fix

ed

Strategy

Analyzer

Resolved a scenario where a backtest

would hang

122

13

Fix

ed

Strategy

Analyzer

Average time in market from Results

was not matching the Summary

122

38

Fix

ed

Strategy

Analyzer

SetStopLoss and SetProfitTarget

orders cancelled when using a high

order fill resolution if the secondary

series was more granular than

primary

Release Notes 297

© 2023 NinjaTrader, LLC

122

42

Fix

ed

Strategy

Analyzer

Attempting to add an indicator to the

Chart after applying a template

resulted in an error

122

70

Fix

ed

Strategy

Analyzer

Average Time in Market in exported

spreadsheet had incorrect values

122

72

Fix

ed

Strategy

Analyzer, Chart

Resolved a scenario where the last

bar would update unexpectedly

120

83

Fix

ed

Strategy

Builder

In some scenarios Inputs and

Variables that were in use could be

edited which resulted in an error

120

96

Fix

ed

Strategy

Builder

Strategy Builder was not filtering

OnBarUpdate to process primary only

121

53

Fix

ed

Strategy

Builder

Compiler Errors occurred with

additional Data Series as input for

indicator

121

63

Fix

ed

Strategy

Builder

Resolved a scenario where selecting

an input resulted in an error

121

72

Fix

ed

Strategy

Builder

With language set to German adding

Addition Data of Daily loaded Tick

instead

121

93

Fix

ed

Strategy

Builder

Using Load in condition and actions

windows resulted in an error

122

43

Fix

ed

Strategy

Builder

Duplicating the Conditions tab resulted

in an error

122

65

Fix

ed

Strategy

Builder

Localization settings were not working

in the Strategy Builder as expected

121

10

Fix

ed

Strategy,

SuperDOM

NinjaScript strategy orders modified in

the SuperDOM were not

synchronizing the position

NinjaTrader 8298

© 2023 NinjaTrader, LLC

122

87

Fix

ed

Strategy, UI Switching input series to a chart

applied strategy from the Control

Center did not update the display of

what input series it was applied to

121

38

Fix

ed

Trade

Performance

Orders section was unable to filter

items

121

39

Fix

ed

Trade

Performance

Instrument Type Filters would get

removed after unchecking and

generating filters

121

52

Fix

ed

Trade

Performance

In some scenarios MAE, MFE, ETD

were not reported correctly after re-

connecting

122

90

Fix

ed

Workspaces Control Center's "Always on top"

setting was not saved to UI.xml

122

91

Fix

ed

Workspaces Alerts Log priorities were not saved

with workspace on restart for current

tab

8.0.11.1 Release
December 13, 2017

Iss

ue

#

St

at

us

Cate

gory

Comments

123

35

Fi

xe

d

CQG,

Conti

nuum

Required data was missing for Order

Modification and Order Cancellation messages.

123

27

Fi

xe

d

Mark

et

Analy

zer

Saved templates would not maintain custom

column labels.

Release Notes 299

© 2023 NinjaTrader, LLC

3.3.19 8.0.10.0

Release Date
November 7, 2017

Issu

e #

St

atu

s

Category Comments

122

39

Fix

ed

Rithmic and

MB Trading

Logic to parse the decade on a futures

instrument will expire in 2018 for Rithmic

and MB Trading connection

technologies. Resulting in the wrong

decade being resolved for any 2018

futures expiry. Required update for all

Rithmic and MB Trading users,

please see Advisory #32 for more

info.

3.3.20 8.0.9.0

Release Date
September 12, 2017

Attention existing NinjaTrader 8 Users: As a consequence of a bug fix in 8.0.9.0, any

indicators in a Market Analyzer that have non-primary plots selected, saved in a

workspace, will be set back to the primary plot. Users will need to re-select the desired

plot and re-save the workspace

Fea

ture

#

St

atu

s

Category Comments

120

90

Ad

de

d

Localization French language support introduced

Issu

e #

St

atu

s

Category Comments

https://ninjatrader.com/Advisories/RITHMIC-11-6-2017

NinjaTrader 8300

© 2023 NinjaTrader, LLC

119

58

Fix

ed

Market

Analyzer,

Indicator

Some indicators did not have the option

of what plot to select

119

31

Fix

ed

ATI Was unable to cancel order with OIF file

119

33

Fix

ed

ATI Reversing a position in an OIF file

resulted in a crash

119

75

Fix

ed

ATM

Strategies

Canceling creation of a custom ATM

then placing an order could attempt to

apply an ATM

120

40

Fix

ed

ATM

Strategies

In some scenarios the ATM Strategy

Selection Mode did not function as

expected when switching instruments

116

34

Fix

ed

Bars Resolved some scenarios that resulted

in cache data errors

119

11

Fix

ed

Chart Creating a monthly chart with insufficient

days back resulted in an error

120

71

Fix

ed

Chart

Trader

Reverse was not using the selected TIF

 120

32

Fix

ed

Chart,

Indicators

Indicator with Draw.Ray or Draw.Text

was resulting in bars margin to be

indented left

116

81

Fix

ed

Chart,

Indicators

Chart with rendering indicator could

freeze when switching instruments

120

48

Fix

ed

Chart,

Strategies

In some scenarios options were greyed

out when attempting to add multiple

strategies to a chart

119

83

Fix

ed

Chart,

Workspace

s

Resolved some scenarios where the bar

series wouldn't keep right side margin

when workspace was restored

Release Notes 301

© 2023 NinjaTrader, LLC

120

25

Fix

ed

CQG Close price was not getting adjusted by

settlement

119

19

Fix

ed

Data In some scenarios combinations of PC

time zone and chart type could result in

cached data not matching historical

120

64

Fix

ed

Data,

NinjaScript

Loading data based on days, then bars,

then days again could result in

inconsistent 2nd series prints

116

60

Fix

ed

Drawing Global draw objects could be lost on

panel drag / scale justification change

120

09

Fix

ed

Drawing In some scenarios charts with large time

frames and drawing objects into the

future resulted in chart lag

119

16

Fix

ed

DrawingTool Bars would no longer snap when

anchors moved off chart

119

52

Fix

ed

DrawingTool Ruler would not show count of bars until

time-stamp was no longer the same

120

08

Fix

ed

Forex.com Resolved some scenarios where an

order could get an error saying the

results are invalid

118

15

Fix

ed

Google,

Instruments

Bovespa stocks did not load daily data

119

28

Fix

ed

Google,

Market

Analyzer

Average Daily Volume column resulted in

an error

120

04

Fix

ed

Historical

Data

Window

Exporting bid/ask tick data showed fake

values rather than zeros for data type

columns other than what was exported

118

34

Fix

ed

Indicator Regression Channel did not displace

NinjaTrader 8302

© 2023 NinjaTrader, LLC

119

64

Fix

ed

Indicator Restoring indicator settings to default

could remove Panel selection

120

05

Fix

ed

Indicator Indicators that have public series would

not return as an indicator

120

52

Fix

ed

Indicator Max and min 'indicators' with renko bars

returned an invalid value

120

67

Fix

ed

Indicator In some scenarios large ZOrder values

were ignored

119

29

Fix

ed

Instruments Sorting on instrument type in the

Instrument Editor wasn’t alphabetical

119

42

Fix

ed

Instruments Attempting to edit the Description field of

forex instruments resulted in an error

120

20

Fix

ed

Instruments Instrument selector was not always

selecting the default exchange when

using the search icon

118

95

Fix

ed

Kinetick Historical data was receiving some non-

last-qualifying data

119

78

Fix

ed

Localization German localization was resulting in an

error with some log messages

120

82

Fix

ed

Market

Analyzer,

Indicator

Accessing the Indicator column with

some custom scripts could result in an

error

118

94

Fix

ed

NinjaScript Referencing BarsArray during OnRender

then switching bars type caused a crash

119

12

Fix

ed

NinjaScript Description for some indicators was

missing

119

14

Fix

ed

NinjaScript Script could be enabled in non

connected state in some scenarios

Release Notes 303

© 2023 NinjaTrader, LLC

119

27

Fix

ed

NinjaScript Suspended indicators were waiting for a

new tick before resuming

119

34

Fix

ed

NinjaScript TraceOrder was showing more output

prints than expected

119

38

Fix

ed

NinjaScript OnRenderTargetChanged for

ChartStyles was resulting in an error

119

66

Fix

ed

NinjaScript Multi-series indicators prevented proper

syncing with any Series<T> constructor

for primary series

119

76

Fix

ed

NinjaScript Exceptions for DrawingTools

OnStateChange() was not being logged

119

81

Fix

ed

NinjaScript OpenCloseStyle was not able to use

GetCandleOutlineOverrideBrush

119

82

Fix

ed

NinjaScript Resolved a scenario where Order Fill

Resolution couldn't be changed

120

22

Fix

ed

NinjaScript Overloads were missing from

<Anchor>.MoveAnchor()

120

74

Fix

ed

NinjaScript If a sound was not located and threw an

error, that error was not automatically

handled by NinjaTrader

118

56

Fix

ed

NinjaScript,

Chart

In some scenarios a secondary series

added to a chart could change behavior

of NinjaScript

119

24

Fix

ed

NinjaScript,

Chart

Chart rendering would fail with a specific

sequence of loading NinjaScript and

enabling the Chart Trader

119

41

Fix

ed

NinjaScript,

Chart

Panel MIN MAX began calculating

incorrectly from plot values with small

granularity

NinjaTrader 8304

© 2023 NinjaTrader, LLC

119

53

Fix

ed

NinjaScript,

Chart

Moving a strategy indicator to a new

panel resulted in an error

120

26

Fix

ed

NinjaScript,

DrawingTool

Chart drawing objects would disappear

at times when the chart time was shifted

120

54

Fix

ed

NinjaScript,

Market

Analyzer

Referencing Indicator series from Market

Analyzer column was resulting in an

error

120

06

Fix

ed

NinjaScript,

Orders

In some scenarios a High Order Fill

Resolution could result in duplicate close

orders

120

65

Fix

ed

NinjaScript,

Playback

Error could occur when using

BarsSeries.GetClose

119

15

Fix

ed

NinjaScript,

Tick Replay

Changing set order quantity let you

select Order Fill Resolution when Tick

Replay was enabled

118

98

Fix

ed

NinjaScript,

DrawingTool

Having a chart with a script that places

drawing objects and then switching

instruments could results in an error

119

85

Fix

ed

Options Print Hot Keys was not listing all

categories

119

40

Fix

ed

Orders Adjusting target while stop filled could

result in order stuck in pending change if

trading in simulation

119

20

Fix

ed

Playback Resolved some scenarios where

Playback could stop auto scrolling

forward and/or strategy stopped placing

trades

119

18

Fix

ed

Playback,

NinjaScript

Drawing Lines attached to last price

could detach from price and error

120

23

Fix

ed

Playback,

NinjaScript

NinjaScritps could get error on rewind of

data

Release Notes 305

© 2023 NinjaTrader, LLC

120

51

Fix

ed

Property

Grids

Removing Label from strategy had

unexpected results of how the strategy

label should display

119

62

Ch

an

ge

d

ShareAdapt

er

Updated Facebook Share Adapter API

111

71

Fix

ed

Simulator In some scenarios realized PnL reported

double or halved values

119

56

Fix

ed

Strategy

Analyzer

Drag and drop of an indicator into the y-

axis of another panel didn't move the

indicator

119

89

Fix

ed

Strategy

Analyzer

Columns for the Results were not saving

with preset template or workspace

120

02

Fix

ed

Strategy

Analyzer

Prints displayed twice in the Output

window when a backtest is run with the

Display Selector set to anything but

Summary or Settings

120

03

Fix

ed

Strategy

Analyzer,

Chart

In some scenarios strategy applied

indicators could reset the panel they are

applied to when accessing settings

118

92

Fix

ed

Strategy

Analyzer,

NinjaScript

Optimizing a script that called

PriorDayOHLC caused an error when

IsInstantiatedOnEachOptimizationIteratio

n was set to false

119

17

Fix

ed

Strategy

Builder

Using the TRIX indicator as an input

series generates a message that

strategy could not compile when the

strategy did properly compile

120

07

Fix

ed

Strategy

Builder

The ResourceType property of

DisplayAttribute was incorrectly being

used for strings not defined in

NinjaTrader

NinjaTrader 8306

© 2023 NinjaTrader, LLC

120

80

Fix

ed

Strategy

Builder

Using Pivots required adding daily bars

even when selecting calculate from

intraday data

119

22

Fix

ed

Strategy

Builder

Optimization Fitness Wizard had an

invalid Input Parameter

120

45

Fix

ed

SuperDOM,

ATM

Display Selected ATM Strategy Only was

not showing PnL for simulation accounts

120

49

Fix

ed

SuperDOM,

NinjaScript

Adding multiple volume columns and

then switching instruments while

reloading data/scripts could result in an

error

119

26

Fix

ed

Tick Replay At times there was an error when using

multi-series and switching instruments

118

89

Fix

ed

UI Resolved some scenarios where

interacting with a message box on start

up flashed all windows caption bars

multiple times

118

31

Fix

ed

Window

Linking

Indicators could be plotted incorrectly /

not update when chart symbols got

quickly changed from Market Analyzer

3.3.21 8.0.8.0

Release Date
July 26, 2017

Feat

ure

#

Stat

us

Catego

ry
Comments

1186

4
Done eSignal

Required version of eSignal has been

updated to 12.7.4.5.40

1174

4

Adde

d

MES

Capital

MES Capital Simulation Trading

connection added

Release Notes 307

© 2023 NinjaTrader, LLC

Issu

e #

Stat

us

Catego

ry
Comments

1155

2
Fixed Data

Resolved a scenario where recording live

data as historical could corrupt historical

data cache

1180

2
Fixed ATI

Passing a value of zero was changing the

stop price to zero rather than leaving it

unmodified for Order Instruction Files

1189

1
Fixed

ATM

Strategi

es,

Chart

Trader

In some scenarios shutting down with a

workspace that had Chart Trader and an

ATM could result in an error

1185

3
Fixed

BarsTyp

e,

NinjaScr

ipt

Heiken-Ashi bars returned too many bars

when added to script

1156

5
Fixed Chart

Point and figure charts were not properly

displaying on 4k monitors with display

zoomed

1176

7
Fixed Chart

Using multiple monitors with different DPI

settings was resulting in an error when

restoring minimized charts

1187

9
Fixed Chart

In some scenarios a memory leak was

occurring after a reload/close of an

existing chart

1181

6
Fixed

Chart

Trader,

Drawing

Tool

Attempting to select an order that is at the

same price as a horizontal line was

sometimes selecting the line rather than

the order

1180

8
Fixed

Chart,

Databas

Rolling over a chart with multiple tabs of

different instruments could select the

NinjaTrader 8308

© 2023 NinjaTrader, LLC

e
wrong instrument in the instrument

selector

1175

9
Fixed

Chart,

Strategy

In some scenarios adding a strategy to

the chart resulted in an error and removed

bars

1182

6
Fixed

Chart,

Tick

Replay

Resolved some scenarios where a chart

couldn't load from cache after changing

the chart Type

1176

5
Fixed

Control

Center

Orders tab showed incorrect date/time

format

1185

4
Fixed

Control

Center

Connection status indicator was not

always displaying the correct connection

color

1175

6
Fixed

Core,

NinjaScr

ipt

Sending 2 different emails to the same

share service from on bar update resulted

in an error

1179

1
Fixed

Data,

Backup

&

Restore

Historical data for custom instruments

was not being restored

1167

1
Fixed Drawing

Resolved some scenarios where global

drawing objects could result in the error

"Collection was modified; enumeration

operation may not execute"

1176

0
Fixed

Drawing

Tool

Fibonacci inner lines were not drawn to

exact price displayed

1177

4
Fixed

Drawing

Tool

Fibonacci extension lines plotted

incorrectly when chart scale was set to

logarithmic

1177

8
Fixed

Drawing

Tool

Text drawing object could not be selected

when chart's right scale type was

logarithmic

Release Notes 309

© 2023 NinjaTrader, LLC

1178

2
Fixed

Drawing

Tool

Resolved multiple items related to the

anchors and selection of the Regression

Channel not functioning as expected

1179

0
Fixed

Drawing

Tool

When setting the chart scale to

logarithmic and using multiple panels in

some scenarios you could not place a

drawing object

1190

6
Fixed

Drawing

Tool

Fibonacci Tools allowed opacity values

outside of the expected range

1175

7
Fixed

Drawing

Tool,

Chart

In some scenarios global drawing objects

were not showing a tag in Drawing

Objects window

1178

1
Fixed

Drawing

Tool,

Chart

When moving some drawing tools on a

logarithmic scaled chart the cursor will

move away from the drawing object

1185

5
Fixed

Drawing

Tool,

Chart

Setting an anchor point into the future

would not plot at the correct time

1183

3
Fixed

Drawing

Tool,

NinjaScr

ipt

ChartAnchor was incorrectly created in

Fibonacci and shapes drawing tools

which could result in errors with some

scripts

1183

0
Fixed

Drawing

Tool,

Strategy

,

Strategy

Analyzer

Running a strategy with a drawing tool

from the Strategy Analyzer or Strategies

tab was resulting in an error

1166

8
Fixed

Historic

al Data

Window

Disconnecting/reconnecting while

downloading data resulted in loading

message not going away

1178

0
Fixed

Historic

al Data

In some scenarios editing an instruments

settings removed it's saved historical data

NinjaTrader 8310

© 2023 NinjaTrader, LLC

Window

,

Instrum

ents

1180

5
Fixed Indicator

CandlestickPattern was not using

State.Historical for Chart Control

1184

5
Fixed

Instrum

ents

Instrument Selector would only work for

equities that have Default checked for the

exchange

1189

9
Fixed

Licensin

g, UI

Vendor Licensing allowed invalid

characters to be used

1180

3
Fixed

Market

Analyzer

Adding an indicator column was

inconsistently selecting different

indicators by default

1183

8
Fixed

Market

Analyzer

In some scenarios added columns were

wider than expected

1180

0
Fixed

Market

Analyzer

,

NinjaScr

ipt

MTF indicator could provide incorrect

results when reloading NinjaScript

1180

7
Fixed

NinjaScr

ipt

Updated Help Guide's Add On Framework

example that was resulting in a lock up

when clicking Connect

1188

4
Fixed

NinjaScr

ipt

BarsToLoad on secondary bar series was

using primary bar series BarsToLoad

1176

3
Fixed

NinjaScr

ipt,

Playbac

k

Subscribing to Market Data could prevent

playback from progressing

1184

9
Fixed

Playbac

k

Recording playback data could get added

into the previous days playback data in

Release Notes 311

© 2023 NinjaTrader, LLC

some scenarios

1189

3
Fixed

Playbac

k

Resolved a scenario where the Playback

controller could get stuck

1146

6
Fixed

Playbac

k,

NinjaScr

ipt

Resolved some errors that could occur

when working with multiple custom data

series

1165

0
Fixed

Playbac

k, UI

Resolved some scenarios of adjusting

data series not functioning as expected

while playback controller is resetting

1025

7
Done

Regiona

lization

Updated and extended translations to

other languages

1179

7
Fixed

Regiona

lization,

Data

Resolved an error that could occur when

importing data with UTC+1 timezone

1174

0
Fixed Strategy

AdoptAccountPosition was not

recognizing orders previously submitted

from strategy

1182

8
Fixed

Strategy

Analyzer

Setting Input Series of an indicator to

Default Input displayed as Close although

it was properly Default Input

1183

9
Fixed

Strategy

Analyzer

Strategy statistics were not consistent in

same scenarios (MAE, MFE, ETD)

1181

8
Fixed

Strategy

Analyzer

, Chart

Going to Logs and viewing a chart from a

previous backtest that used a custom

session template did not display with the

custom session template

1182

1
Fixed

Strategy

Analyzer

,

Drawing

Tool

In some scenarios a strategy using

drawing tools were resulting in an error

NinjaTrader 8312

© 2023 NinjaTrader, LLC

1173

8
Fixed

Strategy

Builder

Editing Enter Position settings was

producing an error in some scenarios

1182

4
Fixed

Strategy

Builder

Group Conditions was not showing

secondary series

1185

1
Fixed

Strategy

Builder

Resolved a scenario where compiling and

have the Strategy Builder open could

result in an error

1190

5
Fixed

Strategy

Builder

Duplicating a Set was adding a space to

the draw object's tag ID

1178

5
Fixed

Strategy

, Control

Center

In some scenarios using multiple

strategies on the same instrument could

display an average price to a strategy

without a position in the Strategies tab

1185

8
Fixed

SuperD

OM

APQ values did not clear after an order

was moved

1172

3
Fixed

TD

AMERIT

RADE

In some scenarios orders status was not

being updated on submitted orders

1182

9
Fixed

Templat

es,

Chart

Applying a chart template was disabling

Tick Replay

1187

7
Fixed

Trade

Perform

ance

Filter items do not display in alphabetical

order

1178

4
Fixed

Visual

Studio

Integrati

on

Was unable to restore NinjaScript backup

after saving solution with Visual Studio

1188

8
Fixed

Worksp

aces

In some scenarios a message displayed

to reposition windows off the screen when

no windows were off the screen

Release Notes 313

© 2023 NinjaTrader, LLC

3.3.22 8.0.7.1

8.0.7.0 Release
June 6, 2017

Fe

atu

re

#

St

at

us

Cate

gory

Comments

115

62

Ad

de

d

Contr

ol

Cent

er

When the Control Center's width is reduced

menu items now change to icons

115

97

Ad

de

d

Forex

.com

Added support for account denomination

mapping to CHF, JPY, USD, EUR, GBP

115

45

Ad

de

d

FX

Boar

d

Add ability to add instruments using the keyboard

115

49

Ad

de

d

Hot

Key

Added additional Hot Key functions for tabs

116

72

Ad

de

d

Ninja

Script

Editor

Add Support For Visual Studio 2017 (requires

15.2 or later)

117

46

Ad

de

d

Regio

naliza

tion

Added regionalization support for Portuguese

and completed more Spanish regionalization

Iss

ue

#

St

at

us

Cate

gory

Comments

114

76

Fi

xe

d

Alerts In some scenarios Alerts wouldn't activate

NinjaTrader 8314

© 2023 NinjaTrader, LLC

115

80

Fi

xe

d

ATI Bars building from data received from

LastPlayback with an API was building

inconsistently

114

88

Fi

xe

d

ATM

Strat

egies

In some scenarios an 'unable to load ATM

strategy template file' error could occur

117

45

Fi

xe

d

ATM

Strat

egies

Scaling out of an ATM did not properly modify

order quantities

117

50

Fi

xe

d

ATM

Strat

egies

Large quantities could result in OCO not applying

to all orders

117

17

Fi

xe

d

ATM

Strat

egies

,

CQG

In some scenarios an inflight execution could exit

a position and send a close order

115

74

Fi

xe

d

Bars,

Chart

Error occurred when using a Default 24x7 daily

chart with Brasilia timezone

116

03

Fi

xe

d

Bars,

Chart

Crosshair label was inconsistent with x-axis label

on Brasilia time with Default 24x7 hours

117

24

Fi

xe

d

Bars,

Instru

ment

s

Forex data displayed zeros if tick size was

adjusted

117

04

Fi

xe

d

Bars

Type,

Chart

Removed custom bars type could still be

referenced by workspace

114

70

Fi

xe

d

Chart Canceling instrument switch with applied alert

resulted in wrong instrument in drop down menu

Release Notes 315

© 2023 NinjaTrader, LLC

115

14

Fi

xe

d

Chart Clicking search button on a chart searched for

the data series

115

25

Fi

xe

d

Chart Zoom icon and zoom box could display

unexpectedly in some scenarios

116

05

Fi

xe

d

Chart Copy and Paste menu items didn't display hot

key

116

53

Fi

xe

d

Chart X-Axis time in the future plotted incorrectly on

multi-time-frame chart with different period types

116

67

Fi

xe

d

Chart In some scenarios opening a second chart tab

resulted in an error

116

94

Fi

xe

d

Chart Sub-menu stayed open after item was selected if

it was in an overflow panel

116

99

Fi

xe

d

Chart Importing minute data and generating day bars

resulted in duplicate or incorrectly dated bars

117

25

Fi

xe

d

Chart At times clicking on a charts panel while

switching tabs locked the chart image

117

27

Fi

xe

d

Chart At times selecting the y-axis while switching tabs

results in an error

117

42

Fi

xe

d

Chart Removing series from multi-series chart could

result in an error

117

47

Fi

xe

Chart Mouse left-click and drag worked unexpectedly

when equidistant bar spacing was disabled

NinjaTrader 8316

© 2023 NinjaTrader, LLC

d

116

24

Fi

xe

d

Chart

,

Drawi

ng

Drawing tools did not work on 4th panel of chart if

occupied by an indicator alone

115

92

Fi

xe

d

Chart

,

Drawi

ngTo

ol

Global arrow line could be incorrectly rendered in

non equidistant charts

115

26

Fi

xe

d

Chart

,

Ninja

Script

Chart Styles were not properly disposing

117

36

Fi

xe

d

Chart

,

Playb

ack

Scrolling with fixed scale, center price on scale,

and Playback connected caused range and

scale to change

116

27

Fi

xe

d

Chart

,

Strat

egy

Analy

zer

DrawRegion could duplicate on Strategy

Analyzer charts

116

90

Fi

xe

d

Chart There was an error when changing the data

series that had an indicator applied to it that was

based off of another indicator

115

31

Fi

xe

d

Com

missi

ons

Adding commissions to ambiguous instrument

resulted in an exception

115

37

Fi

xe

d

Conn

ectio

ns

Crash occurred when disconnecting in some

scenarios with multiple connections

Release Notes 317

© 2023 NinjaTrader, LLC

116

33

Fi

xe

d

Contr

ol

Cent

er

In some scenario menu items were skipped over

when using arrow keys

116

57

Fi

xe

d

Contr

ol

Cent

er

Category and Message columns of Log Grid

could be removed and then couldn't be added

back

115

03

Fi

xe

d

Contr

ol

Cent

er

Filled Buys/Filled Sells column on Account grid

was not counting partial fills

117

13

Fi

xe

d

Contr

ol

Cent

er

Account Data Window did not save to workspace

116

01

Fi

xe

d

Conn

ectio

ns

Starting NinjaTrader with no internet connection

resulted in a crash

115

82

Fi

xe

d

Data Downloading historical tick data for current day

erased last hour of previous day.

116

18

Fi

xe

d

Data

Grids

Exporting data grids to CSV with values over

1000 was adding an invalid comma

115

00

Ad

de

d

Data

base

Added equities that were missing from the

database

115

16

Fi

xe

d

Drawi

ng

On multi-series charts drawing object anchor

points could adjust unexpectedly

116

16

Fi

xe

Drawi

ng

Merging/separating series on multi-series chart

could render duplicate global draw objects

NinjaTrader 8318

© 2023 NinjaTrader, LLC

d

117

06

Fi

xe

d

Drawi

ng,

Ninja

Script

Resolved some errors related to drawing object

rendering

116

31

Fi

xe

d

Drawi

ng,

Ninja

Script

RemoveDrawObject did not work when object

was not on the price panel

116

13

Fi

xe

d

Drawi

ngOb

jects,

Ninja

Script

Resolved some scenarios of error failed to call

OnRender() for chart object 'Ray'. "External

component has thrown an exception."

111

02

Fi

xe

d

Drawi

ngTo

ol

TrendChannel could display incorrectly in some

scenarios where the anchor was off the chart

115

40

Fi

xe

d

Drawi

ngTo

ol

Fibonacci Extension could place the price level

label on the wrong side

115

89

Fi

xe

d

Drawi

ngTo

ol

Ruler tick size format was wrong after switching

instruments on chart

115

94

Fi

xe

d

Drawi

ngTo

ol

Removed unused BackgroundOpacity property

from RiskReward drawing tool

116

54

Fi

xe

d

Drawi

ngTo

ol

Drawing object with future-anchors behaved

poorly on multi-series chart

116

58

Fi

xe

d

Drawi

ngTo

ol

VerticalLine selection points could be incorrectly

distributed on additional chart panels

Release Notes 319

© 2023 NinjaTrader, LLC

117

03

Fi

xe

d

Drawi

ngTo

ol

Risk Reward tool with Auto scale enabled

resulted in Y-axis to greatly extend

117

14

Fi

xe

d

Drawi

ngTo

ol

When Gann fan's price levels were removed

upon adding a new level a percentage field was

given

117

21

Fi

xe

d

Drawi

ngTo

ol

Restoring drawing heavy workspace could result

in error

117

30

Fi

xe

d

Drawi

ngTo

ol

Text objects moved after accessing the Drawing

Objects window

114

12

Fi

xe

d

Drawi

ngTo

ol,

Strat

egy

Analy

zer

Memory could increase when reusing tag for a

drawing object

116

69

Fi

xe

d

eSign

al

BANKNIFTY and NIFTY futures instruments were

not able to receive data

115

24

Fi

xe

d

Hot

Key

Sell Stop limit order placed with hot key placed

as simulated Sell Stop limit order

116

74

Fi

xe

d

Hot

Key

In some scenarios Hot Key order entry showed

order confirmation twice

115

08

Fi

xe

d

Indica

tor

There were missing spaces in TickCounter,

VolumeCounter, and BarTimer

115

34

Fi

xe

Indica

tor

Set ParabolicSAR to calculate on price change

and resolved a case when its plot could back up

NinjaTrader 8320

© 2023 NinjaTrader, LLC

d from it's previous value

116

28

Fi

xe

d

Indica

tor

Volume Profile with certain window sizes did not

display latest profile as expected

116

32

Fi

xe

d

Indica

tor

When adding BarTimer to a chart it briefly

showed a disconnected message while still

connected

116

55

Fi

xe

d

Indica

tor

Swing Indicator was not outputting values for

certain intervals

116

59

Fi

xe

d

Indica

tor

BarTimer wouldn't function with simulated data

feed if there were no historical bars

115

91

Fi

xe

d

Intera

ctive

Broke

rs

In some scenarios switching instruments could

remove execution markers

116

04

Fi

xe

d

Intera

ctive

Broke

rs

Gateway connection stayed yellow when active

orders/positions were present

116

07

Fi

xe

d

Intera

ctive

Broke

rs

In some scenarios a working profit target/stop

loss from Traders Workstation were not reported

116

19

Fi

xe

d

Intera

ctive

Broke

rs

In a strategy shorting an instrument that that

wasn't available to do so stopped the strategy

and required manual cancellation of the order

116

15

Fi

xe

d

IQFe

ed

Connection could stay in Connection Lost on

failed log in attempt

Release Notes 321

© 2023 NinjaTrader, LLC

115

53

Fi

xe

d

Mark

et

Analy

zer

Row highlight could not be disabled

115

67

Fi

xe

d

Mark

et

Analy

zer

Realized PnL for a simulation account reset

inconsistently in different windows

115

90

Fi

xe

d

Mark

et

Analy

zer

Account drop-down was not populating all

available accounts if the Market Analyzer was

created before a data feed connection was

started

116

62

Fi

xe

d

Mark

et

Analy

zer

Label row background color would reset when

column background color changed

116

76

Fi

xe

d

Mark

et

Analy

zer,

Ninja

Script

Null references could result in a crash

115

68

Fi

xe

d

Mark

et

Analy

zer,

Playb

ack

In some scenarios adding an indicator column

resulted in an error

117

32

Fi

xe

d

Mark

et

Analy

zer,

Supe

rDO

M

Indicator properties changed orientation in

SuperDOM and Market Analyzer

NinjaTrader 8322

© 2023 NinjaTrader, LLC

115

04

Fi

xe

d

Ninja

Script

Enum could revert back to default parameter

after compile

115

18

Fi

xe

d

Ninja

Script

SetProfitTarget as MIT order had limit price and

was not modified correctly

115

55

Fi

xe

d

Ninja

Script

BarsSinceEntryExecution resulted in multi-series

error on OrderFillResolution=High with empty

overload

115

61

Fi

xe

d

Ninja

Script

Stop and target handling reverted to per entry

execution on disable strategy

116

70

Fi

xe

d

Ninja

Script

Free trials produced an error requiring a restart

for the trial to work

117

02

Fi

xe

d

Ninja

Script

Multi-series strategies using

StartBehavior.AdoptAccountPosition will add the

account's position on an instrument once per

matching data series to the strategy's position

116

63

Fi

xe

d

Ninja

Script

Resolved some scenarios of error

D2DERR_WRONG_FACTORY when rendering

117

37

Fi

xe

d

Ninja

Script

DrawRegion could be missing after hosting

script saw OnBarUpdate() calls

117

61

Fi

xe

d

Ninja

Script

Resolved some scenarios of error Write lock

may not be acquired with read lock held

116

61

Fi

xe

d

Ninja

Script

Resolved some scenarios of error on calling

'OnRender' method: Attempted to read or write

protected memory

Release Notes 323

© 2023 NinjaTrader, LLC

116

64

Fi

xe

d

Ninja

Script

Resolved some scenarios of error

D2DERR_WRONG_STATE/WrongState,

Message: The object was not in the correct state

to process the method

101

73

Fi

xe

d

Ninja

Script

Editor

XML Comments were not resolving correctly on

DisplayAttribute properties

102

07

Fi

xe

d

Ninja

Script

Editor

Was unable to properly collapse and expand

regions holding only xml comments

115

35

Fi

xe

d

Ninja

Script

Editor

Renaming of folders had unexpected results

116

26

Ad

de

d

Ninja

Script

Editor

Updated NinjaScript code editor

117

34

Fi

xe

d

Ninja

Script

Editor

Right clicking NinjaScript Editor resulted in errors

in Visual Studio output

115

50

Fi

xe

d

Ninja

Script

,

Shar

edAd

apter

Twitter Share Service was not working with

scripts

116

96

Fi

xe

d

Ninja

Script

,

Strat

egy

Analy

zer

Strategy indicator input series was defaulting to

primary series when 'Optimize Data Series' was

enabled in an optimization

116

30

Fi

xe

d

Ninja

Script

,

Saving a template for an indicator prevented

changes to the plot names in code from taking

affect

NinjaTrader 8324

© 2023 NinjaTrader, LLC

Temp

lates

116

00

Fi

xe

d

Playb

ack

UTC Amsterdam +1 time zone could result in a

lockup

116

40

Fi

xe

d

Playb

ack

Recorded playback data was not time stamped

correctly if disconnects occurred

108

69

Fi

xe

d

Playb

ack,

Tick

Repla

y

Reloading historical data with multiple strategies

on multiple tick replay charts could result in an

error

116

11

Fi

xe

d

Strat

egy

In some scenarios the input series of the

strategy instance on the tab was blank

115

10

Fi

xe

d

Strat

egy

In some scenarios editing a strategies start

behavior results in error and prevented

connection

115

66

Fi

xe

d

Strat

egy

In some scenarios an error occurred when

adding a strategy to the strategies tab

116

65

Fi

xe

d

Strat

egy

Account name displayed differently in strategies

than other areas

115

56

Fi

xe

d

Strat

egy

Error occurred when opening strategies dialog

on chart with running strategy after removing

source

114

13

Fi

xe

d

Strat

egy

Analy

zer

Memory was not releasing when adding an

indicator that draws objects

Release Notes 325

© 2023 NinjaTrader, LLC

115

22

Fi

xe

d

Strat

egy

Analy

zer

Optimization could hang on invalid high order

resolution period value

115

23

Fi

xe

d

Strat

egy

Analy

zer

In some scenarios running a test on an

instrument with the option aggregated checked

resulted in a crash

115

60

Fi

xe

d

Strat

egy

Analy

zer

In some scenarios incorrect strategy name could

show in drop-down menu

116

25

Fi

xe

d

Strat

egy

Analy

zer

In some scenarios running tests with non-

equidistant bar spacing resulted in an error

115

05

Fi

xe

d

Strat

egy

Build

er

Removing a condition tab and compiling did not

reflect the change in the code until relaunching

Strategy Builder

115

06

Fi

xe

d

Strat

egy

Build

er

In some scenarios a script error could make the

Strategy Builder and NinjaScript editor

inaccessible

115

07

Fi

xe

d

Strat

egy

Build

er

Share to email resulted in an error

115

12

Fi

xe

d

Strat

egy

Build

er

Calling an indicator in a sub-folder resulted in an

error

115

21

Fi

xe

d

Strat

egy

Spaces and special characters in the strategy

name were able to be input

NinjaTrader 8326

© 2023 NinjaTrader, LLC

Build

er

115

71

Fi

xe

d

Strat

egy

Build

er

BarsSinceEntryExecution was not using

Multiseries overloads

116

10

Fi

xe

d

Strat

egy

Build

er

Offset series barsAgo was not accounted for in

CurrentBars check

116

52

Fi

xe

d

Strat

egy

Build

er

Could not check if a Date series is equal to a

date

115

70

Fi

xe

d

Supe

rDO

M

Could not change bar type for an indicator

115

20

Fi

xe

d

Supe

rDO

M

Sending Futures instrument from Market

Analyzer to Dynamic SuperDOM resulted in an

error

114

48

Fi

xe

d

TD

AME

RITR

ADE

Incorrect order type was used to close position

116

37

Fi

xe

d

TD

AME

RITR

ADE

Out of order events could result in canceled

orders showing as working

116

43

Fi

xe

d

TD

AME

RITR

ADE

Incorrect error displayed if 'user is not allowed to

access Streamer'

Release Notes 327

© 2023 NinjaTrader, LLC

116

66

Fi

xe

d

Temp

lates

Tick Replay was saved in templates which was

invalid when Tick Replay was disabled

115

95

Fi

xe

d

Trade

Perfo

rman

ce

Individual trades calculated in pips showed in

tenth pips

116

98

Fi

xe

d

Trade

Perfo

rman

ce

Orders and Executions did not populate orders if

dates were set to current day

115

43

Fi

xe

d

UI Modal Windows were globally 'Always On Top'

instead of Application level 'Always On Top'

116

23

Fi

xe

d

UI Mouse pointer did not change to a caret for End

Date setting

116

97

Fi

xe

d

UI,

Drawi

ng

Obej

ects

Drawing object's anchor points didn't use PC's

region format

117

01

D

on

e

Yaho

o

Yahoo discontinued

8.0.7.1 Release
June 21, 2017

Iss

ue

#

St

at

us

Cate

gory

Comments

117

93

Fi

xe

Playb

ack

Having 'Playback current day only' disabled and

moving the slider was only playing 1 day

NinjaTrader 8328

© 2023 NinjaTrader, LLC

d

3.3.23 8.0.6.1

8.0.6.0 Release
April 17, 2017

Feat

ure

#

Stat

us

Catego

ry

Comments

1131

1

Add

ed

FOREX.

com

FOREX.com adapter added in (Beta)

1061

7

Cha

nge

d

Drawing

Tool

Updated the visual style of various Drawing

Tools and Trade Markers

1142

7

Add

ed

IQFeed,

Kinetick

'VWAP' Fundamental Data support was

added for IQFeed and Kinetick

1145

9

Add

ed

Rithmic Added support for Account 'Unrealized PnL'

reported from Rithmic displayed in the

'Account Data' window.

1144

4

Cha

nge

d

Trade

Perform

ance

The 'Trade Performance' window now filter

in real-time, no longer requiring the report

to be regenerated.

1094

1

Add

ed

General Added caption bar context menu for

window operations (Restore, Minimize,

Maximize, Close). Additionally when a

window is maximized you can now drag

the caption bar to restore the window.

1145

2

Cha

nge

d

General Reduced the height of tabs.

Issu

e #

Stat

us

Catego

ry

Comments

Release Notes 329

© 2023 NinjaTrader, LLC

1142

1

Fixe

d

Alerts Multiple share actions on a single alert

attempting to take a screen shot would

cause an error

1145

1

Fixe

d

Alerts Resolved a few scenarios where Alert

condition did not fire as expected

1147

7

Fixe

d

ATM

Strategi

es

ATM selection mode settings prevented

REV button from working

1143

0

Fixe

d

ATM

Strategi

es

Scaling in with an ATM using Pip mode

resulted in unexpected rounding

1146

9

Fixe

d

ATM

Strategi

es, FX

Board

Canceling out of setting up a new 'Custom'

ATM strategy didn't revert to previous ATM

strategy selection

1133

2

Fixe

d

ATM

Strategi

es,

Strategy

Having an active ATM and then enabling a

NinjaScript strategy could result in an error

1137

5

Fixe

d

ATM

Strategi

es

Orders tab ATM name didn't show full

active name until reconnect

1135

5

Fixe

d

Bars,

Tick

Replay

GetBar had error with secondary series

when Tick Replay was enabled

1136

9

Fixe

d

Basic

Entry

Action column wasn't showing order state

colors

1146

7

Fixe

d

Basic

Entry,

Chart

Trader,

FX Pro,

Some areas were transparent in dark skins

NinjaTrader 8330

© 2023 NinjaTrader, LLC

SuperD

OM

1122

9

Fixe

d

Chart Couldn't scroll non-equidistant chart when

chart bars building too quickly

1131

3

Fixe

d

Chart Strategy could keep plot executions on

chart as finalized by auto close

1139

9

Fixe

d

Chart Displaced indicators showed values in

Data Box without displacement

1144

6

Fixe

d

Chart Auto Scale on Indicator panel was not

working the same as Data Series panel

1147

5

Fixe

d

Chart Some times zone settings could result in

errors

1127

5

Fixe

d

Chart Daily bars took longer to display than

expected

1133

9

Fixe

d

Chart

Trader

Resolved some race conditions that could

prevent an OCO order from canceling

1132

4

Fixe

d

Chart,

Drawing

Tool

Pasting text from one instrument to a

different instrument prevented it's

properties from being available

1137

6

Fixe

d

Continu

um,

CQG

In some scenarios race conditions could

prevent OCO orders from canceling

1132

1

Fixe

d

Continu

um,

CQG

Daily volume for current day was higher

than expected

1133

5

Fixe

d

Control

Center

In some scenarios multi-instrument entry

prices would not showing in strategies tab

1131

5

Fixe

d

Core Resolved some in-flight-executions

scenarios that could prevent OCO orders

from canceling

Release Notes 331

© 2023 NinjaTrader, LLC

1144

7

Fixe

d

Data

Grids

Live accounts were not showing under

'Filter by accounts'

1135

9

Fixe

d

Data

Grids

Order Grid text alignment was off after

editing

1144

5

Fixe

d

Databas

e

In some scenarios continuous contracts

would show in instrument rollovers

1127

8

Fixe

d

Drawing

Tool

Draw objects could shrink in size when

moved into the left chart boundary

1136

4

Fixe

d

Drawing

Tool

Tag names would increase per object

rather than per object type

1147

9

Fixe

d

Drawing

Tool

Drawing objects would not persist through

rollover when Attach To All Charts was

selected

1128

6

Fixe

d

Drawing

Tool,

NinjaScr

ipt

Re-using drawing tool tag with different

type did not replace as expected

1135

8

Fixe

d

FX

Board

Order grid incorrectly updated when adding

targets

1139

7

Fixe

d

FX

Board

Up and down movement arrows were not

displaying as expected

1136

6

Fixe

d

FX

Board,

FX Pro

Adjusting the quantity with the arrows was

not modifying by the account set FX lot

sizes

1148

5

Fixe

d

Hot Key,

Orders

Enabling OCO orders would not apply

OCO to Hot Key orders

1148

7

Fixe

d

Hot Key,

Orders

Enabling simulated orders would not

simulate Hot Key orders

1138

5

Fixe

d

Indicator Woodies CCI panel was different between

NinjaTrader 7 & 8

NinjaTrader 8332

© 2023 NinjaTrader, LLC

1144

3

Fixe

d

Indicator Pivots Performance Improved

1146

2

Fixe

d

Indicator BarTimer on daily chart wasn't showing

message that it needs to be on intraday

data

1131

6

Fixe

d

Instrum

ents

Resolved some scenarios that could

prevent instruments from showing in

search windows

1138

2

Fixe

d

IQFeed Bid, Ask, and Last historical data was

displaying the same values

1145

5

Fixe

d

IQFeed With some set ups and time zones not all

requested data would load

1137

9

Fixe

d

Market

Analyze

r

PositionAvgPrice column wasn't showing

tenth pip values

1142

9

Fixe

d

Market

Analyze

r

Changing the font removed Column

background colors

1141

5

Fixe

d

Market

Analyze

r

Resizing columns was not working as

expected when resizing window

1134

4

Fixe

d

NinjaScr

ipt

WaitUntilFlat only waited for the first exit of

a position before submitting orders

1136

8

Fixe

d

NinjaScr

ipt

Resolved some scenarios of the error

"Upgradeable lock may not be acquired

with read lock held"

1139

5

Fixe

d

NinjaScr

ipt

Renaming script sub folder did not take

affect until restart

1142

4

Fixe

d

NinjaScr

ipt

Resolved some scenarios of error "Failed

to call OnRender() for chart object 'Line':

Release Notes 333

© 2023 NinjaTrader, LLC

'External component has thrown an

exception.'"

1132

6

Fixe

d

NinjaScr

ipt

Editor

Improper focus could prevent seeing

compile option

1134

8

Fixe

d

NinjaScr

ipt

Editor

NinjaScript editor right click compile option

was enabled inconsistently

1129

3

Don

e

NinjaScr

ipt, Tick

Replay

Tick Replay and Order Fill Resolution =

High was able to be used in combination

1136

7

Fixe

d

Orders Updating order quantity of OCO orders

failed to fully persist OCO

1145

9

Fixe

d

Orders In some scenarios properly cancelled

orders could show error 'order can not be

cancelled'

1139

1

Fixe

d

Other Automatic Windows Update of video card

drivers could result in an error

1134

0

Fixe

d

Playbac

k

Using playback data from daylight savings

time could result in an error

1143

8

Fixe

d

Playbac

k

Historical NinjaScript draw objects were

not drawn when using the Playback Slider

1120

3

Fixe

d

Strategy BarsTypes default overrides were not

applying to strategies added to strategies

grid of Control Center

1141

8

Fixe

d

Strategy In some scenarios restoring strategies

could add in duplicates / phantom

instances

1145

8

Fixe

d

Strategy Multi-series strategy applied wrong trading

hours to second data series when enabled

from strategies grid

NinjaTrader 8334

© 2023 NinjaTrader, LLC

1148

2

Fixe

d

Strategy In some scenarios a strategy could be

edited while still running

1128

9

Fixe

d

Strategy

Analyze

r

No count was returned in the Optimizer for

'this.Results[0].AllTrades.Count'

1131

7

Fixe

d

Strategy

Analyze

r

Selecting 'Open NinjaScript Output' was

not functioning

1131

9

Fixe

d

Strategy

Analyze

r

Selecting 'Open result in New Strategy

Analyzer' opened with the incorrect

backtest type

1138

6

Fixe

d

Strategy

Analyze

r

Aggregate optimization caused identical

Performance values for all instruments

1138

7

Fixe

d

Strategy

Analyze

r

Strategy box did not display strategy name

if amended namespace

1129

0

Fixe

d

Strategy

Builder

In some scenarios of multiple alerts with

different rearm times only the shorter time

would rearm

1134

7

Fixe

d

Strategy

Builder

A strategy could be named with the same

name as pre-existing indicator resulting in

errors

1136

1

Fixe

d

SuperD

OM, UI

At times changing the order quantity could

display the wrong quantity in the

confirmation window

1144

8

Fixe

d

TD

AMERIT

RADE

Short positions were reported as a

'negative' value which throws off internal

logic

1133

0

Fixe

d

Trade

Perform

ance

In some scenarios Average Trade could

incorrectly show a value of zero

Release Notes 335

© 2023 NinjaTrader, LLC

1135

6

Fixe

d

UI Button Backgrounds for saved items where

not updating when changing skins

1140

6

Fixe

d

UI Chart's Taskbar button would not move

with the chart when moved to different

monitor

1142

8

Fixe

d

UI In some scenarios Simulation Color would

not update

1134

9

Fixe

d

Visual

Studio

Integrati

on

File changes in Visual Studio was not

triggering compile sound

1138

3

Fixe

d

Window

Linking,

Worksp

aces

In some scenarios Chart indicator panels

reverted to default size when linked

8.0.6.1 Release
April 25, 2017

Issu

e #

Stat

us

Catego

ry

Comments

1157

8

Fixe

d

Drawing

Tools

Removed boxes around text in drawing

objects and reverted minimum chart

marker size implemented in feature 10617

1158

7

Fixe

d

NinjaScr

ipt,

Drawing

Tools

Bars ago was referencing BarsInProgress

rather than the primary bars object

1158

3

Fixe

d

Continu

um,

CQG

Resolved some scenarios where an order

couldn't be canceled until a reconnect

occurred when using local OCO simulation

1158

6

Fixe

d

IQFeed Daily data was displaying incorrect values

NinjaTrader 8336

© 2023 NinjaTrader, LLC

3.3.24 8.0.5.2

8.0.5.0 Release
March 6, 2017

Iss

ue

#

St

atu

s

Categor

y

Comments

111

42

Fix

ed

ATM

Strategie

s

Reversing an active ATM that had a flat

position would not cancel the original ATM

112

99

Fix

ed

Chart In some scenarios reloading scripts

rendered global draw objects invisible

112

84

Fix

ed

Chart Resolved DirectX errors that occurred in

some scenarios

112

60

Fix

ed

Chart Muli-series charts were plotting future time

axis values incorrectly

112

40

Fix

ed

Chart In some scenarios reloading scripts

duplicated global drawing objects

112

02

Fix

ed

Chart In some scenarios indicators would not plot

with horizontal line plot style

112

01

Fix

ed

Chart Chart background color changed when title

bar was held

111

81

Fix

ed

Chart Focus to chart was not restored after closing

data series or indicator window

111

67

Fix

ed

Chart Preset Bars to Load for daily bars was not

applying when switching time frames by

keyboard

111

59

Fix

ed

Chart Merge back adjusted was not properly

applying

111

47

Fix

ed

Chart Bars would stop updating if laptop lid was

closed despite it not being in sleep/hibernate

Release Notes 337

© 2023 NinjaTrader, LLC

mode

111

23

Fix

ed

Chart Improved null checks to prevent exceptions

111

18

Fix

ed

Chart Anchor points were not plotting on end of

displaced indicator

110

74

Fix

ed

Chart Using a large displacement on an indicator

resulted in a lag

110

66

Fix

ed

Chart In some scenarios an indicator could retrace

over itself

111

05

Fix

ed

Chart,

Drawing

Tool

In some scenarios auto scale of drawing

objects on secondary panel didn't properly

function

106

17

Ch

an

ge

d

Chart,

Drawing

Tool

Increased spacing and dash size of lines

111

04

Fix

ed

Chart,

Strategy

In some scenarios drag and drop of strategy

plot did not properly function

112

15

Fix

ed

Continuu

m, CQG

Properly canceled orders reported cancel

failed in some scenarios

112

16

Fix

ed

Control

Center

Orders/Executions tabs filtering by live

account included sim101 orders/executions

109

73

Ad

de

d

Core Modal on modal windows have a dark overlay

applied to better identify the modal window

112

54

Fix

ed

Databas

e

Automatic rollover failed if triggered while

data was loading on start up

112

96

Fix

ed

Drawing

Tool

Risk/Reward drawing tool could result in

crash with specific configurations

NinjaTrader 8338

© 2023 NinjaTrader, LLC

112

55

Fix

ed

Drawing

Tool

Data settings were not saved or applied

when pressing Enter key

112

14

Fix

ed

Drawing

Tool

In some scenarios adding a line to the Trend

Channel resulted in freezing

111

63

Fix

ed

Drawing

Tool

Remove all drawing tools was applying to all

instruments and time frames

111

22

Fix

ed

Drawing

Tool

In some scenarios risk-reward tool

calculated ticks incorrectly

111

11

Fix

ed

Drawing

Tool

Changing primary period on multi-series

chart with region could produce an error

110

79

Fix

ed

eSignal Index SP500 was not plotting

112

06

Fix

ed

FX

Board

Orders were sorted inconsistently from other

order grids

111

40

Fix

ed

Google,

Yahoo

Connection loss was not being reported

113

04

Fix

ed

Instrume

nts

Importing a stock with a period converted the

symbol mapping to use an underscore rather

than just the master symbol

112

20

Fix

ed

Instrume

nts

Stocks imported with invalid characters were

not converted and could not be edited

112

19

Fix

ed

Instrume

nts

Use Instrument Settings template was not

reflecting changes to default template

111

95

Fix

ed

Instrume

nts

Selecting the search button would not search

what was typed in

111

68

Fix

ed

Instrume

nts

Edited default instrument values would reset

on restart

112

82

Fix

ed

Interactiv

e

In some scenarios targets showed as

external orders

Release Notes 339

© 2023 NinjaTrader, LLC

Brokers

111

29

Fix

ed

Interactiv

e

Brokers

Execution markers were not shown on

custom instruments

112

91

Fix

ed

Log Auto close displayed incorrect time in Log

tab

111

48

Fix

ed

Market

Analyzer

In some scenarios the Realized PnL showed

incorrect currency symbol

110

72

Fix

ed

Market

Analyzer

Changing the Instrument column to a bar

graph resulted in an error

113

08

Fix

ed

NinjaScri

pt

Auto close disabled strategies on

instruments not in auto close list

112

62

Fix

ed

NinjaScri

pt

ChartControl was null in State.Historical of

hosted indicator

111

83

Fix

ed

NinjaScri

pt

Minimizing and maximizing a chart with text

drawn from a script could produce an error

111

82

Fix

ed

NinjaScri

pt

Changing types after applying indicator to

chart would cause errors when opening

indicator dialog after recompile

111

80

Fix

ed

NinjaScri

pt

Saving a file in Visual studio resulted in file

being removed from .csproj

111

74

Fix

ed

NinjaScri

pt

A crash could occur while printing when an

output window is open in another workspace

111

15

Fix

ed

NinjaScri

pt

Drawing objects configured to draw on price

panel would move with plot when drag and

dropped

110

89

Fix

ed

NinjaScri

pt

Region could draw past first bar of chart

NinjaTrader 8340

© 2023 NinjaTrader, LLC

110

62

Fix

ed

NinjaScri

pt

In some scenarios RemoveDrawObjects did

not properly function

111

89

Fix

ed

NinjaScri

pt Editor

Renaming an indicator folder resulted in an

error

111

34

Fix

ed

NinjaScri

pt Editor

Right clicking and pasting removed focus

from the editor

112

23

Fix

ed

NinjaScri

pt, Chart

Negative ZOrder resulted in unnecessary

OnRender updates

111

35

Fix

ed

NinjaScri

pt, Chart

On a multi-data series chart with strategies

applied to both data series, moving a plot

moved both strategy's plots

112

97

Fix

ed

NinjaScri

pt,

Drawing

Tool

Andrews Pitchfork was not setting extension

anchor correctly in NinjaScript

112

33

Fix

ed

NinjaScri

pt,

Drawing

Tool

Risk-reward was not applying globally when

set to do so in a script

112

61

Fix

ed

Playback When using Go To the minute and second

could not be adjusted using arrows

112

44

Fix

ed

Playback ATM targets would stack in playback if

'wrong-side' limit entry orders were placed

111

41

Fix

ed

Playback Multi-data series charts would not load renko

bars

111

66

Fix

ed

Playback

, Alerts

Alerts would trigger while Playback was

paused

111

65

Fix

ed

Playback

, Alerts

Alerts time stamps were reporting as the

current time of the PC clock

Release Notes 341

© 2023 NinjaTrader, LLC

112

48

Fix

ed

Playback

,

NinjaScri

pt

Position.GetUnrealizedProfitLoss() prevented

Playback from running

113

03

Fix

ed

Playback

,

SuperD

OM

Volume column was not updating each

second as designed

112

58

Fix

ed

Strategy Brush property was not read-only when

strategy was enabled

112

36

Fix

ed

Strategy Enabling a terminated strategy could result in

multiple instances of strategy

109

97

Fix

ed

Strategy Account position sync took multiple enables

to properly display

113

10

Fix

ed

Strategy

Analyzer

Switching display mode while backtest ran

resulted in no chart displayed

112

66

Fix

ed

Strategy

Analyzer

Using both interger and bool properties

resulted in an error

112

34

Fix

ed

Strategy

Analyzer

Category order of properties was not

properly sorting

112

09

Fix

ed

Strategy

Analyzer

Scrolling results of optimization on a list of

instruments could result in an error

112

04

Fix

ed

Strategy

Analyzer

In some scenarios Logs displayed wrong

strategy when multiple strategies were in

different namespaces

111

57

Fix

ed

Strategy

Analyzer

Sending optimization results to a new

Strategy Analyzer was not keeping settings

111

32

Fix

ed

Strategy

Analyzer

Chart Plot lines disappeared when moving

multi-series Strategy Analyzer

NinjaTrader 8342

© 2023 NinjaTrader, LLC

111

31

Fix

ed

Strategy

Analyzer

Setting optimization graph to performance

did not properly list the axis as performance

111

20

Fix

ed

Strategy

Analyzer

In some scenarios indicators region removed

when adding other indicators

112

72

Fix

ed

Strategy

Builder

String input did not escape characters

112

69

Ch

an

ge

d

Strategy

Builder

Unrealized PNL condition was not functioning

as expected

112

67

Fix

ed

Strategy

Builder

String inputs with a blank default value were

not added into set defaults resulting in an

error

112

32

Fix

ed

Strategy

Builder

Setting IsRising regression channel to true

resulted in an error

112

17

Fix

ed

Strategy

Builder

In some scenarios Conditions and Actions

tabs regenerated after being closed

111

69

Fix

ed

Strategy

Builder

Printing an indicator with bars ago set up

would return an unexpected value

111

03

Fix

ed

Strategy

Builder

In some scenarios condition templates with

additional data could result in errors

110

87

Fix

ed

Strategy

Builder

In some scenarios text could be selected

unexpectedly

111

56

Fix

ed

Strategy,

Chart

Moving a strategy's indicator above panel 1

from another panel would also move the

strategy plot to the data series panel

110

96

Fix

ed

Strategy,

Chart

Removing secondary series with strategy

applied could leave a blank panel

111

92

Fix

ed

TD

AMERIT

Clicking Close was unable to close out a

stop loss order

Release Notes 343

© 2023 NinjaTrader, LLC

RADE,

NinjaScri

pt

111

50

Fix

ed

Tick

Replay

Adding an indicator while Tick Replay was

loading could result in an error

111

25

Fix

ed

Tick

Replay

Applying an incompatible script wasn't

showing an exception in some scenarios

112

81

Fix

ed

Trade

Perform

ance

Journal was not displaying added notes

when start and end dates were set to current

date

112

41

Fix

ed

Trade

Perform

ance,

Workspa

ces

Display setting was not saving in workspace

112

77

Fix

ed

Trading

Hours

Removing all but one EOD option on the

Default 24/7 template resulted in a crash

112

49

Fix

ed

UI In some scenarios context menus would get

removed before the mouse could reach it

112

12

Fix

ed

UI Applying strategy in Control Center was not

applying data series presets

112

45

Fix

ed

Window

Linking,

NinjaScri

pt

In some scenarios switching instruments on

linked tabs resulted in flat indicator plots

111

30

Fix

ed

Workspa

ces

Switching workspaces was not placing

windows on top of other windows

8.0.5.1 Release
March 8, 2017

Iss St Categor Comments

NinjaTrader 8344

© 2023 NinjaTrader, LLC

ue

#

atu

s

y

113

46

Fix

ed

Strategy Editing the properties of any existing

NinjaScript Strategy on the Control Center

would incorrectly reset any DataSeries value

back to defaults. This was a result of a fix for

issue: 11212

8.0.5.2 Release
March 15, 2017

Iss

ue

#

St

atu

s

Categor

y

Comments

113

84

Fix

ed

General Fixed a bug where fresh new installations of

NinjaTrader did not get the latest version of

the default instrument lists from the server

as expected.

3.3.25 8.0.4.0

Release Date
January 31, 2017

Iss

ue

#

St

at

us

Category Comments

110
56

Fix
ed

Adapter In some cases quickly disconnecting and
reconnecting resulted in an error

109
89

Fix
ed

Alerts In some scenarios disabled alerts would re-
enable unexpectedly when re-opening the
workspace

110
27

Fix
ed

Alerts,
Drawing
Tool

Alerts were not detecting trend line cross
overs properly

Release Notes 345

© 2023 NinjaTrader, LLC

110
91

Fix
ed

ATM
Strategies

Submitting an order to an active ATM
strategy for an opposite position left an
active strategy

110
28

Fix
ed

Backup &
Restore

Drawing object templates were not
transferred when restoring from a backup

108
55

Fix
ed

Chart Using the 'Apply' button on the strategies
dialog did not always perform the requested
action.

109
64

Fix
ed

Chart Y-axis crosshair label was not equal to value
in the y-axis scale when two data series
where on a chart

109
71

Fix
ed

Chart In specific data load requests for tick data
the full range requested did not display in the
chart

110
02

Fix
ed

Chart Non-equidistant bar spacing caused invalid
x-axis labels on interval change

110
11

Fix
ed

Chart Center on price scale with fixed scale
incorrectly adjusted on each tick instead of
on each new bar

110
35

Fix
ed

Chart Second data series was included in auto
scale calculations despite auto scale being
disabled

110
60

Fix
ed

Chart Region did not render when equidistant bar
spacing was set to false.

110
61

Fix
ed

Chart Region and plot could get out of sync when
using a displacement

110
64

Fix
ed

Chart Region and plot display did not sync with
right side margin

110
71

Fix
ed

Chart When making setting changes the chart
could lose your scroll location and reset
back to displaying the last bar on chart.

110
78

Fix
ed

Chart Changing instrument via right click menu
resulted in a blank chart

NinjaTrader 8346

© 2023 NinjaTrader, LLC

110
98

Fix
ed

Chart Adding Line On Close to a regular trading
hours data series caused an error

110
76

Fix
ed

Chart,
DrawingT
ool

Region with displacement and non-
equidistant bar spacing caused incorrect
display

110
73

Fix
ed

Chart, Hot
Key

Databox was not closing with hot key

110
54

Fix
ed

Chart,
NinjaScrip
t

In some scenarios moving an indicator that
places drawing objects resulted in an error

109
95

Fix
ed

Chart,
SuperDO
M

Editing an instrument applied to a chart and
SuperDOM could make NinjaTrader
unresponsive

110
70

Fix
ed

Chart,
Workspa
ces

Left fixed scale setting was not saving

110
47

Fix
ed

Code
Wizard

Resolved an error when trying to edit an
added Custom Data Series

111
00

Fix
ed

Commiss
ions

Entering Commission Per Instrument Type
in template caused an error

110
32

Fix
ed

CQG,
Backup &
Restore

Performing a Backup/Restore after you had
been connected to CQG to not finish
correctly

107
89

Fix
ed

Drawing
Tool

In some scenarios the Trend Channels area
wouldn't fully fill

108
65

Fix
ed

Drawing
Tool

Moving drawing objects on a logarithmic
chart scale could incorrectly place anchor
points

110
31

Fix
ed

Drawing
Tool

Trend Channel line color would not change

110
38

Fix
ed

Drawing
Tool

Regression channel disappeared when
Price Type was set to 'Median'

Release Notes 347

© 2023 NinjaTrader, LLC

110
59

Fix
ed

Drawing
Tool

Region displacement was not properly
displacing

109
68

Fix
ed

DrawingT
ool,
Indicator

Drawing Tool anchors would break when
switching intervals with indicator on chart

108
95

Fix
ed

eSignal Was not able to reconnecting after manual
disconnect

109
93

Fix
ed

FXCM In some scenarios stacked orders could
produce an error

110
53

Fix
ed

FXCM Daily Charts wouldn't receive real-time data
with FXCM historical data server

110
81

Fix
ed

FXCM Historical data from FXCM's servers showed
volume as 100k

110
52

Fix
ed

Hot Key Chart Trader Hot keys required Chart Trader
to be selected

109
58

Ch
an
ge
d

Indicator Updated existing indicators and help guide to
consistently advise and perform instantiation
of Indicators and custom DataSeries in
State.DataLoaded

110
16

Fix
ed

Instrumen
ts

Instrument Lists were not updating on first
time start up

109
47

Fix
ed

Interactive
Brokers

A bad bar was generated when left
connected past regular market hours

110
68

Fix
ed

Interactive
Brokers

In some scenarios connection hung in
yellow state when there were active orders

110
39

Fix
ed

Interactive
Brokers,
Kinetick

In some scenarios current daily bar was
removed when using Preferred Connections

110
93

Fix
ed

IQFeed In some scenarios IQFeed could request too
many simultaneous historical data requests

110
09

Fix
ed

Market
Analyzer

Zeros were reporting in indicator column for
PriorDayOHLC

NinjaTrader 8348

© 2023 NinjaTrader, LLC

109
17

Fix
ed

NinjaScrip
t

Strategy stopped trading after historical data
was reloaded

110
17

Ch
an
ge
d

NinjaScrip
t

AddChartIndicator was not working in
State.DataLoaded

109
22

Fix
ed

NinjaScrip
t, ATM
Strategies

Closing position via AtmStrategyClose
method prevented RealizedPnL from
updating correctly

110
51

Fix
ed

Orders,
Rithmic,
FXCM

Long account information could prevent
orders from updating

109
77

Fix
ed

Performa
nce

Using Window's Taskbar preview used large
amount of resources

109
50

Fix
ed

Playback Controller became disabled/frozen when
using Tick Replay

110
24

Fix
ed

Playback,
SuperDO
M

Market Depth disappeared/reappeared when
scrolling price ladder

109
61

Fix
ed

Strategy Moving chart tab while strategy was loading
caused an exception

110
92

Fix
ed

Strategy High order fill resolution with multi-series
script would disable rather than enable with
popup message

107
67

Fix
ed

Strategy
Analyzer

In some scenarios the chart was missing
plot lines and the chart became transparent

109
66

Fix
ed

Strategy
Analyzer

In some scenarios the walk forward
optimization results were not matching the
summary page

109
78

Fix
ed

Strategy
Analyzer

Time frame date was wrong when opening
at the start of a new year

109
92

Fix
ed

Strategy
Analyzer

Could not change grid row with arrow up and
down keys

Release Notes 349

© 2023 NinjaTrader, LLC

110
04

Fix
ed

Strategy
Analyzer

Show Tabs value was not consistently
checked/unchecked

110
21

Fix
ed

Strategy
Analyzer

Changing from Summary to Trades display
caused strategy to re-run

110
55

Fix
ed

Strategy
Analyzer

Changing optimization parameters could
leads to an error

110
05

Fix
ed

Strategy
Builder

Selecting Close Price could display back as
Default Input

110
06

Fix
ed

Strategy
Builder

Condition set tab order does not persist in
Strategy Builder

110
07

Fix
ed

Strategy
Builder

Offset could not use User Defined Input

110
48

Fix
ed

Strategy
Builder

Defining a condition in Strategy Builder
which was supposed to 'divide' a numerical
value didn't actually perform the action

110
77

Fix
ed

Strategy
Builder

Default plot was not available for MACD

109
70

Ch
an
ge
d

Strategy
Builder,
Code
Wizard

Added Use Primary Instrument option for
adding data series

110
30

Fix
ed

Strategy,
Chart

In some scenarios strategy was not
removed as underlying series was removed

109
83

Fix
ed

SuperDO
M

Center button was not working when last
price was near top/bottom of ladder

109
51

Fix
ed

TD
Ameritrad
e,
Indicator

In some scenarios the Bar Timer didn't
properly function

110
44

Fix
ed

Trading
Hours

Eurex trading hours templates included
Martin Luther King holiday

NinjaTrader 8350

© 2023 NinjaTrader, LLC

110
33

Fix
ed

UI Error could occur when using the Vendor
Licensing Add On

109
91

Fix
ed

Window
Linking

In some scenarios changing time frames on
a linked chart caused the current bar to
report in different parameters

109
15

Fix
ed

Workspa
ces

Added Skin Selection as part of installer

3.3.26 8.0.3.0

Release Date
January 9, 2017

Attention existing NinjaTrader 8 Users: As a consequence of bug fix in 8.0.3.0, all

DataSeries Trading Hours Templates contained in saved workspace(s) will be reset to

factory default settings “<Use Instrument Settings>”.

Iss

ue

#

Stat

us

Categor

y

Comments

109

22

Fixe

d

ATM

Strategi

es,

NinjaScr

ipt

Closing position via AtmStrategyClose

method prevented RealizedPnL from

updating correctly

108

76

Add

ed

Backup

&

Restore

Added restart message when restoring

109

07

Fixe

d

Barchart Updated DLL version to 1.1.0.9

108

14

Fixe

d

Bars UTC +2 time zone usage created

erroneous bars on a chart

102

39

Fixe

d

Bars After editing workspace and restarting at

times there was an unable to clear cache

Release Notes 351

© 2023 NinjaTrader, LLC

message

108

64

Fixe

d

Chart A crash occurred when creating daily

charts in the evening

108

32

Fixe

d

Chart Removing indicator from multi-series chart

removed unrelated data series as well

109

59

Fixe

d

Chart Center price on scale setting could cause

crash on empty charts

109

57

Fixe

d

Chart AddOns and Caption Bar alignment was

inconsistent

109

45

Fixe

d

Chart Changing axis line width caused incorrect

margins

109

35

Fixe

d

Chart Chart was enlarged when restore from

preview to secondary monitor

109

16

Fixe

d

Chart Bar spacing was not restoring correctly on

multi-series chart

109

06

Fixe

d

Chart Indicator displacement did not auto scale

correctly

108

93

Fixe

d

Chart Chart could scroll to the right unexpectedly

108

81

Fixe

d

Chart Chart rendering was failing after rollover of

contracts

108

77

Fixe

d

Chart Trend Channel parallel line did not snap

108

58

Fixe

d

Chart Loading text did not stay in place for

secondary series

108

15

Fixe

d

Chart Tab name variable tool tips were not

defined

NinjaTrader 8352

© 2023 NinjaTrader, LLC

109

12

Fixe

d

Chart

Trader

Arrow keys moved chart instead of

changing order quantity

109

69

Fixe

d

Chart

Trader

Right click order menu showed invalid order

types for some connections

107

80

Fixe

d

Chart

Trader

Resolved a scenario where you could

remove a DataSeries which has Scaled

Justification Right and Chart Trader orders

would no longer display

109

25

Fixe

d

Chart,

Bars

In some scenarios parts of Monday's

sessions were not plotting

108

51

Fixe

d

Chart,

Drawing

Tool

Drawing objects 'attached to' was lost when

moving to overlay scale

107

20

Fixe

d

Chart,

Indicator

Editing indicators while chart is still loading

at times cause a lock up

108

42

Fixe

d

Chart,

Window

Linking

Incorrect chart tab was changing

instruments with linked Market Analyzer

108

68

Fixe

d

Connect

ions,

NinjaScr

ipt

Disconnect Delay Seconds was not

recognizing reconnect

109

26

Fixe

d

Control

Center

At times NinjaTrader could lock up on start

up

108

57

Fixe

d

Control

Center

Tab properties font was not saving checked

boxes

109

00

Add

ed

Data

Grids

Drag column away to delete was

implemented on all grids

108

12

Fixe

d

Databas

e

Resolved a scenario where changing the

NinjaTrader language caused a trading

hours error

Release Notes 353

© 2023 NinjaTrader, LLC

108

47

Fixe

d

Drawing

Tool

Draw.Region was shading incorrectly when

using displacement

108

45

Fixe

d

Drawing

Tool

There was an inconsistent Z-Order

between charts for global draw object

108

33

Fixe

d

Drawing

Tool

TrendChannel was not properly drawing

when attached to all charts by default

108

31

Fixe

d

Drawing

Tool

Occasionally there were exception on

removing all drawing objects

109

84

Fixe

d

FX

Board

Unhandled exception occurred when

disconnecting Kinetick with open FXBoard

open

109

63

Fixe

d

FX

Board

Instrument drop-down were not changing

color for selected tile

109

53

Fixe

d

FXCM XAUUSD and XAGUSD CFD had incorrect

symbol mapping

108

09

Fixe

d

FXCM In somecases orders could become stuck

107

27

Fixe

d

FXCM After a lost connection a crash could occur

106

01

Cha

nge

d

FXCM Updated API version to ForexConnect 1.4.1

849

0

Add

ed

FXCM Added GTD Order Support

109

46

Fixe

d

FXCM,

Historica

l Data

Window

Control Center locked up when closing

Historical Data window while downloading

data

108

30

Fixe

d

Historica

l Data

Historical data manager text was not

readable when selected

NinjaTrader 8354

© 2023 NinjaTrader, LLC

Window

108

85

Fixe

d

Hot List

Analyzer

@HOTLIST was not present in resources

108

34

Fixe

d

Indicator LinReg generated error with period of 1

108

83

Fixe

d

Indicator

,

SuperD

OM

Indicator's Input series Price type was not

saving

109

39

Fixe

d

Instrume

nts

Stock list with unsupported characters

could be imported but not edited

109

36

Fixe

d

Instrume

nts

EUREX quarterly rollover dates do not

match other EUREX instruments

109

28

Fixe

d

Instrume

nts

Contract Month had invalid date format

109

20

Fixe

d

Interacti

ve

Brokers

FA accounts could receive position for

unknown symbol

108

97

Fixe

d

Interacti

ve

Brokers

Requesting 1 day of historical data

downloaded 2 days

108

53

Cha

nge

d

Interacti

ve

Brokers

Symbol mapping updated for ICE TF Point

Value change

108

24

Cha

nge

d

Interacti

ve

Brokers

Updated Traders Workstation to 960.2g

107

92

Fixe

d

Interacti

ve

Brokers

Bad order state occurred when order

blocked due to TWS precautionary settings

Release Notes 355

© 2023 NinjaTrader, LLC

108

46

Fixe

d

Kinetick Constant connect/disconnect could occur

when PC clock was out of sync

106

04

Fixe

d

Kinetick Historical data was unexpectedly throttled

109

44

Fixe

d

Market

Analyzer

Template colors were not restored after

closing and opening a workspace

109

09

Fixe

d

Market

Analyzer

Removed invalid conditions when using

Alerts

108

49

Fixe

d

Market

Analyzer

Suspended indicators did not catch up until

bar closes after restored

105

54

Cha

nge

d

Market

Analyzer

Added log error when using indicators not

compatible with end of day data

103

35

Fixe

d

Market

Analyzer

Typing label text which exceeded window

length triggered instrument search box

109

18

Fixe

d

NinjaScr

ipt

LockRecursionException occurred on

reloading NinjaScript after changing added

series

109

29

Fixe

d

NinjaScr

ipt

IndexOutOfRange exception occurred when

there was an added series in hosted

indicator

109

02

Fixe

d

NinjaScr

ipt

AddDataSeries with specified template was

not working as expecting in all scenarios

108

70

Fixe

d

NinjaScr

ipt

Creating a new strategy while in a bad

compile state halted NinjaTrader

108

61

Fixe

d

NinjaScr

ipt

Removing an indicator then reloading a

chart resulted in an exception

108

41

Fixe

d

NinjaScr

ipt

High order fill resolution did not load

expected bars when 'bars back' is used

NinjaTrader 8356

© 2023 NinjaTrader, LLC

108

40

Cha

nge

d

NinjaScr

ipt

Methods .PlaySound/.SendMail/.Share now

can be triggered in State==.Active

107

58

Fixe

d

NinjaScr

ipt

Exceptions could be generated by Finalized

NinjaScript

108

39

Fixe

d

NinjaScr

ipt,

Strategy

Analyzer

MAE was incorrect for multi-series

strategies

108

84

Fixe

d

Other First In Product Announcement was modal

only to Control center, other ones are modal

across the app as expected

109

48

Fixe

d

Playbac

k

Controller's time-stamp lagged behind bars

when paused

109

11

Fixe

d

Playbac

k

Slider became stuck if only two days were

downloaded

108

88

Fixe

d

Playbac

k

At times Go To could not select time

108

66

Fixe

d

Playbac

k

Exception was occurring when

disconnecting if End Date calendar was

open

102

91

Fixe

d

Playbac

k

Migration from NinjaTrader 7 playback data

had incorrect time offset

109

38

Fixe

d

Property

Grids

Orders Grid Properties allowed removing of

Instrument column

108

38

Fixe

d

ShareAd

apter

Stocktwits share service log-in was

throwing errors and was unresponsive

109

82

Fixe

d

Strategy

Analyzer

Assigned account could unexpectedly

change on subsequent runs in certain

scenarios.

Release Notes 357

© 2023 NinjaTrader, LLC

109

52

Fixe

d

Strategy

Analyzer

Move to new window was available while

running which resulted in an error

108

94

Fixe

d

Strategy

Analyzer

Null reference could occur when switching

between backtest and optimization

108

86

Fixe

d

Strategy

Analyzer

Strategy was running two instances on

single run

108

50

Fixe

d

Strategy

Analyzer

Repeatedly running a backtest caused

memory to increase until there was a crash

108

43

Fixe

d

Strategy

Analyzer

There were incorrect tab names

108

26

Fixe

d

Strategy

Analyzer

Sorting pinned logs caused pins to be lost

109

67

Fixe

d

Strategy

Builder

IsFalling and IsRising was calling the bar

index

109

49

Fixe

d

Strategy

Builder

MACD's plot name was Default rather than

Macd

109

32

Fixe

d

Strategy

Builder

Unhandled Exception occurred when

opening Strategy Building with compile

errors

108

36

Fixe

d

Strategy

Builder

Removed invalid settings

108

16

Fixe

d

Strategy

Builder

An unhandled exception could occur when

adding Actions in a certain scenario

109

13

Fixe

d

SuperD

OM

Dynamic SuperDOM was not always

shown as a menu item

108

21

Fixe

d

SuperD

OM

Removed invalid order references for APQ

column

109

21

Fixe

d

TD

AMERIT

External orders at times caused exceptions

NinjaTrader 8358

© 2023 NinjaTrader, LLC

RADE

106

72

Fixe

d

TD

AMERIT

RADE

Linked account hanged on connection

attempt

109

54

Fixe

d

Tool

Tips

 Getting started arrows were hard to see

109

03

Fixe

d

Trade

Perform

ance

Journal entries were not hidden/shown

based on generated date range

108

91

Fixe

d

Trade

Perform

ance

Cut, copy, and paste was not working in all

areas

108

90

Fixe

d

Trade

Perform

ance

Journal entries were not properly logging

notes

109

62

Fixe

d

UI Help > Email Support not saving email

address

109

14

Fixe

d

UI End keyboard button switched chart tabs

after "F" (fixed) button is pressed

108

44

Fixe

d

UI Resolved scenarios where in product

announcement would block migration

3.3.27 8.0.2.0

Release Date
December 5, 2016

Iss

ue

#

Sta

tus

Categor

y

Comments

108

08

Fixe

d

Alerts Alerts from removed drawing objects were

playing on Playback rewind

Release Notes 359

© 2023 NinjaTrader, LLC

107

97

Fixe

d

Alerts Alerts were activating based on core time

rather than Playback time

107

62

Fixe

d

Alerts,

Market

Analyzer

Alert conditions with Market Analyzer column

were triggering an exception

107

99

Fixe

d

ATM

Strategi

es

Info tool tip had a new line at the bottom

making the tool tip too long

105

33

Fixe

d

Bars,

NinjaScr

ipt

Secondary series was using trading hours of

primary series unexpectedly

107

69

Fixe

d

Basic

Entry

Did not display active live orders

107

98

Fixe

d

Chart Extra data series was added when opening

a Chart

107

65

Fixe

d

Chart Drawing objects were removed from second

data series when changing primary series

107

48

Fixe

d

Chart PlotBrushes and BarBrushes were failing

when indicator was copied to another chart

using drag and drop

107

32

Fixe

d

Chart Could not add multiple indicators to panel 2

in some cases

107

10

Fixe

d

Chart Boxes printed too long when multiple data

series are in panel 1

107

09

Fixe

d

Chart MultiSeries chart with Global Drawing

objects were making charts unresponsive on

scrolling

107

53

Fixe

d

Chart

Trader

Entry price marker was not matching

average price

NinjaTrader 8360

© 2023 NinjaTrader, LLC

107

51

Fixe

d

Chart,

Chart

Trader

Selected account was not duplicating to new

chart

108

18

Fixe

d

Chart,

Hot Key

Canceling a drawing tool caused drawing

tool Hot Keys not to work until chart

refocused

105

51

Fixe

d

Chart,

NinjaScr

ipt

There was an render error on scripts at

times when having multiple charts and

switching the Period or Instrument

103

38

Fixe

d

Chart,

NinjaScr

ipt

There was an exception in some cases

when unchecking Equidistant Bar Spacing

and adjusting the time scale

102

82

Fixe

d

Chart,

NinjaScr

ipt

Box ChartStyle Bar would sometimes drawn

to wrong date

106

85

Fixe

d

Chart,

NinjaTra

der

Drawing Objects window caused external

assembly script to stop updating

107

78

Fixe

d

Chart,

Worksp

aces

Chart scale fixed range restored to

automatic range for non primary panels on

saved workspaces

107

38

Fixe

d

Control

Center

Strategies grid sync red flag was appearing

incorrectly

107

58

Fixe

d

Core Exceptions were being generated by

terminated/finalized NinjaScripts

107

86

Fixe

d

Data

Grids

Grid highlights were overriding underneath

grid color

107

66

Fixe

d

Databas

e

Execution markers would multiply when

secondary connection holding traded

account was running through a reconnect

cycle

Release Notes 361

© 2023 NinjaTrader, LLC

106

96

Fixe

d

Drawing Draw objects were rendering on left side of

chart during bar loading

107

90

Fixe

d

Drawing

Tool

Saving the Trend Channel's default template

caused odd plots

107

88

Fixe

d

Drawing

Tool

Trend Channel template prevented manual

plotting of the second line

107

84

Fixe

d

Drawing

Tool

Trend Channel was drawing the parallel line

out of order on indicator panel

107

72

Fixe

d

Drawing

Tool

Could not move draw objects in indicator

panel

107

44

Fixe

d

Drawing

Tool

Trend Channel additional lines option did not

exist

106

23

Fixe

d

Drawing

Tool

Global drawing objects were disappearing on

restart when not applied to the primary data

series

107

52

Fixe

d

FX

Board

ATM was no longer selected after tile size

change

107

47

Fixe

d

FX

Board

ATM strategy orders were not being grouped

107

43

Fixe

d

FX

Board

Selected ATM strategy was not removing

107

35

Fixe

d

FX

Board

Order grid state column displayed incorrect

on order rejection

107

34

Fixe

d

FX

Board

Display value for TimeLastTick was not

resetting when disconnected

107

21

Fixe

d

FX

Board

Editing ATM settings from a saved

workspace was sometimes resulting in an

error

NinjaTrader 8362

© 2023 NinjaTrader, LLC

107

22

Fixe

d

FX

Board,

FX Pro

FXCM default quantities were not matching

across order entry windows

107

79

Fixe

d

Hot Key Global Hot Key for new chart caused

unhandled exception with chart focused

106

11

Fixe

d

Indicator Instrument linked charts caused stochastics

indicator to plot 0's after instrument change

105

62

Cha

nge

d

Interacti

ve

Brokers

Changed pacing violation logic and real-time

data logic to improve load times and prevent

bad ticks

107

91

Fixe

d

Licensin

g

Vendor Licensing was allowing invalid

spaces and would not keep some date

settings

108

10

Fixe

d

Licensin

g,

SuperD

OM

Template settings were not applying with

Direct Edition License

106

05

Fixe

d

Market

Analyzer

There was an exception on loading indicator

data for many instruments

107

87

Fixe

d

NinjaScr

ipt

Using SetZOrder() to -1 was resulting in an

error

108

00

Fixe

d

NinjaScr

ipt Editor

Add-on warning was accessing invalid

thread resources

106

68

Fixe

d

NinjaScr

ipt, Tick

Replay

There were errors at times when toggling

Tick Replay while disconnected

107

16

Fixe

d

Orders Close button was not allowing closing out of

in flight position during a close attempt

107

05

Fixe

d

Orders Stop loss orders attached to indicators were

ending up on wrong side of the market

Release Notes 363

© 2023 NinjaTrader, LLC

107

12

Fixe

d

Playbac

k

Playback controller button sometimes

stopped enabling

108

03

Fixe

d

Strategy

Analyzer

Optimization results did not show slippage

107

76

Fixe

d

Strategy

Analyzer

Strategy optimizer did not display tool tips for

properties

107

75

Fixe

d

Strategy

Analyzer

Summary Results % Profitable column was

missing

107

56

Fixe

d

Strategy

Analyzer

Excessive Strategy Analyzer logs were

slowing down NinjaTrader

106

60

Fixe

d

Strategy

Analyzer

Opening results to a new Strategy Analyzer

was losing bars and getting an error

108

04

Fixe

d

Strategy

Builder

Slope did not allow for use of different plots

107

03

Fixe

d

Strategy

Builder

Did not allow to check all multi-series price

types

106

93

Fixe

d

Strategy

Builder

Was not updating real-time changes to

script

108

37

Fixe

d

SuperD

OM

Columns were not restoring correctly

107

73

Fixe

d

SuperD

OM

There was an error on requesting bars

series when applying DEMA to SuperDOM

107

68

Fixe

d

SuperD

OM

Scroll wheel stopped scrolling price ladder

after center button was clicked

106

09

Fixe

d

SuperD

OM

SuperDOM indicators not showing from

saved workspace

107

08

Fixe

d

TD

AMERIT

RADE

In some cases if a connection could not be

made an invalid error appeared

NinjaTrader 8364

© 2023 NinjaTrader, LLC

107

95

Fixe

d

Tick

Replay

AddDataSeries was not building in sequence

with primary data series

107

50

Fixe

d

Tick

Replay

At times the SMA would get errors when

using Tick Replay and multiple data series

108

19

Fixe

d

Trade

Perform

ance

Column properties were missing after

window is restored with workspace

107

46

Fixe

d

UI Enter key was not saving changes when the

change was selected via keyboard

command

107

33

Fixe

d

UI Creating instrument lists with the same

name but different capitalization was not

prevented and resulted in an error

106

70

Fixe

d

UI Restoring preset was applying before

selecting OK

107

61

Fixe

d

UI, Chart Properties needed multiple clicks on OK to

accept

107

63

Fixe

d

Worksp

aces

Built in workspaces had incorrect default

settings

3.3.28 8.0.1.0

Release Date
November 14, 2016

Iss

ue

#

Sta

tus

Category Comments

105

83

Fix

ed

Alerts Drawing Tool Trend Channel did not

display plot for selection

105

78

Fix

ed

Alerts Visibility and indicator suspension logic

not working as expected

Release Notes 365

© 2023 NinjaTrader, LLC

105

72

Ad

de

d

Alerts,

Strategy

Builder

Improved user experience on condition

builder when setting up comparisons

105

76

Fix

ed

ATM

Strategies

Keep selected ATM Strategy template on

order submission selected active ATM

instead of template

106

56

Fix

ed

Attach

Order To

Indicator, UI

Indicator name missing for blank labels in

Attach Order To Indicator dialog

106

94

Fix

ed

Bars On Fridays, currently building weekly bar

only contained that date

104

92

Fix

ed

Bars HeikenAshi BarsType Chart label was

incorrect

104

83

Fix

ed

Bars Historical data recording thread locking

.ncd file causing various crash reports

105

99

Fix

ed

Basic

Entry, FX

Board, FX

Pro, UI

Some properties were not available when

clicking orders grid

106

52

Fix

ed

Chart Empty panel remained after removing

indicator while Chart was loading

106

45

Fix

ed

Chart Crosshair incorrectly enabled after

clicking Chart

106

40

Fix

ed

Chart Maximize panel button group on Chart

moves the historical bar button location on

some DPIs

106

29

Fix

ed

Chart Chart would sometimes freeze while

changing properties

106

19

Fix

ed

Chart Chart right side margin property allowed

negative values

NinjaTrader 8366

© 2023 NinjaTrader, LLC

105

98

Fix

ed

Chart Crosshair rendered incorrectly after

interval change

105

68

Fix

ed

Chart Scale justification fixed scale icon

remained after scale was no longer used

105

66

Fix

ed

Chart Non-default bar width applied incorrectly

when new tab created via direct type into

Chart

105

46

Fix

ed

Chart Taskbar preview caused extreme

memory usage as mouse held on task

bar

105

40

Fix

ed

Chart Jump to execution was not working on

time-based Charts

105

24

Fix

ed

Chart Chart did not auto-scroll on multi-series

Chart with global Crosshair

105

19

Fix

ed

Chart Crosshair disappeared when using a

Drawing Tool

105

09

Fix

ed

Chart Automated strategy indicators could not

be dragged and dropped

105

07

Fix

ed

Chart

Trader

Chart Trader missing grids when used on

another tab

104

85

Fix

ed

Chart Deleting Chart Panel sometimes caused

ChartStyle OnRender error

103

92

Fix

ed

Chart ChartStyle was changing in advance of

new series loading

104

87

Fix

ed

Chart

Trader

Simulated Stop-Limit order in Chart trader

caused rejected order when triggered

106

84

Fix

ed

Chart

Trader,

Orders

Chart trader sell stop limit order with

positive offset in remained in trigger

pending state

Release Notes 367

© 2023 NinjaTrader, LLC

105

63

Fix

ed

Chart,

DrawingTo

ol

Draw object on non-primary panel was

removed on reload NinjaScript

106

07

Fix

ed

Chart,

Indicator

Invisible indicators would incorrectly leave

label drawn on chart panel

103

15

Fix

ed

Chart,

NinjaScript

SetZOrder was not working as designed

105

75

Fix

ed

Chart,

Strategy

Analyzer

Strategy Analyzer duplicate tab Chart

display scale margin was too wide

104

84

Fix

ed

Chart, UI Higher fill resolution type was blank for

HeikenAshi

104

81

Fix

ed

Chart, UI Date and time was sometimes shown

twice in mini data box

106

48

Fix

ed

Connection

s, Kinetick

Kinetick "globex non-pro fees" option was

available with sim key

105

71

Fix

ed

Connection

s, UI

Pressing enter in username field during

account creation generated unexpected

message

106

00

Fix

ed

Control

Center,

Strategy

Strategy grid displayed Sync as false

when strategy is in sync with account

104

93

Fix

ed

Control

Center, UI

Control Center columns would widen on

height changes

106

55

Fix

ed

Data Grids,

Orders

Incorrect strategy name displayed in

Orders Tab

106

78

Fix

ed

Drawing Region/RegionHighlight Z-Order was not

defaulted beneath other Chart objects as

expected

NinjaTrader 8368

© 2023 NinjaTrader, LLC

105

22

Fix

ed

Drawing Gann fan line labels were drawing off-

screen

106

51

Fix

ed

DrawingTo

ol

AutoScale was not applied to Ray drawing

object

106

26

Fix

ed

DrawingTo

ol

Drawing object templates would not work

in exported assemblies

106

23

Fix

ed

DrawingTo

ol

Global Drawing Objects disappeared on

restart when not applied to the primary

data series

105

50

Fix

ed

DrawingTo

ol

Making Fibonacci levels all invisible would

dead lock the Chart

105

23

Fix

ed

DrawingTo

ol

Changing of Reward Anchor Y in Drawing

Objects properties did not work

105

06

Fix

ed

DrawingTo

ol

AutoScale Draw.Text was causing

incorrect AutoScale and hotkey to not

work

105

15

Fix

ed

DrawingTo

ol

DrawingTool Slot Index changed when

directly setting anchor to the same value

105

21

Fix

ed

DrawingTo

ol

Compressing the Chart changed angle of

Gann fan

103

96

Fix

ed

DrawingTo

ol

Arc Drawing Tool line property affected

the straight line instead of the Arc line

106

69

Fix

ed

DrawingTo

ol

Setting Arc drawing object to global

resulted in exception

102

95

Fix

ed

DrawingTo

ol

Region Highlight did not recognize Z-

Order change

102

69

Fix

ed

DrawingTo

ol

Bar and price did not snap correctly with

Trend Channels Drawing Tool

Release Notes 369

© 2023 NinjaTrader, LLC

102

50

Fix

ed

DrawingTo

ol

Draw object errors when changing multi

series Chart series

104

67

Fix

ed

DrawingTo

ol, Indicator

Indicator using Rectangle type could not

be used on two instance/panels of same

Chart

105

35

Fix

ed

eSignal Custom divisors in instrument mapping

were ignored on historical data

107

21

Fix

ed

FX Board Error on getting/setting property

'BarsRequiredToTrade' for NinjaScript

'AtmStrategy'

106

34

Fix

ed

Historical

Data

Window

Unable to enter OHLC or Price to added

rows in historical data

107

00

Fix

ed

Indicator BuySellVolume and BuySellPressure

would not count the last tick of the bar

106

62

Fix

ed

Indicator Connect on startup caused error on

applying NinjaScript

106

50

Fix

ed

Indicator Heuristics for determining what scale to

place an overlay data series/indicator not

working as expected

105

73

Fix

ed

Indicator Clicking apply then clicking ok double

applies settings in indicator dialog

105

60

Fix

ed

Indicator VolumeProfile indicator could cause

indicator exception when on empty charts

105

59

Fix

ed

Indicator Reloading Indicators could cause errors in

some situations

105

32

Fix

ed

Indicator Tick Counter did not work with HeikenAshi

bars set to tick

104

53

Fix

ed

Indicator WoodiesCCI indicator Zone Bars width

did not match CCI plot width

NinjaTrader 8370

© 2023 NinjaTrader, LLC

104

38

Fix

ed

Indicator Indicators were not restoring presets

when in configured list

104

56

Fix

ed

Indicator, UI Chart Indicator input series selector was

auto-selecting wrong series

106

59

Fix

ed

Instruments Adding a contract month operation took

longer than expected

106

38

Fix

ed

Instruments Offset values would reset to server offset

regardless of rollover date change

106

25

Fix

ed

Interactive

Brokers

Real-time equity volume was divided by

100

105

77

Fix

ed

Interactive

Brokers

TWS live account was not obeying signal

names in managed approach

105

13

Fix

ed

Interactive

Brokers

Position was not closed when selecting

close under rare circumstances

104

79

Fix

ed

Kinetick USDCHN instrument was not displaying

data

103

79

Fix

ed

Kinetick Kinetick remain connected when IP

changed

106

95

Fix

ed

Log Missing "reversing..." log message on

clicking REV button on order UI

106

61

Fix

ed

Market

Analyzer

Default parameters shown in columns

window after loading a template

105

67

Fix

ed

Market

Analyzer

CurrentText value was not available to

NinjaScript after reloading workspace

105

27

Fix

ed

Market

Analyzer

Position Avg Price column would display

whole numbers only

106

44

Fix

ed

News Minor news filter UI issues at DPI 125%

Release Notes 371

© 2023 NinjaTrader, LLC

106

83

Fix

ed

NinjaScript RemoveDrawObject(tag) did not remove

NinjaScript drawn global objects

105

52

Ad

de

d

NinjaScript Added ChartBars.GetBarIdxByX to locate

center of bar

105

43

Fix

ed

NinjaScript AddOn stayed in UI after assembly was

removed

105

41

Fix

ed

NinjaScript Multi-series chart with TickReplay and

Calculate.OnEachTick was not triggering

OnBarUpdate correctly

105

48

Fix

ed

NinjaScript RenderTarget sometimes had null

properties in the middle of

OnRenderTargetChanged

104

70

Fix

ed

NinjaScript Internal exception on closing chart with

Multi-Series indicator with heavy load

104

62

Fix

ed

NinjaScript Provide additional information to client on

import of NinjaScript

105

28

Fix

ed

NinjaScript GetSlotIndexByTime would cause crash

on Time-based Bar Spacing

104

66

Fix

ed

NinjaScript

Editor

SetState was missing from IntelliPrompt

105

36

Fix

ed

NinjaScript,

Workspace

s

Workspace persistence was not working

for Add-ons immediately after import

104

88

Fix

ed

Orders,

Risks

Risk template Max Position Size was not

working

105

14

Fix

ed

Other Updated mail to support to work with

Yahoo and AOL domains

106

74

Fix

ed

Playback Right click in playback controller triggered

a data reload

NinjaTrader 8372

© 2023 NinjaTrader, LLC

105

12

Fix

ed

Playback Playback reset caused exceptions in

indicators

103

82

Fix

ed

Playback Playback chart was not always auto

scrolling with playback

105

04

Fix

ed

Property

Grids

Some property grid combo box's were

missing UI hover effect

107

18

Fix

ed

Rithmic Rithmic adapter for TopStepTrader did not

set the correct routing information which

resulted in rejected orders

106

43

Fix

ed

Strategy Live strategy could be visually "enabled"

while global simulation mode was on

105

79

Ad

de

d

Strategy

Analyzer

Added dialog when opening Strategy

Analyzer running 32-bit NinjaTrader on a

64-bit machine

106

82

Fix

ed

Strategy

Analyzer

Optimization summary tab was not

populating for some results

106

66

Fix

ed

Strategy

Analyzer

3D Optimization graph display view would

reset when duplicating

105

94

Fix

ed

Strategy

Analyzer

Saving Strategy Analyzer preset resets

non-default column widths

105

56

Fix

ed

Strategy

Analyzer

Resolved issues with drag/dropping tabs

105

17

Fix

ed

Strategy

Analyzer

Column presets not working as expected

105

90

Fix

ed

Strategy

Analyzer,

Templates

Was not loading instrument from template

105

91

Fix

ed

Strategy

Analyzer, UI

Preview window with chart display

sometimes did not display

Release Notes 373

© 2023 NinjaTrader, LLC

106

89

Fix

ed

Strategy

Builder

Custom series allowed for values to be

set of the wrong type

106

76

Fix

ed

Strategy

Builder

Condition Builder incorrectly uses close

data series when other Data Series

selected

106

10

Fix

ed

Strategy

Builder

Resolved exclude from compilation

issues

106

03

Fix

ed

Strategy

Builder

Remove strategy was not always working

correctly

105

44

Fix

ed

Strategy

Builder

Strategy causes unhandled exception

"item with same key has already been

added"

105

30

Fix

ed

Strategy

Builder

Condition Builder Indicator-as-input

selected plot not in generated code

104

72

Fix

ed

Strategy

Builder

Context sensitive help guide not directing

to correct location

106

58

Fix

ed

Strategy,

Strategy

Analyzer

High fill resolution did not use primary

series data type

104

80

Fix

ed

Strategy,

Tick Replay

Unexpected instance handling of script

using bid / ask in tick replay

106

16

Fix

ed

Strategy, UI Strategy tab template reset data series

incorrectly

106

63

Fix

ed

SuperDOM SuperDOM trade control on left was not

saved to/restored from preset

105

03

Fix

ed

SuperDOM Off by one pixel width on DOM rows

105

10

Fix

ed

TD

AMERITRA

DE

External execution was sometimes not

showing on connect

NinjaTrader 8374

© 2023 NinjaTrader, LLC

104

78

Fix

ed

Templates Non-UI Strategy properties were

incorrectly saved to strategy template and

overwrote developer code

105

47

Fix

ed

Tick Replay Errors could be generated on Multi-Series

TickReplay chart in some situations

106

31

Do

ne

Trade

Performanc

e

Typo in MultiObjectiveValues

106

71

Fix

ed

Trade

Performanc

e

Local PC currency incorrectly shown in

Trade Performance display

105

49

Fix

ed

Trade

Performanc

e

Executions did not update from grid after

removed

106

99

Fix

ed

Trading

Hours

Copied trading hours template were

unable to rename

104

34

Ad

de

d

UI Delete key did not remove selected item

in all dialog windows

106

08

Fix

ed

UI Preset >> restore was not working as

expected in some areas

106

06

Fix

ed

UI Indicator name/label could disappear in

the indicator properties

106

02

Fix

ed

UI Load Drawing Tool template dialog was

not appearing on same monitor as parent

105

42

Fix

ed

UI Options text label was using dash instead

of hyphen

105

16

Fix

ed

UI Blank name for risk template could be

displayed

Release Notes 375

© 2023 NinjaTrader, LLC

105

37

Fix

ed

UI Pressing Enter after renaming a tab did

not rename a tab on all windows

105

08

Fix

ed

UI NinjaTrader logo was cut off when Save

Chart Image was used

104

76

Fix

ed

UI Inconsistent tab name behavior was

identified with no instrument selected

104

71

Fix

ed

UI Rename tab did not select tab name

property correctly

NinjaTrader 8376

© 2023 NinjaTrader, LLC

4 Risk Disclosures

Futures, foreign currency and options trading contains substantial risk and is not for every

investor. An investor could potentially lose all or more than the initial investment. Risk capital

is money that can be lost without jeopardizing ones financial security or lifestyle. Only risk

capital should be used for trading and only those with sufficient risk capital should consider

trading. Past performance is not necessarily indicative of future results.

CFTC Rules 4.41 - Hypothetical or Simulated performance results have certain limitations,

unlike an actual performance record, simulated results do not represent actual trading. Also,

since the trades have not been executed, the results may have under-or-over compensated

for the impact, if any, of certain market factors, such as lack of liquidity. Simulated trading

programs in general are also subject to the fact that they are designed with the benefit of

hindsight. No representation is being made that any account will or is likely to achieve profit or

losses similar to those shown.

This website is hosted and operated by NinjaTrader, LLC (“NT”), a software development

company which owns and supports all proprietary technology relating to and including the

NinjaTrader trading platform. NT is an affiliated company to NinjaTrader Brokerage (“NTB”),

which is a NFA registered introducing broker (NFA #0339976) providing brokerage services to

traders of futures and foreign exchange products. This website is intended for educational

and informational purposes only and should not be viewed as a solicitation or

recommendation of any product, service or trading strategy. No offer or solicitation to buy or

sell securities, securities derivative or futures products of any kind, or any type of trading or

investment advice, recommendation or strategy, is made, given, or in any manner endorsed

by any NT affiliate and the information made available on this Web site is not an offer or

solicitation of any kind. Specific questions related to a brokerage account should be sent to

your broker directly. The content and opinions expressed on this website are those of the

authors and do not necessarily reflect the official policy or position of NT or any of its affiliates.

Risks of Electronic Trading with NinjaTrader 377

© 2023 NinjaTrader, LLC

5 Risks of Electronic Trading with NinjaTrader

There are risks associated with electronic trading in general. Below are risks that you must be

aware of with respect to NinjaTrader.

OCO Handling (One Cancels Other)

NinjaTrader supports multiple different connectivity providers (brokers, exchange

gateways, and data feeds) that each have different levels of support for advanced

order handling features such as OCO orders. An OCO order is simply a group of

linked orders where if one is either filled or cancelled, all other orders that belong to

it's OCO group are cancelled. If your connectivity provider does not support OCO

orders natively, NinjaTrader will simulate them on your local PC. It is important to

understand how these order types behave.

· OCO does not imply that once one order is filled, related orders in the

same OCO group are guaranteed to be cancelled. It means that once

an order is filled or cancelled, any remaining orders in the same OCO

group will try to be cancelled. It is possible (in rare occasions) that

order(s) that are part of the OCO group will be filled before the

cancellation request has been acknowledged. As an example, let's say

you have a stop loss and profit target order as part of an OCO group.

The profit target is filled, the market rapidly turns around, the OCO

cancellation request is submitted, the stop loss order is filled before the

cancellation request is acknowledged. The narrower the spread

between your OCO orders the higher the risk of getting filled on an

order before it is cancelled in fast moving markets.

· Local PC held simulated OCO orders are dependant on order status

events returning from your connectivity provider to trigger the

cancellation of OCO orders. If NinjaTrader is offline (internet connection

is down or PC crashed) then the simulated OCO functionality will not

be operational.

In Flight Executions

There are several functions within NinjaTrader that are based on the current state

of your account at the moment the function is invoked. These functions are:

· Close Position

· Flatten Everything

NinjaTrader 8378

© 2023 NinjaTrader, LLC

In flight executions are orders that are partially or completely filled between the

time that you invoke one of the above functions and the time your connectivity

provider acknowledges the order submission/modification/cancellation requests

submitted by these functions. Here is an example:

1. You have an open long position for three contracts and several working stop

loss and profit target orders for three contracts each

2. You invoke the command "Flatten Everything" which proceeds to cancel all

working orders and submit a market order to close the three contract position

3. One of your profit target orders is filled before the cancellation request arrives at

the exchange

4. The market order to close the position is also filled for three contracts

5. You now have an open short position for three contracts

This example is generally a rare occurrence. After invoking any of the above

commands it is always prudent to check the Control Center's Positions Tab and

Orders Tab to ensure that all orders were cancelled and positions flattened. To

avoid these situations you should be cautious of using the "Close Position"

function when you have orders that are working within a few ticks of the inside

market.

NinjaTrader Volume Based Simulated Stop Orders

Please see this section of the Help Guide to understand the risks involved in using

volume based simulated stop orders.

Terms of Service 379

© 2023 NinjaTrader, LLC

6 Terms of Service

NINJATRADER TERMS OF SERVICE AGREEMENT

THIS TERMS OF SERVICE AGREEMENT (“Agreement”) is made between NinjaTrader, LLC (“Company”)
and any person (“User”) who installs the NinjaTrader Trading Platform (“Platform”).Platform

BY CLICKING THE ACCEPTANCE BUTTON OR ACCESSING, USING OR INSTALLING ANY PART OF
THE PLATFORM, USER EXPRESSLY AGREES TO AND CONSENTS TO BE BOUND BY ALL OF THE
TERMS OF THIS AGREEMENT. IF USER DOES NOT AGREE TO ALL OF THE TERMS OF THIS
AGREEMENT, THE BUTTON INDICATING NON-ACCEPTANCE MUST BE SELECTED AND COMPANY
SHALL PROMPTLY CANCEL THIS TRANSACTION AND USER MAY NOT ACCESS, USE OR
INSTALL ANY PART OF THE PLATFORM. THIS AGREEMENT IS APPLICABLE FOR ALL RELEASED
VERSIONS OF THE PLATFORM INCLUDING, BUT NOT LIMITED TO BETA VERSIONS. THIS
AGREEMENT MAY BE AMENDED FROM TIME- TO-TIME AT THE SOLE DISCRETION OF COMPANY.
COMPANY SHALL PROVIDE NOTICE TO USER OF AMENDMENTS BY POSTING THE UPDATED
TERMS OF SERVICE ON COMPANY’S WEBSITE. USER SHALL HAVE THE OPPORTUNITY TO
REFUSE SAID AMENDMENTS SOLELY BY REQUESTING TERMINATION OF ACCESS TO THE
PLATFORM.

1. Platform Terms

a. Description. The Platform is proprietary to Company and is protected by intellectual property laws
and international intellectual property treaties. User’s access to the Platform is licensed and not sold.
Platform is a software application that interfaces through various third-party independent software vendor
and brokerage API’s (collectively “Broker API”) for the purpose of analyzing and trading financial markets.

b. Use of Third-Party Software Components. User is aware that the Platform implements various third-
party software, platforms, services, equipment and Broker API’s, (collectively “Components”). Company
warrants that use of Components is fully licensed for use by Components providers to Company and in-turn
to licensed Users of Platform. User shall abide by all Components’ individual terms of service agreements, if
applicable. COMPANY MAKES ABSOLUTELY NO REPRESENTATIONS OR WARRANTIES AS TO
ANY COMPONENT(S) AND EXPRESSLY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR
IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.

c. Third-Party Vendors. User is aware that third-party vendors (“Vendors”) may a) develop plugins
including but not limited to indicators, strategies and other various utilities (“Apps”) that interact and/or
work within the Platform and b) provide educational services that demonstrate the use of the Platform.
Vendors along with their websites, products, services and Apps collectively referred to as “Vendor Content”,
are independent persons or entities that are in no manner affiliated with Company or any if its affiliates.

1. Vendor Content. Company and its affiliates are not responsible for, do not approve, recommend or
endorse any Vendor Content and it’s your sole responsibility to evaluate Vendor Content. Please
be aware that any performance information provided by a Vendor should be considered
hypothetical and must contain the disclosures required by NFA Rule 2-29(c). If you are interested
in learning more about, or investigating the quality of, any such Vendor Content you must contact
the Vendor, provider or seller of such Vendor Content. No person employed by, or associated with,
Company or its affiliates is authorized to provide any information about any such Vendor Content.
Visit the CFTC resources for education regarding the industry and signs of fraud.

2. Use of Apps. Installation and use of Apps is at User’s sole risk. User hereby agrees that
Company makes absolutely no guarantees regarding compatibility and is not responsible for
the function of Apps individually or with respect to the Platform. COMPANY MAKES
ABSOLUTELY NO REPRESENTATIONS OR WARRANTIES AS TO ANY APP(S) AND
EXPRESSLY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED,

NinjaTrader 8380

© 2023 NinjaTrader, LLC

INCLUDING WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE.

d. Accessibility and Function. User agrees that from time to time, the Platform may be inaccessible or
inoperable for any reason, including, without limitation: (i) equipment (hardware) malfunctions, (ii) software
malfunctions, (iii) periodic maintenance procedures or repairs which Company may undertake from time to
time, or (iv) causes beyond the reasonable control of Company or which causes are not reasonably
foreseeable by Company. Company is not responsible, directly or indirectly, for the performance and/or
reliability of Components, system, equipment or otherwise, or User’s Internet Service Provider (“ISP”).

e. Equipment. User shall be solely responsible for providing, maintaining and ensuring compatibility
with the Platform, all hardware, software, electrical and other physical requirements for User’s use of the
Platform including, without limitation, telecommunications and Internet connection(s), ISP, web browsers
and/or other equipment, programs and services required to access and use the Platform.

f. Grant of License. Company grants User, pursuant to the terms and conditions of this Agreement, an
exclusive and nontransferable license to use the Platform on a single computer at any one time.

g. Remote Access Services: Company may, at its sole option, provide as a courtesy, technical support
services, which are subject to the following terms and conditions. User accepts all risks associated with any
request or authorization by User permitting Company personnel to remotely access and control User’s
computer. By requesting and permitting remote access, User acknowledges that User may be providing
Company personnel with access to files and data on User’s computer. Before permitting remote access, User
agrees to close any confidential or personal files and create a backup of any important files. Company
personnel are not expected to make copies or download files or to retain any information accessed from
User’s computer. User’s name and contact information provided to facilitate remote access may be logged to
process support requests and will be processed in accordance with Company’s then-existing privacy policy.

COMPANY MAKES NO WARRANTIES OF ANY KIND WITH REGARD TO TECHNICAL SUPPORT
SERVICES AND HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS OF ANY KIND
RELATED TO TECHNICAL SUPPORT SERVICE, INCLUDING BUT NOT LIMITED TO ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT SHALL COMPANY BE LIABLE FOR ANY DAMAGES, INCLUDING SPECIAL, DIRECT,
INDIRECT OR CONSEQUENTIAL DAMAGES RESULTING FROM LOSS OF USE, DATA OR PROFITS
REGARDLESS OF THE LEGAL THEORY UNDER WHICH SUCH CLAIMS ARE ASSERTED, INCLUDING
WITHOUT LIMITATION, ACTIONS BASED ON CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
CONDUCT, ARISING OUT OF OR IN CONNECTION WITH THE PROVISION OF TECHNICAL
SUPPORT SERVICES. IN NO EVENT SHALL COMPANY’S TOTAL LIABILITY FOR ANY DAMAGES
EXCEED THE TOTAL FEES PAID BY USER TO COMPANY HEREUNDER.

2. Security of User’s System

User shall be solely responsible for the security, confidentiality and integrity of all messages and the
content that User receives, transmits through or stores via the Platform or on any computer or related
equipment that is used to access the Platform. User shall be solely responsible for any authorized or
unauthorized access to User’s account by any person, entity, partnership, organization, association or
otherwise.

3. Fees/Licenses

a. Collection and Taxes. All Fees, taxes and other charges shall be billed to User’s credit/charge card

or paid by check. In the event that User is provided with use of Platform through a 3rd party reseller
(“Reseller), User shall pay the Reseller who in turn shall submit the appropriate subscription fee to Company.

Terms of Service 381

© 2023 NinjaTrader, LLC

User shall be solely responsible for and shall pay Company or Reseller , if applicable, all sales, use, value-
added, personal property or other tax, duty or levy of any kind, including interest and penalties thereon
(collectively, “Taxes”), whether imposed now or hereinafter by any governmental authority. User shall
promptly pay Company in the event of any refusal by User’s credit card issuer to pay any amount to
Company for any reason. User agrees to pay interest at the rate of two percent (2.0%) per month on any
outstanding balance, together with costs of collection, including attorney's fees and costs, and any
applicable bank fees. In the event User fails to pay any amount due as set forth herein, Company may, at its
sole discretion, immediately suspend or terminate this Agreement and User’s access to the Platform.
Company reserves the right to report delinquent accounts to appropriate credit agencies.

b. Term/Automatic renewal. The term of this agreement shall begin upon User’s commencement of
the Platform and shall automatically renew on either a monthly or quarterly basis as chosen by the Client at
the time of contract initiation. Fixed lease options as chosen at the time of contract initiation do not auto-
renew. Termination by User or Company prior to automatic renewal of term must be supplied in written form
at least 30 days prior to the expiration of the current term and must comply with the termination procedures
set forth in Section 6 of this Agreement. Should the subscription be terminated prior the current
subscription period expiration date and pursuant to Section 6 of this Agreement, NO refund shall be issued
to User by Company.

c. Lifetime Licenses. If User purchases a lifetime license to use the Platform, User agrees that without
limitation certain features of the software may not be available or supported in perpetuity. User also agrees
that Company shall have the right to change features associated with the Platform in Company’s sole
discretion, and that Company may choose to discontinue support of Platform at any time. User shall not be
entitled to a refund of the lifetime license fee under any circumstances. Lifetime licenses are for non-
concurrent use, they are non-transferable, and can only be used by the individual that purchased the license.
 Lifetime licenses cannot be sold or bartered in the future and if such actions are taken the license can be
terminated at Company’s sole discretion. The lifetime license fee does not include the cost of any TT
transaction fees if applicable when a static SuperDOM is requested.

d. Upgrades. During the term of the license User shall be entitled to Platform upgrades as provided in
the sole discretion of Company. User’s entitlement to upgrades shall be limited to the specific edition of the
Platform for which the User is licensed. For instance, if User subscribes to Edition A of the Platform, User
shall be entitled only to Edition A upgrades and so forth. Platform editions relate to the service level of
Platform and shall not be confused with release version number(s).

4. User Representations

User represents and warrants to Company that: (a) User is over the age of eighteen (18) and has the power
and authority to enter into and perform User’s obligations under this Agreement, (b) all information provided
by User to Company is truthful, accurate and complete, (c) User is the authorized signatory of the credit or
charge card provided to Company to pay the Fees, (d) User shall comply with all terms and conditions of this
Agreement including, without limitation, the provisions set forth in section 5, (e) User, and not the Company,
is solely responsible for the security and use of User’s password, (f) User has provided and shall provide
accurate and complete registration information including, without limitation, User’s legal name, address and
telephone number, (g) User acknowledges that all right, title, and interest to the Platform belongs to
Company. Company reserves all rights not expressly granted to User in this Agreement and that the User
may not sublicense, transfer, or assign the Platform, directly or indirectly, to any person, entity, partnership,
organization, association or otherwise, for any reason.

5. Prohibited Uses

a. Errors, Acts, Omissions and Unacceptable Use. User is solely responsible for any and all errors,
acts and omissions that occur under User’s account or password, and User, directly or indirectly, agrees not
to engage in, facilitate, or encourage any unacceptable use of the Platform which unacceptable use includes,
without limitation, use of the Platform to: (i) disseminate, store or transmit unsolicited messages, chain letters
or unsolicited commercial e-mail, (ii) disseminate or transmit material that, to a reasonable person may be

NinjaTrader 8382

© 2023 NinjaTrader, LLC

considered abusive, obscene, pornographic, defamatory, harassing, grossly offensive, vulgar, threatening or
malicious, (iii) disseminate, store or transmit files, graphics, software or other material that actually, impliedly,
or potentially infringes the copyright, trademark, patent, trade secret, trade name or other intellectual property
right of any person, entity, partnership, organization, association or otherwise, (iv) create a false identity or
to otherwise attempt to mislead any person, entity, partnership, organization, association or otherwise, as to
the identity or origin of any communication, (v) distribute, re-distribute or permit transfer of content in
violation of any export or import law and/or regulation or restriction of the United States of America and its
agencies or authorities, or without all required approvals, licenses or exemptions, (vi) interfere, disrupt or
attempt to gain unauthorized access to other accounts on the Platform or any other computer network, (vii)
disseminate, store or transmit viruses or any other malicious code or program, (viii) develop an interface
between Platform to Broker APIs without the express written consent from the Company,; or (ix) engage in
any other activity deemed by the Company, in its sole discretion, to be in conflict with the spirit or intent of
this Agreement.

b. Dissemination. User may not disseminate software, username(s) and/or password(s) to any other
person, entity, partnership, organization, association or otherwise. Internet Protocol ("IP”) addresses may be
recorded by the Platform to prevent account misuse.

6. Termination

This Agreement is effective upon User’s acceptance as set forth herein and shall continue in full force
until terminated. User may terminate this Agreement for any reason upon thirty (30) days prior written notice
to Company. Company reserves the right, in its sole discretion and without prior notice to User, at any time
and for any reason, to: (a) remove or disable access to all or any portion of the Platform, (b) suspend User’s
access to or use of all or any portion of the Platform, and (c) terminate this Agreement.

7. Disclaimer of Warranties

THE PLATFORM IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED. USE OF THE PLATFORM IS AT USER’S SOLE RISK. COMPANY DOES NOT
WARRANT THAT THE PLATFORM WILL BE UNINTERRUPTED OR ERROR FREE, NOR DOES
COMPANY MAKE ANY WARRANTY AS TO ANY RESULTS THAT MAY BE OBTAINED BY USE OF
THE PLATFORM. USER REALIZES THAT THERE IS RISK IN TRADING STOCKS AND THAT ASSETS
MAY BE LOST AND ARE NOT INSURED. COMPANY IS ABSOLUTELY NOT RESPONSIBLE,
DIRECTLY OR INDIRECTLY, FOR USERS’ STOCK ORDER, PURCHASE AND SALE ACTIONS.
COMPANY MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, IN RELATION TO THE PLATFORM. COMPANY MAKES ABSOLUTELY NO
WARRANTIES WITH REFERENCE TO THIRD PARTY VENDOR/BROKER SOFTWARE AND/OR
SERVICES.

8. Limitation of Liability

UNDER NO CIRCUMSTANCES SHALL COMPANY, DIRECTLY OR INDIRECTLY, BE LIABLE TO
USER OR ANY OTHER PERSON, ENTITY, PARTNERSHIP, ORGANIZATION, ASSOCIATION OR
OTHERWISE FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL OR
PUNITIVE DAMAGES FOR ANY MATTER ARISING FROM OR RELATING TO THIS AGREEMENT, THE
PLATFORM OR THE INTERNET IN GENERAL, INCLUDING, WITHOUT LIMITATION, USER’S USE OR
INABILITY TO USE THE PLATFORM, ANY CHANGES TO OR INACCESSIBILITY OF THE
PLATFORM, DELAY, FAILURE, UNAUTHORIZED ACCESS TO OR ALTERATION OF ANY
TRANSMISSION OR DATA, ANY MATERIAL OR DATA SENT OR RECEIVED OR NOT SENT OR
RECEIVED, ANY TRANSACTION OR AGREEMENT ENTERED INTO THROUGH THE PLATFORM, ANY
DATA LOSS, OR ANY DATA OR MATERIAL FROM A THIRD PARTY ACCESSED ON OR THROUGH
THE PLATFORM, WHETHER SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
OR OTHERWISE. IN NO EVENT SHALL COMPANY’S TOTAL LIABILITY FOR ANY DAMAGES
EXCEED THE TOTAL FEES PAID BY USER TO COMPANY HEREUNDER. SOME STATES PROHIBIT

Terms of Service 383

© 2023 NinjaTrader, LLC

THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, THUS THIS
LIMITATION OF LIABILITY MAY NOT APPLY TO USER. IF USER IS DISSATISFIED WITH THE
PLATFORM, USER’S SOLE AND EXCLUSIVE REMEDY SHALL BE FOR USER TO DISCONTINUE USE
OF THE PLATFORM AND TERMINATE THIS AGREEMENT IN ACCORDANCE WITH SECTION 6.
COMPANY IS NOT LIABLE FOR ANY ITEMS VIEWED OR TRANSMITTED VIA THE PLATFORM.
COMPANY IS NOT LIABLE, DIRECTLY OR INDIRECTLY, FOR ANY ACTS TAKING PLACE WHICH
ARE NOT VIEWED OR TRANSMITTED VIA THE PLATFORM. COMPANY IS NOT OBLIGATED,
DIRECTLY OR INDIRECTLY, TO TAKE ANY STEPS TO PREVENT OR CORRECT ANY ILLEGAL,
ABUSIVE OR OTHERWISE INAPPROPRIATE ACTIVITY PERFORMED BY USER, NOR IS COMPANY
OBLIGATED, DIRECTLY OR INDIRECTLY, TO ARCHIVE OR OTHERWISE MAINTAIN OTHER
REPRODUCTION OF THE CONTENT THAT APPEARS OR IS TRANSMITTED ON THE PLATFORM
FOR FUTURE REFERENCE. COMPANY IS NOT LIABLE, DIRECTLY OR INDIRECTLY, FOR ANY
ACTION OR INACTION WITH RESPECT TO ANY CONTENT ON THE PLATFORM. COMPANY IS
NOT RESPONSIBLE, DIRECTLY OR INDIRECTLY, FOR COMPLIANCE OR LACK THEREOF BY ANY
BROKER(S) WITH RESPECT TO ANY APPLICABLE LAWS AND REGULATIONS INCLUDING, BUT
NOT LIMITED TO, THOSE LAWS REGARDING OR PERTAINING TO THE TRADING OF SECURITIES.
COMPANY MAKES SIGNIFICANT EFFORTS MEETING OR EXCEEDING INDUSTRY STANDARDS TO
INSURE THE SECURITY AND/OR FUNCTIONALITY OF PLATFORM RELATED INTERNET
TRANSMISSIONS BUT, DUE TO THE INHERENT NATURE OF THE INTERNET, CANNOT GUARANTEE
OR WARRANT FUNCTIONALITY AND/OR SECURITY OF INTERNET TRANSMISSIONS.

9. Indemnification

User agrees to indemnify, hold harmless and defend Company, its shareholders, directors, officers,
employees and agents from and against any action, cause, claim, damage, debt, demand or liability, including
reasonable costs and attorney’s fees, asserted by any person, entity, partnership, organization, association
or otherwise, arising out of or relating to: (a) this Agreement, (b) User’s use of the Platform, including any
data or work transmitted or received by User, and (c) any unacceptable use of the Platform, including,
without limitation, any statement, data or content made, transmitted or republished by User which is
prohibited as unacceptable in section 5.

10. Privacy

a. General. When reasonably practicable, Company shall attempt to respect and maintain User’s
privacy. Company shall not monitor, edit, or disclose any personal information about User or User’s
account, including its contents or User’s use of the Platform, without User’s prior written consent unless
Company has a good faith belief that such action is necessary to: (i) comply with any legal process or other
legal requirements of any governmental authority, (ii) protect and defend the rights, interests, or property of
Company, (iii) enforce this Agreement, (iv) protect the interests of users of the Platform other than User or
any other person, entity, partnership, organization, association or otherwise, or (v) operate or conduct
maintenance and repair of Company’s services or equipment, including the Platform as authorized by law.
User has no expectation of privacy with respect to the Internet in general. User’s IP address and Platform
generated GUID is transmitted and recorded with each User session.

c. Billing/Credit or Charge Card Information. Company shall not share billing/credit or charge card
information provided by the User with third parties unless written or electronic permission is expressly
received from User.

d. Use of Aggregate Information. Company may, at its sole discretion, share aggregate information
(e.g. number of website visits, demographic breakdown, etc.) to third parties by combining aspects of
personal information into an anonymous pool.

e. Security of Personal Information. Information security is of the utmost importance to Company,
however, no transmission of data over the Internet is guaranteed to be completely secure. Company shall

NinjaTrader 8384

© 2023 NinjaTrader, LLC

not guarantee or warrant the security of any personal information transmitted to or from it. Any such
transmission is made solely at User’s risk.

f. Links. Company’s Platform website may contain links to other Internet websites. These websites are
not under the control of Company and Company does not control linked websites’ privacy and/or user
agreements. Company does not grant any warranties (express or implied) nor does Company have any
liability for information transferred and conferred to or from linked websites.

g. Audits. Company may gain access to customers account/trading records for auditing purposes.
Such records may be disclosed to an independent audit source. Reasonable and industry appropriate non-
disclosure agreement(s) shall pertain to third party auditing sources. Some configurations of Platform may
transmit trade execution data over the Internet to a secure database for the purpose of audit tracking.

11. Miscellaneous

a. Amendment. Company shall have the right, at any time and without prior written notice to or
consent from User, to add to or modify the terms of this Agreement, simply by updating the Company’s
website or by requiring the User to accept an updated Agreement upon installing and using the Platform.
User’s access to or use of the Platform after the date such amended terms are delivered to User shall be
deemed to constitute acceptance of such amended terms.

b. Waiver. No waiver of any term, provision or condition of this Agreement, whether by conduct or
otherwise, in any one or more instances, shall be deemed to be, or shall constitute, a waiver of any other term,
provision or condition hereof, whether or not similar, nor shall such waiver constitute a continuing waiver of
any such term, provision or condition hereof. No waiver shall be binding unless executed in writing by the
party making the waiver.

c. Severability. If any provision of this Agreement is determined to be illegal or unenforceable, then
such provision shall be enforced to the maximum extent possible and the other provisions shall remain fully
effective and enforceable.

d. Notice. All notices shall be in writing and shall be deemed to be delivered when sent by first-class
mail or when sent by facsimile or e-mail to either parties' last known post office, facsimile or e-mail address,
respectively. User hereby consents to notice by e-mail. All notices shall be directed to the parties at the
respective addresses given above or to such other address as either party may, from time to time, provide to
the other party.

e. Governing Law. This Agreement is made in and shall be governed by the laws of the State of
Colorado without reference to any conflicts of laws.

f. Dispute Resolution. Any and all disputes relating to or arising out of this Agreement including, but not
limited to, the arbitrability and the validity of this Agreement shall be resolved by binding arbitration in Denver,
Colorado.

g. Force Majeure. If the performance of any part of this Agreement by either party is prevented,
hindered, delayed or otherwise made impracticable by causes beyond the reasonable control of either party,
that party shall be excused from such performance to the extent that it is prevented, hindered or delayed by
such causes.

h. Survival. The terms and provisions of sections 2, 3, 4, 5, 7, 8, 9, 10 and 11 shall survive any
termination or expiration of this Agreement.

i. Entire Agreement. This Agreement constitutes the complete and exclusive statement of the
agreement between the parties with respect to the Platform and supersedes any and all prior or

Terms of Service 385

© 2023 NinjaTrader, LLC

contemporaneous communications, representations, statements and understandings, whether oral or written,
between the parties concerning the Platform.

NinjaTrader 8386

© 2023 NinjaTrader, LLC

7 Copyrights

NinjaTrader, LLC acknowledges the following:

Helix 3D Toolkit

Copyright (c) 2012 Oystein Bjorke

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

SharpDX

Copyright (c) 2010-2012 SharpDX - Alexandre Mutel

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyrights 387

© 2023 NinjaTrader, LLC

Trading Technologies, Inc.

NinjaTrader SuperDOM is licensed under U.S. Patent Nos. 6,766,304 and 6,772,132, U.K.

Patent Nos. GB 2,377,527 and GB 2, 390,451 and European Patent No. EP 1 319 211 from

Trading Technologies, Inc.

OpenSSL

Copyright (c) 1998-2004 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions

and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials provided

with the distribution.

3. All advertising materials mentioning features or use of this software must display the

following acknowledgment:

 "This product includes software developed by the OpenSSL Project for use in the

OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or

promote products derived from this software without prior written permission. For written

permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"

appear in their names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:

 "This product includes software developed by the OpenSSL Project for use in the

OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS'' AND ANY

EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

===

=

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

mailto:eay@cryptsoft.com)
mailto:tjh@cryptsoft.com)

NinjaTrader 8388

© 2023 NinjaTrader, LLC

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

This package is an SSL implementation written

by Eric Young (eay@cryptsoft.com).

The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following

conditions are adhered to. The following conditions apply to all code found in this distribution,

be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation

included with this distribution is covered by the same copyright terms except that the holder is

Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be

removed.

If this package is used in a product, Eric Young should be given attribution as the author of the

parts of the library used.

This can be in the form of a textual message at program startup or in documentation (online

or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and

the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials provided

with the distribution.

3. All advertising materials mentioning features or use of this software must display the

following acknowledgement:

 "This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"

 The word 'cryptographic' can be left out if the routines from the library being used are not

cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory

(application code) you must include an acknowledgement:

 "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS'' AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

mailto:eay@cryptsoft.com
mailto:eay@cryptsoft.com)
mailto:tjh@cryptsoft.com)
mailto:eay@cryptsoft.com)
mailto:tjh@cryptsoft.com)

Copyrights 389

© 2023 NinjaTrader, LLC

DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publicly available version or derivative of this code

cannot be changed. i.e. this code cannot simply be copied and put under another distribution

licence [including the GNU Public Licence.]

WPF Property Grid

Copyright © 2010, Denys Vuika

Licensed under the Apache License, Version 2.0 (the "License") you may not use this file

except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, softwaredistributed under the

License is distributed on an "AS IS" BASIS,WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND, either express or implied. See the License for the specific language governing

permissions and limitations under the License.

Newtonsoft.Json

Copyright (c) 2007 James Newton-King

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Protocol Buffers

Google's data interchange format

http://www.apache.org/licenses/LICENSE-2.0

NinjaTrader 8390

© 2023 NinjaTrader, LLC

Copyright 2008 Google Inc. All rights reserved.

https://developers.google.com/protocol-buffers/

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

* Redistributions of source code must retain the above copyrightnotice, this list of conditions

and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of Google Inc. nor the names of its contributors may be used to endorse

or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2007 Google Inc. All Rights Reserved.

MySql.Data

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

https://developers.google.com/protocol-buffers/

Introduction 391

© 2023 NinjaTrader, LLC

8 Introduction

Introduction Overview

This section of the Help Guide provides basic information about the NinjaTrader support

and education resources available to you as well as helpful information on getting started

with NinjaTrader.

› Getting Help & Support

› Getting Help & Support

› Learning to Use NinjaTrader

› Using 3rd Party Add-Ons

8.1 Getting Started

Getting Started with NinjaTrader
This help guide contains a wide range of information on configuring and using all aspects of

the NinjaTrader platform, but there a few key pages that can help you to get up and running

quickly with the most important concepts for new users: Getting connected to market data,

creating charts, saving a Workspace, and understanding the NinjaTrader Control Center.

· Getting Connected

· Understanding the basics of NinjaTrader Charts

· Understanding Workspaces in NinjaTrader

· Understanding the NinjaTrader Control Center

Once you have covered the basics, the following topics can help you to bridge the gap

between basic and advanced understanding of NinjaTrader's features:

· Using the Overlay Instrument Selector to quickly change instruments in a trading window

· Creating and restoring Backup files

· Utilizing Advanced Trade Management (ATM) Strategies

· Analyzing Trade Performance

· Understanding the advanced features of NinjaTrader windows and tabs

· Contacting the NinjaTrader Support team for platform-related help

· Accessing the Support Forum to consult with experts and fellow traders

Getting Started with NinjaScript
This help guide contains educational and reference resources for NinjaScript developers of

any experience level. The topics listed below can help you to quickly familiarize yourself with

the resources available.

https://support.ninjatrader.com
https://forum.ninjatrader.com/

NinjaTrader 8392

© 2023 NinjaTrader, LLC

· The Distribution section provides resources for third party vendors distributing their code to

end users

· The Editor section provides information on using the built-in NinjaScript Editor

· The Educational Resources section includes helpful information on a range of topics related

to NinjaScript development.

· The Language Reference includes descriptions and reference information for NinjaScript

properties, methods, and classes

o If you know what you are looking for, the Alphabetical Reference can be used to quickly

navigate to a specific Language Reference page

· The Strategy Analyzer is a fully featured module for backtesting and optimizing automated

strategies on multiple fitness metrics

If you have questions or require assistance outside of the scope of this help guide, there are

several resources available to get help from NinjaScript experts or other developers.

· The NinjaScript Development Support Forums feature discussion on general programming,

as well as more specific areas related to different types of NinjaScript objects

· The NinjaScript File Sharing Forums provide an outlet to share NinjaScript objects you

create, or to find publicly shared objects created by other developers

If you are looking to develop a specific type of NinjaScript object, the links below will lead you

to Language Reference documentation for that Type.

· Add On

· Bars Type

· Chart Style

· Drawing Tool

· Import Type

· Indicator

· Market Analyzer Column

· Optimization Fitness

· Optimizer

· Performance Metrics

· Share Service

· Strategy

· SuperDOM Column

8.2 Getting Help & Support

NinjaTrader Support Policy
It is critical that you can rely on the support and service you receive from your trading platform

provider. It is for this reason that NinjaTrader prides itself on its top quality support model that

ensures you receive lightning fast and accurate turn around to your support inquiries. We

https://forum.ninjatrader.com/forum/ninjatrader-8/add-on-development
https://forum.ninjatrader.com/forum/ninjascript-file-sharing/ninjascript-file-sharing-discussion

Introduction 393

© 2023 NinjaTrader, LLC

have found that delivering support electronically allows us to provide high levels of service in a

cost efficient manner. Electronic support inquiries can be processed thirty times faster than

traditional telephone support models which ensures that you get the necessary information

when you need it. No more leaving messages in phantom voice mail boxes and no more

waiting for thirty minutes in a telephone queue! Does this mean we do not have telephone

support? Absolutely not! If we can't resolve your support inquiry electronically, we will be on

the telephone with you right away and if required, login remotely to your PC to expedite a

resolution!

So how do I get support?
· This help guide is interlaced with over one hour of instructional video and images

· Pressing F1 key anywhere in the NinjaTrader application will load context sensitive help

· Daily live interactive online training sessions (schedule)

· View online tips and tutorials on our YouTube page.

· Some of our connectivity providers are staffed with NinjaTrader support specialists. Please

check with your provider to find out if they have live support for NinjaTrader.

· NinjaTrader Support Forum available 24 hours a day 7 days a week

· Send "Mail To Support" from the Help menu of the NinjaTrader application

· Send an email to the NinjaTrader support team

Support Priority
It is preferred that you send us a support email from the "Mail To Support" sub menu under
the Help menu of the NinjaTrader application since it provides us with additional trouble
shooting information, however, when sending an email to support, please provide the
following information:
· Operating system

· Current NinjaTrader version (Can be accessed by selecting the Help menu from the Control

Center followed by the About menu item)

· Who you are connected to for data

· Explanation of your problem

8.3 Learning to Use NinjaTrader

NinjaTrader provides a variety of ways for free and licensed users to learn and master the

platform, including this help guide, the Video Library, the Support Forum, and weekly free live

training sessions.

Help Guides

Installation Guide
· The Installation Guide outlines the installation steps and provides the minimum

PC requirements for NinjaTrader.

https://ninjatrader.com/futures/livestreams
https://www.youtube.com/user/NinjaTraderLLC
https://forum.ninjatrader.com/
mailto:platformsupport@ninjatrader.com
mailto:platformsupport@ninjatrader.com
https://support.ninjatrader.com/s/article/NinjaTrader-Desktop-Installation-Guide

NinjaTrader 8394

© 2023 NinjaTrader, LLC

Connection Guides
· NinjaTrader is supported by numerous brokers around the globe, as well as a

variety of market data providers.

o You can create a connection to your broker or data feed by following the steps

outlined in the specific Connection Guide for your broker or data provider.

User Help Guide
· This user help guide contains sections related to all of the features within

NinjaTrader.

· In addition to accessing the help guide online, you can press the F1 key on your

keyboard within the NinjaTrader platform to pull up this guide at any time. The

guide will automatically open to a page related to the window you are viewing.

Video Library

New User Video Guides
· Reference quick tip videos in the New User Video Guides, designed to help you

get up and running with the NinjaTrader platform.

Video Library
· The NinjaTrader Video Library contains a variety of videos on various features

within the NinjaTrader platform.

NinjaTrader Support Forum

NinjaTrader Support Forum
· The NinjaTrader Support Forum is a great place to get and offer help, or discuss

a range of topics with NinjaTrader experts or other traders

· The Support Forum is also a great resource for NinjaScript developers looking

for a community of fellow developers.

· The Support Forum can be searched for specific items using the "search"

feature, which quickly resolves the majority of questions.

Free Live Events

Watch Live Futures Trading & Analysis

https://support.ninjatrader.com/s/article/Connecting-to-Your-Account-NinjaTrader-Desktop
https://support.ninjatrader.com/s/video-guides
https://www.youtube.com/user/NinjaTraderLLC
https://forum.ninjatrader.com/

Introduction 395

© 2023 NinjaTrader, LLC

· Join our Livestreams each weekday as we prepare, analyze and trade the

futures markets in real-time.

NinjaTrader Partner Events
· NinjaTrader is pleased to sponsor weekly partner events as a value added

service for our clients.

· These events are intended to provide increased exposure to the various trading

styles and methods taught by our 3rd Party add on and Educational partners.

· You can email the NinjaTrader sales team today to be added to the partner event

email list.

8.4 Using 3rd Party Add-Ons

3rd Party Add-Ons
NinjaTrader’s comprehensive and flexible development environment empowers 3rd Party

Developers to build rich and integrated apps. These add-ons allow for endless customization

& expansion, leveraging 1000s of 3rd party indicators, strategies, and apps to build a custom

trading setup to meet your requirements.

Installing Add-Ons

Installing 3rd Party Add-Ons
After you have downloaded 3rd Party Add-On, they can be imported from the

NinjaTrader Control Center.

 1. From the Control Center window select the menu Tools > Import> NinjaScript

Add-On... to open the "Import" dialog window

 2. Select the file you want to import

 3. Press the "Import" button

Notes:

1. Your vendor may have different instructions for installing their 3rd Party

Add-Ons. Please check with the vendor for any specific guidelines they

may require for installing their products.

2. If you receive an error during importing "You have custom NinjaScript

files on your PC that have programming errors...", please see the

following post for information on how to resolve: How do I resolve

NinjaScript Programming Errors?

Understanding the impact of installing Add-Ons

https://ninjatrader.com/futures/livestreams
mailto:sales@ninjatrader.com

NinjaTrader 8396

© 2023 NinjaTrader, LLC

Understanding the impact of installing Add-Ons
NinjaTrader provides a development environment allowing low-level access to 3rd

party developers to build integrated indicators, drawing tools, automated strategies

and more. An Add-On with software bugs can have adverse effects on the entire

NinjaTrader application. These add-ons also natively run on your computer,

therefore, its important to only install 3rd Party Add-Ons from sources you trust.

The following symptoms post installation could indicate an Add-On is installed

causing negative impact:

· Windows become slow or unresponsive to user interaction

· Market data becomes unusually slow to load or update

· Standard features fail to work as designed

· Other scripts fail to work as designed (custom scripts that work on their own

may conflict with each other)

· Lost connections from market data providers

· Error messages are generated at various times

· The entire application shuts down abruptly and without warning

If you run into any of the above symptoms post installation of a 3rd Party Add-Ons

please try uninstalling the 3rd Party Add-Ons to see if the problem goes away and

contact the 3rd party developer for support.

Updating and Removing Add-Ons

Updating Add-Ons
Developers can issue updates to fix issues or add functionality. If you have

obtained an updated copy of your 3rd Party Add-On, you can import the new

version using the same steps you originally used to install by going to Tools >

Import > NinjaScript Add-On... and selecting the new file. During the import

process, you will be given an option to replace the current Add-Ons which exists

on your PC, which you should accept for each file you wish to update.

Note: You should always restart NinjaTrader after installing an update to

ensure you are running the most recent code.

Removing 3rd Party Add-Ons
Should you identify a problem, or suspect a 3rd Party Add-On is causing

problems, you may wish to remove these files from your system. The exact steps

Introduction 397

© 2023 NinjaTrader, LLC

to remove will depend on how it was distributed. 3rd Party Add-ons can be

installed either as a "Protected Assembly" or "Non-Protected". Please see the

information below on how to proceed.

Removing Protected 3rd Party Add-Ons Assemblies
If you have purchased a 3rd Party Add-On, it is likely distributed as a Protected

Assembly. These protected files can be uninstalled by going to Tools > Remove

NinjaScript Assembly. If you cannot find the 3rd Party Add-On from this dialog,

your Add-On is most likely a non-protected assembly.

Removing Non-Protected 3rd Party Add-Ons
Most free 3rd Party Add Ons downloaded from online forums and other

communities are distributed as unprotected c# scripts. These open-source files

can be uninstalled using the following steps:

1. From the Control Center window select the menu New > NinjsScript Editor to

open the NinjaScript Editor

2. On the right side, under the "NinjaScript Explorer" expand the type of folder of

the 3rd Party Add-On you are trying to uninstall

3. Locate the name of the 3rd Party Add-On (Note: 3rd Party Add-Ons can be

installed in several sub-folders)

4. Right click on entry > select "Remove"

Temporarily Disabling Add-Ons

Temporarily disabling Add-Ons
Should you start to experience an issue with NinjaTrader, the first step to isolate

the problem is to determine if you continue to experience issues without Add-Ons

enabled referred to as 'Safe Mode'. To enable safe mode, please use the following

steps:

1. Exit NinjaTrader

2. Hold the CONTROL key on your keyboard and double-click the NinjaTrader

icon.

3. Keep the CONTROL key held down until you see the NinjaTrader Control

Center

4. Once you see the Control Center, you can verify you are in safe mode by going

to Help > About.

NinjaTrader 8398

© 2023 NinjaTrader, LLC

Once in safe mode, you may use NinjaTrader without 3rd party add-ons, allowing

you to verify if a problem no longer is present or allowing you to remove a 3rd party

add-on.

Configuration 399

© 2023 NinjaTrader, LLC

9 Configuration

Configuration Overview

This section will provide you with guidance regarding various NinjaTrader configuration

options and help you setup NinjaTrader for the first time.

› Installation

› Connection

› Options

› Performance Tips

9.1 Installation

Installation Overview

Please see the below resources for installing NinjaTrader, if you run into any problem

installing the product please contact us at platformsupport@ninjatrader.com and we will

quickly assist.

› Minimum System Requirements

› Installation Guide

› Clear Browser Cache

9.1.1 Minimum System Requirements

Minimum PC Requirements
Your PC must meet the minimum requirements listed below to run NinjaTrader

Windows 10, Windows 11, Windows Server 2016 or later 64-bit

· 1 gigahertz (GHz) or faster 64-bit processor

· 2GB RAM

· Microsoft .NET Framework 4.8

· (pre-installed on most PC’s and can be downloaded here: Microsoft .NET Framework)

· Screen resolution of 1024 x 768

· DirectX10 compatible graphics card highly recommended

Recommended PC Specifications
NinjaTrader downloadable desktop platform was designed to take full advantage of modern

PC architecture. To achieve the highest possible level of performance, NinjaTrader will utilize

all available CPU cores and additional memory resources. Depending on your actual usage

https://www.microsoft.com/en-us/download/details.aspx?id=30653

NinjaTrader 8400

© 2023 NinjaTrader, LLC

with NinjaTrader, you may need more or less resources than the average user. Additional

memory will be of direct benefit when running strategy optimizations, and the amount of

additional memory needed is proportional to the number of CPU cores available.

· 2 (GHz) or faster quad core 64-bit processor

· 8 GB RAM

· DirectX 10 compatible graphics card

· SSD Hard Drive

9.1.2 Installation Guide

Follow the process outlined below to install NinjaTrader on your PC. To view minimum

system requirements or recommended PC specifications, see the Minimum System

Requirements page.

Installation Steps
1. If you do not have the Microsoft .NET Framework 4.8 installed on your PC please

download and install it from here.

2. Log in to your NinjaTrader account

3. If you have an existing license you can import it by going to Settings, Plans, and then

selecting Import a License. If you are upgrading NinjaTrader, you can skip this step and it

will automatically be imported once upgraded.

4. Select Download on the left menu then download and install NinjaTrader

5. Firewall Software – NinjaTrader contacts our server on application log in for user

validation. If you have a firewall, anti-spyware or other such software running on your PC,

please ensure that you grant NinjaTrader permission to access the internet or you may

receive a log in error.

6. Once the installation is complete, please review the appropriate Connection Guide to

establish a connection to your broker or market data feed service provider

Warning:

· Please also take care that your Documents\NinjaTrader 8\ folder is excluded from any
backup operation (cloudbased like Dropbox / OneDrive, or local), as this can create file
access conflicts

9.1.3 Clear Browser Cache

How to clear your browser cache
In order to download or upgrade NinjaTrader you may need to clear your browser cache.

Common errors that occur when this is the case are Cabinet File Errors and errors involving

Temporary Files. If you receive one of these errors when installing or updating NinjaTrader

please follow the steps listed below to accomplish a successful download of the NinjaTrader

application.

Internet Explorer:

https://dotnet.microsoft.com/download/dotnet-framework/net48
https://account.ninjatrader.com/welcome
https://support.ninjatrader.com/s/article/Connecting-to-Your-Account-NinjaTrader-Desktop

Configuration 401

© 2023 NinjaTrader, LLC

1. Select the Tools menu in the top right of the browser

2. Select the menu item Internet Options

3. Select the "Delete your browsing history" button.

4. Attempt the download again

Chrome:

1. Select the Chrome Menu button which is 3 horizontal lines in the top right of the browser

2. Select Tools

3. Select "Clear browsing data"

4. Select all check boxes and confirm the browser clear.

5. Attempt the download again

Firefox:

1. Select the "Firefox" menu button in the top left of the browser

2. Select Options.

3. In the advanced panel select the Network tab

4. Under the Cached Web Content section click "Clear Now"

5. Attempt the download again

9.2 Connecting

The connection to your NinjaTrader account is done within the Log In and Trading Mode

windows. Additional connection management is done within the Connection menu in the

Control Center. To configure connections from additional providers, Multi-provider must be

enabled.

Connecting Overview

You must establish an account connection to either a NinjaTrader provided connection,

your broker or a data feed in order to receive market data and trade either live or in

simulation.

› Log In

› Trading Mode

› Playback Connection

› Multi-provider Connections

9.2.1 General

The General section sets general application options.

Understanding general properties

NinjaTrader 8402

© 2023 NinjaTrader, LLC

General Properties
General properties can be set in the Options window with the General category

selected. Each available property is described below:

Preference

s

Confirm on

window or

tab close

Enables or disables if the display of a

dialogue box to confirm on tab or window

close to prevent accidental window closures.

Custom

performance

metric(s)

Sets which custom performance metrics you

would like included in account performance

and strategy analyzer results. Performance

Metrics are NinjaScript objects which can be

created via the NinjaScript Editor and

installed by third party vendors.

Email log

alert

Sets the email address that you would like

any alert messages from the log tab in the

Configuration 403

© 2023 NinjaTrader, LLC

messages to Control Center to be sent to automatically.

Leaving this field blank disables this feature.

Note: For emails to be sent, you must first

define a default email account to be used via

the Share Services property below.

Global

Drawing

Objects

Across

Workspaces

Sets whether Global Drawing Objects

should be applied across all open

workspaces.

Global link

button

across

workspaces

Sets whether the global link button will work

across all open workspaces or only the

current workspace.

Language Sets the language you would like NinjaTrader

to use. Changing this property requires a

restart.

Multi-provider Sets whether the ability to configure and

connect to other providers is available. See

the Enabling/Disabling Multi-provider Mode

section of the Help Guide.

Reopen all

previously

open

workspaces

at startup

Enables or disabled the ability to open

multiple workspaces at start up.

Save

Username

on Log In

window

Saves the last used Username to the Log In

window for next log in.

Share

services

Manages your defined social network and

email accounts. You must first set up a

Share Service to enable sharing functionality

NinjaTrader 8404

© 2023 NinjaTrader, LLC

from NinjaTrader. See the "Managing Sharing

Services" section below for more

information.

Show

account

numbers and

balances

Sets whether account values that may be

considered private are displayed or have

asterisks in their place to hide them.

Show tool

tips

Sets whether description tool tips will be

displayed. Note: Tool tips that show cut-off

text will still function.

Skin Sets the skin you would like to use for

NinjaTrader. Changing this property requires

a restart. Skins are NinjaScript objects which

can be created and modified.

Symbology

display style

Selected the style in which symbols are

displayed across all your NinjaTrader

platforms.

Time zone Sets the time zone that NinjaTrader will use.

All charts and market data will be displayed in

this time zone. Time zones are set to your

local PC time by default.

Versions of

recovery

workspaces

Indicates how many version back of saved

recovery workspaces to retain

Sounds

Play

consecutivel

y

Sets whether sounds will be queued to play in

sequence without overlap, or if simultaneous

sounds will play at the same time.

Alert Sounds All alert sounds are listed in alphabetical order

by alert name. Sound files can be replaced by

clicking any of these fields, or muted by

Configuration 405

© 2023 NinjaTrader, LLC

clicking the small X icon to remove the

assigned sound file.

Managing Share Services

Share Services
The Share Services dialog allows you to set up your various social media

accounts. NinjaTrader ships with Sharing Adapters for Email and Text message

via email, and it is possible for developers to create their own ShareService in

NinjaScript to access other social media outlets.

Depending on the available sharing service you are configuring changes the

settings needed to complete the setup. Please see the below guides for setting up

each of the sharing services pre loaded with NinjaTrader 8

Email Service Setup

NinjaTrader 8406

© 2023 NinjaTrader, LLC

To setup an Email account that can be used to send messages from NinjaTrader

select Email from the available section and click add. The Properties section is

now available to enter the needed information to set up your Email Share

Service. NinjaTrader needs valid SMTP email server that it can use to send

outbound emails. Typical settings for some of the most common providers can be

quickly entered by selecting your provider from the Preconfigured settings menu.

Credent

ials

Service

name

Sets the name of the Share Service that will be

used to identify this account when selecting a

service to which to share content

Preconfi

gured

settings

Provides typical settings for some of the most

common providers

Configuration 407

© 2023 NinjaTrader, LLC

Connecti

on -

Server

Sets the server address used for the SMTP

connection

Connecti

on - Port

Sets the server port used for the SMTP

connection

Default Sets whether is the default sharing service to be

used for automated sharing from NinjaScript.

Note: You can only have one default per service

type.

Connecti

on - SSL

Sets whether your email server uses Secure

Sockets Layer (SSL) security

Email

address

The Email Address that will be used for the

"From" field when sending outbound emails.

User

name

Sets the server user name

Passwor

d

Sets the server password

Test Sends a test email through the server

Notes: Port 465 is not supported for SMTP servers.

AOL uses an App Password for the Password field. This is different than your

AOL Password and needs to be configured within AOL's Account Security

settings

Text Message Via Email Service Setup
To setup a text messages account that can be used to send messages from

NinjaTrader select Text message via email from the available section and click

add. The Properties section is now available to enter the needed information to

set up your Text message via email Share Service. An email share service must

be set up before configuring the Text message via email share service.

NinjaTrader needs SMS address and MMS address for the entered phone

NinjaTrader 8408

© 2023 NinjaTrader, LLC

number. Typical settings for some of the most common providers can be quickly

entered by selecting your provider from the Preconfigured settings menu.

Credent

ials

Service

name

Sets the name of the Share Service that will be

used to identify this account when selecting a

service to which to share content

Preconfi

gured

settings

Provides typical settings for some of the most

common providers

Default Sets whether is the default sharing service to be

used for automated sharing from NinjaScript.

Note: You can only have one default per service

type.

Email The Email Share Service that will be used to send

the text message from

Configuration 409

© 2023 NinjaTrader, LLC

Phone

number

The phone number that will receive the text

messages

SMS

address

The service providers SMS address for sending

text messages (do not enter a phone number

here)

MMS

address

The service providers MMS address for sending

multimedia messages (do not enter a phone

number here)

9.2.1.1 Creating your own Skin

You can create your own skin by creating a copy of the skin template located in the "My

Documents > NinjaTrader > Templates > Skins" directory. Do not modify skin templates

directly, as on each new installation they will be overwritten by the NinjaTrader installer.

Instead, first make a copy of a skin directory, then rename the folder to the desired skin name.

On restart of NinjaTrader, the new skin directory will be detected, allowing you to switch over

to the skin to activate it.

Skin File Structure
Skins consist of XAML files corresponding to different windows in the NinjaTrader platform.

Each pre-built skin includes a "BluePrint.xaml" file that contains most of the shared

application keys that can be used. In addition to this file, you will find individual XAML files for

windows such as FXPro, BasicEntry, and Level2.

Creating A New Skin
The most efficient way to customize a skin for NinjaTrader is to begin with an existing skin

located in the C:\Users\<user>\Documents\NinjaTrader 8\templates\Skins directory on your

PC. Each XAML file in the Skins that come pre-loaded with NinjaTrader is fully commented,

with notes pointing to the areas of the application affected by each logical grouping of XAML

tags. The following general process can be used when creating a new skin.

· Determine which pre-built skin most closely resembles your end goal

· Copy the folder containing all of the skin's files, then paste and rename the folder in the

same directory

o The files in this new folder will comprise your new skin

· Open BluePrint.xaml for your new skin, and begin to edit the XAML tags as desired

· If you wish to test a change at any time, first save the file you are working on, then close

and restart NinjaTrader to view the change

· When finished with BluePrint.xaml, repeat the process for each of the other files

https://msdn.microsoft.com/en-us/library/Cc295302.aspx

NinjaTrader 8410

© 2023 NinjaTrader, LLC

o These other files are significantly smaller than BluePrint.xaml

9.2.2 Log In

When starting NinjaTrader you will be presented with a Log In window.

Warning: Your Log In is only for your NinjaTrader account, your entitlements, and Server

side ATM Templates. All items within NinjaTrader on your local computer will be available

to anyone who logs in: Configured Multi-provider connections, NinjaScripts, Workspaces,

etc.

Configuration 411

© 2023 NinjaTrader, LLC

Log In credentials
You will log in with the Username and Password you use on account.ninjatrader.com

If you do not have an account, you can register for an account at

account.ninjatrader.com/register

You can also set up a log in using your Google or Apple account. This is only available for a

demo.

Log In with Username and Password
Once you have your NinjaTrader credentials, you can enter them under the Username and

Password fields, then press Log In

Log In with Google or Apple
If you registered for a demo using your Google or Apple account, you can select to connect

with those options.

Forgot Username or Password
To retrieve a forgotten username or password select Need help?.

9.2.3 Trading Mode

After Log In you will be presented with the Trading Mode window.

Live Trading
The Live Trading section will display the current state of your live account. If your account is

live and funded, you can select Start Trading to connect.

Simulation

https://account.ninjatrader.com/welcome
https://account.ninjatrader.com/register

NinjaTrader 8412

© 2023 NinjaTrader, LLC

The Simulation section will display the current start of your simulation account. If your account

is active your can select Launch to connect.

Note: If Multi-provider is enabled the Trading Mode screen will be skipped. You can then

select what to connect to under the Connections menu of the Control Center.

9.2.4 Playback Connection

Playback Connection
The Playback connection is a default connection installed with NinjaTrader. Its purpose is for

replaying NinjaTrader recorded data files or historical data. See the Playback Connection

section of the Help Guide for further details.

9.2.5 Multi-provider Connections

Multi-provider Connection Overview

To enable Multi-provider, within the Control Center go to Tools, Options, and check Multi-

provider. See the Enabling/Disabling Muli-provider Mode section of the Help Guide.

› Connecting to Multi-provider Connections

› Connecting to Kinetick - End Of Day (Free)

› External Data Feed Connection

› Simulated Data Feed Connection

9.2.5.1 Connecting to Multi-provider Connections

Understanding account connections

Account Connections
Account connections can be managed under the Control Center window by

selecting the Connections menu. Connected connections will have a green circle

next to them. You can select what connections you want to connect to or

disconnect to. When Multi-provider is enabled, you will be able to configure any

additional connection or connect to ones already configured. See the

Enabling/Disabling Muli-provider Mode section of the Help Guide. A connection is

where you set up your user name, password and any relevant information that

allows you to establish a connection to your broker and/or data feed service.

Configuration 413

© 2023 NinjaTrader, LLC

How to create an account connection

Creating an Account Connection
Within the Connections menu you can add a connection, change a connection or

remove a connection. The following steps use Kinetick as the connectivity

provider. This provider is used for demonstration purposes. You can access

broker/technology specific connection help information via the NinjaTrader

Connection Guide.

To create an account connection:

1. Open the Connections window by going to the Connections menu within the

Control Center and selecting "configure"

2. Select the connection provider you want to create a connection for in the

Available section and select "add".

https://ninjatrader.com/Help-Connection-Guides

NinjaTrader 8414

© 2023 NinjaTrader, LLC

3. After selecting "add" you will be prompted to supply the following information:

· User defined connection name (Only use alphanumeric characters in the

connection name)

· Optionally select "Connect on start up" to automatically connect to this

connection when NinjaTrader is started.

Note: Please test and ensure your connection is working as expected before

using this option as it is possible to input incorrect credentials which could

prevent the startup of NinjaTrader.

· Various Settings which are specific to your connection. Please see the

NinjaTrader Connection Guide for more information.

https://ninjatrader.com/Help-Connection-Guides

Configuration 415

© 2023 NinjaTrader, LLC

4. Press the "OK" button to finish configuring the connection. Now in the

NinjaTrader Control Center connections menu you will be able to select the newly

created connection by its connection name to connect.

Warning: All configured Multi-provider connections will be saved to your local

system and anyone logging in on your local system will be able to access

them.

9.2.5.2 Connecting to Kinetick - End Of Day (Free)

What is Kinetick?

Kinetick provides FREE end of day data for stocks, futures and forex. Real-time

data service starts as low as $60 per month and you can qualify to have your CME

Globex Futures exchange fees reduced with a qualified brokerage account. Please

visit www.kinetick.com for more detailed information.

http://www.kinetick.com

NinjaTrader 8416

© 2023 NinjaTrader, LLC

How to connect to Kinetick for FREE end of day data

Connecting to Kinetick
The Kinetick - End Of Day (Free) connection provides FREE end of day data for

stocks, futures and forex. It is built into NinjaTrader and can be used directly out of

the box with no additional steps. (Kinetick is not available for older versions of

NinjaTrader 6.5 and earlier)

To connect to Kinetick for FREE end of day data:

1. Left mouse click on the Connections menu from the Control Center

2. Left mouse click on the Kinetick - End Of Day (Free) menu item

Please visit www.kinetick.com for information on signing up for real-time data.

9.2.5.3 External Data Feed Connection

External Data Feed Connection
The External Data Feed connection is a default connection installed with NinjaTrader. In

combination with the DLL Interface, it provides 3rd party applications the ability to drive

NinjaTrader with market data.

This connection targets those traders who have programming experience and wish to create

a market data link between their charting or custom application and NinjaTrader which allows

them to use the full functionality of NinjaTrader simulator. Please refer to the Ask and Bid

functions of the DLL Interface.

9.2.5.4 Simulated Data Feed Connection

Simulated Data Feed Connection
The Simulated Data Feed connection is a default connection installed with NinjaTrader. Its

purpose is to play internally generated market data for simulation.

This connection can be used for:

· Offline simulated training and practice of NinjaTrader

· Offline testing of strategies

http://www.kinetick.com

Configuration 417

© 2023 NinjaTrader, LLC

· Offline testing of trade automation using NinjaScript strategies or the NinjaTrader

Automated Trading Interface

Notes:

1. This connection is a random internally generated market and has NO correlation to real

market data

2. This connection does not provide historical data

Tip: The Simulated Data Feed will continuously run and generate data once connected

and drive all NinjaTrader windows, however please keep in mind the Trading Hours

definitions used will still govern for which time periods your window (i.e. Chart, Market

Analyzer, SuperDOM Indicators and Columns) can receive the data to display.

Sim Feed Start Price
The Simulated Data Feed will automatically use the last price from the last connection as

the starting price for the instrument.

Defining the Sim Feed Start Price
To manually set an instrument starting price for use with the Simulated Data Feed:

NinjaTrader 8418

© 2023 NinjaTrader, LLC

1. Left mouse click on the Tools menu in the Control Center and select the Instrument menu

item

2. Search for the desired instrument and select it

3. Press the edit button and set a Sim feed start price value

Once you are connected to the Simulated Data Feed connection, the instrument will begin

simulated trading at the Sim feed start price value.

Trend Slider
The Trend slider control will appear once connected to the Simulated Data Feed. Left

mouse click on the slider and drag it up or down to cause the Simulated Data Feed to move

in that direction.

9.3 Options

Options Overview

To access the Options menu, select the Tools menu within the NinjaTrader Control Center

and select the menu item Options.

Various options can be configured inside the Options menu.

› General

› Trading

› Strategies

› Automated trading interface

› Market data

9.3.1 Enabling/Disabling Multi-provider Mode

Multi-provider mode can be enabled or disabled under Tools> Options.

Configuration 419

© 2023 NinjaTrader, LLC

Multi-provider disabled
When logging in you will be presented with the Trading Mode window which will display the

states of your Live and Simulation account. You will be able to select what account you want

to connect to. Connecting to Live will only connect you to your live account, so that you don't

trade to simulation in error. Connection to Simulation will connect you only to your simulation

account, so you don't trade live in error. After you make a selection, you will be connected and

taken to NinjaTrader. Optionally, you can connect to both Live and Simulation at the same

time. To do so, after making your initial connection, you can select either Live or Simulation

under the Connections menu.

Shadow strategies for local ATMs will be disabled since there is no local simulation account

to send the orders to. Additionally, risk and commissions templates can't be applied to the

playback connection, since they need to be applied to the local simulation account.

When Multi-provider is disabled you can opt-in to using Server side ATMs under Tools>

Options> Strategies. See the Server Side vs Local ATMs section of the help guide to

understand how they function differently. Server side ATMs cannot be used will connected to

Playback.

Multi-provider enabled
When logging in you will be taken directly to NinjaTrader. You can connect to any configured

connections under the Connections menu. Any connections set to Connect on start up will

NinjaTrader 8420

© 2023 NinjaTrader, LLC

auto connect. Under Connections the configure button will be available to set up additional

providers.

Local simulation accounts will always be available when Multi-provider is enabled. A Global

simulation mode will be available under Tools and is enabled by default to ensure trades are

not made to live accounts in error.

Warnings:

Configured Multi-provider connections will be available to any user that connects to

NinjaTrader on your local computer.

If you opted into using Server side ATMs (beta) and you then enable Multi-provider mode,

you will be switched to local ATMs. Server side ATMs are only available for the NinjaTrader

connection. See the Server Side vs Local ATMs section of the help guide to understand

how they function differently.

9.3.2 Trading

The Trading category sets all trading properties and allows configuration of simulation

accounts.

Understanding trading properties

Trading Properties
Trading properties can be set in the Options window with the Trading category

selected. There are several properties each are described below:

Configuration 421

© 2023 NinjaTrader, LLC

General

Confirm

order

placement

Sets if NinjaTrader will open a popup to

confirm each order placed preventing an

accidental order submission.

Start in

global

simulation

mode

Sets if NinjaTrader will start with Global

Simulation Mode enabled preventing live

orders from being submitted until you

manually disable Global Simulation Mode.

This is only available if Multi-provider is

enabled.

Use order

entry hot

keys

If checked NinjaTrader will allow you to

submit orders using the order-entry Hot

Keys, which can be defined in the Hot Keys

window. See the "Hot Keys" section for more

information.

Calculations

NinjaTrader 8422

© 2023 NinjaTrader, LLC

Use Total

PnL for

Show

realized PnL

when flat

Enables or disabled Total PnL rather than

Gross PnL being displayed in order entry

windows when Show realized PnL when flat

is also enabled.

Use last

price for PnL

Sets if the last trade price is used to calculate

profit and loss, or if the Bid will be used for

long positions and the Ask for short positions.

Simulator

Enforce

immediate

fills

Sets if orders on simulation accounts will be

filled immediately instead of using the

NinjaTrader advanced simulation fill engine.

Enforce

partial fills

Sets if partial fills will be forced on simulation

orders. When disabled, orders are filled

based on the NinjaTrader advanced

simulation fill engine.

Simulation

color

Sets the background color of any order

interface that has a simulation account

selected. This feature is disabled if set to

"Transparent".

Auto close

position

Enable Sets if NinjaTrader will close out any positions

automatically at the specified time. For see

more information, see the "Understanding the

auto close position function" section below.

Instruments Sets the instruments for which NinjaTrader

will attempt to close positions at the specified

time. This is set for each individual order-

entry window, and can be set here by

selecting the Instruments field and clicking

add in the window that appears.

Configuration 423

© 2023 NinjaTrader, LLC

If Auto close on all instruments is checked,

this will globally work on all instruments in the

platform, meaning disabling Auto close on an

order entry window will have no affect since it

is already globally set to close.

Time Sets the time at which NinjaTrader will

attempt to automatically close positions held

in the instruments set in the instruments field.

Note: The time will be based upon the

timezone set up in the General section of the

Options window.

Understanding the auto close position function

Auto Close Position
NinjaTrader can be set to automatically attempt to close a position at a designated

time that is configured in the Tools > Options > Trading menu, you can also add

instruments through the NinjaTrader trading interfaces via right click and selecting

Auto close position.

Auto

close

position

Enable Sets if NinjaTrader will close out any positions

automatically at the specified time.

Instrume

nts

Sets the instruments for which NinjaTrader will

attempt to close positions at the specified time.

This is set for each individual order-entry window,

NinjaTrader 8424

© 2023 NinjaTrader, LLC

and can be set here by selecting the Instruments

field and clicking add in the window that appears

If Auto close on all instruments is checked, this

will globally work on all instruments in the

platform, meaning disabling Auto close on an

order entry window will have no affect since it is

already globally set to close.

Time Sets the time at which NinjaTrader will attempt to

automatically close positions held in the

instruments set in the instruments field. Note:

The time will be based upon the timezone set up

in the General section of the Options window.

Note: This feature is not available to Direct Edition license users. Please

contact platformsales@ninjatrader.com for upgrade options.

9.3.3 Strategies

The Strategies category sets options regarding handling of ATM Strategies and NinjaScript

strategies for automated system trading.

Understanding ATM strategy properties

ATM Strategy Properties
This property group sets ATM strategy handling options.

ATM Strategy

Configuration 425

© 2023 NinjaTrader, LLC

Use server

side ATMs

(beta)

When enabled the new ATMs that work

server side will be available. This is only

available when Multi-provider is disabled.

See the Sever Side ATMs section of the

help guide to understand the differences

between them and the legacy ATMs.

Modify inner

bracket

When enabled, and when scaling into a

position managed by an ATM Strategy, the

inner bracket of stop loss and profit target

order quantities will be modified to reflect

the increased position size. When disabled,

the outer bracket will be modified. This

setting is only available when Use server

side ATMs is disabled.

Modify nearest

bracket

When enabled, the nearest bracket of stop

loss and profit target order quantities are

modified when changing the quantity of a

stop loss or target order in a multi-target

ATM Strategy. This property is used in

conjunction with "Modify inner bracket". For

example, if both "Modify inner..." and "Modify

nearest..." are enabled and you modify

target 2 from 1 contract to 2 contracts,

target 1 order size will be reduced by 1. If

you had "Modify inner..." disabled, target 3

order size will be reduced by 1. This setting

is only available when Use server side

ATMs is disabled.

Show

simulated

stops as

pending

 When enabled, simulated stops will show

with an order start of Trigger pending. This

setting is only available when Use server

side ATMs is disabled.

Use last price

for auto trail

and auto

breakeven

When enabled, the last traded price is used

to trigger auto trail or auto breakeven

functions. When disabled, the Bid is used

for long positions, and the Ask is used for

NinjaTrader 8426

© 2023 NinjaTrader, LLC

short positions. This setting is only available

when Use server side ATMs is disabled.

Understanding NinjaScript properties

 NinjaScript properties
This property group controls how NinjaTrader will run your NinjaScript strategies.

Cancel entry

orders when a

strategy is

disabled

Enables or disables automatic cancellation

of a NinjaScript strategy's entry orders when

the strategy is disabled.

Cancel exit

orders when a

strategy is

disabled

Enables or disables automatic cancellation

of a NinjaScript strategy's exit orders when

the strategy is disabled.

On

connection

loss

Expand this category to set connection loss

handling parameters.

Handling Sets the action a NinjaScript strategy will

take after a disconnection occurs:

Configuration 427

© 2023 NinjaTrader, LLC

Keep Running: Keeps the strategy

running and logs the disconnection.

When the connection is reestablished,

the strategy will resume as if no

disconnection occurred.

Recalculate: The strategy will attempt

to recalculate its strategy position when

a connection is reestablished and held

for longer than 10 seconds.

Recalculations will only occur if the

strategy was stopped based on one of

the conditions below. Should the

connection be reestablished before the

strategy is stopped, the strategy will

continue running without recalculating as

if no disconnection occurred.

· If data feed disconnects for longer
than the time specified in
“Disconnect delay seconds”, the
strategy is stopped and the
disconnection is logged.

· If the order feed disconnects and
the strategy places an order while
disconnected, the strategy is
stopped and the disconnection is
logged.

· If both the data and order feeds
disconnect for longer than the time
specified in “Disconnect delay
seconds”, the strategy is stopped
and the disconnection is logged.

Stop Strategy: Automatically stops the

strategy and logs the disconnection

when disconnected for more than

"Disconnect Delay Seconds". No action

will be taken when a connection is

reestablished.

Disconnect

delay seconds

Sets the number of seconds a

disconnection must persist before it is

NinjaTrader 8428

© 2023 NinjaTrader, LLC

recognized by the Disconnect Handling logic

Number of

restart

attempts

Sets the number of times NinjaTrader will

attempt to restart a strategy within the

"Restarts within x minutes" time span. The

strategy will only restart on a reestablished

connection when there have been fewer

restart attempts than "Number of restart

attempts" within the last "Restarts within x

minutes" time span. Otherwise the strategy

will simply halt, and no further restart

attempts will be made.

Restarts

within x

minutes

Sets the number of minutes for the

"Restarts within x minutes" time span used

by "Number of restart attempts".

9.3.4 Automated trading interface

The Automated trading interface section sets options for the Automated Trading Interface.

Configuration 429

© 2023 NinjaTrader, LLC

General Properties
This property group sets the general ATI (Automated trading interface) properties.

Genera

l

AT

Interface

Sets if the automated trading interface is enabled. This

will not affect the remaining API methods.

Server

port

Default port number for communicating with NinjaTrader via

the DLL interface.

Default

account

Sets the default account for automated trading. If no

account is specified the default account is used.

Ignore

duplicat

e OIF

files

Enables or disables ignoring duplicate OIF files. If enabled,

any OIF files with the same name during the current

NinjaTrader session will be ignored.

TradeStation Email Interface Properties
This property group sets the TradeStation email interface properties. Detailed information on

the TradeStation email interface can be found here.

Enabled Sets if the Tradestation email interface is enabled.

Order

handling

Submit Sets how NinjaTrader will handle orders submitted

from the email interface.

Market orders on TS fill: NinjaTrader will submit

market orders when NinjaTrader receives a

strategy order filled email notification from

TradeStation.

Submit as is: NinjaTrader will submit the

specified order type (market, limit and stop) when

a strategy active order email notification is

received from TradeStation. There are additional

NinjaTrader 8430

© 2023 NinjaTrader, LLC

properties that become available when this mode

is enabled that allow for some additional

protections to attempt to prevent the Tradestation

strategy from being out of sync with NinjaTrader,

in contrast to the "Submit and forget" method

below.

Submit and forget: NinjaTrader will submit the

specified order type (market, limit and stop) when

a strategy active order email notification is

received from TradeStation.

Delay

conversion of

unfilled

amount to

market after

TS fill (secs)

Number of seconds NinjaTrader will delay converting

any unfilled NinjaTrader orders after Tradestation

reports it has filled the orders. This only applies to the

order handling "Submit as is" mode.

Synchronizati

on timeout

(secs)

Number of seconds NinjaTrader will provide a pop up

notification if order are out of synchronization (For

example; TS reports a fill but NinjaTrader live order is

not filled)

Stop Orders

Submit Sets how NinjaTrader will handle stop orders

submitted from the email interface. This property only

applies to the order handling mode "Submit as is".

Submit as is: Submits the specified stop order

when NinjaTrader receives a strategy active order

email notification from TradeStation

Convert to stop limit: Submits a stop-limit order

when NinjaTrader receives a strategy active order

email notification from TradeStation for any stop

order type. The property "Limit price offset as

ticks" will be made available where you set the

amount of ticks the limit price is offset from the

stop price.

Configuration 431

© 2023 NinjaTrader, LLC

Submit as simulated stop: Submits a locally

simulated stop-market order when NinjaTrader

receives a strategy active order email notification

from TradeStation for any stop order type. See

more information on simulated stops here.

Submit

market order

if stop order

was rejected

If a stop order is rejected for any reason, a market

order will be sent. Please see the following section for

disclaimer and risks of this feature.

9.3.5 Market data

The Market data section sets options related to market data and database management.

General

NinjaTrader 8432

© 2023 NinjaTrader, LLC

Preferred

connections -

historical

Sets a connection to be used by NinjaTrader for

historical data if it is connected. You can choose a

separate preferred connection for each instrument

type, expand the triangle to the left of the property

name to set a preferred connection.

Preferred

connections -

real-time

Sets a connection to be used by NinjaTrader for

real-time data if it is connected. You can choose a

separate preferred connection for each instrument

type, expand the triangle to the left of the property

name to set a preferred connection.

Historical

Adjust for splits

- daily data

Enables or disables split adjusting historical data for

daily data. Some providers already split adjust their

daily data and you do not need to adjust it a second

time if your provider handles it on their side. Please

see this help guide page under the section

"Understanding splits and dividends" for more

information.

Adjust for splits

- intraday data

Enables or disables split adjusting historical data for

intraday data. Some providers already split adjust

their intraday data and you do not need to adjust it a

second time if your provider handles it on their side.

Please see this help guide page under the section

"Understanding splits and dividends" for more

information.

Adjust for

dividends

Enables or disables the adjustment of historical data

to account dividends, for use with any function that

requires historical market data

Get data from

server

Enables or disables the retrieving of historical data

from the data provider's server. When disabled, only

local data stored on your PC will be used.

Global merge

policy

Sets the merge policy for Futures contracts:

Do not merge: historical data is not merged

Configuration 433

© 2023 NinjaTrader, LLC

Merge back adjusted: NinjaTrader automatically

merges and back adjusts historical data

Merge non back adjusted: NinjaTrader

automatically merges, but does not back adjust,

historical data

For more information on merge policies, see the

"Understanding merge policies" section on this

page.

Show Tick

Replay

When enabled, allows "Tick Replay" to be

configured from a data series menu. Please see

Tick Replay for more information.

Real-time

Auto subscribe

to required

instruments

Sets whether NinjaTrader will automatically

subscribe to market data for any instruments

requiring data throughout the platform to properly

calculate PnL when trading non-USD pairs

Enable market

recording of

playback

Enables or disables market data recording for use

with the Playback Connection

Filter bad ticks Enables or disable filtering of bad ticks. This filtering

only works on real-time data and will filter ticks that

are a greater then a set percentage away from the

last tick. Set the percentage for filtering with the

property: "% off market". Note: If NinjaTrader

receives 2 or more ticks that violate the tick filter we

will no longer filter the ticks as the market is

assumed to have legitimately gapped up or down.

% off market Sets the real-time tick filter offset percentage (0.1

equals 1/10 of a percent)

Record live

data as

historical

Enables or disables the storage of incoming real-

time Chart data to your local PC for future historical

data requests. If you are connected to a provider

that supports historical data, disable this feature.

NinjaTrader 8434

© 2023 NinjaTrader, LLC

Download COT

data at startup

Allows downloading of Commitment of Traders data

for use with the COT indicator

9.3.5.1 Splits and Dividends

Splits and Dividends
NinjaTrader will split and dividend-adjust historical data. This is primarily relevant for

backtesting. NinjaTrader uses a fixed level back adjustment of dividends. This means that

historical data is adjusted at the fixed amount of the dividend.

For example:

Day 1: Stock trades at $10.00

Day 2: Stock trades at $10.50

Day 3: Stock trades at $11.25

Day 4: Stock goes ex-dividend, the dividend is $0.75, and finishes trading at $10.50

The dividend adjusted historical data now becomes:

Day 1: $9.25

Day 2: $9.75

Day 3: $10.50

Day 4: $10.50 (the ex-day is not adjusted)

Enabling Splits and Dividends
You can enable this data adjusting by selecting the Tools menu from the Control Center and

left mouse clicking on the Options menu item. Then select the Market Data category and

select Adjust for splits and/or Adjust for dividends.

Warning: Should the historical data you are using come pre-adjusted you should not

readjust them a second time.

Connectiv

ity

Provider

Split Adjusted Dividend Adjusted

Intraday Daily Intraday Daily

Kinetick

www.kineti

ck.com

NO YES NO NO

BarChart YES YES NO NO

http://www.kinetick.com
http://www.kinetick.com

Configuration 435

© 2023 NinjaTrader, LLC

eSignal NO YES NO NO

Interactive

Brokers
---- ---- ---- ----

IQFeed NO YES NO NO

TD

Ameritrade
---- ---- ---- ----

Adding Splits and Dividends
You must add splits and dividends per instrument in the Instruments window. Please see the

Adding Splits and Dividends section of the Help Guide for more information.

· NinjaTrader stores historical data in it's local data repository in an unadjusted state

· If the data provider provides adjusted data, NinjaTrader will convert the data into it's

unadjusted state prior to local storage

9.3.5.2 Merge Policy

Merge Policy
The Merge Policy option can be found in the Market Data category of the Options menu and

sets how NinjaTrader handles the merging of historical data for futures contracts during a

contract rollover. For example: If requesting a chart of the ES 06-15 from March 1st through

April 1st, two contract months were the front month during that time span (03-15 and 06-15).

The way the chart will display those contracts will depend on the following settings and are

illustrated below.

Note: More information on Configuring Rollover Dates and Offsets can be found in the

Editing Instruments section of the Help Guide.

MergeBackAdjusted

· Data from each individual expiry month across the time span of the historical data request

is loaded

· Offset values will be used to back adjust the historical price data to match the next front

month

Selecting this option, the 03-15 data will be merged with the 06-15 data on the date of rollover

(March 12th, 2015) and an Offset value will be used to connect the previous 03-15 contract

price point with the first 06-15 contract point.

NinjaTrader 8436

© 2023 NinjaTrader, LLC

The result is a continuous chart of ES front month data for the dates selected. Price is

seamlessly merged between each contract month.

MergeNonBackAdjusted

· Data from each individual expiry month across the time span of the historical data request

is loaded

· Offset values are NOT used and leaves historical data as raw data

Selecting this option, the 03-15 data will be merged with the 06-15 data on the date of rollover

(March 12th, 2015); however, NO Offset value will be applied.

The result is a continuous chart of ES front month data for the dates selected. Significant

price gaps in the chart may be present due to changes in contract values that were NOT

Offset.

Configuration 437

© 2023 NinjaTrader, LLC

DoNotMerge

· Data from ONLY the selected expiry month across the time span of the historical data

requested is loaded

· Offset values are NOT used and leaves historical data as raw data.

Selecting this option will only show historical data for the front month selected. The 03-14

data will NOT be merged and ONLY data for the 06-15 contract will be used.

The result is a chart that goes as far back as there is data for the selected front month, which

may be less than the requested date range.

NinjaTrader 8438

© 2023 NinjaTrader, LLC

9.3.5.3 Real-time Tick Filter

What is tick filtering?
Tick filtering is a function where each incoming tick is evaluated in relation to the last known

price and if it is outside of a user defined percentage value, the tick is thrown away and not

distributed to any NinjaTrader object that requires market data such as advanced charts or

strategies. This prevents data spikes from showing on your charts and can also prevent

unwanted actions taken by automated strategies due to a data spike.

How does it work?
A bad tick is detected if the tick price is less than the last valid traded price - (last traded Price

* (1 - bad tick offset as %))

A bad tick detected if the tick price is greater than the last valid traded price + (last traded

Price * (1 + bad tick offset as %))

If a bad tick is detected but the prior two ticks were also bad ticks, then the tick being

processed is now a valid last traded price and is NOT filtered out

Configuration 439

© 2023 NinjaTrader, LLC

How do I enable tick filtering?
You can enable real-time tick filtering by selecting the Tools menu from the Control Center

window and selecting the Options menu item. The Options dialog window will appear. Within

the Options dialog window, left mouse click on the Market data category. Under the Real-

time data section you can place a check mark next to Filter bad ticks and set the % off

market value.

When should I used tick filtering?
· If you are using a market data vendor where you often see data spikes come in

· If you trade primarily equities

· If you are running automated strategies where data spikes have implications

9.3.5.4 Multiple Connections

Using multiple connections

Multiple Connections
NinjaTrader supports multiple simultaneous connections to different connectivity

providers, and in some cases, to the same connectivity provider allowing you to:

· Connect to and trade through multiple brokers simultaneously

· Connect to your broker and a separate data provider simultaneously

NinjaTrader will use a data feed for real-time or historical data, and by default will

subscribe based on the type of instrument supported by the data feed connection

and your connection order.

Determining which data source is being used

Determining which data source is being used
When connecting to multiple connections, you must choose which provider will be

supplying your real-time and historical data in NinjaTrader.

By default NinjaTrader will attempt to get real-time and historical data from the first

connected data provider for the instrument type for which you are attempting to

receive data.

The instrument types used for lookup are as follows, for determining which data

feed supports which instrument types, please see the Data by Provider page.

NinjaTrader 8440

© 2023 NinjaTrader, LLC

· CFD's

· Futures

· Forex

· Indices

· Stocks

Example 1:

1. Connect to a NinjaTrader Continuum broker technology first

2. Connect to a Kinetick data feed second

NinjaTrader Continuum only supports futures, so all futures data would come from

that connection, but if you tried to pull stock data, NinjaTrader would pull that data

from Kinetick.

Example 2:

1. Connect to a Kinetick data feed first

2. Connect to a NinjaTrader Continuum broker technology second

Since Kinetick supports all instrument types, all data will be pulled from this

connection. Any trades or orders submitted always go to the account you select,

therefore if using the NinjaTrader Continuum account for order entry, all trades will

go through NinjaTrader Continuum even if you are using Kinetick for data.

Connection order is important when determining which provider will be used for

real-time and historical data. However, you can choose to set a preferred

connection. See the "Setting Preferred Data Connections" section below for more

details.

Note: In Example 2 above, even if you did not have entitlement on your Kinetick

account for certain futures, but you did on NinjaTrader Continuum, it will not fall

over to NinjaTrader Continuum to pull data for those futures contracts since

Kinetick's connection supports the futures instrument type. Data requests will

only fall over to the secondary connection when the primary connection does

not support the instrument class being requested.

Setting preferred data connections

Preferred data feed connections

Configuration 441

© 2023 NinjaTrader, LLC

Within the NinjaTrader Control Center window, select the Tools menu, and then

select Options menu item. In the Options window, select the "Market Data"

category and expand the triangle to the left of Preferred connections - historical

and Preferred connections - real-time. Here you may select a connection

technology to use as the preferred connection per instrument type for real-time

and historical data, independent of connection order. Setting your preferred

connection for both historical and real-time has the advantage of being able to use

a different data feed for your live connection and your historical connection.

Example:

1. Set NinjaTrader Continuum as the preferred real-time data feed provider for

Futures.

2. Set Kinetick as the preferred historical data feed provider for Futures.

3. Connect to a NinjaTrader Continuum broker technology

4. Connect to a Kinetick data feed

In this example all futures real-time data would come from NinjaTrader Continuum

and all futures historical data would come from Kinetick.

9.4 Performance Tips

Performance Factors
There are many variables that contribute to overall performance of the NinjaTrader

application.

NinjaTrader 8442

© 2023 NinjaTrader, LLC

· Different connectivity providers (market data vendors and broker technologies) that

NinjaTrader supports vary in their level of real-time data service. For example, providers

who deliver unfiltered tick data (submit all market ticks) will impose heavier processing load

than a vendor that provides throttled market data.

· The load you place on the NinjaTrader application (running 200 charts will consume more

processing power than running only 20 charts)

· The capability of your PC hardware (are you running a brand new state of the art machine

or a 4 year old PC with limited RAM)

· A single bad 'setting' can cause performance issues and a single active Third Party script

can cause general performance issue. See the Understanding the impact of installing Add-

Ons section.

Note: High memory usage may not be related to poor performance. It takes computer

resources to figure out when to free up memory that is no longer being used. So, rather

than using resources to constantly determine what memory to free up, the system will

determine the best time to free up memory when it is needed.

Optimize Performance
The following are some suggestions that can help you fine tune your NinjaTrader installation

to run optimally.

1. Close any unneeded open workspaces. Although a workspace may not be in view, it does

still use system resources when open.

2. Exit any unneeded Charts, SuperDOMs, Market Analyzers, etc. in your open

workspace(s). Additionally, if you have multiple tabs in any windows that you do not need,

exit out of those.

3. Ensure that every indicator applied is using the Calculate setting of On price change or On

bar close. There is no benefit to using On each tick unless the indicator deals with volume

or tick counting.

4. Remove unneeded indicators from Charts, Market Analyzers, and SuperDOMs.

5. Reduce the Days to Load on Charts and on Market Analyzer indicator columns. This can

be especially effective with any tick-based series.

6. Use Tick Replay sparingly and only when needed. For example, a simple Pivot indicator

which just uses the current and previous daily price levels would not see any advantage

from using tick replay. In contrast, a Volume profile indicator which relies on the exact

sequence of trades to calculate various levels would greatly benefit from using tick replay.

7. Remove unneeded drawing objects. Especially over time as you have more drawing

objects on your charts the performance can decline since there is more to render.

8. Workspaces which have a single or fewer number of instruments are unable to take

advantage of multi-core processors. For example, having 30 charts with the same

instrument will not perform as well as 30 charts of different instruments on a multi-core

processor. Reducing the number of windows with the same instrument can increase

Configuration 443

© 2023 NinjaTrader, LLC

performance. Alternatively, workspaces that have one or only a few instruments would

benefit from a processor with a higher clock speed.

9. Reduce the amount of charts with Global crosshairs enabled.

10.Set crosshair to Draw cursor only. Systems with less powerful GPUs can benefit from the

reduced rending which results in this change. This setting is within the chart’s properties.

11.Reset and clear history of your simulation account. A large amount of simulated trades

can grow the size of your data base. If you do not need this historical information,

completing this step will free up more resources.

12.Restart NinjaTrader daily.

13.Disable market recording for Playback and Record live data as historical if it’s not needed.

14.Reduce the number of tickers expanded in the Options Chain.

15.The "Show Volume Text" property in the SuperDOM's Volume column can impact PC

performance and the speed of rendering objects in the SuperDOM. This property is

disabled by default to minimize the performance impact, and when disabled, you can

hover your mouse cursor over any Volume row to view the exact volume at that row.

16.Some computer configurations provide two graphics cards (integrated vs. dedicated). To

get the most out of chart rendering performance, enable a high-performance dedicated

graphic processor.

17.Use a hardwired internet connection. Wireless and satellite connections can drop packets

or have a poor latency. If a low latency connection is not available, a VPS can be a great

solution.

18.Set your connection to connect on start up. This will make it so your workspace only

needs to load once, rather than once when you start NinjaTrader and a second time when

new data is download after you connect.

19.Reduce the number of applications running on your system.

20.Windows search indexing can also place an extra burden on your processor when running

NinjaTrader, negatively impacting performance. It is recommended to exclude the folders

listed below from indexing, as well, which can be done via the Windows Control Panel.

C:\Users\User\Documents\NinjaTrader 8

C:\Program Files (x86)\NinjaTrader 8

Playback
1. Remove unused instrument subscriptions in playback. In your playback setup, be mindful

for which instruments you have added (for example in a Market Analyzer or via Charts) you

would have data to playback actually available, as each instrument subscription here

would consume CPU cycles and thus contribute to performance experienced. For

example, having the SP500 index added in your Market Analyzer but then only replaying

MSFT data is expected to have lower performance in contrast to having only this one

MSFT instrument listed in the Market Analyzer as well.

Additional Diagnostics
If you're still having performance issues, follow these diagnostics steps to isolate the problem.

1. Start NinjaTrader in Safe Mode.

Safe Mode will prevent NinjaTrader from:

NinjaTrader 8444

© 2023 NinjaTrader, LLC

Loading workspaces.

Connecting on start-up.

Loading custom assemblies.

Getting instrument updates from the server.

To enable safe mode, please use the following steps:

Exit NinjaTrader.

Hold the CONTROL key and double click the NinjaTrader icon.

Keep the CONTROL key held down until you see the Control Center.

You can verify you are in safe mode by going to Help -> About.

2. Open some windows and test performance without loading any custom indicators.

3. If everything looks good, attempt to open up your workspace. You may need to close your

workspace, without saving it, then reopening it. If this works well, installed custom

assemblies may be the cause.

4. If performance is poor with the workspace in safe mode it could be that the workspace is

too resource intense for your system, which may be from the scripts being used.

5. To determine if there are specific scripts that are resulting in poor performance you will

need to recreate your workspace and add back any scripts one at a time to see which one

may be resulting in poor performance.

6. For further assistance, or assistance with any of these steps, please write into

platformsupport@ninjatrader.com

Operations 445

© 2023 NinjaTrader, LLC

10 Operations

Operations Overview

› Advanced Trade Management (ATM)

› Alerts

› Alerts Log

› Automated Trading

› Backup & Restore

› Charts

› Commissions

› Control Center

› Data Grids

› Database

› FX Correlation

› Historical Data

› Hot Keys

› Hot List Analyzer

› Instrument Lists

› Instruments

› Level II

› Market Analyzer

› Market Watch

› News

› Options Chain

› Order Entry

› Trade Controls

› Basic Entry

› Chart Trader

› FX Pro

› FX Board

› Order Ticket

› SuperDOM

› Playback Connection

› Risk

› Simulator

› Strategy Analyzer

› Time & Sales

› Trade Performance

› Trading Hours

› Windows

NinjaTrader 8446

© 2023 NinjaTrader, LLC

10.1 Advanced Trade Management (ATM)

ATM Overview

ATM Strategies can be accessed from the ATM Strategy Selectors located in various

Order Entry interfaces

NinjaTrader provides you with the flexibility to trade with or without an Advanced Trade

Management (ATM) Strategy. ATM Strategies are designed to provide discretionary

traders with semi-automated features to manage their positions. This is NOT to be

confused with NinjaScript Strategies for automated trading systems.

ATM Strategy

› Definition and Benefits

› ATM Strategy Parameters

› ATM Strategy Selection Mode

› Stop Strategy

› Auto Breakeven

› Auto Trail

› ATM Strategy Templates

› Example #1

› Example #2

Advanced Options

› Auto Chase

› Auto Reverse

› Shadow Strategy

Misc

› Close at Time

› Indicator Tracking

› FAQ

Operations 447

© 2023 NinjaTrader, LLC

What is an ATM Strategy?
Before you enter a trade you already know where you are going to place your Profit Target(s),

where you will set your Stop Loss, and how many contracts you will trade. You may also have

rules and conditions for managing your trade such as; once there is 1 point in profit you will

move your Stop Loss to breakeven and once there is 2 points in profit you will move your Stop

Loss to protect 1 point in profit. These rules and conditions make up your personal trade

methodology, or as we call it, your strategy. In NinjaTrader, an ATM Strategy is a collection of

orders that represent your entries, exits, stops and targets along with sub-strategies (Auto

Breakeven, Auto Chase, Auto Trail etc...) that govern how these orders are managed. By pre-

defining your personal trading strategy in NinjaTrader, you are free to concentrate on the trade

and not on the management of orders and positions. NinjaTrader does this all for you

automatically.

Do I have to use an ATM Strategy?
Absolutely not. NinjaTrader is incredibly flexible in that you can trade independent of an ATM

Strategy and manually submit and manage all of your own orders. You can also choose to

manage a portion of an open position by an ATM Strategy and leave another portion to be

managed independently. It's completely up to you.

What are the advantages to using an ATM Strategy?
There are several:
· Reduce errors in order management

· Speed (orders are submitted and modified at PC speed instead of human speed)

· Discipline (less prone to applying 'too much' discretion)

NinjaTrader 8448

© 2023 NinjaTrader, LLC

· Consistency with your trading

· Reduces emotions

10.1.1 Server Side vs Local ATMs

Server side ATMs are the newly implemented feature, exclusive to the NinjaTrader

connection. They simplify the local ATMs, while still including many of the primary features.

Server side ATMs are currently in beta and will continue to be developed on to add additional

functionality. However, there are some differences between server side ATMs and local ATMs

that you must be aware of to ensure your orders function as expected.

Server side ATMs can be enabled/disabled under Tools> Options> Strategies> ATM

Strategies

Warnings:

It is recommended to exit all ATM orders before switching between server side and local

ATMs.

If Multi-provider mode is enabled, server side ATMs will be disabled

Scaling in/out of an ATM position

Server Side ATM
Server side ATMs function independently of one and another. There is no active

ATM strategy to select to scale in/out of. Every entry you make will place it's stops

and profit in relation to your entry order.

Operations 449

© 2023 NinjaTrader, LLC

Example: If you entered long 1 contract on the ES at 3976.50 with a stop loss and

profit of 10, your stop loss would be placed at 3974.00 and your profit would be

placed at 3979.00. If you then scaled in 1 contract with your ATM at 3976.00 a new

stop loss would be placed at 3973.50 and a new profit would be placed at 3979.00

NinjaTrader 8450

© 2023 NinjaTrader, LLC

Operations 451

© 2023 NinjaTrader, LLC

The same would be true if you were to enter long 1 contract with your ATM and

then enter short 1 contract with your ATM. In this scenario you would be flat, but

your stop losses and profits would still be running. You would want to click Close

to exit your position and cancel the the stop loss/profit.

Example: If you entered long 1 contract on the ES at 3976.50 with a stop loss and

profit of 10, your stop loss would be placed at 3974.00 and your profit would be

placed at 3979.00. If you then entered short 1 contract with your ATM a new stop

loss would be entered at 3978.25 and a new profit would be placed at 3973.25, but

you would be flat.

NinjaTrader 8452

© 2023 NinjaTrader, LLC

Operations 453

© 2023 NinjaTrader, LLC

Local ATM
With local ATMs there is an active ATM which you can choose to scale in/out of.

There is a property called ATM Strategy Selection Mod, which defaults if the active

ATM should be selected or not. The Keep selected ATM strategy template on order

submission selection functions similar to server side ATMs. However, the default

that many people are familiar with works differently. The default is Select active

ATM strategy on order submission. There is also a Display selected TM strategy

only mode. For more information on all these modes, see the ATM Strategy

Selection Mode section of the help guide. However, for this example we will focus

on the default setting.

By default, after entering into a position with an ATM your active ATM will be

selected. As you scale in/out, that will then add/subtract to the nearest stop

loss/profit of your ATM.

Example: If you entered long 1 contract on the ES at 3976.50 with a stop loss and

profit of 10, your stop loss would be placed at 3974.00 and your profit would be

placed at 3979.00. If you then scaled in 1 contract with your ATM at 3976.00 your

existing stop loss and target would get stacked with an additional order at the

same price.

NinjaTrader 8454

© 2023 NinjaTrader, LLC

Operations 455

© 2023 NinjaTrader, LLC

The same would be true if you were to enter long 1 contract with your ATM and

then enter short 1 contract with your ATM. In this scenario you would be flat, but

the scaling out of the ATM would also remove the stop loss and target.

NinjaTrader 8456

© 2023 NinjaTrader, LLC

Operations 457

© 2023 NinjaTrader, LLC

Selecting Rev On an ATM Position

Server Side ATM
With server server side ATMs clicking Rev while in an ATM will exit your position,

cancel your orders, and enter your into a position on the other side of the market

without an ATM strategy.

Example: Enter long 1 contract with an ATM, press Rev. Now you are short 1

contract without a protected stop loss and profit.

NinjaTrader 8458

© 2023 NinjaTrader, LLC

Operations 459

© 2023 NinjaTrader, LLC

Local ATM
With local ATMs clicking Rev while in an ATM will exit your position, cancel your

orders, and enter your into a position on the other side of the market with an ATM

strategy.

Example: Enter long 1 contract with an ATM, press Rev. Now you are short 1

contract with a protected stop loss and profit.

NinjaTrader 8460

© 2023 NinjaTrader, LLC

Operations 461

© 2023 NinjaTrader, LLC

Manually canceling a stop/target

Server Side ATMs
When canceling a stop loss or profit of a server side ATM the other order will stay

active until it is also manually canceled or filled. However, if a stop loss or profit is

filled, the other order will be canceled.

Local ATMs
When canceling a stop or target of a local ATM the bracket of the order will also be

canceled. Additionally, if a stop loss or profit is filled, the other order will be

canceled.

Visibility and modification of stop losses/profits of ATM entry orders

Server Side ATMs
When placing an entry order with a server side ATM, the stop loss and target will

show also. They will be in a suspended state, indicating they will not be working

until they are triggered by the entry order filling. You can identify them as

suspended order by the + next to the order quantity. The prices of these orders

can be modified before the entry is filled.

NinjaTrader 8462

© 2023 NinjaTrader, LLC

Operations 463

© 2023 NinjaTrader, LLC

Local ATMs
When placing an entry order with a local ATM, the stop loss and profit will not

show. They cannot be modified before the entry is filled.

NinjaTrader 8464

© 2023 NinjaTrader, LLC

Operations 465

© 2023 NinjaTrader, LLC

Parameter Type functionality

Server Side ATMs
There are 3 Parameter type selection for server side ATMs. They will all function

the same, but just display the values in the specified format.

Ticks Ticks away from the average

entry.

Delta Price Price away from the average

entry, based on the displayed

price of the instrument. AKA

Points away from the

average entry.

$ Value Cash value away from the

average entry, based on to

Tick value of the instrument.

Local ATMs
There are 5 Parameter type selections for local ATMs. Each functions differently

than the other.

Currency PnL away from average

entry. Calculated by the dollar

per tick value for the order

quantity used.

NinjaTrader 8466

© 2023 NinjaTrader, LLC

Percent Percentage away from the

average entry, based on the

average entry price.

Pips Pips away from average

entry.

Price The absolute price point

specified.

Ticks Ticks away from entry

average entry.

Miscellaneous differences

Server side ATMs Local ATMs

Can't be used with local

orders (simulated and MIT

orders)

Can be used with local

orders (simulated and MIT

orders)

Templates are saved to the

server, for use on any

system you connect to

Templates are saved to your

local computer and are only

available where saved

Operations 467

© 2023 NinjaTrader, LLC

Templates are specific to the

instrument

Templates can be used on

any instrument

Order quantity and TIF are

not part of the template

Order quantity and TIF are

part of the template

Can be set up to have only a

stop loss or only a profit

Can be set up to have just a

stop loss. Cannot be set up

to have just a profit.

Can't place OCO order with

ATMs attached

Can place OCO orders with

ATMs attached

Can't be used with

NinjaScript

Can be used with NinjaScript

Can't add ATMs to an

unprotected position

Can add ATMs to an

unprotected position

No section called More with

additional features

Includes a section called

More with additional features

No simulated stop volume

trigger feature

Includes simulated stop

volume trigger feature

One step Auto Trail Three step Auto Trail

Can't enable/disabled stop

strategy on a working ATM

Can enable/disable stop

strategy on a working ATM

No configurable settings

under Options> Strategies>

ATM Strategies

Configurable settings under

Options> Strategies> ATM

Strategies

Can't be used with Playback Can be used with Playback

NinjaTrader 8468

© 2023 NinjaTrader, LLC

10.1.2 ATM Strategy

What is an ATM Strategy?
An ATM Strategy provides a semi-automated order management features to allow you to

automate the management of a position. In trading, a position is defined as the total

contracts/shares held long or short for a specific instrument in a specific account. An ATM

Strategy can be thought of as:

"A collection of user defined rules/conditions that create and manage a set of Stop Loss and

Profit Target orders that are used to govern a portion or an entire open position."

Let's assume the following:

· We want to go long the S&P E-Mini for 5 contracts

· We want a Stop Loss set 2.5 points from our entry price

· We want a Profit Target set 5 points from our entry price

We just defined a set of conditions for the management of a 5 contract long position, or in

other words, we just defined an ATM Strategy. The ATM Strategy is the foundation for how

positions (or partial positions) can be managed within NinjaTrader. ATM Strategies can be

defined on the fly or you can pre-define them using templates that can be recalled for later

use in a split second.

The Value of an ATM Strategy
Now that we understand what an ATM Strategy is, what exactly is the value of it? When

trading, one develops ideas and methods for entry and further management of their position.

The management of this position can be simple to complex and everything in between. The

ATM Strategy allows the trader to define the rules and conditions that govern the management

of the position. How many Profit Targets should there be and at what prices? What Auto Trail

Stop Loss setting should be used? When should a Stop Loss be moved to breakeven?

Should Profit Target orders chase the market if not filled? Should the Stop Loss order trigger

immediately on trade through or should NinjaTrader's leading edge Simulated Stop order be

used? An ATM Strategy also provides a layer of discretionary automation and intelligence that

takes responsibility for mundane order modifications which can be inefficient, time-consuming

and error prone. When scaling into a position, for example, all of the Stop Loss and Profit

Target orders will be automatically updated to reflect the new position size. Changing order

contract sizes will update the distribution of contracts on other orders. Decrease your first

Profit Target order by one contract and your second Profit Target will automatically be

increased by 1 contract. The bottom line is that an ATM strategy thinks the way a trader thinks

about managing their trade only 100x faster. It performs a lot of the routine tasks for you

allowing you to concentrate on what matters; the trade itself.

Operations 469

© 2023 NinjaTrader, LLC

10.1.2.1 ATM Strategy Parameters

Majority of NinjaTrader's order entry interfaces house the same control for defining an ATM

Strategy.

Understanding the ATM Strategy control list options

The Strategy Control List
The drop down list shown in the image below is very important to understand as it

defines how your orders will be handled once submitted. There are three main

categories of options that will be displayed in this drop-down list; None, Custom or

strategy template names, and Active ATM Strategy Name(s).

None
When this option is selected, any orders placed in the entry window will not be

applied to an active ATM Strategy nor will it initiate a new ATM strategy.

Custom or ATM Strategy Template Names
When an ATM Strategy template name is selected, all of the parameters will update

to reflect your pre-defined ATM Strategy, or when Custom is selected, you have the

ability to define a new ATM Strategy on the fly. Once an order is submitted, the ATM

Strategy parameters specified will be initiated when the order is partially or

completely filled.

Active ATM Strategy Names
All active (live and working) ATM Strategies will be displayed and indicated by a

lightning bolt icon. If one is selected, any order submitted will be applied to the

selected active ATM Strategy. For example, if you have an active ATM Strategy with

a stop and target bracket for 1 contract, if you are filled on another contract, the fill

is applied to this ATM Strategy and the stop and target bracket is automatically

updated from 1 contract to 2 contracts.

NinjaTrader 8470

© 2023 NinjaTrader, LLC

Strategy Selection Mode Overview
The behavior of the strategy control list can be controlled automatically by

selecting an ATM Strategy Selection Mode.

When it comes to the automatic submission of Stop Loss and Profit Targets and how

subsequent order fills are handled, there are two approaches:

1. Scaling into a position or out of a position should automatically update the order

sizes of existing stop and target brackets

2. Scaling into a position should create a new set of stop and target brackets

based on the new order fill price

If you always want to operate with approach number 1, then you will always want

to have the ATM Strategy control list set to your active ATM Strategy when one

exists. This is accomplished by setting the ATM Strategy Selection Mode to "Select

active ATM strategy on order submission". If you would rather have new stop and

target brackets submitted on a new fill, then set the ATM Strategy Selection Mode to

"Keep selected ATM strategy template on order submission" and the strategy control list

will not automatically set to an active strategy when one is created.

Understanding Stop Loss and Profit Target parameters (how to set your stop and target values)

ATM Strategy Parameters
Select Custom to define a new ATM Strategy or select the saved ATM Strategy

template and select "edit" in the ATM Strategy combo box as seen below.

Operations 471

© 2023 NinjaTrader, LLC

In the image below there are parameters that define the ATM Strategy. This

strategy is a single quantity strategy that will automatically place its target at 10

ticks above the average entry price and stop loss 10 ticks below.

Selecting the "add" will allow you to configure additional Targets for your ATM

Strategy. You can add as many targets as you desire. Selecting "remove" will

reduce the number of configured Targets that are configured.

Tip: You can also add Targets to your ATM Strategy by right-clicking on an

active strategy in the ATM Strategy combo box and selecting “Add Target”.

More details are documented in the SuperDOM section Managing Positions.

NinjaTrader 8472

© 2023 NinjaTrader, LLC

Order

quantity

Replicated from the order entry display and sets

the initial quantity used for the entry order.

TIF (Time

In Force)

Replicated from the order entry display and sets

the TIF used for entry, profit target, and stop loss

orders.

Paramete

r type

Sets the type of parameter used for defining

where the stop loss and profit target will be

placed.

Curre

ncy

PnL away from average entry.

Calculated by the dollar per tick

value for the order quantity used.

Perce

nt

Percentage away from the average

entry, based on the average entry

price.

Pips Pips away from average entry.

Price The absolute price point specified.

Ticks Ticks away from entry average

entry.

Quantity Sets the quantity for the Stop Loss and Profit

Target orders for this target

Stop

Loss

Sets the value that determines the Stop Loss

price. If the value is set to 4 (ticks) and your

average entry for the initiating order is 1000 and

you are long, your Stop Loss would be submitted

at AvgEntry - Stop Loss = 1000 - 4 ticks = stop

price of 999. This assumes each tick is valued

at 0.25.

Operations 473

© 2023 NinjaTrader, LLC

Profit Sets the value that determines the Profit target

price. If the value is set to 4 (ticks) and your

average entry for initiating the order is 1000 and

you are long, your Profit target would be

submitted at AvgEntry + Profit target = 1000 + 4

ticks = 1001 Profit target. This assumes that

each tick is valued at 0.25.

Stop

Strategy
Sets the Stop Strategy

For further reference, please look at the Strategy Examples located within the

"ATM Strategy" page.

Understanding advanced ATM parameters

More Options
To access the Advanced options, click on the More text which will expand these

additional ATM Strategy features.

NinjaTrader 8474

© 2023 NinjaTrader, LLC

From the Advanced Options section you can enable the Shadow Strategy, Auto

Reverse, or Auto Chase features.

10.1.2.2 ATM Strategy Selection Mode

Most of the NinjaTrader order entry screens have three modes that you can set to determine

the behavior of the ATM Strategy selection control list upon submission of an order that enters

the market/initiates an ATM Strategy. You can set this mode via the order entry screen's

Properties dialog window that is accessible via the right mouse click context menu.

Before reviewing this section you should have a thorough understanding of how the strategy

control list determines what actions (if any) to take when a submitted order is filled. Please

review the video and content in the preceding page ATM Strategy Parameters.

As a quick reminder, when the strategy control list is set to:

<None> - Orders submitted take no action once filled or part filled (no stops or targets are

placed)

<Custom> - Orders submitted will initiate the custom defined ATM Strategy (submission of

stops and targets) once filled or part filled

Operations 475

© 2023 NinjaTrader, LLC

<My Strategy Template Name> - Orders submitted will initiate your user defined ATM Strategy

(submission of stops and targets) once filled or part filled

< My Strategy Template Name - X > - Existing ATM Strategy stop and target orders will be

amended once the submitted order is filled or part filled

There are three available ATM Strategy Selection Modes:

· Select Active ATM Strategy on Order Submission

· Keep Selected ATM Strategy Template on Order Submission

· Display Selected ATM Strategy Only

Understanding the "Select Active ATM Strategy on Order Submission" mode

Select Active ATM Strategy on Order Submission
This mode will automatically select the newly created active ATM Strategy on entry

order submission in the ATM Strategy control list. This is the default setting upon

initial NinjaTrader installation.

Who is this mode designed for?
This mode is designed for traders who want the existing strategy Stop Loss and

Profit Targets to be automatically amended when they scale into or out of a position

being managed by an ATM Strategy by default.

Example (see image below)
1. A user defined ATM Strategy is selected.

2. Once the entry order is submitted, the ATM Strategy selection control

automatically selects the active ATM Strategy that you just created (< My

Strategy Template Name - X>).

NinjaTrader 8476

© 2023 NinjaTrader, LLC

Note: When using multiple tabs, all tabs will select the same ATM or their own

active ATM. With Select Active ATM Strategy on Order Submission, once you

place an order your active ATM will be selected. Since the other tabs with

different instruments would not be using that same active ATM, they will be set

back to None or their own active ATM.

Understanding the "Keep Selected ATM Strategy Template on Order Submission" mode

Keep Selected ATM Strategy Template on Order Submission
This mode will keep the currently selected ATM Strategy template selected in the

strategy control list upon order submission.

Who is this mode designed for?
This mode is designed for traders who by default, want to always create a new set

of Stop Loss and Profit Target brackets (new ATM Strategy) with each new order

placed. An example of this would be a trader who wanted a single bracket placed

with a Stop Loss of four ticks and a Profit Target of eight ticks. The trader wants to

place two entry limit orders, the first at a price of X and the second at a price of X -

2 ticks. The purpose is to scale into an overall position but have the brackets be

submitted and calculated from each individual fill price of the two orders.

Operations 477

© 2023 NinjaTrader, LLC

Example (see image below)
1. A user defined ATM Strategy is selected.

2. Once the entry order is submitted, there will be no change in selection in the

ATM Strategy control list. It will continue to look like the upper right image as the

same ATM Strategy is automatically reselected after each order.

Understanding the "Display Selected ATM Strategy Only" mode

Display Selected ATM Strategy Only
This mode is an advanced mode and should only be used once you have become

very familiar with the NinjaTrader application.

NinjaTrader 8478

© 2023 NinjaTrader, LLC

Who is this mode designed for?
This mode is designed for traders who want to run concurrent ATM Strategies

(trades) in the same market. This mode will visually separate all concurrent

running ATM Strategies thereby allowing you to have multiple SuperDOMs open,

tracking the same market but displaying different trade strategies. A practical

example might be that you have taken a day long intra day swing trade against a

fifteen minute chart for five contracts. Throughout the day, you scalp the same

market on a one minute time frame. This mode allows you to have two SuperDOMs

open, one allocated to manage and only display your day long intra day swing

trade, the other used to manage and only display your scalp trades.

Example (see image below)
In the image right, you can see two separate SuperDOMs monitoring the same ES

09-14 market. In the ATM Strategy control list, there are two different ATM Strategies

running and each is displayed separately in an individual SuperDOM. Orders,

positions, average entry and unrealized profit are displayed individually for each

separate running ATM Strategy.

· When running multiple concurrent ATM Strategies by changing the selected active

strategy in the strategy control list you can change which strategy will be

displayed

· When you select <None> in the strategy list, all working orders and ATM

Strategies will be displayed

· The position display will display the number of contracts being managed by the

ATM Strategy and then your net position size. The box is color coded to the ATM

Strategy's market position. So if your ATM Strategy is long, the box will be colored

green. Using the first image on the right as an example, it shows "3 - 4L" in a

green box. Green indicates the ATM Strategy is long, the number 3 indicates that

there are 3 contracts being managed by that ATM Strategy and 4L indicates the

account actually holds 4 contracts long. What it is saying is; that we are running

a long ATM Strategy that is managing 3 of 4 contracts that are held long in my

account. The image on the right is managing 1 of the 4 long contracts.

· When you do not have any active ATM Strategies selected, the SuperDOM position

display will display your net account position

· Pressing the "CLOSE" button while an active ATM Strategy is selected will close

only that ATM Strategy. If anything else is selected, it will close the entire account

position including all other working ATM Strategies.

Operations 479

© 2023 NinjaTrader, LLC

Critical: When a SuperDOM is set to this mode, it will only display orders
associated to the active selected ATM Strategy in the ATM Strategy control list.
This means that if there are other orders working in the selected market that
are not associated to the ATM Strategy, you will not see them displayed. The
risk is that you could have orders working, you forget about them or did not
even know they were still working, they are filled and you could damage your
trading account. Please fully understand how to use this powerful feature
before putting it to use.

10.1.2.3 Stop Strategy

ATM Stop Strategies
ATM Stop Strategies provide additional functionality for the stop losses placed by an ATM
Strategy, including auto-breakeven, auto-trail, and Simulated Stop orders.

NinjaTrader 8480

© 2023 NinjaTrader, LLC

A Stop Strategy is an extension of an ATM Strategy. It allows you to combine Auto Breakeven,

Auto Trail, and Simulated Stop strategies for the management and automatic adjustment of

your Stop Loss orders.

When setting up an ATM Strategy, you can select either <Custom>, <None>, or any pre-

defined Stop Strategy template from the Stop Strategy control list.

Operations 481

© 2023 NinjaTrader, LLC

If <Custom> or any template is selected ("Stop 1" in the image below is a template) a Stop

Strategy Dialog window will appear.

You can enter the appropriate values to enable any of the Stop Loss automation strategies.

You can also save commonly used parameters as a Stop Strategy template.

Note: The parameter type of Currency or Price cannot be used for stop strategies. Tick will

be used instead, which is indicated by the (t) next to Auto Breakeven and Auto Trail in the

stop strategy parameters.

10.1.2.3.1 Auto Breakeven

The Auto Breakeven feature will adjust your Stop Loss order to breakeven (average entry

price for the ATM Strategy position) once a user defined Profit Trigger has been reached.

Understanding the Auto Breakeven parameters

Auto Breakeven Parameters

Profit
Trigger

Sets the amount of profit required to move the

Stop Loss to a breakeven value

Plus Sets the amount added to the breakeven

(average entry price for the ATM Strategy

position) value

NinjaTrader 8482

© 2023 NinjaTrader, LLC

How to enable the Auto Breakeven
Auto Breakeven can be set before entering a position as part of a stop strategy,

and you can also enable or disable it on a working Stop Loss order.

If you move your mouse over an active Stop Loss order in the buy cell for a buy

order or sell cell for a sell order and press down on your right mouse button, you

will see a menu of all working orders. Each working order menu has a sub menu

that displays any applicable strategies that can be enabled or disabled. In the

image below, you can see that Auto Breakeven is currently enabled. By selecting

the "Enabled" menu item, you can enable or in this example disable the Auto

Breakeven. You can change the parameters by selecting the "Auto Breakeven

Properties" menu when Auto Breakeven is disabled.

Auto Breakeven Examples

Auto Breakeven Example #1
· Profit Trigger - 8 ticks

· Plus - 0 ticks

· Average Entry - 1000 Long (SP Emini contract)

As soon as the market trades at 1002 (Average Entry + Profit Trigger = 1000 + 8

ticks = 1002) NinjaTrader will move the Stop Loss order to 1000 (Average Entry +

Plus = 1000 + 0 = 1000) and enter a log event in the Log tab.

Auto Breakeven Example #2

Operations 483

© 2023 NinjaTrader, LLC

· Profit Trigger - 10 ticks

· Plus - 2 ticks

· Average Entry - 10200 Short (DOW Emini contract)

As soon as the market trades at 10190 (Average Entry - Profit Trigger = 10200 -

10 ticks = 10190) NinjaTrader will move the Stop Loss order to 10,198 (Average

Entry - Plus = 10200 - 2 ticks = 10198) and enter a log event in the Log tab.

10.1.2.3.2 Auto Trail

Auto Trail is a powerful stop strategy that allows you to be more liberal with your Stop Loss at

the early stage of your trade and tighten your Stop Loss as your profits in your trade increase.

Understanding the Auto Trail parameters

Auto Trail Parameters

Stop
Loss

Sets the value of the Stop Loss order as an

offset behind the Profit Trigger/Frequency

Profit
Trigger

Sets the amount of profit required to trigger the

initial Stop Loss adjustment for the step

Frequen
cy

Sets the value of how frequent the Stop Loss

order is adjusted after the Profit Trigger

There are 3 available steps for Auto Trail parameters. Each step can have unique

parameters providing you with the flexibility to tighten your Stop Loss automatically

as your profits increase. Auto Trail can be set before entering a position as part of

a Stop Strategy. You can also enable or disable it on a working Stop Loss order.

If you move your mouse over an active Stop Loss order in the buy cell for a buy

order or sell cell for a sell order and press down on your right mouse button, you

will see a menu of all working orders. Each working order menu has a sub menu

NinjaTrader 8484

© 2023 NinjaTrader, LLC

that displays any applicable strategies that can be enabled or disabled. In the

image below, you can see that Auto Trail is currently enabled. By selecting the

"Enable" menu item, you can enable or in this example disable the Auto Trail. You

can change the parameters by selecting the "Auto Trail Properties" menu item

when Auto Trail is disabled.

Auto Trail Examples

Auto Trail Example #1:
The settings in the image below are saying:

1. "Once our trade has 4 ticks in profit..."

2. "...move our Stop Loss back 6 ticks..."

3. "...and also move it up for every additional 2 ticks in profit."

Average Entry - 1000 Long (SP Emini contract)

The market moves up to 1001 and the Auto Trail is triggered (Average Entry +

Profit Trigger = 1000 + 4 ticks = 1001) and the Stop Loss is adjusted to 999.50

(1001 - Stop Loss = 1001 - 6 ticks = 999.50). For every additional 2 ticks

(Frequency of 2 ticks) the Stop Loss will be adjusted by 2 ticks.

Operations 485

© 2023 NinjaTrader, LLC

Auto Trail Example #2 building on top of Example #1:
The settings in the image below are saying:

Step 1

1. "Once our trade has 4 ticks in profit..."

2. "...move our Stop Loss back 6 ticks..."

3. "...and also move it up for every additional 2 ticks in profit."

Step 2

4. "Then once our trade has 10 ticks in profit...

5. "...tighten and move our Stop Loss back 3 ticks..."

6. "...and increase the rate at which the Stop Loss is adjusted and move it up for

every additional 1 tick in profit."

Average Entry - 1000 Long (SP Emini contract)

The market moves up to 1001 and the Auto Trail is triggered (Average Entry +

Profit Trigger = 1000 + 4 ticks = 1001) and the Stop Loss is adjusted to 999.50

(1001 - Stop Loss = 1001 - 6 ticks = 999.50). For every additional 2 ticks

(Frequency of 2 ticks) the Stop Loss will be adjusted by 2 ticks (same as

Example #1). Then the market moves to 1002.50 and the 2nd step of the Auto Trail

strategy is triggered and the Stop Loss is adjusted to 1001.75 and moves up by 1

tick with every additional tick in profit.

10.1.2.4 Manage ATM Strategy Templates

An ATM Strategy is defined by the parameters you enter into the ATM Strategy parameters

section on any of the order entry screens. The collection of parameters that make up a

strategy can be saved as a template that you can recall at a later date to automatically

populate all of the ATM Strategy parameters.

Saving ATM Strategy Templates
To save your current ATM Strategy parameters in a template:

1. Select the Save as Template button
2. From the presented file dialog give the template a custom name

NinjaTrader 8486

© 2023 NinjaTrader, LLC

Removing or Renaming ATM Strategy Templates
Right clicking on an existing ATM Strategy template will give you the option to either

Remove or Rename the strategy template.

Operations 487

© 2023 NinjaTrader, LLC

See ATM Strategy Example #1 and ATM Strategy Example #2 for further reference on how to

create and save an ATM Strategy template.

10.1.2.5 Tutorial: ATM Strategy Example #1

ATM Strategy Example
Following is an example of how to create a simple 1 stop/1 target ATM Strategy and save the

strategy as a template. You can do this via any NinjaTrader order entry window (excluding the

Order Ticket window)

NinjaTrader 8488

© 2023 NinjaTrader, LLC

1. Set the order quantity to 1 contract

2. From the ATM Strategy control list select <Custom> which will open the Custom Strategy

Parameters window

Operations 489

© 2023 NinjaTrader, LLC

3. Set the Stop Loss value to 4 ticks

4. Set the Profit Target value to 8 ticks

This simple ATM Strategy will automatically submit a Stop Loss order 4 ticks from entry and a

Profit Target order 8 ticks from entry.

You can save this ATM Strategy as a template by clicking the Save as Template button from

the Custom Strategy Parameters window

NinjaTrader 8490

© 2023 NinjaTrader, LLC

5. Enter the name "8 Tick 1 Target"

6. Press the "Save" button

Once you press the save button, a template is created for this ATM Strategy, and it will

become available in the strategy control list of all order entry windows. You can now place an

order which, once filled, will automatically trigger the ATM Strategy to submit the Stop Loss

and Profit Target. In the image below, an order was submitted and filled at 1978.75 as

depicted by the brown colored cell.

Operations 491

© 2023 NinjaTrader, LLC

7. A Profit Target was submitted at 1980.75 which is 8 ticks from our entry price of 1978.75

8. A Stop Loss was submitted at 1977.75 which is 4 ticks from our entry price of 1978.75

9. An active strategy named " 8 Tick 1 Target - 1" is created and listed under the ATM

Strategy control list.

If under SuperDOM Properties you have the "ATM Strategy selection mode" set to

"SelectActiveATMStrategyOnOrderSubmission", NinjaTrader will automatically set the ATM

Strategy control list to the newly created ATM Strategy. The importance of this is if you place

NinjaTrader 8492

© 2023 NinjaTrader, LLC

another order, any fills resulting from the order will be applied to the existing Stop Loss and

Profit Target orders. As an example, if we were filled on an additional contract, our Stop Loss

and Profit Target would automatically be modified from 1 contract to 2 contracts. Both Stop

Loss and Profit Target orders are tied via OCO which means if one of the orders is filled, the

other will automatically be cancelled. If the option in the first sentence was not checked, the

ATM Strategy control list would be set to the "8 Tick 1 Target" ATM Strategy template we just

created. Any subsequent orders would create an additional ATM Strategy that would submit

another set of Stop Loss and Profit Target orders.

10.1.2.6 Tutorial: ATM Strategy Example #2

ATM Strategy Example
Following is an example of an ATM Strategy that will automatically submit 2 Stop Loss and

Profit Target brackets once the originating entry order is filled. This ATM Strategy includes a

Stop Strategy that will automatically adjust the Stop Loss orders using Auto Breakeven and

Auto Trail strategies.

1. Set the order quantity to 2 contracts

2. From the ATM Strategy control list select <Custom>

Operations 493

© 2023 NinjaTrader, LLC

3. Select "add" once to enable a 2nd target

4. Set "Quantity" fields to 1 contract each (that represents 1 contract for the first Stop

Loss/Profit Target bracket and 1 for the 2nd)

5. Set the Stop Loss values to 5 ticks (you can set the 2nd Stop Loss to a wider value)

6. Set the first Profit Target to 8 ticks and the 2nd Profit Target to 12 ticks

7. Select <Custom> from the Stop Strategy control list under the first target.

A Stop Strategy parameters dialog window will appear. This is where you will define the

automation strategies for automatic Stop Loss adjustment.

8. Set the Auto Breakeven "Profit trigger" value to 6 ticks. This will automatically adjust our

Stop Loss order to breakeven once the ATM Strategy has 6 ticks in profit.

9. Set the Auto Trail "Stop loss" to 4 ticks

NinjaTrader 8494

© 2023 NinjaTrader, LLC

10. Set the Auto Trail "Profit trigger" to 8 ticks

11. Set the Auto Trail "Frequency" to 1 tick

The auto trail parameters will automatically start adjusting our Stop Loss order once we have

8 ticks in profit (9) to 4 ticks back (10) and adjust it for every 1 tick (11) in profit gain.

You can save the Stop Strategy as a template by clicking the Save as Template button

12. Enter the name "Basic Stop"

13. Press the "Save" button

Operations 495

© 2023 NinjaTrader, LLC

Once you press the Save button, a template is created for this Stop Strategy and it will

become available in all Stop Strategy control lists. Press the "OK" button on the Stop Strategy

parameters dialog window to exit.

14. Select the Stop Strategy we just created (Basic Stop) in the 1st and 2nd Stop Strategy

control lists. This sets the 1st and 2nd Stop Loss orders to the same Stop Strategy so that

Stop Loss 1 and Stop Loss 2 will adjust in unison.

You can now save this ATM Strategy (Stop Strategies included) as a template by pressing the

Save as Template button.

Type in the Name "2 Target" and click the "Save" button. We now have a 2 target strategy

template that can be selected from the ATM Strategy control list at any time. Doing so will

update all of the parameter fields automatically based on the information we have entered in

this example.

You can now place an order which once filled will automatically trigger the ATM Strategy to

submit the Stop Loss and Profit Target brackets. In the image below, an order was submitted

and filled at 1970.50 as depicted by the brown colored cell.

NinjaTrader 8496

© 2023 NinjaTrader, LLC

15. The first Profit Target order was submitted at 1972.50 which is 8 ticks from our entry, the

2nd Profit Target was submitted at 1973.50 which is 12 ticks from our entry and finally, our 2

Stop Loss orders were submitted at 1969.25 which is 5 ticks from our entry. You can tell we

Operations 497

© 2023 NinjaTrader, LLC

have 2 orders at the Stop Loss level because the Size Marker has the "s" suffix indicating that

we have multiple orders consolidated at the price 1969.25.

16. An active ATM Strategy named " 2 Target - 1" is created and listed under the ATM

Strategy control list. The significance of 1 is that this is the only instance of the strategy that

has been executed.

If under SuperDOM properties you have "ATM Strategy selection mode" set to

"SelectActiveATMStrategyOnOrderSubmission", NinjaTrader will automatically set the ATM

Strategy control list to the newly created ATM Strategy. The importance of this is if you place

another order, any fills resulting from the order will be applied to the existing Stop Loss and

Profit Target orders. As an example, if we were filled on an additional contract, our Stop Loss

and Profit Target orders would automatically be modified from 1 contract to 2 contracts. Both

Stop Loss and Profit Target orders are tied via OCO which means if one of the orders is filled,

the other will automatically be cancelled. If the option in the first sentence was not checked,

the ATM Strategy control list would be set to the original ATM Strategy template we created.

Any subsequent orders would create an additional ATM Strategy that would submit another

set of Stop Loss and Profit Target orders.

10.1.2.7 Advanced Options

All NinjaTrader order entry windows that offer ATM Strategies also include the Advanced

Options. The Advanced Options include: Shadow Strategy, Auto Chase, and Auto Reverse

features. You will find the Advanced Options from the ATM Strategy Parameters window by

clicking on the More text (see the green arrow in the image below) which will expand these

additional features.

NinjaTrader 8498

© 2023 NinjaTrader, LLC

Reverse at

Stop

This will enter a position in the opposite direction, using

the same ATM parameters, when a stop loss is hit

Reverse at

Target

This will enter a position in the opposite direction, using

the same ATM parameters, when a profit target is hit

Target

Chase

This will cause a profit target to move towards the

market price, as price moves away from the target

Chase This will cause a Limit entry order to move towards the

market price as it moves away

Chase if

Touch

Enables the Chase function only if the order has been

touched

Stop Limit

for Stop

Loss

When enabled, this will cause Stop Limit orders to be

used for stop losses (default is unchecked, so Stop

Market used)

MIT for

Profit

When enabled, this will cause MIT orders to be used for

profit targets (default is unchecked, so Limit is used)

Note: The "Stop Limit for Stop Loss" will not apply to Equities or Forex instruments - if this

property is enabled when trading a stock or forex instrument, Stop Market orders will be

used, instead.

10.1.2.7.1 Auto Chase

Auto Chase will automatically adjust the price of a limit order as the market moves away from

it.

Auto Chase Parameters

1. Chase
Limit

The maximum amount that Auto Chase will adjust your

limit order price

2. Chase Enables Auto Chase on your entry orders

3. Chase if
touch

Enables Auto Chase if touched on your entry orders

Operations 499

© 2023 NinjaTrader, LLC

4. Target
Chase

Enables Auto Chase if touched on your Profit Target

orders

How does Chase work?

NinjaTrader will automatically adjust the price of your limit order with each tick the

market moves away from your order up until the Chase Limit amount is reached.

How does Chase if touched work?

The difference between Chase and Chase if touched is that Chase if touched

does not start chasing until your limit price has been touched. This works well for

Profit Target orders. Your Profit Targets will rest at their respective limit price, if the

market moves to the target and backs off but the target order does not fill,

NinjaTrader would then start adjusting the target order to chase the market up until

the Chase Limit amount.

How to enable the Auto Chase features

Auto Chase can be set as part of an ATM Strategy (set the parameters you want

NinjaTrader 8500

© 2023 NinjaTrader, LLC

use before entering the ATM Strategy). However, you can also enable or disable

Auto Chase on working limit orders.

If you move your mouse over an active limit or Profit Target order in the buy cell for

a buy order or sell cell for a sell order and press down on your right mouse button,

you will see a menu of all working orders. Each working order menu has a sub

menu that displays any applicable strategies that can be enabled or disabled. In

the image below, you can see that Auto Chase is currently disabled. By selecting

the "Auto Chase" menu, you can enable or disable it. You can change the

parameters by selecting the "Auto Chase Properties" menu when Auto Chase is

disabled.

The Auto Chase Properties window will allow you to select either Chase or

Chase If Touched as well as the Chase Limit offset. Once the Auto Chase

Properties have been configured, you will be able to navigate back to the Auto

Chase sub-menu and check Enabled to turn on the Auto Chase features for the

current strategy.

Auto Chase examples

Auto Chase Example #1

Operations 501

© 2023 NinjaTrader, LLC

Chase Limit - 5

Buy Limit Price - 1000 (SP Emini contract)

Chase - Enabled

Current Bid - 1000.25

In this example, if the bid moves up to 1000.50, Auto Chase will adjust the buy limit

price to 1000.25, subsequently each additional tick rise in price on the bid will

adjust the buy limit price accordingly to a maximum price of 1001.25 which is Buy

Limit Price + Chase Limit = 1000 + 5 ticks = 1001.25.

Auto Chase Example #2
Chase Limit - 5

Buy Limit Price - 1000 (SP Emini contract)

Chase if touched - Enabled

Current Bid - 1000.25

This example works in the same manner as example #1 with the exception that

chasing does not start until the bid has touched the limit price of 1000.

10.1.2.7.2 Auto Reverse

Auto Reverse simply reverses your position at either your Stop Loss or Profit Target. You can

optionally enable (1) "Reverse at stop" or (2) "Reverse at target" with any ATM Strategy. The

reverse ATM Strategy used will be the same as the position ATM Strategy you are reversing

from.

NinjaTrader 8502

© 2023 NinjaTrader, LLC

When Auto Reverse is enabled, entry orders for the reverse ATM Strategy will be placed at

either your Stop Loss or Profit Target orders. The image below shows a 1 stop/1 target ATM

Strategy with Auto Reverse enabled for both the stop and target.

Operations 503

© 2023 NinjaTrader, LLC

Modifying the price of either your Stop Loss or Profit Target will result in the modification of the

reverse order as well. You can also enable or disable Auto Reverse of an active ATM Strategy

at any time by selecting the "Reverse At Stop" or "Reverse At Target" menus via the right

mouse click context menu in either the SuperDOM or Basic Entry windows.

10.1.2.7.3 Shadow Strategy

What is a Shadow Strategy?
Initiating a Shadow Strategy is a method for forward testing alternate trade management

ideas. As an example, you may have a method that is profitable, but you have some ideas on

how to increase its profitability. Maybe hold on to a few contracts for a higher target? With a

Shadow Strategy, you can set up an alternate ATM Strategy and link that to an ATM Strategy

that will be used for live trading. Every time you enter a position using your live strategy,

NinjaTrader opens a simulated position (e.g. Sim101 account) managed by your Shadow

Strategy. This allows you to forward test your concepts using the same entry signals that

trigger your live trades. Over time, a historical database of actual (live) and Shadow

NinjaTrader 8504

© 2023 NinjaTrader, LLC

(simulated) Strategies are compiled. You can then compare the live trades to the shadow

trades under the Performance Tab. The end result is that you will be shown what ATM Strategy

(over time) is more profitable. Changing your trade management logic without truly

understanding the impact of the changes is a risky shot in the dark. Shadow Strategies give

you the proof of concept needed to feel confident that your ATM Strategy changes make

sense.

Warning: Shadow strategies can only be used when Multi-provider mode is enabled, so

that orders can be submitted to the local simulation account. If Multi-provider is disabled,

that Shadow strategy will be set to Disabled and will not function.

Tips

· Intelligently name Shadow Strategies by including a prefix such as "Shadow - My
Strategy"

· When using the Performance Tab, you can filter your reports to include or exclude your
Shadow Strategy

10.1.2.8 FAQ

Listed below are some common questions concerning building and implementing ATM

Strategies.

Do I need to turn on OCO order to use the ATM Strategies?

Operations 505

© 2023 NinjaTrader, LLC

No, the Stop Loss and Profit Target orders submitted automatically through an

ATM Strategy are OCO by default meaning that when your target is filled the stop

will automatically be cancelled. The OCO function in each of the order entry

windows can be used to manually link orders you place.

Please see the Submitting Orders section for more information and examples of

the OCO function, or attend one of our free live training events to see further

examples.

Does NinjaTrader need to be connected for ATMs to work?

Yes, for an ATM to activate and for it's functions to operate, NinjaTrader needs to

be connected.

Is it possible to run concurrent ATM Strategies in the same market and the same account?

Absolutely, NinjaTrader's Strategy Selection Modes allow you to limit the display in

the SuperDOM so that you can run concurrent ATM Strategies. One of the great

features of NinjaTrader is its ability to manage multiple virtual positions in the same

market. For example, this allows you to manage a long and short position in the

same market simultaneously.

Here is how this is accomplished:

· Open 2 SuperDOMs and set them both to the same market

· Right click in one of the SuperDOMs and select the menu "Properties"

· Set the 'ATM Strategy selection mode' parameter to

"DisplaySelectedAtmStrategyOnly"

· Repeat the last two instructions on the second SuperDOM

· Submit a buy order to open a long position in the first SuperDOM

· Submit a sell order to open a short position in the second SuperDOM

For more information please see the ATM Strategy Selection Mode section of the

user help guide, or attend one of our free live training events.

Can I have my Auto Trail loosen as I gain ticks in profit?

Your Stop Strategy will never move your Stop Loss backward. The Stop Strategy

http://www.ninjatrader.com/webnew/trading_online_events.htm
http://www.ninjatrader.com/webnew/trading_online_events.htm

NinjaTrader 8506

© 2023 NinjaTrader, LLC

will only move your stop closer to the current trading price.

Example:

If the first step of your Auto Trail has the Stop Loss trailing by 5 ticks and then the

second step of the Auto Trail tells the Stop Loss to trail by 10 ticks the Stop Loss

will simply stay at its current price point until there is a 10 tick spread between the

Stop Loss and the current trading price and then begin to trail by 10 ticks. The

Stop Loss will not move backwards when the second step of the Auto Trail is

activated.

For more information on the Auto Trail feature please see the Auto Trail section of

the user help guide or attend one of our free live training events.

Why don't the following ATM Strategy parameters work?

1 Target 2 Target 3 Target

Qty: 1 1 1

Stop Loss: 10 8 6

Profit
Target:

10 8 6

When building an ATM Strategy each Profit Target must be greater than the Profit

Target before it. Example: The Profit Target for 1 Target must be less than the

Profit Target for 2 Target. Also each Stop Loss must be must be equal to or

greater than the Stop Loss before it. Example: The Stop Loss for 1 Target must

be equal to or less than the Stop Loss for 2 Target. The Parameters listed below

show the correct way to enter the values listed above.

1 Target 2 Target 3 Target

Qty: 1 1 1

Stop Loss: 6 8 10

http://www.ninjatrader.com/webnew/trading_online_events.htm

Operations 507

© 2023 NinjaTrader, LLC

Profit
Target:

6 8 10

Please see the ATM Strategy Parameters section of the user help guide for further

information.

Can I use the Auto Breakeven and Auto Trail strategies together?

Absolutely, NinjaTrader gives you the flexibility to use these strategies alone or to

combine them. However, when using these features together please be aware of

the following:

· The Stop Strategy will not move your Stop Loss backward it will only move it

closer

· The Profit Trigger for your Auto Trail must be higher then the Profit Trigger for

your Auto Breakeven

How do I add an ATM Strategy to an open position?

If you have opened a position which is currently unprotected by an ATM Strategy,

you can easily add an pre-defined ATM Strategy to that position from the Positions

tab by right clicking on the instrument row, selecting Apply ATM Strategy and

selecting the desired pre-defined ATM Strategy Template from this sub-menu.

NinjaTrader 8508

© 2023 NinjaTrader, LLC

Can I manually bracket a position without using an ATM Strategy?

Of course! You are not required to use a pre-set ATM Strategy if you do not want

to. If you have an open position without an ATM Strategy attached, and you wish to

add limit and stop orders to protect the position follow these steps:

· Set the ATM strategy in the ATM Strategy selection drop down box to a value of

<None>

· Right click in the SuperDOM and enable OCO order placement by selecting the

menu name "OCO Order"

· Then place a limit order where you want to exit at a profit

· Then place a stop order where you want to exit at a loss

· Lastly, right click again and select the menu item "OCO Order" to disable the

OCO order placement

Now you have a target and a stop placed protecting your open position, and when

one of these orders is filled the other will be cancelled automatically.

Operations 509

© 2023 NinjaTrader, LLC

How do I make one target a "runner" so that it has a Stop Loss only and no Profit Target?

If you want a target in your ATM Strategy to have a Stop Loss only then set the

NinjaTrader 8510

© 2023 NinjaTrader, LLC

Profit Target to zero.

What happens as one of my ATM orders are rejected?

If an ATM Strategy Entry is rejected, the stops and targets for the Entry will not be

entered.

If a Stop Loss or Profit Target order is rejected, all Stop Losses and Profit Targets

for the ATM will be canceled. This includes all Stop Losses and Profit Targets to

an ATM you are scaling into.

10.1.3 Server Side ATMs

Majority of NinjaTrader's order entry interfaces house the same control for defining an ATM

Strategy.

Understanding the Server side ATM Strategy control list options

The Strategy Control List
The drop down list shown in the image below is very important to understand as it

defines how your orders will be handled once submitted. There are two main

categories of options that will be displayed in this drop-down list; None, Custom or

strategy template names. Strategy templates are specific to your account and

instrument.

None
When this option is selected, any orders placed in the entry window will not be

applied to an active ATM Strategy nor will it initiate a new ATM strategy.

Custom or ATM Strategy Template Names

Operations 511

© 2023 NinjaTrader, LLC

When an ATM Strategy template name is selected, all of the parameters will update

to reflect your pre-defined ATM Strategy, or when Custom is selected, you have the

ability to define a new ATM Strategy on the fly. Once an order is submitted, the ATM

Strategy parameters specified will be initiated when the order is partially or

completely filled.

Note: If a server side ATM template was created on Web, it may include

features not available on Desktop. The template will still submit and function as

it was saved.

Understanding Server Side Stop Loss and Profit Target parameters

ATM Strategy Parameters
Select Custom to define a new ATM Strategy or select the saved ATM Strategy

template and select "edit" in the ATM Strategy combo box as seen below.

In the image below there are parameters that define the ATM Strategy. This

strategy is a single quantity strategy that will automatically place its target at 10

ticks above the average entry price and stop loss 10 ticks below.

NinjaTrader 8512

© 2023 NinjaTrader, LLC

Selecting the "add" will allow you to configure additional Targets for your ATM

Strategy. You can add as many targets as you desire. Selecting "remove" will

reduce the number of configured Targets that are configured.

Order

quantity

Replicated from the order entry display and sets

the initial quantity used for the entry order.

TIF (Time

In Force)

Replicated from the order entry display and sets

the TIF used for entry, profit target, and stop loss

orders.

Paramete

r type Sets the type of parameter to display the ATM

values in. All Parameter types function the same

Ticks Ticks away from the average entry.

Operations 513

© 2023 NinjaTrader, LLC

Delta

Price

Price away from the average entry,

based on the displayed price of the

instrument. AKA Points away from

the average entry.

$

Value

Cash value away from the average

entry, based on to Tick value of the

instrument.

Example: Long 1 contract on the ES at 4,000.00.

If you wanted your Profit target to be at 4,001.00

you would use: Ticks - 4, Delta Price 1.00, or $

Value - 50.00

Quantity Sets the quantity for the Stop Loss and Profit

Target orders for this target

Stop

Loss

Sets the value that determines the Stop Loss

price. If the value is set to 4 (ticks) and your

average entry for the initiating order is 1000 and

you are long, your Stop Loss would be submitted

at AvgEntry - Stop Loss = 1000 - 4 ticks = stop

price of 999. This assumes each tick is valued

at 0.25.

Profit Sets the value that determines the Profit target

price. If the value is set to 4 (ticks) and your

average entry for initiating the order is 1000 and

you are long, your Profit target would be

submitted at AvgEntry + Profit target = 1000 + 4

ticks = 1001 Profit target. This assumes that

each tick is valued at 0.25.

Stop

Strategy
Sets the Stop Strategy

For further reference, please look at the Server Side Strategy Examples located

within the "Server Side ATM Strategy" page.

NinjaTrader 8514

© 2023 NinjaTrader, LLC

10.1.3.1 Server Side Stop Strategy

ATM Stop Strategies
ATM Stop Strategies provide additional functionality for the stop losses placed by an ATM
Strategy, including Auto Breakeven, Auto Trail, or using both with Auto Breakeven + Auto Trail

A Stop Strategy is an extension of an ATM Strategy. It allows you to combineAuto Breakeven,

Auto Trail, or using both with Auto Breakeven + Auto Trail for the management and automatic

adjustment of your Stop Loss orders.

When setting up an ATM Strategy, you can select either None, Auto Breakeven, Auto Trail, or

Auto Breakeven + Auto Trail before entering a position as part of a stop strategy.

When selecting Auto Breakeven, Auto Trail, or Auto Breakeven + Auto Trail the related Stop

Strategy Dialog window will appear.

Understanding the Server Side Auto Breakeven parameters

The Auto Breakeven feature will adjust your Stop Loss order to breakeven

(average entry price for the ATM Strategy position) once a user defined Profit

Trigger has been reached.

Auto Breakeven Parameters

Profit
Trigger

Sets the amount of profit required to move the

Stop Loss to a breakeven value

Plus Sets the amount added to the breakeven

(average entry price for the ATM Strategy

position) value

Operations 515

© 2023 NinjaTrader, LLC

Auto Breakeven Example

· Profit Trigger - 10 ticks

· Plus - 2 ticks

Average Entry - 10200 Short (DOW Emini contract)

As soon as the market trades at 10190 (Average Entry - Profit Trigger = 10200 -

10 ticks = 10190) NinjaTrader will move the Stop Loss order to 10,198 (Average

Entry - Plus = 10200 - 2 ticks = 10198) and enter a log event in the Log tab.

Understanding the server side Auto Trail parameters

Auto Trail is a powerful stop strategy that allows you to be more liberal with your

Stop Loss at the early stage of your trade and tighten your Stop Loss as your

profits in your trade increase.

Auto Trail Parameters

Stop
Loss

Sets the value of the Stop Loss order as an

offset behind the Profit Trigger/Frequency

Profit
Trigger

Sets the amount of profit required to trigger the

initial Stop Loss adjustment for the step

Frequen
cy

Sets the value of how frequent the Stop Loss

order is adjusted after the Profit Trigger

Auto Trail Example:

NinjaTrader 8516

© 2023 NinjaTrader, LLC

· Stop loss - 6 ticks

· Profit Trigger - 4 ticks

· Frequency - 2 ticks

Your Stop loss will move 6 ticks behind the current price...

... after the price has moved 4 ticks in your favor...

... and your Stop loss will continue to trail 6 ticks behind the current price with ever

additional 2 ticks in your favor.

Average Entry - 1000 Long (SP Emini contract)

The market moves up to 1001 and the Auto Trail is triggered (Average Entry +

Profit Trigger = 1000 + 4 ticks = 1001) and the Stop Loss is adjusted to 999.50

(1001 - Stop Loss = 1001 - 6 ticks = 999.50). For every additional 2 ticks

(Frequency of 2 ticks) the Stop Loss will be adjusted by 2 ticks.

Understanding the server side Auto Breakeven + Auto Trail parameters

Auto Trail is a powerful stop strategy that allows you to be more liberal with your

Stop Loss at the early stage of your trade and tighten your Stop Loss as your

profits in your trade increase.

Auto Breakeven Parameters

Profit
Trigger

Sets the amount of profit required to move the

Stop Loss to a breakeven value

Plus Sets the amount added to the breakeven

(average entry price for the ATM Strategy

Operations 517

© 2023 NinjaTrader, LLC

position) value

Auto Trail Parameters

Stop
Loss

Sets the value of the Stop Loss order as an

offset behind the Profit Trigger/Frequency

Profit
Trigger

Sets the amount of profit required to trigger the

initial Stop Loss adjustment for the step

Frequen
cy

Sets the value of how frequent the Stop Loss

order is adjusted after the Profit Trigger

Auto Breakeven + Auto Trail Example:

Auto Breakeven

· Profit Trigger - 10 ticks

· Plus - 2 ticks

Auto Trail

· Profit Trigger - 4 ticks

· Frequency - 2 ticks

Average Entry - 1000 Long (SP Emini contract)

The market moves up to 1002.50 and the Auto Breakeven Profit Trigger is

activated (Average Entry + Auto Breakeven Profit Trigger = 1000 + 4 ticks =

1002.50) and the Auto Breakeven Plus adjusts the Stop Loss to 1000 (Average

Entry + Auto Breakeven Plus = 1000 + 0 = 1000).

NinjaTrader 8518

© 2023 NinjaTrader, LLC

Next, the market moved up to 1003.75 and the Auto Trail Profit Trigger is activated

(Average Entry + Auto Trail Profit Trigger = 1000 + 15 ticks = 1003.75) and

the Stop loss is adjusted to 1002.50 (1003.75 - Stop loss = 1003.75 - 5 ticks =

1002.50). For every additional tick (Frequency of 1) the Stop loss will be adjusted

by 1 tick.

10.1.3.2 Manage Server Side ATM Templates

An ATM Strategy is defined by the parameters you enter into the ATM Strategy parameters

section on any of the order entry screens. The collection of parameters that make up a

strategy can be saved as a template that you can recall at a later date to automatically

populate all of the ATM Strategy parameters. Templates are specific to your account and the

selected instrument.

Saving ATM Strategy Templates
To save your current ATM Strategy parameters in a template:

Select the Save as Template button

From the presented file dialog give the template a custom name, then press Save.

Operations 519

© 2023 NinjaTrader, LLC

Removing an ATM Strategy Templates
Within the ATM Strategy dropdown menu, hover your mouse over the ATM Strategy you want

to remove, then select remove.

10.1.4 Auto Close Position

Automatically Closing Positions at a Specific Time
Auto Close Position is a strategy that will automatically close your position at an user

defined time. A position will be closed using the NinjaTrader close algorithm. The user defined

close time can be set via the "Auto Close Position - Time" property located in the Trading

category of the General Options menu. You can enable or disable this strategy via any

NinjaTrader order entry screen's right mouse click context menu.

NinjaTrader 8520

© 2023 NinjaTrader, LLC

Notes:

This feature not available to Direct Edition license users and will be disabled. Please

contact platformsales@ninjatrader.com for upgrade options.

If auto close is configured for all instruments in the Options, disabling Auto close on an

entry window will have no affect since it is globally set to close for all instruments.

Operations 521

© 2023 NinjaTrader, LLC

10.2 Alerts

Alerts Overview

Alerts allow you to define custom triggers based on various conditions in the Market

Analyzer, Hot List Analyzer, or Charts. Unique and complex conditions can be built around

existing market data components, indicators, or drawing tools. The configuration of an

Alert in NinjaTrader are completely achieved through a point and click interface, requiring

no programming experience of any kind!

› Alerts Dialog

› Configuring Alerts

› Condition Builder

10.2.1 Using Alerts

What can an alert do?
When an alert condition is triggered, you can define exactly how the alert behaves allowing

you to:

· Display a custom message on the Alerts Log

· Play a sound

· Share content to a specific Sharing Service

· Display a Pop Up Dialog with a custom message

· Submit a custom order*

Notes:

1) While an alert will give you the ability to submit custom orders, they are natively

limited in the type of account and order management information that is available. If you

are interested in developing a more complex system for an automated trading approach,

please see our Help Guide articles on developing an Automated NinjaScript Strategy.

2) Alerts are not intended to be used with Playback while using an increased speed.

Alerts are checked every 200 milliseconds, so using them in Playback could result in an

alert not triggering.

What kind of information can be used for an alert?
Alerts will always work in real-time, giving you access to a wide variety of information you

have currently setup in your workspace. However, the type of information that is available for

NinjaTrader 8522

© 2023 NinjaTrader, LLC

an alert will depend on where the alert was setup. For example, a Market Analyzer is real-

time only and does not display historical values, therefore it would not be possible to create an

alert based on a historical bar or indicator value. In contrast, a Chart does display historical

bar data, therefore a chart alert would be able to use historical bar data to be considering in a

specific alert condition used for indicators and other data series.

Chart Alerts
· Access to historical data allowing you to compare real-time indicator and data series values

to previous values (bars ago)

· Manually configured chart objects and drawing tools

· Multiple data series such as additional instruments and time frames

· Ability to make time comparisons

Market / Hot list Analyzer Alerts
· Real-time data only

· Fundamental data such as Earnings Per Share, 52 week high/low, Settlement Price, etc

can be used

· Access to account information such as instrument and account position information such

Realized/Unrealized PnL, Position size, Position avg price, etc.

10.2.2 Alerts Dialog

The Alerts Dialog will list any alerts that are currently configured for the window the dialog

was launched from as well as allow you to configure any running alerts. Alerts run on a per

tab basis for each window. This means if you have two charts open in your workspace, the

alerts dialog will only list alerts running from that specific tab.

Accessing the alerts dialog

Accessing Alerts from the Market Analyzer
· Right click on a Market Analyzer

· Select Alerts

An Alert Dialog launched from the Market Analyzer will list any columns you

have configured on your Market Analyzer to be used as alert condition objects.

Accessing Alerts from a Chart
· Right click on a Chart

· Select Alerts

An Alert Dialog launched from the Chart will list any chart objects (data series,

indicators, drawing tools) you have configured on your Chart to be used as alert

condition objects.

Operations 523

© 2023 NinjaTrader, LLC

Understanding the alerts dialog

The Alerts Dialog will list any configured alerts for the current tab as well as allow

you to configure the alerts listed.

Configure Panel
1. List of any configured alerts

2. Menu to add, remove or copy alerts

NinjaTrader 8524

© 2023 NinjaTrader, LLC

Properties Panel
The properties panel will allow you to define and modify each configured alert.

For information specific to customizing an alert property, please see our help

guide article on Configuring Alerts

1. General Define general alert settings

2.

Conditions

Define alert conditions to monitor

3. Message Define alert message details generated when

alert condition is triggered

4. Actions Define alert actions to take. Possible actions

are:

· Play sound

· Share

· Pop Up Dialog

· Submit an order

Operations 525

© 2023 NinjaTrader, LLC

10.2.3 Configuring Alerts

Alerts can be created using conditions which monitor various "objects" which exist on the

chart, or market analyzer display. Possible Condition Objects include a chart's data series,

indicators, drawing tools, or any Market Analyzer column value.

NinjaTrader 8526

© 2023 NinjaTrader, LLC

How to add a condition object

Adding an alert from the alert dialog
You can create a new generic alert by first accessing the Alerts Dialog window,

and selecting the "add" text which will add a new alert to your configured alerts

panel.

Any suitable object which currently exists on the window or tab will be available to

use as a Condition Object for the alert. For example, if you have a Market

Analyzer with several customized columns added, you will be able to use any of

those columns as a Condition Object. A Chart will work the same way in that

Operations 527

© 2023 NinjaTrader, LLC

any data series, indicator, or drawing object that currently exists on the chart will

be available as a Condition Object.

Creating an alert from a chart indicator
If you have an indicator configured on an existing chart you wish to use in your

alert condition, you can easily access this by first left mouse clicking on the

indicator plot to select the indicator, and then selecting Alert

Doing so will automatically add the selected indicator as an object that is used in

the Conditions properties.

NinjaTrader 8528

© 2023 NinjaTrader, LLC

Adding an alert from a chart drawing object
Drawing tools which exist on a chart can also be added as a condition object by

first left clicking on the drawing tool, then selecting Alert.

Operations 529

© 2023 NinjaTrader, LLC

Doing so will automatically add the selected drawing tool as an object that is used

in the Conditions properties.

NinjaTrader 8530

© 2023 NinjaTrader, LLC

Adding an alert from a chart data series
If you have multiple data series on your chart (e.g., 5 minute and 10 minute data

series), you can select one of these series to be used as an condition object.

Simply left mouse click on the chart data series itself, and select Alert

Operations 531

© 2023 NinjaTrader, LLC

Doing so will automatically add the selected data series as an object that is used

in the Conditions properties.

NinjaTrader 8532

© 2023 NinjaTrader, LLC

Understand the general alert properties

General Alert Properties
The General section allow you to configure the following alert properties:

Enable

d

When checked, the current alert will be active

Name Sets the displayed name of the alert

Apply

to

Determines which instrument(s) are used to be

monitored by the alert. This property is just for the

Market Analyzer and Hot List Analyzer.

Operations 533

© 2023 NinjaTrader, LLC

Rearm

type

Sets under what condition the alert will rearm.

Possible options are listed in the table below:

Never The alert will only trigger once

and never rearm

On timer Rearm after a specific number

of seconds defined in the rearm

seconds property

On bar

close

Rearm on the next bar close for

the data series used in the alert

condition. Only columns which

have a data series are eligible

for OnBarClose alerts.

On

condition

reversed

Rearm once the condition is no

longer true

On

connect*

Rearm after NinjaTrader has

been manually connected to a

data provider

Remove Once triggered the alert will

never rearm and be removed.

Rearm

second

s

Sets the number of seconds an alert will rearm. If

the same alert is called within a time window of the

time of last alert Rearm seconds, the alert will be

ignored (only visible if Rearm type option 'On timer'

is selected)

*The On connect rearm type is aware of 4 different types of connection events

which will define how the On connect rearm type behaves:

Event Description Rearm behavior

NinjaTrader 8534

© 2023 NinjaTrader, LLC

Manual

disconnect

When user has selected

to disconnect from the

data provider, or shut

down NinjaTrader

Alert will be

disabled

Manual

reconnect

When a user has

selected to connect to a

data provider

Alert will be

rearmed

Disconnect When the data provider

has been temporarily

disconnected due to

connectivity issues

Alert will just stay in

active state and will

wait for reconnect.

Reconnect When the data provider

connection has

recovered from the lost

connection

Alert will resume in

active state

Applying alerts to specific instruments
If you are using a window which has multiple instruments, such as a Market

Analyzer, or a Chart with multiple data series, the default behavior will be monitor

"All" instruments contained in that window tab.

By selecting the Magnify glass icon next to the Apply to property, a new window

will appear which will list all of the configured instruments and allow you to select a

specific set of instruments to be monitored by the alert:

1. From the newly opened Instruments window, select the instruments you wish

to apply the condition to

Operations 535

© 2023 NinjaTrader, LLC

Tip: Multi-select is supported in the Instrument window:

· To select a consecutive instruments, click the first instrument, press and

hold down the Shift key, and then click the last instrument.

· To select non-consecutive instruments, press and hold down the Ctrl key,

and then click each instrument that you want to select.

2. Press OK on the Instruments window

3. Your Apply to field will now list the instrument names you selected earlier,

indicating that alerts will only be triggered on instruments contained in this list.

NinjaTrader 8536

© 2023 NinjaTrader, LLC

Tip: You can also simply type in the Apply to field to add a specific instrument, or

use your backspace key to delete a specific instrument

Understanding the conditions properties

Alert Conditions
The Alert Conditions allow you to define the exactly what the alert will monitor.

1. Set Conditions to match "If Any" or "If All" of the following conditions are met:

If

Any

Alert if any of the listed conditions are true

If

All

Alert only if all of the listed conditions are true

2. A list of the current objects and conditions to monitor

3. Add a new condition, or edit and remove existing conditions

Managing Alert Conditions
To define a new alert condition, select the "add" text which will open a Condition

Builder window where you can specify exactly which condition to monitor. Please

see our Help Guide article on the Condition Builder for information on defining an

alert condition.

The "edit" text will allow you to edit a selected condition.

Selecting "remove" will remove the selected condition.

Operations 537

© 2023 NinjaTrader, LLC

Understanding the alert message properties

Alert Message
The alert message properties allow you to define general settings for how the alert

is treated when the condition is satisfied. All alerts that are generated are sent to

to the Alerts Log window and will display the message you configured in this

section. You will also be able to control the priority of the alert, as well as

background and foreground colors used.

Message The text that is displayed in the Alerts Log

window. There are a number of keywords

which begin with an "@" symbol which will

work as variables to fill in information related to

the alert, such as the Instrument, Time, Price,

etc.

Priority The priority of the alert for filtering and sorting

in the Alerts Log window

Color for

background

The color used for the grid background in the

Alerts Log

Color for

foreground

The text color used in the Alerts Log

Understanding the action properties

Actions
When an alert has been triggered, there are a number of customizable actions

that can be taken at that time. These actions include the following:

Play

Sound

Play a user defined sound file. Sounds can

include system default sounds, or custom sound

files

Share Share a message or screenshot to a selected

Sharing Service

NinjaTrader 8538

© 2023 NinjaTrader, LLC

Pop Up

Dialog

Display a Pop Up Dialog with a custom message

Submit

Order

Submit a custom order

Configuring Actions
To access these actions, you will need to make sure the Actions group is

expanded by selecting the arrow next to this field in the Alerts properties menu as

per the screen shot below:

Selecting the "add" text will open the Actions window where you can define the

custom actions. You can setup as many custom actions as you would like. This

means you can have an alert do more than one custom action as you want. For

example, you can set an alert to Play a Sound and Share a message to a Sharing

Service under he same condition.

Operations 539

© 2023 NinjaTrader, LLC

Working with Actions Templates
After configuring Actions, you can right click within the Actions columns, select

Template, and Save As to create a template. Within the right click menu is also

where you would be able to load any saved templates

NinjaTrader 8540

© 2023 NinjaTrader, LLC

Actions Property Definitions

PlaySound

Sound Sets the location of the sound file to be played

Share

Message Sets the text that is sent to the sharing service

Screenshot

type

Optional image to be attached with the message. Possible

screen shot types are:

· None - No screen shot is included with the message

· Chart - A screen shot of the chart that generated the alert

will be sent

· Tab - Screenshots are taken from the currently active tab.

Therefore changing the tab will result in a screenshot of the

current tab and not the original.

· Window - A screen shot of the entire window that generated

the alert will be sent

Share to Selects the Sharing Service that the alert message is sent to.

Operations 541

© 2023 NinjaTrader, LLC

Pop Up

Dialog

Note: There is no property for this section and is intentionally

left blank. The pop up dialog will use the "Message" that is

configured on the Alert Message section of the Alerts window

Submit

Order

Account Selects the account the order is submitted

Instrument Selects the instrument to submit the order to. Using

@INSTRUMENT will submit to the primary instrument.

Limit Price Sets the limit price used for the order

Order action Selects the type of action used. Possible order actions are:

· Buy

· Buy to cover

· Sell

· Sell short

Order type Selects the type of order used. Possible order types are:

· Limit

· Market

· MIT

· Stop-Limit

· Stop-Market

Quantity Sets the order quantity that is used for the order

Stop Price Sets the stop price used for the order

NinjaTrader 8542

© 2023 NinjaTrader, LLC

Time in force Selects the TIF (Time in Force) used for the order. Possible

TIF setting are:

· Day

· GTC

· GTD

ATM

Strategy

Selects the ATM strategy you would like applied to the order

Notes:

When applying an ATM Strategy to a Submit Order Alert, the ATM Strategy must

be saved.

If the saved ATM Strategy is modified before the alert is triggered, the order will

submit with the modified ATM.

If the ATM Strategy is removed before the alert is triggered, no ATM Strategy

will be applied to the order and you will receive an error.

All TIF options will display. If the broker does not support the TIF selected, there

may be an error.

10.2.4 Condition Builder

The Condition Builder is a very powerful feature that allows you to define complex

conditions for your alerting systems without having to know how to program. The sections

below assume you have read and understood how to configure the alerts dialog and

understand how to select a Condition Object to be used in the condition. If you have not yet,

please be sure to review the material under Configuring Alerts.

Understanding the Condition Builder

Condition Builder
Most if not all trading system code wizards are limited in scope in that they provide
canned pre-defined expressions and only allow you to change a few parameters
on those expressions. The NinjaTrader Condition Builder is advanced in that you
can develop powerful expressions with extensive configurations. Due to its power

Operations 543

© 2023 NinjaTrader, LLC

and flexibility, it is extremely important that you read through and understand its
capabilities.

The Condition Builder can be accessed via the Alerts Dialog screen by selecting
the "add" text

Basic Operation
The general concept of the Condition Builder to generate a Boolean expression
also known as comparison expressions or conditional expressions. What does
that mean? It is simply an expression that results in a value of either TRUE or
FALSE. For example, the expression 2 < 7 (2 is less than 7) is a Boolean
expression because the result is TRUE. All expressions that contain relational
operators are Boolean. Boolean expressions or "Conditions" as they are known in
NinjaTrader is used to determine when to take a specified action such as
submitting an order or drawing on the chart.

NinjaTrader 8544

© 2023 NinjaTrader, LLC

Looking at the image below, you can instantly see that the Condition Builder is
set up like a Boolean expression. Select an item from the left window, select the
relational operator (2) and compare it to a selected item in the right window.

1. Available items such as indicators, price data, etc. to use for the comparison
2. List of relational operators

Relational operator invalid comparisons
Since the relational operator will let you select any items from the left to compare

to the right in the Condition Builder, you need to be mindful what you attempt

comparing. For example comparing a price based value like the ES ##-## Data

Series to the Time category Time Value would not be possible, and prompt the

Condition Builder to issue an error like shown below -

"Type of left expression and right expression do not match, please select

similar expressions"

Operations 545

© 2023 NinjaTrader, LLC

To work around, you would need to select expressions with a similar return value

that would allow for a programmatic comparison. In the example used above, the

ES ##-## Data Series provides an double value in return that is attempted to be

compared to a time span value, which Time Value would return.

The correct approach is shown below, the ES ##-## price would return a double

value which would be compared to the Numeric Value 2275 to see if the price will

Cross Above that.

NinjaTrader 8546

© 2023 NinjaTrader, LLC

How to make chart price data comparisons

Price Data Comparisons
You can compare a chart's bar price data such as checking for a higher close. In
order to compare the current bar value, to a previous bar value, we will need to
use a Chart's Data Series as our condition object. In our example, we are using
the ES 12-14 (1 minute) Data Series as our condition object.

The following is an an example and represents one of many possible
combinations.

1. Select the Data Series and set the Price type to Close.
2. Select the "greater" relational operator
3. Select the Data Series and set the Price type to Close.
4. Set the Bars ago parameter to a value of "1"

Operations 547

© 2023 NinjaTrader, LLC

Once the OK button is pressed, a condition is created that would translate to the
following:

"Current closing price is greater than the closing price of 1 bar ago"

How to offset an item value

Offsetting an Item Value
You can offset the value of most items available in the Condition Builder. An

offset is a value that is added or subtracted from the actual item's value. When an

item is selected such as an indicator or price data, the Offset type and Offset

parameters become visible in the window directly below the item selected. This is

shown as numbers 5 and 6 in the image below.

Note: Offsetting a condition CANNOT be applied directly to Drawing Tools.

Should you wish to be alerted once a value is within N-value of the drawing

NinjaTrader 8548

© 2023 NinjaTrader, LLC

tool, apply the offset calculation to the data series or indicator condition.

Offset type can be set to:

Arithmet

ic

Performs simple math functions such as adding,

subtracting, multiplying, or dividing from the items

value

Pips An absolute pip value (for forex) from the item's

value

Percent A percentage value of the item's value. A value of

10 is equal to 10%

Ticks The number of ticks (0.01 for stocks and the tick

size for futures) from the item's value

Once the Offset type is selected, you must set the value Offset.

The following is an example and represents one of many possible combinations:

1. Select the Data Series and set the Price type to Close

2. Select the "greater" relational operator

3. Select the Data Series and set the Price type to High

4. Set the Bars ago parameter to a value of "1"

5. Set the Offset type parameter to Ticks

6. Set the Offset parameter to a value of "1"

Operations 549

© 2023 NinjaTrader, LLC

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current closing price is greater than the high price of 1 bar ago + 1 tick"

How to make indicator to value comparisons

Indicator to Value Comparisons
You can compare an indicator's value to a numeric value. This can come in handy

if you wanted to check if ADX is over a value of 30 (trending) or if Stochastics is

under a value of 20 (oversold) or any other conditions you can think of.

The following is an an example and represents one of many possible

combinations. We have already added the ADX indicator to our chart so it is

available as condition object.

1. Under the Indicators category, select the ADX indicator

NinjaTrader 8550

© 2023 NinjaTrader, LLC

2. Select the "greater" relational operator

3. Select the Numeric value category

4. Enter the numeric value

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current value of a 14 period ADX is greater than 15"

How to compare plot values of multi-plot indicators

Comparing Plot Values of Multi-Plot Indicators
You can compare plots in the same indicator or select any individual plot within an

indicator to create a condition.

Operations 551

© 2023 NinjaTrader, LLC

The following is an example and represents one of many possible combinations.

We have already added the Stochastics indicator to our chart so it is available as

condition object.

1. Under the Indicators category, select the Stochastics indicator

2. Set the indicator plot and select the K plot

3. Select the "greater" relational operator

4. Under the Indicators category, select the Stochastics indicator

5. Set the indicator input parameters and select the D plot

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current K plot value of a Stochastics indicator is greater than the current

D plot value of the same Stochastics indicator"

How to create a cross over condition

NinjaTrader 8552

© 2023 NinjaTrader, LLC

Cross Over Conditions
You can check for either a Cross Above or Cross Below condition with a user

defined look back period. The look back period sets the number of bars to look

back to check for the cross over condition.

The following is an an example and represents one of many possible

combinations. We have already added two EMA indicators (9 period EMA and 20

period EMA) to our chart so they are both available as condition objects.

1. Under the Indicators category, select the 9 period EMA indicator

2. Select "cross above" relational operator

3. Set the Look back period

4. Under the Indicators category, select the 20 period EMA indicator

Notes:

· The Look back period must be at least 1 to function.

· CrossInside and CrossOutside are reserved for drawing objects, setup

examples could be found on the next section Alerts Examples

Operations 553

© 2023 NinjaTrader, LLC

Once the OK button is pressed, a condition is created that would translate to the

following:

"9 period exponential moving average crosses above the 20 period

exponential moving average in the last 15 bars"

How to compare account position information

Creating Account Position Comparisons
You can compare your current account state information such as but not limited to

account PnL or position size using the Market Analyzer.

The following is an an example and represents one of many possible

combinations. We have already added the Unrealized profit loss column to our

Market Analyzer so it is available as condition object.

1. Under the Columns category, select the Unrealized profit loss column

NinjaTrader 8554

© 2023 NinjaTrader, LLC

2. Select the "less" relational operator

3. Under the Columns category, select the Number Value category

4. Set the Value

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current Unrealized profit loss is less than -$100"

How to create time comparisons

Creating Time Comparisons
You can compare a chart bar's time data to a user defined time or date value.

The following is an an example and represents one of many possible

combinations.

Note: Time series represents a collection of bar Date/Time values of a bar

Operations 555

© 2023 NinjaTrader, LLC

series which are available from a chart

1. Select the Time category and select the Data Series series

2. Select the "greater equal" relational operator

3. Expand the Time value category

4. Set the Time value parameter to a user defined value of "10:00 AM"

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current bar's time is greater or equal to 10:00 AM"

10.2.5 Alerts Examples

Following are a few examples of Alerts which can be set up on charts or Market Analyzer

windows. Each example shows a different type of alert condition, along with a different action

or combination of actions. Feel free to copy and modify these examples for your own uses, or

simply use them as a guide to reinforce the material covered on the previous pages.

NinjaTrader 8556

© 2023 NinjaTrader, LLC

Simple Moving Average Crossover

Preparation
· Open a chart

· Apply an SMA indicator to the chart

Overview
This basic alert triggers when the current market price crosses above a 20-period

Simple Moving Average. The image below shows the fully configured alert.

Operations 557

© 2023 NinjaTrader, LLC

Conditions and Actions
The Conditions and Actions windows for this alert can be seen below:

NinjaTrader 8558

© 2023 NinjaTrader, LLC

1. In the Conditions window pictured above, the ES data series is selected in the

left panel

2. The "CrossAbove" condition is selected

3. The 20-period SMA (one of two SMAs applied to the chart) is selected in the

right panel

We now have a condition which translates to "When the current price crosses

above the 20 SMA."

Operations 559

© 2023 NinjaTrader, LLC

1. In the Actions window, the "Play a Sound" option is selected

2. A sound named "Alert1" is selected to be played when the alert triggers

Multi-Plot Indicator Crossover

Preparation
· Open a chart

· Apply a MACD indicator to the chart

· Apply a Stochastics indicator to the chart

Overview
This alert is a bit more advanced than the example above. This alert demonstrates

a multi-plot crossover scenario, detecting when one specific plot of an indicator

crosses a different plot of the same indicator. In this example, plots within the

NinjaTrader 8560

© 2023 NinjaTrader, LLC

MACD and the Stochastics indicators must cross other plots within the same

indicators. The image below shows the fully configured alert.

Conditions and Actions
The Conditions and Actions windows for this alert can be seen below:

Operations 561

© 2023 NinjaTrader, LLC

1. In the Conditions window, the D plot of the Stochastics indicator is selected in

the left panel

2. The CrossBelow condition is selected, and a value of 1 is entered for the look-

back period

3. The K plot of the Stochastics indicator is selected in the right panel

We now have a condition that translates to "When Stochastics D crosses below

Stochastics K within the last one bar."

NinjaTrader 8562

© 2023 NinjaTrader, LLC

1. In the Conditions window for the second condition, the Avg plot of the MACD

indicator is selected in the left panel

2. Just like the previous condition, the CrossBelow operator is used with a look-

back period of 1

3. The Diff plot of the MACD indicator is selected in the right panel

We now have a second condition that translates to "When MACD Avg crosses

below MACD Diff within the last 1 bar."

Operations 563

© 2023 NinjaTrader, LLC

1. In the Actions window, the "Play a Sound" option is selected

2. A sound named "Alert1" is selected to be played when the alert triggers

Hot List Analyzer Net Change

Preparation
· Open a Hot List Analyzer

· Populate a Hot List in the window

Overview
This alert is set up on the Hot List Analyzer, and specifically relates to the Net

Change column. Alerts can be set up for other Hot List Analyzer columns in a

similar way. The image below shows the fully configured alert.

NinjaTrader 8564

© 2023 NinjaTrader, LLC

Conditions and Actions
The Conditions and Actions windows for this alert can be seen below:

Operations 565

© 2023 NinjaTrader, LLC

1. In the Conditions window, the Net Change column is selected in the left panel.

2. The Greater/Equal condition is selected

3. The Numeric Value property is selected in the right panel, with a value of 0.2

We now have a condition that translates to "When the value of the Net Change

column is greater than or equal to 0.2."

NinjaTrader 8566

© 2023 NinjaTrader, LLC

1. In the Actions window, the "Show a pop up dialog" action is selected

2. "@MESSAGE" is entered for the text to be displayed in the dialog. This will

populate the dialog with the message entered in the "Message" section of the

Alerts window.

New Intraday High

Preparation
· Open a chart

· Apply a Current Day OHL indicator to the chart

Overview
This alert will trigger when a new High is formed intraday. The image below shows

the fully configured alert.

Operations 567

© 2023 NinjaTrader, LLC

Conditions and Actions
The Conditions and Actions windows for this alert can be seen below:

NinjaTrader 8568

© 2023 NinjaTrader, LLC

1. The "High" price type is selected for the ES 09-15 instrument in the left panel,

with 0 used as the "BarsAgo" parameter

2. The "Greater" condition is selected

3. The Current Day OHL indicator is selected in the right panel, and the "Current

High" plot is selected

We now have a condition that translates to "When the current bar's High price

is greater than the current day's High (prior to the current bar."

Operations 569

© 2023 NinjaTrader, LLC

1. In the Actions window, the "Play a Sound" option is selected

2. A sound named "Alert1" is selected to be played when the alert triggers

PnL Risk Management

Preparation
· Open a Market Analyzer

· Apply a "Realized Profit/Loss" column to the Market Analyzer (see image below)

Overview
This alert uses the Market Analyzer's "Realized Profit/Loss" column to trigger an

alert when a certain level of loss has occurred. In the image below, the "Realized

Profit/Loss" column is configured in a Market Analyzer window.

NinjaTrader 8570

© 2023 NinjaTrader, LLC

The image below shows the fully configured alert.

Operations 571

© 2023 NinjaTrader, LLC

Conditions and Actions
The Conditions and Actions windows for this alert can be seen below:

NinjaTrader 8572

© 2023 NinjaTrader, LLC

1. In the Conditions window, the "Realized Profit/Loss" column is selected in the

right panel. Note that this column was manually added to the Market Analyzer

before opening the Alerts window.

2. The Less Equal condition is selected.

3. The Numeric Value property is selected in the right panel, and a value of -1,000

is entered.

We now have a condition that translates to "When the value of the "Realized

Profit/Loss" column is -1,000 or less."

Operations 573

© 2023 NinjaTrader, LLC

1. In the Actions window, the "Show a pop up dialog" action is selected

2. "@MESSAGE" is entered for the text to be displayed in the dialog. This will

populate the dialog with the message entered in the "Message" section of the

Alerts window.

Price and Fibonacci Retracements

Preparation
· Open a chart

· Draw a Fibonacci Retracements object anywhere on the chart

Overview

NinjaTrader 8574

© 2023 NinjaTrader, LLC

This alert compares the current market price to the 50% line drawn by a Fibonacci

Retracements Drawing Tool. The image below shows the fully configured alert.

Conditions and Actions
The Conditions and Actions windows for this alert can be seen below:

Operations 575

© 2023 NinjaTrader, LLC

1. The ES ##-## data series is selected in the left panel, and the "Close" price type

is selected (which will contain the Last price on the current bar)

2. The CrossAbove condition is selected

3. The Drawing Tool named "Fibonacci Retracements 2" is selected in the left

panel. This is a specific drawing object which has already been drawn on the chart

to which this alert is attached

4. The 50% line of the Fibonacci drawing object is selected

We now have a condition that translates to "When the current price of ES

crosses above the 50% line of the Fibonacci Retracements object on the

chart."

NinjaTrader 8576

© 2023 NinjaTrader, LLC

1. In the Actions window, the "Submit an Order" option is selected

2. Parameters for the order are set in the Actions window, as well

Price and User-Drawn Objects

Preparation
· Open a chart

· Use the Triangle Drawing Tool to draw a triangle on the chart. Make sure that

the current market price is within the bounds of the triangle.

Overview
This alert detects when the current market price breaks outside of a user-drawn

shape on the chart. The shape used in this alert can be seen below:

Operations 577

© 2023 NinjaTrader, LLC

The image below shows the fully configured alert.

NinjaTrader 8578

© 2023 NinjaTrader, LLC

Conditions and Actions
The Conditions and Actions windows for this alert can be seen below:

Operations 579

© 2023 NinjaTrader, LLC

1. The ES ##-## data series is selected in the left panel

2. The Cross Outside condition is selected. This condition populates when a

Drawing Object is selected in either the left or right panel

3. The custom-drawn triangle drawn on the chart is selected in the right panel

(your object may have a difference name)

We now have an alert that translates to "When the current market price breaks

outside of the Drawing Object named 'Triangle 6'."

NinjaTrader 8580

© 2023 NinjaTrader, LLC

1. In the Actions window, the "Play a Sound" option is selected

2. A sound named "Alert1" is selected to be played when the alert triggers

Operations 581

© 2023 NinjaTrader, LLC

1. In the Actions window, the "Submit an Order" option is selected for a second

action

2. Parameters for the order are set in the Actions window, as well. We now have

two actions associated with this Alert.

Time-Based Alert

Preparation
· Open a chart

Overview
This alert is based upon the timestamps of bars on a chart. The alert will trigger

when the timestamp of the current bar is greater equal to 2:15pm. The image

below shows the fully configured alert.

NinjaTrader 8582

© 2023 NinjaTrader, LLC

Conditions and Actions
The Conditions and Actions windows for this alert can be seen below:

Operations 583

© 2023 NinjaTrader, LLC

1. The ES 09-18 data series is selected in the left panel under the Time folder

2. The "Greater equal" condition is selected

3. The "Time Value" property is selected in the right panel, and a time of 2:15pm is

entered directly below

We now have a condition that translates to "When the time stamp of the

current bar on the ES data series is greater equal to 2:15pm." This means

the alert would trigger at about 2:14:01pm since bars are timestamped on the bar

close time.

NinjaTrader 8584

© 2023 NinjaTrader, LLC

1. In the Actions window, the "Play a Sound" option is selected

2. A sound named "Alert1" is selected to be played when the alert triggers

Conditions for custom indicators

Preparation
· Open a chart

· Apply a custom indicator to the chart

o This example will use a custom indicator which is not pre-loaded in

NinjaTrader. You will not have access to the PriceVol indicator in your

installation, but this process can be used with any custom indicator that you

havee developed

Operations 585

© 2023 NinjaTrader, LLC

Overview
This alert compares the current market price and the pre-built VOL indicator to

different plots of a custom indicator developed with NinjaScript. In this example,

the custom indicator is named "PriceVol." This alert will trigger when the current

value of the VOL indicator crosses above a historical average of volume calculated

by PriceVol, if the current market price is greater than the instrument's 52-week

High (also calculated by PriceVol). The image below shows the fully configured

alert.

Conditions and Actions
The Conditions and Actions windows for this alert can be seen below:

NinjaTrader 8586

© 2023 NinjaTrader, LLC

1. In the Conditions window, the VOL indicator is selected in the left panel

2. The Cross Above condition is selected.

3. The AvgVol plot of the PriceVol indicator is selected in the right panel. For this

custom indicator, the AvgVol plot contains a 14-period average of volume

We now have a condition that translates to "When the current volume crosses

above the 14-period average of volume."

Operations 587

© 2023 NinjaTrader, LLC

1. In the Conditions window for the second condition, the primary data series

applied to the chart is selected in the left panel

2. The Cross Above condition is selected, just like the first condition

3. The YearlyHigh plot of the PriceVol custom indicator is selected in the right

panel. This contains the 52-week High for the instrument.

We now have a second condition that translates to "When the current market

price crosses above the instrument's 52-week High."

Since this alert does not define any actions, it will simply display the specified

message in the Alerts Log window.

NinjaTrader 8588

© 2023 NinjaTrader, LLC

10.3 Alerts Log

Alerts Log Overview

The Alerts Log window can be opened by left mouse clicking on the New menu within the

NinjaTrader Control Center and selecting the menu item Alerts Log.

The Alerts Log window displays triggered user defined alerts. Alert conditions can be

defined within Charts, the Market Analyzer window, News window or alerts can be

triggered within a custom NinjaScript indicator or strategy.

› Using the Alerts Log Window

› Alerts Log Properties

10.3.1 Using the Alerts Log Window

The Alerts Log window displays information for each alert that is triggered within

NinjaTrader.

Understanding the Alerts Log window

Alerts Log Window Display
When an alert is triggered, the following information is available in the Alerts Log

window:

1. Instrument name

2. Source of alert

3. Priority of alert

4. Time of the alert

5. User defined message

Operations 589

© 2023 NinjaTrader, LLC

Right Click Menu
Right mouse clicking within the Alerts Log window will bring up the following menu

options:

Clear Clears the Alerts Log history

NinjaTrader 8590

© 2023 NinjaTrader, LLC

Instrument

Type

Filters alerts by type of instrument

Priority Filters alerts by user defined priority

Source Filters alerts by originating source

Go To Alert Brings source of alert in focus

Send To Loads the selected instrument into another

NinjaTrader window

Always On

Top

Sets the Alerts Log window to always be on top

of other windows

Show Tabs Set if the window should allow for tabs

Export Exports the Alerts Log contents to "CSV" or

"Excel" file format

Find... Search for a term in the Alerts Log

Print Displays Print options

Share Displays Share options

Properties Set the Alerts Log properties

Setting up alert filters

Filtering Alerts
By default, all alerts triggered in the workspace will be displayed in the Alerts Log
window. However, each Alerts Log window and tab has the capability to only display
certain alerts based on a number of alert attributes.

The following alert filter attributes will be available from the Alerts Log right click menu:

Operations 591

© 2023 NinjaTrader, LLC

Instrument

Type

Forex, Future, Index, Option, Stock, CFD

Priority High, Medium, Low

Source Chart, Market Analyzer, Hot List Analyzer, News,

NinjaScript

To enable or disable these filters, simply right click on the Alerts Log window and

check or uncheck the attribute you wish to configure.

When checked, only alerts which meet the alert attribute description will be displayed

on the current Alerts Log window or tab. You can create multiple tabs, or multiple

windows to setup varying filters for each attribute you desire to help organize the type of

alerts that are displayed.

Using Alerts Logs and multiple workspaces

Finding an Alert
From the Alerts Log, you can quickly locate the source window or tab in which the alert

was generated.

1. Double clicking an alert entry row will bring the the source window or tab to front and

focus.

2. You can also right click on the alert entry row and select Go To Alert.

Alerts Logs in Multiple Workspaces
The default behavior of the Alerts Log is to only receive alerts from its parent

workspace. However, you can configure an individual Alerts Log window or tab to

receive alerts from other workspaces by right clicking on the Alert Log, selecting

Properties and checking Receive alerts from all active workspaces (Please note that

NinjaScript objects are excluded from this check).

With this configuration, should you attempt to Go To Alert which was generated from

another workspace, you will receive a prompt asking if you would like to navigate to the

source workspace. Selecting Yes on this prompt will then switch the active workspace

and set the source window or tab into view.

NinjaTrader 8592

© 2023 NinjaTrader, LLC

10.3.2 Alerts Log Properties

The Alerts Log window can be customized through the Alerts Log Properties window.

How to access the Alerts Log Properties window

You can access the Alerts Log properties dialog window by clicking on your right

mouse button and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the Alerts Log

Properties window:

Property Definitions

General

Operations 593

© 2023 NinjaTrader, LLC

Grid font Sets the font options

Instrument type -

Forex

Filter by Forex instrument type

Instrument type -

Future

Filter by Future instrument type

Instrument type -

Index

Filter by Index instrument type

Instrument type -

Option

Filter by Option instrument type

Instrument type -

Stock

Filter by Stock instrument type

Instrument type -

CFD

Filter by CFD instrument type

Priority - high Filter by high priority

Priority - medium Filter by medium priority

Priority - low Filter by low priority

Receive alerts from

all active workspaces

Sets if the window receives alerts

from other active workspaces.

Source - Chart Filter from alerts triggered by Charts

Source - Market

Analyzer

Filter from alerts triggered by the

Market Analyzer

Source - Hot List

Analyzer

Filter from alerts triggered by the Hot

List Analyzer

Source - News Filter from alerts triggered by the

News Window

NinjaTrader 8594

© 2023 NinjaTrader, LLC

Source - NinjaScript Filter from alerts triggered from

custom NinjaScript files

Time format Sets the format used for the time

column

Tab name Sets the name of the tab, please see

Managing Tabs for more information.

Columns

Instrument Sets if the Instrument name column

is displayed

Instrument type Sets if the Instrument type column is

displayed

Message Sets if the Message column is

displayed

Priority Sets if the Priority column is

displayed

Source Sets if the Source column is

displayed

Time Sets if the Time column is displayed

Window

Always on top Sets if the window will be always on

top of other windows.

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

Operations 595

© 2023 NinjaTrader, LLC

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

10.3.3 Window Linking

Please refer to the Window Linking section of the Help Guide for more information on linking

chart windows. Many windows in NinjaTrader can be linked by instrument allowing

synchronous changing of instruments and / or intervals in all linked windows.

10.4 Automated Trading

Automated Trading Overview

NinjaTrader provides methods for automated trading through NinjaScript or from an

outside source via the Automated Trading Interface (ATI).

› ATI Interface

› File Interface

› DLL Interface

› TradeStation Integration

› Running NinjaScript Strategies

10.4.1 Automated Trading Interface (ATI)

You can enable the AT Interface on under Automated trading interface category from the

General Options menu.

NinjaTrader 8596

© 2023 NinjaTrader, LLC

Automated Trading Interface (ATI) Overview

NinjaTrader's ATI (Automated Trading Interface) provides efficient protocols to

communicate trading signals from various external sources to NinjaTrader for the

automation of order execution.

· Popular charting applications such as but not limited to TradeStation, eSignal,

NeoTicker, and Investor RT

· Custom applications written in but not limited to Visual Studio .NET, Visual Basic,

Delphi, and MS Excel

· Black box trading systems

NinjaTrader provides methods for automated trading through NinjaScript or from an

outside source via the Automated Trading Interface (ATI).

› What can I do and how?

› Commands and Valid Parameters

› Initialization

› File Interface

› DLL Interface

› TradeStation

Note: This interface is ONLY used for processing trade signals generated from external

applications and is NOT a full blown brokerage/market data API. If you are interested in

automated trading using native NinjaScript strategies please proceed to the following help

guide section.

10.4.1.1 What can I do and how?

What can I do through automation?

· Place orders

· Initiate a NinjaTrader ATM Strategy

· Change orders

· Cancel orders

· Close ATM Strategies and positions

· Flatten accounts

· Cancel all orders

· Retrieve information on positions and orders

Operations 597

© 2023 NinjaTrader, LLC

NinjaTrader provides three options for communicating from an external application to

NinjaTrader for trade automation. The Email Interface requires absolutely no programming

experience whatsoever, other options require various levels of programming/scripting

experience.

Understanding the three interface options

TradeStation Email Interface
The TradeStation Email Interface allows you to take advantage of TradeStation's

email notification capabilities right out of the box. Run your TradeStation strategy in

real time, order signals are emailed within your computer (never leaves your PC)

to NinjaTrader which processes the order through to your broker.

File Interface
The File interface uses standard text files as input. These files are called order

instruction files (OIF) and have specific format requirements. NinjaTrader

processes the OIF the instant the file is written to the hard drive and subsequently

deletes the file once the processing operation is complete.

DLL Interface
NinjaTrader provides a DLL named NtDirect.dll that supports various functions for

automated trading.

Which interface option should I use?

TradeStation Systems
· If you are not running your own strategies or you have limited or no programming

experience you should use the TradeStation Email Interface

· If you are running your own system and you are comfortable with EasyLanguage

and want to have bi-directional control of your real-time order processing you

should use the DLL interface.

Other Charting Applications
· You should use the DLL if your charting application supports that interface type

or use the File Interface

Custom Applications
· You should use the DLL interface

NinjaTrader 8598

© 2023 NinjaTrader, LLC

10.4.1.2 Commands and Valid Parameters

The following section is only relevant for the File and DLL interfaces. Both interfaces share

common interface functions/methods that take as arguments the parameters defined in the

tables below. You can automate your trading through eight different commands. Command

definitions are also provided below.

Understanding parameters and valid values

Available Parameters and Valid Values

Parameter

s

Values

COMMAND CANCEL, CANCELALLORDERS, CHANGE,

CLOSEPOSITION, CLOSESTRATEGY,

FLATTENEVERYTHING, PLACE,

REVERSEPOSITION

ACCOUNT The name of the account the command is to be

processed (This will reflect the Account's

Name property as opposed to the Display

Name property.)

INSTRUME

NT

Instrument name

ACTION BUY, SELL

QTY Any integer value

ORDER

TYPE

MARKET, LIMIT, STOPMARKET, STOPLIMIT

LIMIT

PRICE

Any decimal value (use decimals not commas

1212.25 for example)

STOP

PRICE

Any decimal value

Operations 599

© 2023 NinjaTrader, LLC

TIF DAY, GTC

OCO ID Any string value

ORDER ID Any string value (must be unique for each

line/file)

STRATEG

Y

Strategy template name (must exist in

NinjaTrader)

STRATEG

Y ID

Any string value (must be unique for each

line/file)

Understanding the parameters available to commands

Available Commands
The following table displays required (R) and optional (O) values for each different

command value.

Co

m

ma

nd

A

c

c

o

u

n

t

In

st

r

u

m

e

n

t

A

c

ti

o

n

s

Q

t

y

O

r

d

e

r

T

Y

p

e

Li

m

it

P

ri

c

e

S

t

o

p

P

ri

c

e

T

I

F

O

C

O

I

D

O

r

d

e

r

I

D

S

tr

a

t

e

g

y

S

tr

at

e

g

y

I

D

CA

NC

EL

R O

CA

NC

EL

AL

LO

NinjaTrader 8600

© 2023 NinjaTrader, LLC

R

DE

RS

CH

AN

GE

O O O R O

CL

O

SE

P

O

SI

TI

O

N

R R

CL

O

SE

ST

RA

TE

GY

R

FL

AT

TE

NE

VE

RY

TH

IN

G

PL

AC

E

R R R R R O O R O O O O

Operations 601

© 2023 NinjaTrader, LLC

RE

VE

RS

EP

O

SI

TI

O

N

R R R R R O O R O O O O

Understanding the commands

Following are the descriptions of each available command.

CANCEL COMMAND
This command will cancel an order and requires an order ID value and an optional

strategy ID value. The order ID value must match either the order ID value given to

an order placed through the PLACE command or, an order name such as

ENTRY*, EXIT*, STOP*, SIMSTOP* or TARGET*. The star (*) represents an

integer value such as TARGET1 or TARGET2. Order names are only valid if a

valid strategy ID value is passed. The strategy ID value must match a strategy ID

value given to a strategy in the PLACE command.

CANCELALLORDERS COMMAND
This command will cancel all active orders across all accounts and broker
connections.

CHANGE COMMAND
This command will change the parameters of an order and requires an order ID

value, optional price and quantity values and an optional strategy ID value. The

order ID value must match either the order ID value given to an order placed

through the PLACE command or, an order name such as ENTRY*, EXIT*,

STOP*, SIMSTOP* or TARGET*. The star (*) represents an integer value such as

TARGET1 or TARGET2. Order names are only valid if a valid strategy ID value is

passed. Pass in zero (0) values for price and quantity if you do not wish to change

these order parameters. Price values must be in US decimal format (1212.25 is

correct while 1212,25 is not).

CLOSEPOSITION COMMAND

NinjaTrader 8602

© 2023 NinjaTrader, LLC

This command will close a position and requires an account name value and an

instrument name value. The instrument name value is the name of the NinjaTrader

instrument including the exchange name. For equities, the symbol is sufficient.

This command will cancel any working orders and flatten the position.

CLOSESTRATEGY COMMAND
This command will close an ATM Strategy and requires a strategy ID value. The

strategy ID value must match a strategy ID given to a strategy in the PLACE

command. This command will close the specified strategy.

FLATTENEVERYTHING COMMAND
This command will cancel all active orders and flatten all positions across all

accounts and broker connections.

PLACE COMMAND
This command will place orders, place orders that initiate a NinjaTrader ATM

Strategy, or place orders that are applied to an active NinjaTrader position ATM

Strategy. Providing the optional strategy name field with a valid ATM Strategy

template name will result in execution of that ATM Strategy once the order is

partially or completely filled. Pass in an optional unique string value for the strategy

ID in order to reference that ATM Strategy via other commands. To apply an order

to an active ATM Strategy (existing strategies Stop Loss and Profit Target orders

are amended) pass in the active strategy ID value and leave the strategy name

field blank. Pass in an optional unique string value for the order ID in order to

reference that order via other commands. If specifying an ATM Strategy template

name, there is no need to pass in an order ID as the strategy based orders can be

referenced by their internally generated names such as TARGET1, STOP1 and so

on.

REVERSEPOSITION COMMAND
This command will close the current position and place an order in the opposite

direction. The field requirements are identical to the PLACE command.

10.4.1.3 Initialization

If using the DLL based interface, it is important to understand how the ATI is initialized with

respect to referencing account names. The ATI is initialized to the first account name used in

the first calling function.

Some functions accept an account name as a parameter. In most if not all functions, these

parameters can be left blank in which case the "Default" account will be used. You can set

the Default account by left mouse clicking on the Tools menu in the NinjaTrader Control

Operations 603

© 2023 NinjaTrader, LLC

Center and selecting the menu item Options, once in the Options window select the

Automated trading interface category and select the account you want to use from the Default

account menu. If your default account is set to 'Sim101' and you call functions and leave the

account parameter blank, the Sim101 account will be automatically used.

Example:

· Default account = Sim101

· A function call is made with "" empty string as the account name argument

· Sim101 account is automatically used

· Subsequent function calls must use empty string if you want to reference the Sim101

account

· If you call a function and pass in the argument "Sim101", invalid information will be returned

10.4.1.4 File Interface

File Interface Overview

The File interface is an easy way you can instruct NinjaTrader to place and manage

orders. To use this interface, just create Order Instruction Files (OIFs) in "My

Documents\<NinjaTrader Folder>\incoming" and when NinjaTrader sees the instructions

they will be processed immediately. This interface allows you the flexibility to create order

instructions to NinjaTrader from any application that allows you to create text files.

› Order Instruction Files (OIF)

› Information Update Files

10.4.1.4.1 Order Instruction Files (OIF)

OIFs must be written to the folder "My Documents\<NinjaTrader Folder>\incoming" and be

named oif*.txt. You can simply send an oif.txt file however, it is suggested that you increment

each OIF so that you end up with unique file names such as oif1.txt, oif2.txt, oif3.txt. The

reason is that if you send a lot of OIFs in rapid succession, you do run the risk of file locking

problems if you always use the same file name. This will result in a situation where your file is

not processed.

Each file must also contain correctly formatted line(s) of parameters. You may stack the

instruction lines so that each file contains as many instruction lines as you desire. The

delimiter required is the semicolon and this section is a good reference for generating

correctly formatted OIF. Files are processed the instant they are written to the hard disk

without delay.

NinjaTrader 8604

© 2023 NinjaTrader, LLC

Please reference the Commands and Valid Parameters section for detailed information on

available commands and parameters.

Warning: Move or directly write OIF files to the incoming folder. Copying OIF files to the

incoming folder can cause file locking problems.

The following are examples of the required format for each of the available commands.

Required fields are embraced by <> where optional fields are embraced by [].

CANCEL COMMAND
CANCEL;;;;;;;;;;<ORDER ID>;;[STRATEGY ID]

CANCELALLORDERS COMMAND
CANCELALLORDERS;;;;;;;;;;;;

CHANGE COMMAND
CHANGE;;;;<QUANTITY>;;<LIMIT PRICE>;<STOP PRICE>;;;<ORDER ID>;;[STRATEGY ID]

CLOSEPOSITION COMMAND
CLOSEPOSITION;<ACCOUNT>;<INSTRUMENT>;;;;;;;;;;

CLOSESTRATEGY COMMAND
CLOSESTRATEGY;;;;;;;;;;;;<STRATEGY ID>

FLATTENEVERYTHING COMMAND
FLATTENEVERYTHING;;;;;;;;;;;;

PLACE COMMAND
PLACE;<ACCOUNT>;<INSTRUMENT>;<ACTION>;<QTY>;<ORDER TYPE>;[LIMIT PRICE];[STOP

PRICE];<TIF>;[OCO ID];[ORDER ID];[STRATEGY];[STRATEGY ID]

REVERSEPOSITION COMMAND
REVERSEPOSITION;<ACCOUNT>;<INSTRUMENT>;<ACTION>;<QTY>;<ORDER TYPE>;[LIMIT PRICE];[STOP

PRICE];<TIF>;[OCO ID];[ORDER ID];[STRATEGY];[STRATEGY ID]

10.4.1.4.2 Information Update Files

NinjaTrader provides update information files that are written to the folder "My

Documents\<NinjaTrader Folder>\outgoing". The contents of this folder will be deleted when

the NinjaTrader application is restarted.

Understanding order state files

Order State Files

Operations 605

© 2023 NinjaTrader, LLC

Orders that are assigned an order ID value in the "PLACE" command will generate

an order state update file with each change in order state. The file name is

'orderId.txt' where orderId is the order ID value passed in from the "PLACE"

command. Possible order state values can be found here. The format of this file

is:

Order State;Filled Amount;Average FillPrice

Understanding position update files

Position Update Files
Position update files are generated on every update of a position. The name of the

file is Instrument Name + Instrument Exchange_AccountName_Position.txt. An

example would be ES 0914 Globex_Sim101_Position.txt. The format of the file is:

Market Position; Quantity; Average Entry Price

Valid Market Position values are either LONG, SHORT or FLAT.

Understanding connection state files

Connection State Files
Connection state files are written with each change of connection state. The name

of the file is ConnectionName.txt where connectionName is the name of the

connection given in the Connection Manager. The format of the file is:

Connection State

Valid connection state values are CONNECTED or DISCONNECTED.

10.4.1.5 DLL Interface

DLL Functions Overview

The .net managed DLL Interface functions are contained in NTDirect.dll located in the C:

\Program Files(X86)\NinjaTrader 8\bin\NinjaTrader.Client.DLL.

› Functions

NinjaTrader 8606

© 2023 NinjaTrader, LLC

10.4.1.5.1 Functions

DLL Interface Functions
int Ask(string instrument, double price, int size)

Sets the ask price and size for the specified instrument. A return value of 0 indicates success

and -1 indicates an error.

int AskPlayback(string instrument, double price, int size, string timestamp)

Sets the ask price and size for the specified instrument for use when synchronizing

NinjaTrader playback with an external application playback. A return value of 0 indicates

success and -1 indicates an error. The timestamp parameter format is "yyyyMMddHHmmss".

double AvgEntryPrice(string instrument, string account)

Gets the average entry price for the specified instrument/account combination.

double AvgFillPrice(string orderId)

Gets the average entry price for the specified orderId.

int Bid(string instrument, double price, int size)

Sets the bid price and size for the specified instrument. A return value of 0 indicates success

and -1 indicates an error.

int BidPlayback(string instrument, double price, int size, string timestamp)

Sets the bid price and size for the specified instrument for use when synchronizing

NinjaTrader playback with an external application playback. A return value of 0 indicates

success and -1 indicates an error. The timestamp parameter format is "yyyyMMddHHmmss".

double BuyingPower(string account)

Gets the buying power for the specified account. *Not all brokerage technologies support this

value.

double CashValue(string account)

Gets the cash value for the specified account. *Not all brokerage technologies support this

value.

int Command(string command, string account, string instrument, string action, int

quantity, string orderType, double limitPrice, double stopPrice,

string timeInForce, string oco, string orderId, string strategy, string

strategyId)

Function for submitting, cancelling and changing orders, positions and strategies. Refer to the

Commands and Valid Parameters section for detailed information. The Log tab will list context

sensitive error information.

int ConfirmOrders(int confirm)

The parameter confirm indicates if an order confirmation message will appear. This toggles

the global option that can be set manually in the NinjaTrader Control Center by selecting the

Operations 607

© 2023 NinjaTrader, LLC

Tools menu and the menu item Options, then checking the "Confirm order placement"

checkbox. A value of 1 sets this option to true, any other value sets this option to false.

int Connected(int showMessage)

Returns a value of zero if the DLL has established a connection to the NinjaTrader server

(application) and if the ATI is currently enabled or, -1 if it is disconnected. Calling any function

in the DLL will automatically initiate a connection to the server. The parameter showMessage

indicates if a message box is displayed in case the connection cannot be established. A value

of 1 = show message box, any other value = don't show message box.

int Filled(string orderId)

Gets the number of contracts/shares filled for the orderId.

int Last(string instrument, double price, int size)

Sets the last price and size for the specified instrument. A return value of 0 indicates success

and -1 indicates an error.

int LastPlayback(string instrument, double price, int size, string timestamp)

Sets the last price and size for the specified instrument for use when synchronizing

NinjaTrader playback with an external application playback. A return value of 0 indicates

success and -1 indicates an error. The timestamp parameter format is "yyyyMMddHHmmss".

double MarketData(string instrument, int type)

Gets the most recent price for the specified instrument and data type. 0 = last, 1 = bid, 2 =

ask. You must first call the SubscribeMarketData() function prior to calling this function.

int MarketPosition(string instrument, string account)

Gets the market position for an instrument/account combination. Returns 0 for flat, negative

value for short positive value for long.

string NewOrderId()

Gets a new unique order ID value.

string Orders(string account)

Gets a string of order ID's of all orders of an account separated by '|'. *If a user defined order

ID was not originally provided, the internal token ID value is used since it is guaranteed to be

unique.

string OrderStatus(string orderId)

Gets the order state (see definitions) for the orderId. Returns an empty string if the order ID

value provided does not return an order.

double RealizedPnL(string account)

Gets the realized profit and loss of an account.

int SetUp(string host, int port)

NinjaTrader 8608

© 2023 NinjaTrader, LLC

Optional function to set the host and port number. By default, host is set to "localhost" and

port is set to 36973. The default port number can be set via the General tab under Options. If

you change these default values, this function must be called before any other function. A

return value of 0 indicates success and -1 indicates an error.

string StopOrders(string strategyId)

Gets a string of order ID's of all Stop Loss orders of an ATM Strategy separated by '|'. Internal

token ID value is used since it is guaranteed to be unique.

string Strategies(string account)

Gets a string of strategy ID's of all ATM Strategies of an account separated by '|'. Duplicate ID

values can be returned if strategies were initiated outside of the ATI.

int StrategyPosition(string strategyId)

Gets the position for a strategy. Returns 0 for flat, negative value for short and positive value

for long.

int SubscribeMarketData(string instrument)

Starts a market data stream for the specific instrument. Call the MarketData() function to

retrieve prices. Make sure you call the UnSubscribeMarketData() function to close the data

stream. A return value of 0 indicates success and -1 indicates an error.

string TargetOrders(string strategyId)

Gets a string of order ID's of all Profit Target orders of an ATM Strategy separated by '|'.

Internal token ID value is used since it is guaranteed to be unique.

int TearDown()

Disconnects the DLL from the NinjaTrader server. A return value of 0 indicates success and -

1 indicates an error.

int UnsubscribeMarketData(string instrument)

Stops a market data stream for the specific instrument. A return value of 0 indicates success

and -1 indicates an error.

10.4.1.6 TradeStation Email Integration

The TradeStation Email Interface is targeted toward individuals who are familiar with

programming in EasyLanguage and want to run TradeStation strategies and automate order

flow to any supported NinjaTrader broker.

The interface works as follows:
1. You apply a strategy in your TradeStation chart that generates buy/sell orders

2. TradeStation will send email notification for Strategy Orders Activated, Filled, Canceled and

Replaced to NinjaTrader

3. NinjaTrader will process these emails and execute them as orders either to the NinjaTrader

simulator or your live brokerage account

Operations 609

© 2023 NinjaTrader, LLC

 Email Interface

› Symbol Mapping

› Running concurrent strategies

› Set Up

› Order Handling Options

› Stop Order Handling

› Workspace Options

10.4.1.6.1 Running concurrent strategies in the same market

NinjaTrader uses a number of different properties in the TradeStation generated email to

identify unique orders as they are sent to NinjaTrader.

These properties include
· Instrument name

· Action (Buy, Sell etc...)

· Signal name

· Workspace name

If you are running concurrent strategies on the same market you should ensure
that you either
· Make all signal names unique or

· Run the concurrent strategies in different TradeStation workspaces

This will ensure accurate processing of your automated signals.

10.4.1.6.2 Set Up

The following set up is for TradeStation Version 9.XX. This section will walk you through the

set up in both NinjaTrader and TradeStation as well as allow you to send a test email through

the Email Interface you have created.

Setting up NinjaTrader
1. Start NinjaTrader

2. Select the Tools menu and then the menu item Options from the Control Center window

3. Once in the Options window select the Automated trading interface category

NinjaTrader 8610

© 2023 NinjaTrader, LLC

4. Ensure that AT Interface has been checked

5. Set the default account to Sim101 (you can always set this to your live brokerage account

later but we recommend leaving it to Sim101)

6. Check the "Enabled" option under the TradeStation email interface category

7. Set your Order Handling options

8. Connect to your broker by selecting the File menu and then the menu item Connect within

the Control Center window (make sure you have set up a connection to your broker)

Note: If upon restarting the SMTP server does not initialize, go to Tools --> Options and

click OK

Symbol Mapping for Futures Contracts (Stocks and Forex traders may skip this
step)
9. Set your symbol mapping for futures contracts

Setting Up Antivirus Software
10. Antivirus software which scans outgoing emailing can impair the link between

TradeStation and NinjaTrader. If your PC has Antivirus software installed and scans

Operations 611

© 2023 NinjaTrader, LLC

outgoing mail, each mail notification sent from TradeStation to NinjaTrader will be scanned

and therefore add significant delay in automatically processing your trading signals. Please

consult your Antivirus software Help Guide to determine how to disable the scanning of

outgoing email.

Setting Up TradeStation Workspace
11. Start TradeStation

12. Set up your workspace options

Setting Up TradeStation Email Notification
13. Add a TradeManager window to your workspace by clicking on the TradingApps panel on

left pane as per the image below.

14. Once the TradeManager window appears, right click on this window, and then select the

menu name TradeManager preferences

NinjaTrader 8612

© 2023 NinjaTrader, LLC

15. Select the "Orders" tab as per the image below and then select "Strategy Active Order"

Operations 613

© 2023 NinjaTrader, LLC

16. Press the "Configure..." button to bring up the "Messaging" window

17. Enter the information exactly as shown above in items 1 through 4; you can press the

"Test" button which will send a test message to NinjaTrader and show up in the Control

Center Log tab. If you receive an error when attempting to send a test message, please

ensure that you have no other SMTP server running on your PC and make sure that any

competitive products are uninstalled.

18. Press "OK"

19. Repeat steps 15 through 17 for "Strategy Canceled Order", "Strategy Filled Order" and

"Strategy Replaced Order"

Setting Up a TradeStation Strategy
20. Open a chart(s) of the instrument that you will run your strategy on

21. Right click in the chart and select the menu name "Insert Strategy..." and select a strategy

NinjaTrader 8614

© 2023 NinjaTrader, LLC

22. Your strategy will appear in the "Format Analysis Techniques & Strategies" window as

shown above

23. Check the "Generate strategy orders for display in TradeManager's Strategy Orders tab"

box and press "Close"

Note: Following this set up procedure, orders will NOT be sent to any live TS

brokerage account, only to NinjaTrader.

That's it! Your strategy will now be automated for execution through NinjaTrader!

10.4.1.6.3 Symbol Mapping

Please see the TradeStation Symbol Mapping section.

10.4.1.6.4 Order Handling Options

There are several Order Handling options available for the signals sent from

TradeStation. All Order Handling options are available by selecting the Tools menu in

the Control Center, selecting the menu name Options, and then selecting the

Operations 615

© 2023 NinjaTrader, LLC

Automated trading interface category. Please review all of the following Order Handling

options to ensure your orders are managed as expected.

Understanding submit market order on TradeStation fill

Submit market order on TS fill
Submits a market order when NinjaTrader receives a "strategy filled order"

notification email from TradeStation. This is the recommended option.

Understanding submit "as-is"

Submit "as-is"
Submits orders as specified (limit, market, stop, stop-limit) when NinjaTrader

receives a "strategy active order" notification email from TradeStation. Upon

receiving the subsequent "strategy filled order" notification email from

TradeStation, NinjaTrader will convert any unfilled shares/contracts to either

market order or marketable limit order (substantially higher than inside market if

NinjaTrader 8616

© 2023 NinjaTrader, LLC

buying or below market if selling) depending on the instrument type after a user

defined number of seconds.

Note: If trading currencies (Forex) it is advised to start a market data stream

(any order entry window) for the market you are trading. Since limit buy orders

above the offer or limit sell below the bid are invalid orders that are rejected

from your broker, NinjaTrader will check the TradeStation requested limit price

against the current market price and if it would result in a rejected order, it will

convert to a market order.

Understanding submit and forget

Submit and forget
Submits orders as specified (limit, market stop, stop-limit) when NinjaTrader

receives a "strategy active order" notification. There is a high probability that your

TradeStation strategy position size will be out of synchronization with your live

brokerage account using this option. It requires manual user interaction and is

NOT recommended.

Understanding synchronization time out

Synchronization Time Out
Excluding the "Submit and forget" option, NinjaTrader will notify you after the

specified number of seconds if an order is out of sync with TradeStation's reported

order fill amount. An example would be if TradeStation reported a market order fill

of 1 contract, NinjaTrader submits a market order but the order is not filled for

some reason after the specified amount of time, you will be notified.

How to enable order confirmation

Order Confirmation
You can choose to have NinjaTrader prompt you for approval before submitting

your order to your brokerage account. To enable this feature start in the

NinjaTrader Control Center and select the Tools menu, then select the menu

name Options, once in the Options window , click on the Trading category and

check "Confirm order placement".

Operations 617

© 2023 NinjaTrader, LLC

Understanding special handling for FX through FOREX.com/City Index

Special Handling for FX through FOREX.com/City Index
FOREX.com will reject a limit order to buy at the offer or above or to sell at the bid

or below. NinjaTrader can check the current market rate on limit order submission

and automatically convert to market if the limit price is invalid according to

FOREX.com but in your favor resulting in a fill. To have NinjaTrader check for

these conditions, you must be subscribed to rate data for the currency pair being

traded. We suggest opening a Market Analyzer (to open a Market Analyzer window

select the File menu and then the menu name New) and adding all traded currency

pairs to this grid. This ensures that there is available rate data for NinjaTrader to

cross check an incoming limit price against.

10.4.1.6.5 Stop Order Handling

There are several Stop Order Handling options available for the signals sent from

TradeStation. All Stop Order Handling options are available by selecting the Tools

menu in the Control Center, selecting the menu name Options, selecting the Automated

Trading interface category, and setting the Order handling "Submit" option to

"Submit as is".

NinjaTrader 8618

© 2023 NinjaTrader, LLC

If you have "Submit market order on TS fill" or "Submit and forget" enabled via Order

Handling Options, the following Stop Order Handling is ignored.

Warning

Please review all of the following Stop Order Handling options on this page to

ensure your stop orders are managed as expected.

How to submit stop orders "as-is"

Submit "as-is"
Submits the stop order as specified.

How to convert to stop-limit orders

Convert to stop-limit

Operations 619

© 2023 NinjaTrader, LLC

Will convert a stop order to a stop-limit order. When this option is selected, you will

have a property displayed to set the limit price is calculated based on the user

defined "Limit price offset as ticks" value.

How to convert to simulated stop-market

Convert to Simulated Stop-Market
Submits a simulated stop-market order which is a local PC held order that

submits a market order once the stop price is hit.

How to submit market order if stop order was rejected

Submit market order if stop order was rejected
Submits a market order in the event that a stop order is rejected for any reason.

Behavior as follows:

1. Stop order worse than current last traded price --> Market order submitted

(desired outcome)

2. Stop order rejected due to insufficient funds --> Market order submitted and

also rejected (not desired but no risk)

3. Stop order rejected due to price outside of range --> Market order submitted

and likely filled (risky)

4. Stop order rejected due to limit price worse than stop price --> Market order

submitted and likely filled (risky)

Risk
If this option is enabled, it is your responsibility to ensure that your TS EL
code is sending valid stop prices to NinjaTrader otherwise you risk getting
filled when you may not want to.

10.4.1.6.6 Workspace Options

Creating a workspace within TradeStation with the correct naming convention is critical to

enabling TradeStation to properly communicate with NinjaTrader.

How to create a new TradeStation workspace

From within TradeStation, you can create a new workspace by left mouse clicking

on the menu File, selecting the menu name New, and then selecting the menu

NinjaTrader 8620

© 2023 NinjaTrader, LLC

name Workspace. This will create an untitled workspace in TradeStation. You must

then left mouse click on the menu File and select the menu name Save Workspace

As... to provide a workspace name following the naming conventions listed below.

Understanding workspace naming convention functions

The workspace name must contain "NinjaTrader;" (one word, without the

quotations) otherwise NinjaTrader will NOT process any trade signals received

from TradeStation.

Account Name
You can optionally add your brokerage account name(s) to the workspace name to

identify an account that NinjaTrader will route orders to. If the account name is

missing NinjaTrader will route orders to the default account (to set the default

account from NinjaTrader left mouse click on the Tools menu, select the menu

name Options, left click on the ATI tab, and then select the General tab). The

account name must be specified as "Account=YourAccount" (without quotations)

and where "YourAccount" is the name/number of your brokerage account.

Multiple Accounts
You can add multiple accounts in the workspace name to inform NinjaTrader to
replicate the TradeStation order across more than one account. To do this add a
comma "," (without the quotations) after each account name. For example;
"Account=Account1,Account2"

Quantity Multiplier
You can optionally associate a quantity multiplier with each account that you have

specified in the workspace name. This optional value will be multiplied by the

TradeStation's strategy quantity amount. For example; if your TradeStation

strategy has a quantity amount of 1 contract and you want to trade 2 contracts and

you do not want to modify this amount in the strategy itself you can add "=2" after

the account name in the workspace which would multiple the strategy contract

amount by 2. The text would look like "Account=YourAccount=2"

Aliases - Chart Instrument "A" then Execute Orders in Instrument "B"
You can redirect orders to a different instrument than the instrument that your
TradeStation strategy is actually running on. For example, you can run a strategy
on $SPX.X but have orders actually placed to the S&P Emini contract. The text
would look like "Map=$SPX.X,ESH09" where $SPX.X is the TradeStation chart
instrument followed by a comma and then ESH09 which is the S&P Emini March
2009 contract which is the contract that will be traded. Since you can have multiple
charts running in a workspace, you can add multiple mapping relationships. For

Operations 621

© 2023 NinjaTrader, LLC

example "Map=$SPX.X,ESH09,$COMPX,MSFT" would map the $SPX.X to ESH09
and $COMPX would map to MSFT.

Workspace name examples

Workspace Name Examples
Following are samples of valid TradeStation workspace names. Remember, you

will separate functions with a semi colon ";".

The following workspace name routes orders to the Default account specified

under Tools --> Options --> ATI tab

NinjaTrader

The following workspace name routes orders to account # 1235

NinjaTrader;Account=1235

The following workspace name routes an order to account #7777 and another

order to account #1311 with the original strategy quantity multiplied by a factor of 2

NinjaTrader;Account=7777,1311=2

The following workspace name routes orders to account #123 and maps trade

signals generated by the $SPX.X chart to the S&P Emini March 2009 contract

NinjaTrader;Account=123;Map=$SPX.X,ESH09

Understanding multiple workspaces

Multiple Workspaces
You may create multiple workspaces provided that they each contain

"NinjaTrader;" (without the quotations) in their name. For example, you could have

two workspaces named "NinjaTrader1;" and "NinjaTrader2;"

NinjaTrader 8622

© 2023 NinjaTrader, LLC

10.4.2 Running NinjaScript Strategies

Running NinjaScript Strategies Overview

The following section explains how to automate a NinjaScript strategy. Please keep in

mind that a strategies real-time performance can and will vary from your backtest results.

› Setting Real-Time Strategy Options

› Strategy Position vs. Account Position

› Syncing Account Positions

› Running a NinjaScript Strategy from a Chart

› Running a NinjaScript Strategy from the Strategies Tab

› Working with Strategy Templates

10.4.2.1 Setting Real-Time Strategy Options

Prior to running a NinjaScript strategy against a live account, you must first understand and

set the options for a NinjaScript strategy. These options can be found in the Control Center

under Tools > Options > Strategies.

10.4.2.2 Strategy Position vs. Account Position

An important concept to understand prior to using NinjaScript strategies in a real-time trading

environment (live brokerage account, for example) is the difference between a Strategy

Position and an Account Position.

Strategy Position
A Strategy Position is a virtual position that is created by the entry and exit executions

generated by a strategy and is independent from any other running strategy’s position or an

Account Position.

Account Position
An Account Position is the position you actually hold in a real-time trading account, whether

it is a NinjaTrader internal simulation account (Sim101) or your live real-money brokerage

account.

In most cases, a trader would want their Strategy Position’s size and market direction to be

equal (in sync) to their Account Position, but there are situations when this may not be the

case.

For example:

· You want to run multiple strategies in the same market simultaneously where strategy A

holds a LONG 1 position, strategy B holds a LONG 2 position resulting in an account that

should hold a LONG 3 position in order to be in sync with both strategies

Operations 623

© 2023 NinjaTrader, LLC

· You want to run a strategy and at the same time trade the same market the strategy is

running on using discretionary tactics through one of NinjaTrader advanced order entry

window such as the SuperDOM or Chart Trader

An extremely common scenario…
An extremely common scenario is starting a NinjaScript strategy in the middle of a trading

session, such as one hour after the session has begun. The NinjaScript strategy is run on

each historical bar for the 1st hour of the session (it will actually run on all historical data

loaded in a chart) to determine the current position state it would be in if it had been running

live since the start of the session. This position state then becomes the Strategy Position for

your strategy. Let us assume that during the historical hour your strategy would have entered

a LONG 1 position and the position is still open. This would mean the Strategy Position is

LONG 1 and since this trade was not actually executed on an account, your Account

Position is FLAT.

What can you do in this case?
If you want your Account Position to match your Strategy Position, you will need to place a

manual order into the account the strategy is running on. Continuing from the above example,

you would need to place a 1-lot market order for the market being traded into the account the

strategy is running on. Alternatively, NinjaTrader has the ability to have your account

automatically synced to your strategy position on strategy startup by setting the desired Start

Behavior. New to NinjaTrader is the ability to sync your Strategy Position to an Account

Position. For more information on Strategy Start Behavior, please see the article here

about syncing account positions.

What if I do not sync my account?
The resulting behavior when the Strategy Position and Account Position are out of sync is

when your strategy (continuing with the example above) closes the long position with a sell

order it would bring the Strategy Position to flat and your Account Position to SHORT

10.4.2.3 Syncing Account Positions

It is critical to understand the various options available to you that determine how the strategy

will behave on startup through the Start Behavior parameters. NinjaTrader provides several

option combinations that can be used in different scenarios depending on what your

requirements are. Please first review the information about strategy position vs account

positions as this article builds on that concept.

The Start Behavior settings can be set from the Strategy Parameters when you are adding

a strategy.

Note: Please be aware that these options will only help you sync your Account Position

to your Strategy Position once on startup. These options will not guarantee your

NinjaTrader 8624

© 2023 NinjaTrader, LLC

Account Position remains in sync afterward. Any active orders you may have had on

your account prior to strategy start that was not generated by your strategy would not have

been cancelled on start and can lead to your Account Position being out of sync from

your Strategy Position. Placing manual trades or running multiple strategies on the same

instrument can also lead to your Account Position being out of sync from your Strategy

Position.

Warnings:

· Using Synchronize account can close or place live trades to your account

· If you have existing historical order references which have transitioned to real-time,

you MUST update the order object reference to the newly submitted real-time order;

otherwise errors may occur as you attempt to cancel the order. You may use the

GetRealtimeOrder() helper method to assist in this transition.

Wait until flat

These are the default settings for your strategies and are the least disruptive in

terms of handling your current Account Position. It assumes your Account

Position is in a flat state.

When your strategy starts it will check for any active orders previously generated

by the strategy on your account and cancel those first. Should the strategy be

unable to cancel and receive confirmation on the cancellation of these orders

within 40 seconds the strategy will not start and an alert will be issued.

· If the Strategy Position is flat, then the Account Position and Strategy

Position are assumed to be in sync with each other. The next order placed by

your strategy would be placed as a live order to your account.

· If the Strategy Position is not flat, the strategy will place all trades in a "virtual"

sense until the Strategy Position reaches or crosses a flat state. Once a flat

state is achieved the Strategy Position will be assumed to be in sync with the

Account Position and all future orders will be placed live.

Critical: Should your Account Position not be flat at the point in time the

Strategy Position reaches a flat state your Account Position and Strategy

Position will NOT be in sync.

Operations 625

© 2023 NinjaTrader, LLC

Wait until flat, synchronize account

This combination should be used when you want to begin trading your strategy off

a flat state with minimal user interaction to sync your Account Position prior to

start.

When your strategy starts it will check for any active orders previously generated

by the strategy on your account and cancel those first. Should the strategy be

unable to cancel and receive confirmation on the cancellation of these orders

within 40 seconds the strategy will not start and an alert will be issued. After the

strategy is successful in cancelling any orders that required action it will check

your current Account Position and compare it to a flat state. On multi-instrument

strategies it will perform this check for all instruments used by the strategy.

· If the Account Position is flat already, no reconciliatory order will be submitted.

The strategy will then wait for the Strategy Position to reach a flat state as well

before submitting any orders live.

· If the Account Position is not flat, NinjaTrader will submit a market order(s) to

reconcile the Account Position to a flat state. The strategy will then wait for the

Strategy Position to reach a flat state before submitting live orders.

Note: The reconciliatory market order is submitted outside of the strategy so

your strategy will not be able to manage it from methods like OnOrderUpdate(),

OnExecution(), etc.

Immediately submit

This combination should only be used when you are sure your Account Position

is the way you want it to be in relation to the Strategy Position prior to strategy

start.

On startup the strategy will begin executing orders immediately.

· Any active orders on the account previously generated by the strategy that does

not match* an active strategy order will be cancelled. Should the strategy be

unable to cancel and receive confirmation on the cancellation of these orders

within 40 seconds the strategy will not start and an alert will be issued.

· The matching active orders on the account will then be mapped to the active

strategy orders

NinjaTrader 8626

© 2023 NinjaTrader, LLC

· Any remaining active strategy orders that cannot be successfully paired will be

submitted live and the strategy will begin managing your Strategy Position

assuming your Account Position is in sync with it.

* A previously generated order is considered to match an active strategy order

when the order action, order type, quantity, limit price, and stop price are exactly

identical.

Immediately submit, synchronize account

This combination should be used when you want to begin trading with your

strategy immediately while not worrying about your Account Position prior to

start.

On startup the strategy will begin executing orders immediately.

· Any active orders on the account previously generated by the strategy that does

not match* an active strategy order will be cancelled. Should the strategy be

unable to cancel and receive confirmation on the cancellation of these orders

within 40 seconds the strategy will not start and an alert will be issued.

· The matching active orders on the account will then be mapped to the active

strategy orders

· Any remaining active strategy orders that cannot be successfully paired will be

submitted live and the strategy will then try to sync your Account Position to

your Strategy Position through the process below.

After the strategy is successful in cancelling and submitting any orders that

required action it will check your current Account Position and compare it to your

Strategy Position. On multi-instrument strategies it will perform this check for all

instruments used by the strategy.

· If the Account Position matches your Strategy Position, no reconciliatory

order will be submitted. The strategy will then begin managing your Strategy

Position immediately.

· If the Account Position does not match your Strategy Position, NinjaTrader

will submit a market order(s) to reconcile the Account Position to match your

Strategy Position. The strategy will then begin managing your Strategy

Position immediately.

Operations 627

© 2023 NinjaTrader, LLC

Note: The reconciliatory market order is submitted outside of the strategy so

your strategy will not be able to manage it from methods like OnOrderUpdate(),

OnExecution(), etc.

* A previously generated order is considered to match an active strategy order

when the order action, order type, quantity, limit price, and stop price are exactly

identical.

Adopt account position

This setting should be used if you would like your strategy to disregard the

historical virtual Strategy Position and to start in the same position as the real-

world Account Position.

On startup the strategy will begin executing orders immediately.

· Any active orders on the account previously generated by the strategy that does

not match* an active strategy order will be cancelled. Should the strategy be

unable to cancel and receive confirmation on the cancellation of these orders

within 40 seconds the strategy will not start and an alert will be issued.

· The matching active orders on the account will then be mapped to the active

strategy orders

· Any remaining active strategy orders that cannot be successfully paired will be

submitted live and the strategy will then try to sync your Account Position to

your Strategy Position.

· Only one strategy with this setting can be started at a time for an individual

account and instrument.

· The account and instrument the strategy is started on must not have any

working orders which were submitted outside of the strategy, or by another

instance of the same strategy. If an order is detected, the strategy can not be

started until these orders have been manually managed.

Note: Adopt account position will only be available if the developer of a

strategy has programmed the strategy to be aware of the real-world account

position. If this setting is not available when starting your strategy, the strategy

was not programmed in a manner capable of handling account positions. If

you are a developer and would like your strategy to handle a real world position,

please see the following article here on these properties.

NinjaTrader 8628

© 2023 NinjaTrader, LLC

* A previously generated order is considered to match an active strategy order

when the order action, order type, quantity, limit price, and stop price are exactly

identical.

Synchronize all strategies

The Synchronize All Strategies option is found on the Strategies tab of the

NinjaTrader Control Center and right clicking on the Strategy Grid.

Selecting this feature will scan through the strategy position of all enabled

strategies which are not "Wait until flat" on each account and instrument

combination (including all instruments under a multi-series strategy) and will then

compare the aggregated strategy position to the account position.

Under the condition that the account position does NOT match the aggregated

strategy position, a market order will be submitted to the account to match the

aggregated strategy position.

Consider the following scenario, where all 4 strategies are running on a live

account which is currently flat:

Strategy Name Strategy Position Start Behavior

Operations 629

© 2023 NinjaTrader, LLC

Strategy A 1L Immediately

submit

Strategy B 2S Wait until flat

Strategy C Flat Immediately

submit

Strategy D 1L Immediately

submit

· Strategy A and D are both showing a 1 Long position and are both "Immediately

submit"

· Although Strategy B shows 2 Short, the strategy is currently "Wait until flat" so it

is NOT considered in this process

· Strategy C is Flat and does not contain a position

· Therefore, the calculated aggregated strategy position will be 2 long

Selecting Synchronize All Strategies with the above combination would then issue

a market order to buy 2 contracts on the live account.

Note: The reconciliatory market order is submitted outside of the strategy so

your strategy will not be able to manage it from methods like OnOrderUpdate(),

OnExecution(), etc.

10.4.2.4 Running a NinjaScript Strategy from a Chart

You can run a NinjaScript strategy in real-time in a live or simulation account within a

NinjaTrader chart.

How to run a NinjaScript strategy in a chart

Running a NinjaScript Strategy
To run a NinjaScript strategy within a chart:

1. Select either the Strategies menu from within the right click menu, or the

Strategies icon from the chart tool bar, or press the default CTRL + S Hot Key

to access the Strategies window.

NinjaTrader 8630

© 2023 NinjaTrader, LLC

2. Select a strategy in the "Available" section, then click the add button.

Alternatively, you can double-click any strategy listed in the "Available" section.

3. Once the strategy is added to the "Configured" section, set any strategy

properties to your desired settings.

4. Press the OK button to run the strategy.

Note: You must set the "Enabled" property to True to turn on the strategy.

When this property is disabled, the strategy will be applied to the chart, but will

be inactive.

Tips:

· NinjaTrader must be connected to a live brokerage or market data vendor for

a strategy to run. You can also use the Replay or Simulated Data Feed

connections.

Operations 631

© 2023 NinjaTrader, LLC

· Strategy menu options will NOT appear if you are not connected live

· On terminating a strategy, all strategy generated trade markers or draw

objects will be removed from the chart

· A NinjaScript strategy is a self contained automated trading system, and

orders generated are live. Canceling strategy-generated orders manually can

cause your strategy to stop executing as expected. If you wish to manually

cancel an order, terminate the strategy itself.

· Clicking the "Close" button to close a position on an account/instrument that

has a strategy running will disable the strategy.

· Running and disabled strategies are displayed in the Control Center

Strategies tab

Terminating a NinjaScript Strategy
To terminate a strategy, first select a running strategy in the "Configured" section
of the Strategies window, then click the Remove button. This will completely
remove the strategy from the chart and the Control Center's Strategies tab.
Alternatively, you can set the "Enabled" property to False to simply disable the
strategy, allowing you to re-enable it at a later point without the need to reset it's
properties.

Understanding strategy properties

Strategy Properties
The image below shows the adjustable properties for a strategy available in the

Strategies window:

NinjaTrader 8632

© 2023 NinjaTrader, LLC

Data Series Sets the data series on which the strategy will

run

Operations 633

© 2023 NinjaTrader, LLC

Strategy

Parameters

Sets any strategy-specific user-defined inputs

Account Sets the account to which the strategy will

execute orders

Calculate Sets the Calculation Mode for the strategy.

Possible values are "On Each Tick," "On Price

Change," or "On Bar Close"

Label Sets a text label that will be displayed on the

chart to represent the strategy

Maximum

Bars Look

Back

Sets the maximum number of historical bars to

use for strategy calculations. The

TwoHundredFiftySix setting is the most

memory friendly

Bars

Required to

Trade

Sets the minimum number of historical bars

required to start taking live trades

Start

Behavior

Sets the starting behavior of the strategy,

based upon the account position. See the

Syncing Account Positions page for more

information.

Enabled Enables or disables the selected strategy

Order Fill

Resolution

Sets the way that simulated historical orders

will be processed by the strategy. See the

Understanding Historical Fill Processing page

for more information.

Fill Limit

Orders on

Touch

Enables the filling of limit orders when touched

for the historical portion of the chart

Slippage Sets the slippage amount in ticks for the

historical portion of the chart

NinjaTrader 8634

© 2023 NinjaTrader, LLC

Entries per

direction

Sets the maximum number of entries allowed

per direction while a position is active based on

the "Entry handling" property

Entry

handling

Sets the manner in which entry orders are

handled. If set to "AllEntries", the strategy will

process all entry orders until the maximum

allowable entries set by the "Entries per

direction" property have been reached while in

an open position. If set to "UniqueEntries", the

strategy will process entry orders until the

maximum allowable entries set by the "Entries

per direction" property per each uniquely

named entry have been reached.

Exit on

close

When enabled, open positions will be closed

on the last bar of a session

Exit on

close

seconds

Sets the number of seconds prior to the end of

a session at to close any open positions held

by the strategy

Stop &

target

submission

Sets how stop and target orders are submitted

Set order

quantity

Sets how the order size is determined, options

are:

· "Default Quantity" - User defined order size

· "Strategy" - Uses the order size specified

programmatically within the strategy

Time in

force

Sets the order's time in force. Possible values

are DAY and GTC

Viewing strategy performance of a NinjaScript Strategy applied to a chart

Strategy Performance

Operations 635

© 2023 NinjaTrader, LLC

Real-time, Historical, or Historical & Real-time executions for the automated strategy

can be accessed within the open chart by right mouse clicking in the chart and

selecting the menu item Strategy Performance, then hovering the mouse over the

desired automated strategy and selecting the type of executions you wish to view

from the menu that appears. A Performance window will appear where you can view

and analyze the trade data.

The following categories of performance data can be selected:

Real-Time Displays performance statistics for trades the

strategy has taken in real-time ONLY

Historical Displays performance statistics for historical

trades ONLY, calculated before any real-time

trades are taken

Real-Time

and

Combines historical and real-time performance

statistics in a single report

NinjaTrader 8636

© 2023 NinjaTrader, LLC

Historical

10.4.2.5 Running a NinjaScript Strategy from the Strategies Tab

You can run a NinjaScript strategy in real-time in a live or simulation account via the

Strategies tab of the Control Center.

How to run a NinjaScript strategy from the Strategies tab

Setup Tips
Following are some key points and instructions on on how to run a NinjaScript

strategy from the Strategies tab of the Control Center window:

· NinjaTrader MUST be connected to a live brokerage or market data vendor

· A NinjaScript strategy is a self contained automated trading system and orders

generated are live and not virtual. Cancelling strategy generated orders manually

can cause your strategy to stop executing as you designed it. If you want to

manually cancel an order, terminate the strategy first.

· Strategies initiated from the Strategies tab will NOT appear in a chart

Running a NinjaScript Strategy
To run a NinjaScript strategy from the Strategies tab:

1. Left mouse click on the Strategies tab found in the NinjaTrader Control Center

2. Right mouse click within the Strategies tab. The right click menu will appear.

3. Select the menu item New Strategy... The New Strategy window will appear.

4. Choose the strategy you wish to run from the list of Available strategies on the

left

5. Set the instrument, interval, and other optional strategy properties (see the

"Understanding strategy properties section below") and press the OK button

6. Check the box in the Enable column of the Strategies tab next to the strategy

you wish to enable.

Note: You must set the "Enabled" property in Step 6 above to True to turn on

the strategy. When this property is disabled, the strategy will be applied, but will

be inactive.

Understanding strategy properties

Operations 637

© 2023 NinjaTrader, LLC

Strategy Properties (see image below)
The image below shows the adjustable properties for a strategy available in the

Strategies tab of the Control Center (see the "How to run a NinjaScript strategy in

from the Strategies tab" section above):

Data

Series

Instrumen

t

Sets the instrument(s) the strategy will run

against

Price

based on

Sets the type of market data used to drive the

Data Series.

Type Sets the bar type of the Data Series.

Value Sets the Data Series value.

Strategy

Paramet

ers

(...) Sets any strategy specific user defined inputs

Time

Frame

Days to

load

Sets the number of days to load data

Trading

hours

Sets the Trading Hours template for the Data

Series. (See the "Trading Hours" section of the

Help Guide for more information)

Break at

EOD

Enables or disables the bars being reset at EOD

(End Of Day). (See the "Break at EOD" section

of the Help Guide for more information)

Set up

NinjaTrader 8638

© 2023 NinjaTrader, LLC

Account Sets the account the strategy will execute orders

in

Calculate Sets the frequency that the indicator calculates:

· On bar close - will slow down the calculation

until the close of a bar

· On price change - will calculate on when

there has been a change in price

· On each tick - calculate the indicator's value

which each incoming tick.

Label Sets a text label that will be displayed on the

chart to represent the strategy

Maximum

bars look

back

Sets the maximum number of historical bars to

use for strategy calculations. The

TwoHundredFiftySix setting is the most memory

friendly.

Bars

required

to trade

Sets the minimum number of bars required

before the strategy will start processing trades

Start

behavior

Sets the starting behavior of the strategy, based

upon the account position. See the Syncing

Account Positions page for more information.

Historica

l fill

processi

ng

Order fill

resolution

Sets the way that simulated historical orders will

be processed by the strategy. See the

Understanding Historical Fill Processing page for

more information.

Fill limit

orders on

touch

Enables or disables the filling of limit orders on a

single touch of price action.

Operations 639

© 2023 NinjaTrader, LLC

Slippage Sets the slippage amount in ticks for the

historical portion of the chart

Order

handling

Entries

per

direction

Sets the maximum number of entries allowed

per direction while a position is active based on

the "Entry handling" property

Entry

handling

Sets the manner in how entry orders are

handled. If set to "AllEntries", the strategy will

process all entry orders until the maximum

allowable entries set by the "Entries per

direction" property has been reached while in an

open position. If set to "UniqueEntries", strategy

will process entry orders until the maximum

allowable entries set by the "Entries per

direction" property per each uniquely named

entry.

Exit on

close

When enabled, open positions are closed on the

last bar of a session

Exit on

close

seconds

Sets the number of seconds prior to the end of a

session when open positions of a strategy will be

closed

Stop &

target

submissi

on

Sets how stop and target orders are submitted

Order

properti

es

Set order

quantity

Sets how the order size is determined, options

are:

· Default quantity - User defined order size

NinjaTrader 8640

© 2023 NinjaTrader, LLC

· Strategy - Takes the order size specified

programmatically within the strategy

Time in

force

Sets the order's time in force

How to view strategy performance

Strategy Performance
While the Account Performance tab will generate performance report against your

account's trade history, the Strategy Performance menu allows you to generate a

performance report against the trades generated by the selected strategy.

Operations 641

© 2023 NinjaTrader, LLC

· Real-time - Generates performance data for your real-time trades only (since the

strategy started running) and will exclude historical trades. If your strategy held a

virtual position (calculated against historical data) upon starting, a virtual

execution representing the average price of this position will be injected into the

real-time results to ensure that a trade pair can be created with the executions

resulting from the closing of this position.

· Historical & Real-time - Generates performance data for both historical and real-

time trade data.

· Historical - Generates performance data for historical data only.

10.4.2.6 Working with Strategy Templates

NinjaTrader allows you to save your Strategy properties as a template that can be loaded or

set as the default for new instance of a Strategy when starting the strategy to be used in real-

time or for backtesting purposes. There is no limit to the number of templates you can save.

How to save a strategy template

Saving Strategy Parameters in a Template
To save your strategies's various properties in a template to be recalled for later:

1. Configured your desired Strategy Properties

2. Left mouse click on the template text located at the bottom right of the

properties dialog

NinjaTrader 8642

© 2023 NinjaTrader, LLC

3. Select the option save which will open a Save Strategy Template dialog

window

4. Enter a custom *name to identify the strategy template

5. Click the Save button

Operations 643

© 2023 NinjaTrader, LLC

Tip: If you wish to save your strategy properties as the default values used

when recalling these settings, you can call the strategy template name

"Default" which will automatically load when a new instance of the strategy

has been initiated.

How to load a strategy template

Loading Strategy Parameters from a Template
To recall your previous saved settings:

1. Left mouse click on the template text located at the bottom right of the

properties dialog

NinjaTrader 8644

© 2023 NinjaTrader, LLC

2. Select the option load which will open a Load Strategy Template dialog

window

3. Select the desired template name from the list of templates

4. Click the Load button

Operations 645

© 2023 NinjaTrader, LLC

How to remove a strategy template

Removing a Strategy Template
To remove a saved Strategy Template:

1. Open the Load Strategy Template dialog window (see "How to load a strategy

template" in the section above)

2. Right click on the template you wish to remove from the Load dialog menu and

select the Remove menu item

NinjaTrader 8646

© 2023 NinjaTrader, LLC

Tip: If you wish to rename an existing template, you can select Rename from

the same menu

10.5 Backup & Restore

Backup & Restore Overview

Backup & Restore utilities can be located via the Tools menu and then clicking on either

Import or Export

The Backup & Restore utility provides an easy way to save and recover critical user

generated data files such as but not limited to, user preferences, custom NinjaScript files,

historical trade data and historical chart data. Backing up your data ensures that you are

protected in case of software or hardware failure.

› Creating a Backup Archive

› Restoring a Backup Archive

10.5.1 Creating a Backup Archive

Running your first backup
Complete the following steps to create a Backup Archive.

Operations 647

© 2023 NinjaTrader, LLC

1. Disconnect from all connectivity providers (if connected) and from within the Control Center

window select the Tools menu. Then select the menu Export and the menu item Backup File...

2. The "Backup NinjaTrader" dialog window will appear

3. Select the items you wish to back up (see the table below for definitions)

4. Press the "Export" button

NinjaTrader 8648

© 2023 NinjaTrader, LLC

Configuration

files

Contains user specific information such as license

keys, account settings, and other user defined

options

Database

(Historical

trade data)

Contains your historical trade execution data which is

used to build reports in the Account Performance

window

Historical

chart data*

Chart data which has been recorded from a live

connection, downloaded from a data provider, or

manually imported

Log and Trace

files

Diagnostic files written by the NinjaTrader application

to record activity which can be analyzed by our

customer service team during support inquiries

Market replay* Data files used to drive the Level 1 and Level 2 price

updates when using the Playback connection

NinjaScript

files

Custom developed indicators, strategy, other add-

ons. This option includes both user developed and

3rd party vendor files

Operations 649

© 2023 NinjaTrader, LLC

Templates Custom user defined configuration and display

settings for features such as Charts, Strategies,

Market Analyzer, ATM Strategies, SuperDOM

Workspaces Files which are used to persist the over-all layout of a

users working area.

Tip: Market data files such as Historical chart data can often times be re-downloaded from

your data provider. Market Replay data can be downloaded from the NinjaTrader servers

for the most popular Futures and Forex instruments. If the data files you have stored on

your computer are available from your data provider, you can save time and storage

space by excluding these items from your backup and simply re-downloaded the data

when needed. Please make sure to check with your data provider to ensure they still

carry the type of data for the time period you may require.

5. Specify the location the backup will be saved and give the file a name to help you identify

your backup file. By default, NinjaTrader will store the backup files in \Documents\NinjaTrader

8 Backup folder and will provide your computer's date as the file name.

6. Select the Backup button.

You will now be presented with a status bar indicating the estimated time and progress of the

backup.

NinjaTrader 8650

© 2023 NinjaTrader, LLC

Note: Depending on the amount of information you are backing up, the backup

process may go very quickly, and you may not even notice the backup progress

window. You can always verify the backup was completed by navigating to the

location you specified for the backup and looking for the file name you provided the

backup utility. Also keep in mind that if your database is very large (i.e., years of

historical chart data), it can take some time for the backup to complete.

Scheduling a backup
When running a backup, there is an option labeled "Please remind me to back up my files

every..." which if selected, will allow you to specify a day of the week or 1st day of the month

to receive a reminder via a pop-up notification to trigger a backup.

10.5.2 Restoring a Backup Archive

Complete the following steps to restore a Backup Archive.

1. From within the Control Center window select the Tools menu. Then select the menu

Import and the Backup File... menu item

2. Select the backup archive to restore from the "Restore" file dialog window

Operations 651

© 2023 NinjaTrader, LLC

3. Press the "Open" button

4. Select the items you wish to restore

5. Press the "Import" button

You will now be presented with a status bar indicating the estimated time and progress of the

import.

NinjaTrader 8652

© 2023 NinjaTrader, LLC

Note: Restoring backups made from previous releases may have issues importing if

there have been changes made to NinjaTrader's resource structure. Please contact

platformsupport@ninjatrader.com if you are seeing issues importing.

10.6 Charts

Charts Overview

NinjaTrader charts support a multitude of intervals, indicators and drawing tools, as well

as discretionary trading using Chart Trader, and automated trading using NinjaScript

strategies. The chart window itself is highly customizable and supports a wide range of

user definable options.

Management

› Creating a Chart

› Navigating a Chart

› Chart Panels

› Chart Objects

› Working with Price Data

› Working with Multiple Data Series

› Bar Types

› Working with Indicators

› Working with Drawing Tools and Objects

› Saving Chart Defaults and Templates

› Data Box

› Cross Hair

› Chart Properties

Trading Features

› Trading From a Chart

› Working with Automated Strategies

› Order Flow +

› COT

› Wiseman

Misc

› Break at EOD

› Reload Historical Data

› How Bars are Built

› How Trade Executions are Plotted

mailto:platformsupport@ninjatrader.com

Operations 653

© 2023 NinjaTrader, LLC

10.6.1 Creating a Chart

The following section covers how to open a NinjaTrader chart.

How to open a new chart

Opening a New Chart
To create a new chart, select the New menu from the NinjaTrader Control Center,

then select the menu item Chart. The Data Series window will open where you can

choose an instrument and an optional Template to apply to the chart. Please see

the "Working with Price Data" page of the Help Guide for more information.

NinjaTrader does not limit the number of chart windows that can be opened,

however more open windows will require more PC resources. Please see the

Performance Tips page for more information on improving PC performance.

Selecting an Instrument
Once inside the Data Series window, there are multiple ways to choose an

instrument. You can select an instrument from the available instrument lists, type

the instrument symbol into the empty instrument field and press the enter key, or

use the instrument lookup window by pressing the magnifying glass button next to

NinjaTrader 8654

© 2023 NinjaTrader, LLC

the instrument field. Please see the "Working with Price Data section of the Help

Guide for more information on selecting instruments.

Understanding the chart display

Chart Display Overview
Each NinjaTrader chart is a free floating window that can be manually resized by

dragging the edges of the window for arrangement within the open Workspace.

The chart image displays some of the common features you will see inside a

NinjaTrader chart window:

1. Chart
display area

Main display area of a chart where all chart

objects (Data Series, Indicators and Drawing

Objects) are plotted.

2. Chart tool

bar

Access to chart features. Can be enabled or

disabled via chart properties.

3. Link

buttons

Window linking links windows to use the

same instrument and can be applied to

many NinjaTrader windows.

Operations 655

© 2023 NinjaTrader, LLC

4. Price

markers

Displays current price and indicator values in

the left or right scale. Can be enabled or

disabled on a per chart object basis through

the Data Series or Indicators window.

Drawing tool objects do not have price

markers.

5. Horizontal

scroll bar

Scrolls the horizontal axis left and right. (See

the "Navigating a Chart" section of the Help

Guide for more information.) Can be enabled

or disabled via chart properties.

6. Chart Tabs Displays the tabs enabled in the chart

window. Tabs can be switched by clicking

any configured tab with the left mouse

button.

10.6.2 Navigating a Chart

The following section covers navigation and display of NinjaTrader charts.

NinjaTrader 8656

© 2023 NinjaTrader, LLC

How to change the horizontal scale and time range of a chart

Horizontal Scaling
To compress or decompress the horizontal axis, left mouse click in the x-axis

margin and move the mouse cursor to the left or right. Alternatively, use the Hot

Keys CTRL + Up and CTRL + Down.

1. Click and drag to the right will compress the chart's time scale

2. Click and drag to the left will decompress the chart's time scale

Operations 657

© 2023 NinjaTrader, LLC

How to change the vertical scale and price range of a chart

Vertical Scaling
To compress or decompress the chart's vertical axis, left mouse click in the y-axis

margin and move the mouse cursor up or down as shown in the images below:

1. Click and drag down will shrink the chart's price scale

NinjaTrader 8658

© 2023 NinjaTrader, LLC

2. Click and drag up will stretch the chart's price scale

Tip: You can also manually set the chart's price scale to a specific fixed price

range from the Chart Panel Properties window.

Fixed vs Automatic Scaling
A box with an "F" (Fixed) will appear in the upper right corner of the chart margin

any time the vertical chart axis is manually adjusted. This signifies the chart axis is

set to a "fixed" scale. Left mouse click this button to return to automatic scale.

How to scroll a chart (panning)

Horizontal Scrolling (panning chart left or right)

Operations 659

© 2023 NinjaTrader, LLC

You can pan the chart left or right via the following controls:

Mouse controls Scrolls the chart

Horizontal chart

scroll bar at

bottom of chart

1 bar at a time

Left mouse click

and hold on chart

canvas and drag

left or right

1 bar at a time

CTRL key + Left

mouse click and

hold in the x-axis

(time axis) and

drag left or right

1 bar at a time

Mouse scroll

wheel

3 bars at a time

CTRL key +

mouse scroll

wheel

9 bars at a time

Keyboard

controls

Scrolls the chart

Left arrow key Backward 1 bar at a time

Right arrow key Forward 1 bar at a time

Page Up (or

CTRL key + left

arrow key)

Backward one page at a time

Page Down (or

CTRL key + right

Forward one page at a time

NinjaTrader 8660

© 2023 NinjaTrader, LLC

arrow key)

Home key To the very beginning (first bar)

End key To the very end (current bar)

Range Icon
If the horizontal axis is scrolled to the left or right from its starting location, a "return"

icon will appear in the top right hand corner of the chart. Left mouse click on the

icon to return the horizontal axis to view the last "live" data on the chart.

Vertical Scrolling (panning chart up or down)
To pan the chart up or down:

CTRL + Left mouse click and hold on chart margin and drag up or down as

depicted in the images below.

1. CTRL + Click and drag down will shift the chart's price scale up

Operations 661

© 2023 NinjaTrader, LLC

2. CTRL + Click and drag up will shift the chart's price scale down

Free Mode Scrolling
You can also navigate the chart by changing both the price axis and time axis at the

same time by holding down the CTRL key + Left mouse clicking and dragging in the

chart area. This will allow you to move both the price and time axis in whichever

direction the mouse is dragged.

NinjaTrader 8662

© 2023 NinjaTrader, LLC

How to go to a specific time on the chart

Go To...
You can go to a specific date and time on a chart by right clicking on the scroll bar

and selecting Go To...

A Go To... window will appear in which you can enter the desired date and time.

Once complete, select OK to go to that time.

Operations 663

© 2023 NinjaTrader, LLC

How to zoom in and out in a chart

Zoom In
To create a zoom frame around a chart area you want to focus in on:

1. Left mouse click on the Zoom In icon in the tool bar, select the Zoom In menu

item within the right mouse button click context menu, or use the zoom in Hot

Key CTRL+ ALT + Z

2. Left mouse click and while holding down the left mouse button, draw a zoom

frame region and release the button.

The chart display area will zoom in to the selected frame area.

NinjaTrader 8664

© 2023 NinjaTrader, LLC

Zoom Out
Each zoom in can be undone to the prior zoom level with a zoom out. To zoom
out, left mouse click on the Zoom Out icon in the chart tool bar, select the Zoom

Out menu item within the right mouse button click context menu, or use the zoom
out Hot Key CTRL+ ALT + O.

How to change the bar spacing and width

Bar Spacing
To change the spacing between bars:

· CTRL + Up arrow key decreases bar spacing

· CTRL + Down arrow key increases bar spacing

Bar Width
To change the width of bars:

· ALT + Up arrow key decreases bar width

· ALT + Down arrow key increases bar width

Alternatively, left mouse click on the "Chart style" chart toolbar icon to access bar

spacing and width functions

Operations 665

© 2023 NinjaTrader, LLC

Note: On a multi-series chart, before changing bar spacing or width, you

must select the Data Series you want to adjust by left mouse clicking on it. If

none is selected, the primary Data Series of the chart will be adjusted.

How to change the cursor type

Cursor Type
You can have either the standard windows pointer, cross hair or global cross hair

for chart navigation. You can toggle between cursor modes via the right mouse

click context menu cursor sub menu, the "Cursor" chart toolbar icon or via the

following shortcut keys:

CTRL + R Pointer

CTRL + Q Cross Hair

CTRL + G Global Cross Hair (links crosshairs when

enabled on two or more charts)

NinjaTrader 8666

© 2023 NinjaTrader, LLC

10.6.3 Chart Panels

A chart is comprised of Panels that contain chart objects such as Data Series, Indicators and

Drawing Tools. Panels are added to a chart during the process of adding/editing a Data

Series or Indicator. Every Panel has three independent scales to which you can associate a

chart object to. Each scale can be uniquely customized via the panel properties (see

"Understanding panel properties" sub-section below for more information).

Understanding chart panels

Operations 667

© 2023 NinjaTrader, LLC

Panel Scales
When adding a Data Series or Indicator to a chart, you can set the Scale

justification property to align the chart object to any of the following scales within

the Panel:

· Left

· Right

· Overlay

With the exception of the Overlay scale, a price scale will only be displayed in a

Panel if there is one or more chart objects justified to it. The Overlay scale does

not have a visible price scale however, any chart objects justified to this scale will

display their price markers first on the Right scale if one exists otherwise they are

displayed on the Left scale. All scales can be shared by multiple chart objects.

Tip: In addition to changing a chart objects scale justification property via the

Data Series window or Indicators window, you can drag and drop a chart

object onto different scales. Please see the section "How to drag and drop

chart objects" section located on the Working with Chart Objects topic page.

The image above depicts the continuous ES futures contract justified to the Right

scale and a Stochastics indicator justified to the Left scale within the same Panel.

NinjaTrader 8668

© 2023 NinjaTrader, LLC

Panel Context Menu
Right mouse click within the price scale to access the panel context menu.

The following actions are available:

Move Up Moves the panel up by one

Move Down Moves the panel down by one

Maximize Maximizes the panel

Restore Restores the maximized window to the original

size

Arrange All Arranges all panels to default proportions

Remove Deletes the panel from the chart

Operations 669

© 2023 NinjaTrader, LLC

Properties Opens the panel properties window

Maximized panel display
Selecting Maximize from the panel context will change selected panel to be the

only displayed panel on the chart tab. Using the left facing arrow "<" or right

facing arrow ">" will navigate through each panel on the chart in a maximized

display. Selecting the "M" button will restore the panels to their original default

display.

The image above depicts the continuous ES futures 1-minute Data Series panel

which has been Maximized and displays the controls available to navigate through

a maximized panel display.

Understanding panel properties

Panel Properties
The Panel Properties menu can be opened by double left mouse clicking within

the price scale or selecting the Properties menu via the Panel Context menu

discussed above. The Panel Properties window will list the properties below

grouped by each scale that is currently active on the Panel.

NinjaTrader 8670

© 2023 NinjaTrader, LLC

The following properties can be adjusted:

Range Sets the range to "Automatic" or "Fixed." A

fixed range allows the manual setting of the

upper and lower boundary of the chart. The

range can also be manually defined via the

mouse. Please see the Navigating a Chart

topic's section on "How to change the vertical

scale and range of a chart".

Based on Sets a value indicating how the "Automatic"

scale range is calculated.

When set to “Entire Date Range Series

Only”, Data Series and Indicator values for the

entire date range of the chart (draw objects are

ignored) are used to calculate the vertical scale

range. When set to “Screen Date Range”, all

visible objects on the screen are used.

Horizontal

grid lines

Sets the Horizontal grid lines displayed on

the chart's price scale to "Automatic" or

"Fixed." A fixed setting allows the manual

definition of the intervals displayed include the

Horizontal grid lines interval type and

Horizontal grid lines interval value

Horizontal

grid lines

interval

type

Sets a value of either "Points", "Ticks", or

"Pips" which is used to calculate the interval

between grid lines and labels.

Horizontal

grid lines

interval

value

Sets the vertical interval of the horizontal axis. A

value of 0 (zero) will enable the automatic

generation of grid line intervals. The Right scale

will always take precedence over the left scale

if both are set to user defined custom grid line

intervals.

Margin type Sets the calculation mode for determining the

upper and lower panel margins by "Price" or

Operations 671

© 2023 NinjaTrader, LLC

"Percent". (Percent values are whole percents.

For example, entering a value of "1" equals

1%.)

Margin

lower

Sets the lower margin value

Margin

upper

Sets the upper margin value

Maximum Sets the scale's upper boundary when using

"Fixed" range

Minimum Sets the scale's lower boundary when using

"Fixed" range

Type Sets the scaling type to "Linear" or

"Logarithmic"

10.6.4 Working with Objects on Charts

Charts in NinjaTrader can contain and display multiple objects, including Data Series,

Drawing Objects, and indicator plots. Objects on charts can be managed in a number ways,

such as dragging and dropping them to new panels, changing the axis of their price scale (if

applicable), or changing the order in which they are painted on a chart.

How to drag and drop chart objects

Drag and Drop
A Data Series or Indicator can be dragged and dropped to various areas of the

chart to quickly change which panel it is displayed in.

Left mouse click on a chart object within a chart, then drag it to any of the following

areas of the chart and release the mouse button:

1. Upper limit - Creates a new panel at the top of the chart

2. In between panels - Creates a new panel in between two existing panels

3. Lower limit - Creates a new panel at the bottom of the chart

4. Center area of a panel - Relocates the selected chart object to this panel and

automatically determines the most suitable scale justification

NinjaTrader 8672

© 2023 NinjaTrader, LLC

5. Left or right margin of a panel - Relocates the selected chart object to this panel

(unless already in the selected panel) and changes the scale justification to the

selected side of the panel.

When you drag a selected object to the upper or lower edge of a chart, or between

two panels, a blue band will appear. This indicates that a new panel will be created

when you drop the object in that location.

Tabs and Windows
In addition to moving around within a single chart tab, A Data Series or indicator

can be dragged and dropped into any other chart window or tabs in your

workspace. The following drag and drop actions can be performed:

1. Drag an indicator to an existing tab in any chart window - Duplicates the

indicator in the tab or window into which it is dropped, leaving the original instance

of the object intact

2. Drag a Data Series to an existing tab in any chart window - Replaces the

primary Data Series in that tab with the one dropped into it

3. Drag a Data Series to the upper/lower limit, or between two panels, of a

separate chart window - Creates a new panel, creating a multi-series chart if only

one Data Series had previously been applied

2. Drag an indicator or Data Series to a New tab (+) - Creates a new tab and

duplicates the object within it

How to copy and paste chart objects

Copy and Paste
A Data Series, indicator, or Drawing Object can be copied and pasted to various

areas of a chart to quickly duplicate an object and its properties. Chart objects can

be copied in one of two ways:

· Left mouse click the chart object to select it. Next, right mouse click the object,

then click the copy menu item.

· Left mouse click the chart object to select it, then use the Windows default

CTRL + C Hot Key

After copying, chart objects can be pasted into the following areas:

Operations 673

© 2023 NinjaTrader, LLC

· Current chart window or tab - Data Series and indicators will be duplicated in a

new panel. Drawing Objects will be pasted with a slight offset from the copied

object's location.

· Separate chart window or tab - Data Series will be placed in a new panel within

the chart window or tab in which it is dropped. Indicators will either be plotted in

an existing panel or in a new panel, depending on the indicator's "Overlay"

property. Drawing Objects will be placed in the same panel number as the one

from which they are copied, if it is available.

Note: When an indicator is pasted from one chart to another, the indicator will

use the same input series if it is applied to the chart into which the indicator is

pasted. Otherwise, it will use the second chart's primary Data Series.

How to change the z-order (paint order) of a chart object

Z-Order
Objects within a panel can be adjusted to appear behind or in front of another chart

object. The specific layer on which an object sits is referred to as the "z-order."

You can change the z-order (paint order) of all chart objects within each individual

panel. Each chart object is assigned a z-order value, which informs you where in

the paint order that particular object resides. As a rule of thumb, there are as many

z-order levels in a panel as there are chart objects in that panel. For example, if

you had a Data Series and an SMA indicator in the same panel, there would be

two painting levels. Level 1 is the top most level, which means that any chart

object on Level 1 will be painted above all others. Continuing our example, if the

Data Series was on Level 1 of 2 and the SMA indicator was on Level 2 of 2, that

would mean the Data Series would be painted on top of the indicator.

The image below depicts a "Rectangle" drawing object set at z-order Level 3 of 3,

which is behind both the Stochastics indicator (Level 2 of 3) and the ES ##-##

Data Series (Level 1 of 3).

NinjaTrader 8674

© 2023 NinjaTrader, LLC

To adjust the z-order of an object:

1. Select the chart object by left mouse clicking on it

2. Hold down the "Shift" key on your keyboard and roll the mouse scroll wheel up

or down to change the z-order of the object. As you scroll, the object's z-order

will be displayed near your mouse cursor.

Note: Drawing Objects originating from a NinjaScript indicator or strategy will

all generally share the same z-order as the script. In this case, the z-order of

objects must be changed within the code of the indicator or strategy.

10.6.5 Working with Price Data

A Data Series represents a series of price data, which can be displayed on a chart using one

of several Bar Types and Chart Styles. One or more Data Series will be applied to a new

chart when it is created, and additional Data Series can be added, edited, or removed via the

Data Series window.

Operations 675

© 2023 NinjaTrader, LLC

Understanding the Data Series Window

The Data Series window is used to configure the Data Series within a chart, edit

Data Series parameters, and save default values for different Period Types.

Accessing the Data Series Window
There are multiple ways to access the Data Series window:

· Select the New menu from the NinjaTrader Control Center, then select the

Chart menu item.

· Right mouse click in the chart background and select the Data Series menu

item.

· Use the default CTRL+F Hot Key from an open chart.

· Double left mouse click on a Data Series within the chart.

· Right mouse click on a selected Data Series within a chart, then select the

Properties menu item.

Sections of the Data Series Window
The image below displays the four sections of the Data Series window.

NinjaTrader 8676

© 2023 NinjaTrader, LLC

1. Instrument Selector

2. Data Series currently applied to the chart

3. Selected Data Series' parameters

4. Saved Chart Templates that can be applied to the new chart. See the Saving

Chart Defaults and Templates page for more information.

Note: If a Chart Template is selected, settings from that template will take

precedence over any settings manually configured on the Data Series. For

example, Trading Hours currently configured will be ignored, and the chart will

use the Trading Hours which were saved in the Chart Template.

How to add a Data Series

Adding a Data Series
Multiple Data Series objects can be applied within a single chart. A new panel is

automatically created for each Data Series added, unless the "Panel" property is

manually changed to an existing panel. There are multiple ways to add a Data

Series to a chart using the Data Series window:

Operations 677

© 2023 NinjaTrader, LLC

1. Use the Instrument Selector dropdown menu to select a recently used or pinned

instrument, or any instrument in an Instrument List.

2. Type the instrument symbol (including the contract month for futures

instruments) directly into the Instrument Selector, then press the "Enter" key.

3. Left mouse click on the magnifying glass icon next to the Instrument Selector. In

the window that appears, use the search field to search available instruments

by symbol or description, then double left mouse click on an instrument in the

search results to add it to the list of applied Data Series.

The added Data Series will now be visible in the list in the "Applied" section,

allowing you to change any parameters to desired values (see the "How to edit

Data Series parameters" section below).

Tip: A Data Series can also be added by typing directly into an open chart.

Type the plus symbol (+) followed by the instrument symbol, contract month

for Futures, and appropriate interval value. For example, typing "+ES ##-## 5M"

will add a 5 minute ES continuous contract Data Series to the selected chart

(See the "How to change a Data Series" section below for more information).

NinjaTrader 8678

© 2023 NinjaTrader, LLC

In the image above, we can use the Instrument Selector to add a recently viewed

or pinned instrument, as well as any instruments in an Instrument List.

How to edit Data Series parameters

Editing a Data Series
A Data Series object's parameters are available to configure within the Data

Series window once it has been added to a chart (see the "How to add a Data

Series" section above).

To edit Data Series parameters:

1. Open the Data Series window (see the "Understanding the Data Series

window" section above).

2. Select the Data Series you would like to edit in the "Applied" section.

3. Once selected, the Data Series parameters will be available to edit on the right

hand side.

Operations 679

© 2023 NinjaTrader, LLC

NinjaTrader 8680

© 2023 NinjaTrader, LLC

Available Data Series parameters can be found in the list below:

Data Series Parameters

Price based on Sets the type of market data used to drive

the Data Series

Type Sets the bar type of the Data Series. See

the Bar Types page for more information.

Value Sets the Data Series value, based on the

selected Bar Type

Tick Replay Enables Tick Replay on the selected Data

Series. This option will only display when

"Show Tick Replay" is enabled in the

Options window

Load data

based on

Determines how much data is loaded

based on number of bars, number of days,

or a custom date range.

Days Back /

Bars Back /

Start Date

Sets the value for the amount of historical

data to load, based on the "Load Data

Based On" setting. The label on this

property will change based upon what you

have selected for the "Load Data Based

On" property.

End date Sets the end date of the chart. If the

specified end date is within the range of an

applied Trading Hours template whose

end time falls on a future date, then the

Chart will end on that future date.

Trading Hours Sets the Trading Hours template to be

used for the Data Series. See the Trading

Hours page for more information.

Operations 681

© 2023 NinjaTrader, LLC

Break at EOD When enabled bars will be cut off at the end

of the Trading Hours session regardless

of whether it is fully complete. So a 10

range bar may close with a range of 3 or a 4

hour bar may close after 2 hours. When

disabled, such a bar will continue to develop

until it is complete, potentially causing it to

post outside of the Trading Hours session.

For more information, see the Break at

EOD page.

Chart Style Sets the style of the bars. Custom Chart

Styles can be created via NinjaScript to

extend the pre-built list.

Bar Width Sets the width of the bars drawn on the

chart

Additional

Chart Style

Options

Additional options for configuring bar colors

and related properties will be displayed

beneath the Bar Width property, depending

on which Chart Style you have selected.

Auto Scale When enabled, the Data Series will be part

of the chart's auto scaling.

· In case the chart is set to a fixed scale,

this property has no effect.

· In case there are no objects on the chart

which have this property set to true, the

first chart object will be used for the

chart's auto-scaling.

Center on

Price Scale

When enabled, the current price will be

centered on the price axis, and all visible

historical bars will be scaled accordingly

Display in Data

Box

Enables or Disables the display of the

selected Data Series in the Data Box

NinjaTrader 8682

© 2023 NinjaTrader, LLC

Label Sets the label text to be displayed in a chart

panel when more than one Data Series

has been applied to a chart. This can be left

blank to remove the label entirely.

Panel Sets the panel in which the selected Data

Series will be plotted. When more than one

Data Series has been added to a chart, all

but the first Data Series in the list will

provide the option to plot in a New Panel in

the "Panel" field.

Price Marker Expanding this property will allow you to

change the color for the price markers on

the chart, as well as enable or disable the

price markers' visibility.

Scale

justification

Sets the scale on which the Data Series

will be plotted. Possible values are "Right,"

"Left," and "Overlay"

Show Global

Draw Objects

Sets whether Global Drawing Objects will

be displayed for this Data Series. See the

"Understanding local vs. global drawing

objects" section of the Working with
Drawing Tools & Objects page for more
information.

Trading Hours

Break Line

Sets the color, dash style, and width of the

Trading Hours break line plotted on the

chart for the selected Data Series

Color for

Executions -

Buy

Sets the color for Buy-side execution

markers

Color for

Executions -

Sell

Sets the color for Sell-side execution

markers

Operations 683

© 2023 NinjaTrader, LLC

NinjaScript

Strategy

Profitable

Trade Line

Sets the color, dash style, and width for the

lines connecting entries and exits of

profitable trades taken by a NinjaScript

strategy

NinjaScript

Strategy

Unprofitable

Trade Line

Sets the color, dash style, and width for the

lines connecting entries and exits of

unprofitable trades taken by a NinjaScript

strategy

Plot

Executions

Sets the plotting style of the trade

executions.

Note: Real-time executions are

timestamped based on the timezone set

in the "General" section of the Options

window, which can be accessed from

the Tools menu in the Control Center.

Please see the How Trade Executions

are Plotted page for more information.

Saving Data Series Parameters as Default
You can optionally save your customized Data Series parameters as default.

Defaults are saved based on the Interval Type selected. Saving defaults will

recall your customized settings the next time you add a Data Series with that

specific Interval Type to a chart. Please see the Saving Chart Defaults and

Templates page for more information.

How to change a Data Series

Data Series can be edited in several ways after being added to a chart.

Changing an Instrument via the Chart Toolbar
To change an instrument using the chart toolbar:

1. Left mouse click on the instrument drop down menu in the chart toolbar

NinjaTrader 8684

© 2023 NinjaTrader, LLC

2. Select a recent or pinned instrument from the top of the list, or expand any of

the Instrument Lists for additional selections (for more information about

editing Instrument Lists, see the Instrument Lists page).

Using the Interval Selector
The Interval Selector can be used to change a Data Series interval directly from

the chart toolbar. The Interval Selector comes pre-populated with commonly used

intervals, but you can add additional intervals of your choice at any time. To

access the Interval Selector, left mouse click the dropdown menu displaying the

currently selected interval, located next to the instrument dropdown menu on the

chart toolbar. To change the currently selected interval, select any of the values

corresponding to the row labeled with your desired interval type. For example, to

switch to a 5,000 Volume interval, click the "5000" option in the "Volume" row.

Adding Intervals to the Interval Selector
To add a new interval to the Interval Selector, first click the Configure option. The

Configure window that appears is separated into two sections. In the "Intervals"

section on the left side, you can select any existing Interval Type to view, add,

edit, or remove any specific interval value set up for that interval type. In this

section, you can add new Interval Types to the list via the add option, remove an

Interval Type from the list via the remove option, or move Interval Types higher

or lower in the list via the up and down options. In addition to the Interval Types

already available, you can add Heiken Ashi, Kagi, Line Break, Point and Figure, or

Renko to the list.

Operations 685

© 2023 NinjaTrader, LLC

With an Interval Type selected in the "Intervals" section, you can manage the

specific intervals available for that type in the "Values" section. To add a specific

interval to the list for a specific Interval Type, select the add option. A window will

appear, in which you can set the label and Data Series options to be used when

that interval is selected:

1. The "Label" field sets the label that will be displayed in the Interval Selector for

this interval. Entering "@VALUE" in this field will display the value entered in the

"Value" field in the section below. Alternatively, you can enter any text or numbers

in this field to label the interval.

2. The "Price Based On" field determines whether the underlying Data Series will

be based upon the Ask, Bid, or Last price for the selected instrument.

3. The "Value" field sets the value to be used for the interval, based on the Interval

Type.

Editing, Sorting, and Removing Intervals
To remove an interval from the list for a specific interval type, first select the

interval, then select the remove option.

To edit the parameters of an existing interval, select the edit option instead.

To change the placement of an interval in the list, first select the interval you wish

to move, then select the up or down options to move it higher or lower in the list.

Moving an interval higher in the list will cause it to be displayed further to the left in

the Interval Selector, and moving it lower in the list will cause it to be displayed

further to the right.

NinjaTrader 8686

© 2023 NinjaTrader, LLC

The Configure window pictured above allows the addition, removal, or editing of

interval types and specific intervals in the Interval Selector.

Changing and Adding Instruments and Intervals with the Keyboard
You can change instruments or intervals by pressing a letter or number key in a

selected chart. When a letter or number key is pressed, the Instrument Overlay

appears. Within the Instrument Overlay, you can change the instrument, interval, or

chart type by using the formats in the table below and pressing the "Enter" key

when finished. If multiple instruments are displayed in the chart, you can change a

specific instrument by left mouse clicking to select it before typing. If no instrument

is selected, the primary instrument is changed.

Operations 687

© 2023 NinjaTrader, LLC

To change an

instrument:

Type the instrument symbol (Add the

contract month for futures instruments).

Examples: "ES ##-##" for E-mini S&P

500, "AAPL" for Apple stock, or

"EURUSD" for Euro/USD forex pair.

To change an

interval:

Type interval value plus the interval suffix

(Value +suffix). Examples: "5M" for 5

minute bars, "100T" for 100 tick bars,

"1D" for 1 Day bars,10 etc.

Available

suffixes:

 Suffix interval:

M Minute

T Tick

V Volume

R Range

S Second

NinjaTrader 8688

© 2023 NinjaTrader, LLC

D Day

W Week

M

O

 Month

Y Year

R

E

 Renko

To change

instrument and

interval

Type the symbol and interval together.

For example, typing "AAPL 5M" will

change to a 5 minute chart of Apple

stock.

To add additional

series of primary

instrument

Type a plus sign (+) plus the interval. For

example, typing "+5M" will add a 5

minute Data Series of the primary

instrument.

To add additional

series of any

instrument

Type a plus sign (+) plus the instrument

and interval. For example, typing "+AAPL

5M" will add a 5 minute series of Apple

stock. If no interval is provided, then the

same interval as the primary series will

be added.

Removing a Data Series

Removing a Data Series
There are three ways to remove a Data Series from your NinjaTrader chart:

· Open the Data Series window (see the "Understanding the Data Series window"

section above). Select a Data Series from the "Applied" section, then select the

Remove option, then press the OK button to close the Data Series window.

· Left mouse click a Data Series on your chart to select it, then press the "Delete"

button on your keyboard.

Operations 689

© 2023 NinjaTrader, LLC

· Left mouse click a Data Series on your chart to select it, then right mouse click

the Data Series and select the Remove menu item.

If only one Data Series is applied to a chart, it cannot be removed. However, the

original Data Series added to a chart can be removed if there is at least one other

Data Series is still applied.

10.6.6 Working with Multiple Data Series

Multiple Data Series
Multiple Data Series objects can be be viewed within a single chart window, and there are

several ways to add Data Series to a chart.

How to Add a Data Series

Adding Data Series
When you open a new chart, one or more Data Series will be applied, based on

the instruments that you selected when creating the chart. You can add more

Data Series to the chart (or remove existing Data Series) at any time via the

following process:

1. Open the Data Series dialogue by either clicking the Data Series menu item on

the chart toolbar, right-clicking in the chart and selecting the Data Series menu

item from the Right Click menu, or double-clicking any selected Data Series on

the chart.

2. Use the Instrument Selector or the Search Tool above the "Applied" section in

the Data Series window to select a new Data Series.

3. Configure the Data Series' parameters as desired in the "Properties" section,

then click the OK button

NinjaTrader 8690

© 2023 NinjaTrader, LLC

In the image above, we can use the Instrument Selector to add a Data Series to a

chart which is already open.

Managing Multiple Data Series

Multiple Data Series
The image below shows two Data Series plotted within one chart window:

1. ES ##-## (1 Min)

2. AAPL (150 Tick)

Operations 691

© 2023 NinjaTrader, LLC

Each instrument is placed in its own panel by default, with the scale shown in the

right margin of the chart. Many separate panels can be displayed within a single

chart window. Instruments and indicators can alternatively be plotted within a

single panel, as well. The scale of each Data Series can be justified to the right, to

the left, or overlayed on the panel. Please see the "Understanding panels" section

of the Navigating a Chart page for more information.

Tip: When more than one panel is displayed in a chart, you can temporarily

maximize a panel to fill the entire chart window by right mouse clicking in the

price axis of that specific panel, then selecting the Maximize option. To restore

the panel to its original size and placement, you can then right mouse click in

the price axis of the maximized panel, then select the Restore option.

Equidistant Bar Spacing
Equidistant Bar Spacing is a chart property that determines whether bars are

plotted with an equal distance from each other or plotted on a horizontal axis with

even time spacing. The two images below display the same chart with this

property set to True and False. When set to True, the distance between bars is

equal throughout the chart. When set to false, the distance between bars is not

necessarily the same. Bars are instead plotted on a fixed x-axis timeline on which

every inch along the axis represents an equal amount of time. This provides the

benefit of being able to gauge momentum on non-time based charts, such as tick

or volume, by visualizing how long it takes to finish building the next bar. Gaps may

occur if no bar formed during the time interval, and overlapping bars may occur if

NinjaTrader 8692

© 2023 NinjaTrader, LLC

bars are formed near the same time period. Both gaps and overlapping can be

seen in the second image below. Equidistant Bar Spacing can be enabled or

disabled within the Chart Properties window.

ad

The image above shows two 150 Tick Data Series with "Equidistant Bar

Spacing" set to True.

Operations 693

© 2023 NinjaTrader, LLC

The image above shows the same two Data Series with "Equidistant Bar

Spacing" set to False.

Equidistant Bar Spacing with Multiple Data Series
When adding two or more Data Series to a chart, the bar spacing will be

determine by the "Primary" data series, which is typically the first series added to

the chart.

Configuring Which Data Series is Primary
You can optionally re-configure another series to be "Primary" by right clicking on

the chart bars and selecting "Set as Primary".

Aggregated X-Axis Time Line
When using multiple Data Series with different Trading Hours templates,

NinjaTrader will set the time axis scale using the earliest begin time and latest end

time of all Trading Hours templates applied to the Data Series on the chart. For

example, if one instrument has a session begin time of 7:00 AM and an end time of

2:00 PM, and another has a session begin time of 8:00 AM and an end time of 4:00

PM, the chart will have a session begin time of 7:00 AM (from the first instrument)

and an end time of 4:00 PM (from the second instrument).

10.6.7 Bar Types

NinjaTrader supports a large variety of chart Bar Types. This page explains how each Bar

Type is created in a chart. Please see the Working with Price Data page for information on

how to change Bar Types.

Notes:

· For some Bar Types, the last bar of a session may be built as an incomplete bar due to

the session ending before the bar could be completed. Each new session will have bars

freshly built beginning from the first tick of the session. For example, the last bar of a

session in a 10,000 Volume chart may contain a volume less than 10,000, while the next

bar which builds on a new session would contain 10,000 volume. This behavior can be

changed via the "Break at EOD" Data Series property. For more information, see the

Break at EOD page.

· When backtesting different Bar Types (most notably Point and Figure and Renko) the

backtest can yield different results than what you would experience in real-time, due to

the nature of how the bars are constructed and the possibility of not having enough

granular information to simulate what would have happened in real-time. Please see the

Discrepancies: Real-time vs Backtest page for more information.

NinjaTrader 8694

© 2023 NinjaTrader, LLC

· When working with TickReplay, the bars will be built from tick data available through the

provider or local repository. For developing NinjaScript objects taking advantage of this

option, please see this link.

Understanding Tick bars

Tick Bars
A Tick bar is based on a specific number of ticks. A bar will continue to develop

until the specified number of ticks is reached. The next tick will then result in a new

bar being created.

1. Each historical bar in the the 500 Tick chart shown above plots a total of 500

ticks.

2. The "Tick Counter" indicator has been applied to the chart to show the number

of ticks remaining in the current bar.

Understanding Volume bars

Volume Bars
A Volume bar is based on a specific number of units traded (volume). A bar will

continue to develop until the specified volume is reached, and once that level is

surpassed, a new bar will be created.

Operations 695

© 2023 NinjaTrader, LLC

1. Each historical bar in the 10,000 Volume chart shown above contains a volume

of 10,000 contracts.

2. This is verified by the "VOL" indicator plotted below the price bars and the

Volume displayed in the Mini Data Box.

Understanding Range bars

Range Bars
A Range bar is based on a specified tick price range. The bar will continue to

develop until the price range is broken, at which point a new bar will be created.

Note: A tick in this instance is different from a tick in a Tick bar described in

the sub-section above. A tick in a Tick bar represents the point at which an

actual trade occurred, whereas a tick in a Range bar represents a price

increment, or a movement on the price axis of the chart. This increment is the

smallest price movement the instrument can make, and may differ by

instrument. For example, a tick on the e-mini S&P 500 (ES) equates to a

movement of 0.25, while a tick on AAPL stock equates to a movement of 0.01.

More information on setting an instrument's Tick Size can be found on the

Editing Instruments page.

NinjaTrader 8696

© 2023 NinjaTrader, LLC

1. Each historical bar in the 4 Range chart shown below represents exactly 4 ticks

of price movement.

2. The Ruler Drawing Tool verifies that each bar consists of 4 ticks. (The "Y value"

of 1.00 shown in the Ruler's display flag is equivalent to 4 ticks for the e-mini S&P

500 continuous contract instrument on the chart.)

Understanding Time based bars

Time Bars
Second, Minute, Day, Week, Month, and Year bars are all built based on the

passage of time. A bar will develop for a specified amount of time, and once this

time is exceeded, a new bar will begin.

Operations 697

© 2023 NinjaTrader, LLC

1. Each historical bar in the 1 Minute chart shown below represents price

movement during one minute in time.

2. The "Bar Timer" indicator has been applied to the chart to show the time

remaining for the current bar.

Note: Intraday time based charts are built off the Trading Hours definitions set

for the individual chart's DataSeries. For daily charts and higher this is not the

case though, here the Trading Hours are governed by the provider recording

the data. For the NinjaTrader Historical Data Servers daily bars will be recorded

using the ETH (Electronic Trading Hours) definitions for the respective

instrument. Further for providers which support accessing the official

settlement value, NinjaTrader will use this value as the daily bar close - for

more information regarding your specific provider please consult this link.

Understanding Heiken Ashi bars

Heiken Ashi Bars
Heiken Ashi in Japanese translates to "Average Bar" in English. These bars are

intended as a way to isolate ongoing trends. Heiken Ashi bars may appear to plot

the Open, High, Low, and Close of price within a specified time period, similar to

Candlestick bars. However, these bars use unique formulas to calculate OHLC

values based on mathematical averages. Like Candlesticks, Heiken Ashi bars

NinjaTrader 8698

© 2023 NinjaTrader, LLC

are based on the passage of time, and can be set to any Second, Minute, Day,

Week, Month, or Year interval.

Note: Calculated value will be rounded to the instrument's nearest tick size.

This is done to ensure accuracy in order submission and execution during

backtesting.

The chart below displays Heiken Ashi bars based on a 2-minute interval:

Understanding Kagi bars

Kagi Bars
Kagi bars are based on price movement. A Kagi bar will plot in the direction of

price until price reverses a specified amount, known as the Reversal. The bar will

then change direction, but stay the same color until the last bar's High or Low is

surpassed. The length of time the bar will develop depends upon the Base

period.

For example, suppose the price of an instrument is heading down and the

Reversal is set to 2 ticks. The line will continue to plot downward until price

reverses more than 2 ticks. At this point, the line will change direction, but stay red

by default. Once the last Kagi bar High is exceeded, the line will change to green

Operations 699

© 2023 NinjaTrader, LLC

by default, and the same rules will apply in the opposite direction. The chart below

displays a 1 Minute Kagi chart with a Reversal set to 2 ticks.

Understanding Renko bars

Renko Bars
Renko bars are based on price movement. Each bar is known as a "brick," and is

plotted as green by default when price is moving up and red by default when price

is moving down. A new brick is plotted when price exceeds the High or Low of the

previous brick by a specified amount, known as the Brick size. The chart below

displays Renko bars with a Brick size of 7:

Understanding Point and Figure bars

NinjaTrader 8700

© 2023 NinjaTrader, LLC

PointAndFigure Bars
PointAndFigure bars are built based on price movement. Each bar plots a

column made up of either X's representing a rising price or O's representing a

decreasing price. Each X or O is referred to as a "box" and represents the price

distance defined by the Box size (set in terms of ticks). A new X or O box will be

added to the bar when price moves more than the Box size, warranting the

addition of another box.

Another parameter, called the Reversal, sets the amount of price movement

needed from the High or Low to change from X's to O's, or from O's to X's. A

column will continue indefinitely until a price reversal equal to the Reversal

amount (set in number of boxes) occurs. There can never be two columns of X's

or O's next to each other for a given session, as any additional X's or O's would be

added to the current column instead. When a reversal occurs, the next column

begins one box size above the last Low for X's, or one box size below the last High

for O's.

For example, the chart below shows PointAndFigure bars based on a 1 Minute

Data Series. The Box size is set to 4 and the Reversal is set to 3.

Note: The prices of the X's and O's are represented by the exact middle of the

X or O, rather than the top or bottom.

Understanding Line Break bars

Line Break Bars
Line Break bars are built based on price movement. Line Break bars must break

above or below the High or Low of a specific set of prior bars before a new bar will

Operations 701

© 2023 NinjaTrader, LLC

be drawn. The "Line Breaks" parameter sets the number of previous bars in the

set whose High or Low the current price must break.

For example, if the "Line Breaks" parameter is set to 2, as shown in the chart

below, the first bar will be drawn based on whether the Close was above or below

the Open. The second bar in the chart is drawn with a green color by default if

price exceeds the first bar's High and red by default if price drops below the Low of

the first bar. No new bar is drawn if price does not exceed the High or Low of the

previous bar. The third bar is only plotted once price breaks the High/Low of the

last 2 bars, since the LineBreaks parameter is set to 2. If the last break occurred

on the upside, a color change will occur when price breaks the last Low. If the last

break occurred on the downside, a color change will occur when price breaks the

last High.

Understanding Order Flow Volumetric Bars

For information on how to work with the Order Flow Volumetric Bars and Bar

Statistics, please see the Order Flow Volumetric Bars page in the OrderFlow +

section of the Help Guide.

10.6.8 Chart Styles

NinjaTrader supports a large variety of Chart Styles. This page explains how each Chart

Style is created in a chart, and provides tips for reading charts of different styles. Please see

the Working with Price Data page for information on how to change Chart Styles.

Note: Some chart styles are intended to be used with a specific Bar Type, and will be

most effective when paired with that Bar Type. For example, Point and Figure can be

found in both the Bar Types and Chart Styles menus, and these two will be most useful

in tandem on a chart. As another example, the Renko Bar Type can be most effective

NinjaTrader 8702

© 2023 NinjaTrader, LLC

when paired with the Open/Close Chart Style. When you select a Bar Type, the

recommended Chart Style will be selected automatically, but it can still be changed

afterward.

Understanding the Box Chart Style

Box Chart Style
The Box Chart Style was specifically designed to simplify multi-timeframe

analysis on charts. The Box style draws a rectangular shape for each bar, colored

green by default for up bars, and red by default for down bars. Rather than

differentiating between the Open, High, Low, and Close of a specific time interval,

the Box style displays only the High and Low. This is done to allow for a second

Data Series which will show greater price-action granularity to be painted on top

of Box bars. For example, in the image below, the Box style is used to show the

High and Low of a higher timeframe, while Candlesticks are used to show more

precise intra-bar price action on a lower timeframe for the same instrument.

Reading a Box Chart
Box bars can be used to essentially define a range of trading that occurred within

a specified timeframe, but they will not reveal anything about intra-bar price action.

The Box style is most effective when paired with a lower-timeframe Data Series

in the same Chart Panel, as in the example below.

Operations 703

© 2023 NinjaTrader, LLC

In the image above, a 60-minute Data Series of the E-Mini S&P 500 futures

contract is using the Box style, and is painted behind a 15-minute Data Series of

the same instrument, clearly showing the shorter timeframe price movement

within the longer timeframe. For more information on painting one Data Series on

top of another, see the "How to change the z-order (paint order) of a chart object"

section of the Working with Objects on Charts page.

Understanding the Candlestick Chart Style

Candlestick Chart Style
The Candlestick Chart Style plots four data points per bar: Open, High, Low, and

Close. Candlesticks are generally painted one color for up bars (green by

default), and another color for down bars (red by default).

Reading a Candlestick Chart
Candlesticks are broken into two main sections, a candle body and a wick. In an

up bar, the top of the candle body represents the Close price, and the bottom

represents the Open price. In a down bar, the top of the candle body represents

the Open price, and bottom represents the Close price. In either up or down bars,

the high point of the wick represents the High price, and the low point of the wick

represents the Low price.

NinjaTrader 8704

© 2023 NinjaTrader, LLC

Tip: NinjaTrader's pre-loaded "Candlestick Pattern" indicator is designed to

identify common candlestick patterns when using this Chart Style.

Understanding the Equivolume Chart Style

Equivolume Chart Style
The Equivolume Chart Style plots four data points per bar: Open, High, Low, and

Close. Additionally, the width will vary per bar. Equivolume bars are generally

painted one color for up bars (green by default), and another color for down bars

(red by default).

Reading a Candlestick Chart
Equivolume bars are broken into two main sections, a candle body and a wick. In

an up bar, the top of the candle body represents the Close price, and the bottom

represents the Open price. In a down bar, the top of the candle body represents

the Open price, and bottom represents the Close price. In either up or down bars,

the high point of the wick represents the High price, and the low point of the wick

represents the Low price. The width of the bar indicates how much volume was

received within that bar in comparison to the other bars in view. So a wide bar

indicates high volume and a thin bar indicates low volume.

Understanding the Hollow Candlestick Chart Style

Operations 705

© 2023 NinjaTrader, LLC

Hollow Candlestick Chart Style
The Hollow Candlestick Chart Style plots four data points per bar: Open, High,

Low, and Close. Hollow Candlesticks are generally painted one color for up bars

(green by default), another color for down bars (red by default), and another color

for doji base (dim gray by defaut).

Reading a Hollow Candlestick Chart
Hollow Candlesticks are broken into two main sections, a candle body and a

wick. In an up bar, the top of the candle body represents the Close price, and the

bottom represents the Open price. In a down bar, the top of the candle body

represents the Open price, and bottom represents the Close price. In either up or

down bars, the high point of the wick represents the High price, and the low point

of the wick represents the Low price. In a doji bar, the Open price and Close price

are the same, represented by a line on the wick.

Tip: NinjaTrader's pre-loaded "Candlestick Pattern" indicator is designed to

identify common candlestick patterns when using this Chart Style.

Understanding the Kagi Line Chart Style

Kagi Line Chart Style

NinjaTrader 8706

© 2023 NinjaTrader, LLC

The Kagi Line Chart Style was specifically designed to function with the Kagi

Bar Type, which offers an alternative way of analyzing price action with a different

perspective than traditional time-based bars.

Reading a Kagi Line Chart
For more information on reading and setting up Kagi Line charts, see the

"Understanding Kagi Bars" section of the Bar Types page.

Understanding the Line on Close Chart Style

Line On Close Chart Style
The Line on Close Chart Style reduces price-action noise by focusing solely on

the Close price of an instrument at a specific time interval. This style connects the

Close price at the end of each interval with a straight line.

Reading a Line on Close Chart
When looking at a Line on Close chart, it is important to differentiate between the

line itself and the pivots between the line's many segments. Each point at which

the line pivots represents a Close price for the instrument, while the lines between

those points do not necessarily represent true historical prices. Instead, they are

drawn as a way to smooth the transition from one Close price to another.

Operations 707

© 2023 NinjaTrader, LLC

Understanding the Mountain Chart Style

Mountain Chart Style
The Mountain Chart Style functions similarly to the Line on Close style covered

in the previous section. The Mountain style connects Close prices of a chosen

interval with straight line segments, and also colors the region below the

connected line segments with a solid color.

Reading a Line on Close Chart
When looking at a Mountain chart, it is important to differentiate between the line

itself and the pivots between the line's many segments. Each point at which the

line pivots represents a Close price for the instrument, while the lines between

those points do not necessarily represent true historical prices. Instead, they are

drawn as a way to smooth the transition from one Close price to another. It is also

important to understand that the shaded area does not necessarily represent

historical price points, but is intended simply as a visual aid.

NinjaTrader 8708

© 2023 NinjaTrader, LLC

Note: The outline color, fill color, and opacity of this Chart Style can be

changed via the Data Series window.

Understanding the OHLC Chart Style

OHLC Chart Style
The OHLC Chart Style plots four data points per bar: Open, High, Low, and

Close. Like Candlesticks, OHLC bars are generally painted one color for up bars

(green by default), and another color for down bars (red by default).

Reading an OHLC Chart
The small left- and right-facing flags on each bar hold the key to interpreting OHLC

charts. When the right-facing flag is higher on the bar than the left-facing flag, this

indicates an up bar, and when the left-facing flag is higher, this represents a down

bar. This should correspond to the colors of the bars, as well. The space between

the flags represents the Open-to-Close price action, while the parts of the bar

extending beyond the flags represent the High and Low (regardless of bar

direction).

Operations 709

© 2023 NinjaTrader, LLC

Understanding the HLC Chart Style

HLC Chart Style
The HLC Chart Style plots three data points per bar: High, Low, and Close. Like

OHLC bars, HLC bars are generally painted one color for up bars (green by

default), and another color for down bars (red by default).

Reading an HLC Chart
HLC bars include only one flag extending to the right of each bar, as opposed to

OHLC bars, which include both left- and right-facing flags. The right-facing flag

represents the Close price of a bar, while the extreme upper and lower points of

the bar represent the High and Low, respectively.

NinjaTrader 8710

© 2023 NinjaTrader, LLC

Note: Some day traders prefer HLC bars to OHLC bars because they

assume that the Open price of any bar should always be one tick away from

the Close price of the prior bar. Note that this will not necessarily be the case

with Daily or higher time intervals.

Understanding the HiLo Chart Style

HiLo Chart Style
The HiLo Chart Style plots two data points per bar: High and Low. Like OHLC

bars, HiLo bars are generally painted one color for up bars (green by default), and

another color for down bars (red by default).

Reading a HiLo Chart
HiLo bars remove the left- and right-facing flags found on OHLC and HLC bars.

The upper and lower points of each bar represent the High and Low, respectively.

Operations 711

© 2023 NinjaTrader, LLC

Tip: This Bar Type can be useful to quickly determine the trading range of a

higher-timeframe interval, such as one week or one month, while eliminating

intra-bar price-action noise that is not useful in defining a range.

Understanding the Open/Close Chart Style

Open/Close Chart Style
The Open/Close Chart Style simplifies intra-bar noise by taking High and Low

prices out of the equation. This Chart Style paints up bars in a green color by

default, and down bars in a red color by default, and simply plots the difference

between the Open and Close during a chosen interval.

Reading Open/Close Charts
In an up bar, the bottom of an Open/Close bar represents the Open price, while

the top of the bar represents the Close price. In a down bar, the top represents the

Open, while the bottom represents the Close.

NinjaTrader 8712

© 2023 NinjaTrader, LLC

Tip: When drawing support/resistance or trend lines, some

traders prefer to anchor these lines to candle bodies while

ignoring wicks. If this is your chosen method, then the

Open/Close Chart Style can be a good alternative to

traditional Candlesticks.

Understanding the Point and Figure Chart Style

Point and Figure Chart Style
The Point and Figure Chart Style was specifically designed to function with the

Point and Figure Bar Type, which is an alternative way of analyzing price action

from a different perspective than traditional time-based bars.

Reading a Point and Figure Chart
For more information on reading and setting up Point and Figure charts, see the

"Understanding Point and Figure Bars" section of the Bar Types page.

Operations 713

© 2023 NinjaTrader, LLC

10.6.9 Working with Indicators

NinjaTrader comes with over 100 pre-built technical indicators, which can be added, removed

and edited via the Indicators window. Indicators can be applied to charts, the SuperDOM, or

Market Analyzer columns, and custom technical indicators can be created via the NinjaScript

Editor.

NinjaTrader 8714

© 2023 NinjaTrader, LLC

Understanding the Indicators window

The Indicators window is used to add, remove and edit all indicators within a

chart.

Accessing the Indicators Window from a Chart
There are multiple ways to access the Indicators window from a chart:

· Left click on the Indicators icon in the chart toolbar

· Right mouse click in the chart background when no chart object is selected, and

select the Indicators menu item

· Double click on an indicator within a chart

· Right click on a highlighted indicator within a chart and select the Properties

menu item

· Use the default Ctrl + I Hot Key when the chart has focus.

Sections of the Indicators Window
The image below displays the three sections of the Indicators window.

Operations 715

© 2023 NinjaTrader, LLC

1. The "Available" section displays a list of available indicators

2. The "Configured" section displays indicators currently applied to the chart or

SuperDOM

3. The "Properties" section displays the selected indicator's parameters

How to add an Indicator

Adding an Indicator
To add an indicator to a chart:

1. Open the Indicators window (see the "Understanding the Indicators window"

section above)

2. Left mouse click on the indicator you want to add in the "Available" section, then

press the add option in the "Configured" section. Alternatively, you can simply

double click on the indicator in the "Available" section to add it to the

"Configured" section.

3. The indicator will now be visible in the "Configured" section

4. The indicator's parameters will now be editable on the right side of the

Indicators window (see the "How to edit an indicator" section below)

NinjaTrader 8716

© 2023 NinjaTrader, LLC

How to edit an Indicator's parameters

Editing an Indicator
You can customize any indicator from the Indicators window.

1. Open the Indicators window (see the "Understanding the Indicators window"

section above)

2. Highlight the indicator you would like to edit from the list of applied indicators

3. Once highlighted, this indicator's parameters will be available to edit in the

"Properties" section.

Chart Indicator Parameters
The following parameters are common to all indicators applied on a chart:

Operations 717

© 2023 NinjaTrader, LLC

Input

Series

Please see the "Indicator Input Series" section

on this page for further information.

Calculate Sets the frequency at which the indicator

performs its calculations. See the note below

for information on each possible setting for this

property

Label The label displayed on the chart. Leaving the

field blank will remove the label from being

displayed on the chart. Enclosing a label in

quotations ("MyEMA" for example) will display

the text within the quotations and exclude the

system added trailing series information.

Maximum

Bars Look

Back

Determines the maximum number of bars the

indicator can look back to perform calculations

on historical data. This is set to 256 by default

(the most memory-friendly setting), but it can

be changed to "infinite" to allow for a greater

look back period.

Auto Scale When enabled, the indicator will be included in

the chart panel's vertical automatic scaling

Displacem

ent

Sets the number of bars by which to displace

the indicator plots

Display in

Data Box

Enables or disables the inclusion of the

indicator's plot values in the Data Box

Panel Sets the panel in which the indicator is plotted.

If you select "Same as input series," the

indicator will be linked to the Input Series and

automatically move if the Input Series is

modified to a different panel.

Price

marker(s)

When enabled, the indicator value is plotted in

the axis selected under the "Scale Justification"

property.

NinjaTrader 8718

© 2023 NinjaTrader, LLC

Scale

justification

Sets the scale on which the indicator will be

plotted. Possible values are "Right," "Left," and

"Overlay"

Visible Enables or disables visibility and function of the

indicator on the chart

Plots Sets a variety of parameters, such as color, for

the plots drawn by the indicator

Note: The "Calculate" property offers three possible settings to control how

often an indicator performs its calculations:

· On Bar Close - Run calculations once on the close of each bar of the Input

Series

· On Each Tick - Run calculations on each incoming tick of price data (CPU

intensive)

· On Price Change - Runs calculations on each change in price

Saving an Indicator's Parameters
You can optionally save your customized indicator's parameters as templates.

Saving it as Default will recall your customized settings the next time you add that

specific indicator to a chart.

Please see the Saving Chart Defaults and Templates page for more information.

Indicator Input Series
The indicator Input Series dialogue allows you to select the Input Series for your

indicator's calculations. To access this window, left mouse click within the "Input

Series" field. You can then select the Close, High, Low, Median, Open, Typical, or

Weighted price of any Data Series applied to the chart. Alternatively, you can

choose another indicator as the input series. When you select another indicator as

the input series, The "Properties" section of the Input Series dialogue will display

properties related to the indicator being used as the Input Series, allowing you to

configure it to your desired settings. This allows you to nest multiple indicators.

Once you have selected the Input Series of your choice, left mouse click the OK

button to exit the Input Series window.

Operations 719

© 2023 NinjaTrader, LLC

In the image above, we can select one of the Data Series applied to the chart, or

another indicator, for use as an indicator's Input Series.

Note: To take advantage of this feature NinjaScript indicators will need to

implement the Input ISeries as their main data input.

How to remove an Indicator

Removing an Indicator From a Chart
There are three ways to remove an indicator from a NinjaTrader chart:

· Open the Indicators window (see the "Understanding the Indicators window"

section above). Next, select an indicator from the "Configured" section, then

select the Remove option, and finally press the OK button to exit the Indicators

window.

· Left mouse click to select the indicator on your chart, then press the Delete key

on your keyboard.

· Left mouse click to select the indicator on your chart, then right mouse click the

indicator and select the Remove menu item.

NinjaTrader 8720

© 2023 NinjaTrader, LLC

Custom Indicator development

In addition to the indicators that come pre-built with the NinjaTrader application,

you also have the ability to create custom indicators of your own. For example, you

could create your own custom multi-series indicators using price and volume data

to apply to your charts or share with fellow traders.

For more information on using NinjaScript to build custom indicators please see

the NinjaScript section of the user help guide, or click here to view NinjaScript

indicator-development tutorials.

Working with Indicators in Market Analyzer columns

Please see the Working With Columns page for information on working with

indicators in Market Analyzer columns.

Working with Indicators in the SuperDOM

Please see the SuperDOM Working with Indicators page for information on

working with indicators in the SuperDOM.

10.6.10 Working with Drawing Tools & Objects

There are many customizable Drawing Tools and objects available to use in NinjaTrader

charts. Drawing Tools can be applied to individual charts or all open charts displaying the

same instrument, and templates for each Drawing Tool can be saved to apply commonly

used properties in the future.

Operations 721

© 2023 NinjaTrader, LLC

How to draw on a chart

Drawing on a Chart
Various Drawing Tools are available and customizable within a chart. The image

below shows an example of several Drawing Tools applied to a chart.

NinjaTrader 8722

© 2023 NinjaTrader, LLC

Accessing Drawing Tools
Drawing Tools can be accessed in three ways:

· Right mouse click within the chart and select the Drawing Tools menu, then

select an individual Drawing Tool from the list that appears

· Left mouse click on the Drawing Tools button in the toolbar at the top of the

chart, then select the Drawing Tool you wish to use

· Press the default or custom Hot Key for a specific drawing tool (see the list of

default hot keys under the "Available Drawing Tools" heading below)

Stay in Draw Mode
When "Stay in Draw Mode" is enabled from the Drawing Tools menu, any drawing

tool you select will remain selected after creating a drawing object with that tool.

The Drawing Tool can then be used to draw multiple objects without having to

access the Drawing Tools menu each time.

Line Tools
There are multiple Line tools which can be utilized. They can be placed as desired

or after placing the first anchor, you can hold SHIFT on the keyboard and move the

mouse around to adjust the line in 45 degree increments. This is based on chart

scaling at the time the line is placed.

Ruler Tool

Operations 723

© 2023 NinjaTrader, LLC

The Ruler measures the number of bars, length of time, and y-axis distance

between two anchor points for a Data Series. The measurement data is attached

in a flag at a third, independent anchor point.

To use the Ruler:

1. Select the Ruler Drawing Tool from the Drawing Tools menu

2. If you have more than one Data Series or indicator applied to your chart, first

select the Data Series or indicator you wish to measure by left mouse clicking

on it

3. Left mouse click on the chart where you wish to place the first anchor point

4. Left mouse click a second time on the chart where you wish to place the

second anchor point

5. Left mouse click a third time to set the anchor point for the Ruler display flag.

The anchor points can be relocated by left mouse clicking on an anchor point and

dragging it to a new location.

In the image above, we see the ruler tool used to measure a distance of 42 bars

over 7 hours, with a y-axis movement of 10.75 points.

Risk-Reward Tool
The Risk-Reward tool can help you to determine the placement of your profit

targets to achieve a specific risk/reward ratio on any trade.

NinjaTrader 8724

© 2023 NinjaTrader, LLC

To use the Risk-Reward tool:

1. Select the Risk-Reward Drawing Tool from the Drawing Tools menu

2. If you have more than one Data Series applied to your chart, first select the

Data Series you wish to work with by left mouse clicking on it

3. Left mouse click on the chart at the entry price of an active, pending, or

hypothetical trade

4. Left mouse click a second time on the chart at the point representing the

maximum risk you are willing to take on the trade

5. Open the Properties window for the Drawing Object you have just placed

(See the "Understanding Drawing Object Properties" section below)

6. Enter your desired Risk/Reward ratio in the "Ratio" field, then select the OK

button

Once the object has been drawn and the Risk/Reward ratio set, two lines will

extend outward from the first anchor point. The first line, culminating in a number

colored red by default, represents the maximum risk you are willing to take, as

specified by the second anchor point. The second line, culminating in a number

colored green by default, represents the price point determined by multiplying the

risk by the chosen Risk/Reward ratio.

1. In the image above, the first anchor point is set at 1.08900, with a risk/reward

ratio of 1.5

2. The second anchor point (the maximum risk) is set at 1.08430

3. Based on the 0.00470 distance between the first and second anchor points

(1.08900 - 1.08430), the third anchor point is automatically placed at 1.09605 to

achieve a 1:1.5 risk/reward ratio (1.08900 + (0.00470 * 1.5))

Region Highlight X / Region Highlight Y
The Region Highlight X and Region Highlight Y tools allow you to highlight or

shade an entire horizontal or vertical region on a chart. The Highlight Region X

Operations 725

© 2023 NinjaTrader, LLC

tool will highlight a horizontal region, and the highlighting will extend indefinitely

upwards and downwards, keeping the highlight in place if you choose to re-scale

the chart on the price axis. The Highlight Region Y tool will highlight a vertical

region, and in the same way, will extend the highlighting indefinitely to the right and

left, allowing you to draw a region which will continue to cover the entire width of

the chart as new bars come in, or as you scroll backwards on the time axis.

To use the Region Highlight X or Region Highlight Y tools:

1. Select one of the two tools from the Drawing Tools menu

2. When using Region Highlight X, click on the chart where you would like to

place the first anchor point, then click once more to the left or right of that point

to place the second anchor point

3. When using Region Highlight Y, begin the same way, but place the second

anchor point above or below the first anchor point

The image above shows the Highlight Region X tool in use, highlighting a 7-leg

uptrend.

NinjaTrader 8726

© 2023 NinjaTrader, LLC

The image above shows the Highlight Region Y tool in use, highlighting a recent

consolidation.

Available Drawing Tools
Following are the available Drawing Objects and their associated default hot keys

found within the Drawing Tools menu:

Ruler Ctrl + F3

Risk/Rew

ard

Ctrl + F4

Region

Highlight

X

Ctrl + F1

Region

Highlight

Y

Ctrl + F2

Line F2

Ray F3

Operations 727

© 2023 NinjaTrader, LLC

Extended

Line

F4

Arrow

Line

Ctrl+F2

Horizontal

Line

F6

Vertical

Line

F7

Path Ctrl + 4

Fibonacci

Retracem

ents

F8

Fibonacci

Extension

s

F9

Fibonacci

Time

Extension

s

F10

Fibonacci

Circle

F11

Andrew's

Pitchfork

Ctrl + F8

Gann Fan Ctrl + F9

Regressi

on

Channel

Ctrl + F10

NinjaTrader 8728

© 2023 NinjaTrader, LLC

Trend

Channel

Ctrl + 2

Time

Cycles

Alt + F11

Ellipse Ctrl + F11

Rectangl

e

Ctrl+ F12

Triangle Ctrl + F6

Polygon Alt + F10

Order

Flow

Volume

Profile

Ctrl + 3

Arc Ctrl + F7

Text F12 (Tip : pressing Alt + Enter while editing the

draw text content lets you create line breaks)

Chart

Marker:

Arrow Up

Arrow

Down

Diamond

Dot

Square

Triangle

Up

Triangle

Down

Alt+F2

Alt +F3

Alt +F5

Alt +F6

Alt +F7

Alt +F8

Alt +F9

Applying a Drawing Object to a Chart
To apply a Drawing Object to a chart, using a Drawing Tool:

Operations 729

© 2023 NinjaTrader, LLC

1. Select a drawing tool from the Drawing Tools menu. The cursor will change to

resemble a pen (Right clicking or pressing the "Esc" key will cancel the

operation).

2. Left mouse click on the chart where you wish to set the first anchor point.

3. Left mouse click again on the chart for any other necessary anchor points.

Once all anchor points are set, the cursor will change back to the cursor type

you had previously selected.

Once the Drawing Object is applied to the chart, it can be selected by left mouse

clicking on it. Once selected, the object can be moved throughout the chart, and

the anchor points can be moved by left mouse clicking and dragging to a new

location.

Understanding snap mode

Snap Mode
Drawing Objects can be attached to price and/or time data within the chart by

using any of the Snap Mode options available in the Drawing Tools menu:

Disabled Disables Snap Mode and allows the Drawing

Object anchor point(s) to be placed anywhere

on the chart

Bar Sets the x-axis value of Drawing Object

anchor point(s) to the bar interval values only

Price Sets the y-axis value of Drawing Object

anchor point(s) to the price, rounded to the

nearest tick

Bar and

Price

Sets the x- and y-axis of Drawing Object

anchor point(s) to be aligned with bar interval

values, Data Series OHLC, and indicator

price values only

Understanding drawing object properties

Each Drawing Tool can be customized using the Drawing Objects window.

NinjaTrader 8730

© 2023 NinjaTrader, LLC

Accessing the Drawing Object Properties
To access the Drawing Objects dialogue:

1. Left mouse click on a drawing object to select it (once selected, the anchor

points will be visible).

2. Either double left mouse click on the drawing object, or right mouse click and

select the Properties menu item.

The Drawing Objects dialogue is also accessible directly from the Drawing

Tools menu on the chart toolbar, or by right mouse clicking in a chart, then

selecting the Drawing Tools menu item.

Note: Regardless of the method used to open the Drawing Objects dialogue,

all Drawing Objects on the chart will be accessible in the dialogue. At any

time, you can select a different object from the list in the "Configured" section

to edit its properties.

Drawing Object Properties Menu
Properties vary between drawing objects. There are common properties, as

shown in the image below, and there are also specific properties depending on the

type of Drawing Object.

The general properties of the drawing object are located in the General section.

The image below shows the General section properties for all Drawing Objects,

as well as addition properties unique to the Line Drawing Object.

Operations 731

© 2023 NinjaTrader, LLC

The properties listed below are included for all Drawing Tools, in addition to each

tool's unique properties:

Attach to Applies the Drawing Object to the selected

instrument on a single chart or all charts with the

same instrument (see the "Understanding local

vs. global drawing objects" section below).

Additionally, a drawing object can be applied to an

indicator so that it will be associated to the

indicator and it's scale

Auto

Scale

Adds the Drawing Object to the auto-scaling of

the chart.

Locked Locks the Drawing Object in position on the

chart, making it immovable. You can also lock a

NinjaTrader 8732

© 2023 NinjaTrader, LLC

Drawing Object by left clicking the object to select

it, then right clicking the object to view the right

click menu, then selecting Lock.

Tag The Tag property is a naming convention used to

access the drawing object via NinjaScript. Any

Tag values generated via NinjaScript are grayed

out and cannot be changed. Each Drawing

Object must have a unique Tag value.

Visible Enables or disables the visibility of the Drawing

Object on the chart

The Data section displays the data locations of the Drawing Object anchor points

in the chart. These fields can be modified to change the location of the Drawing

Object within the chart. Some drawing tools will include additional properties in the

Data section, and some may include variations of the following properties:

Start

Time

Sets the x-axis start value of the drawing object

Start

Y

Sets the y-axis start value of the drawing object

End

Time

Sets the x-axis end value of the drawing object

End Y Sets the y-axis end value of the drawing object

Understanding Drawing Object templates

Drawing Object properties can be saved as a template, allowing you to quickly

apply those settings to a new Drawing Object of the same type in the future.

What is Saved
The following properties are saved in the General section:

· Auto scale

Operations 733

© 2023 NinjaTrader, LLC

· Color

· Dash Style

· Width

Attach to will default to the Data Series on which the object is drawn. Tag will be

automatically updated for each new drawing object. Locked will default to False.

Visible will default to True. Properties within the Data section will NOT be saved.

Saving Drawing Object Templates
To save Drawing Object settings:

1. Open the Drawing Object Properties window by either double left mouse

clicking on the drawing object or right mouse clicking and selecting Properties.

2. Set desired parameters

3. Left mouse click on the template text located in the bottom right of the

Properties dialog. Selecting save will open the Save window, in which you can

enter a name for a new template, select an existing template to overwrite it or

could click Save as default to save your settings as the new default applied

settings for that drawing object.

4. Click the Save / Save as Default button when finished

If you wish to load a previously saved template, you can select the load option after

left mouse clicking on the template text.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the template text and select the reset option.

In the image below, a template will be saved for the Ray drawing tool.

In the image below, we can enter a name for the new Ray template and save it for

future use.

NinjaTrader 8734

© 2023 NinjaTrader, LLC

Loading a Drawing Object Template
A Drawing Object template that was previously saved can be applied to any

Drawing Object of the same type. For example, a template for the Fibonacci

Extensions tool can be applied to a Fibonacci Extensions Drawing Object, but

not to a Line Drawing Object.

To load a Drawing Object template:

1. Left mouse click on the template text, then select the load option.

2. The Load window will appear. Select the template to load from the list of

templates, then press the Load button.

Removing a Drawing Object Template
To remove a Drawing Object template from the list of saved templates:

3. Left mouse click on the template text, then select either the Save or Load menu

items

1. The Save or Load window will appear, depending on which menu item you

selected. Right mouse click the template for removal from the list of templates,

then select the Remove menu item.

Renaming a Drawing Object Template
To rename a Drawing Object template from the list of saved templates:

4. Left mouse click on the template text, then select either the Save or Load menu

items

2. The Save or Load window will appear, depending on which menu item you

selected. Right mouse click the existing template in the list, then select the

Rename menu item.

Operations 735

© 2023 NinjaTrader, LLC

In the image below, we can either remove or rename the selected Drawing

Object template.

How to remove drawing objects

Removing Drawing Objects
To remove a single Drawing Object:

1. Left mouse click on the Drawing Object to select it (when selected, the anchor

points will appear)

2. Press the Delete key on the keyboard or right mouse click on the drawing

object and select the Remove menu item

To remove multiple Drawing Objects at the same time:

1. Select the Drawing Tools menu via right mouse clicking in chart or via left

mouse clicking the Drawing Tools icon in the chart toolbar

2. Left mouse click on the Remove All Drawing Objects menu item, and dialogue

box will appear to confirm that you wish to remove all drawing object.

3. Click the Yes button to confirm

Notes:

· Removing a Global Drawing Object will remove the object from all charts.

· Using the Remove All Drawing Objects menu item will NOT remove any

locked drawing objects from the chart. Drawing Objects placed via

NinjaScript will not be removed by this method, either.

Understanding local vs. global drawing objects

NinjaTrader 8736

© 2023 NinjaTrader, LLC

Drawing Objects can be applied to a specific chart (local), or to all charts of the

same instrument (global).

How to Enable a Global Drawing Object
To enable a Global Drawing Object:

1. Apply a Drawing Object to the chart (see the "How to draw on chart" section

above)

2. Access the Drawing Object's properties from the Drawing Objects dialogue

(see the "Understanding drawing object properties" section above)

3. Locate the "Attach to" drop down menu and select "Instrument name" (All

charts)

The Drawing Object will now be applied to all charts for that specific instrument

as well as any new charts opened for that instrument. Global Drawing Objects

are stored even when a chart of the instrument is not open.

Tips:

Operations 737

© 2023 NinjaTrader, LLC

· You can set Global Drawing Objects to be drawn in all currently open

workspaces in the General section of the Options window. To access the

Options window, select the Tools menu from the Control Center, then

select the Options menu item. In the General section of the Options window,

enable or disable the "Global drawing objects across workspaces" property.

· If you wish to exclude a Global Drawing Object from one or more charts,

you can do so by setting the property "Show global draw objects" to false in

the Format Data Series window on the chart(s) you wish to exclude.

· Making a draw object global means that the object would be redrawn and

thus the z-order reset to its default.

· A drawing object marked as global will only display on other charts that

match the scale justification of the plot it is attached to.

Understanding drawing object levels

Drawing Object Levels
Drawing Tools that include lines drawn at multiple, customizable price levels,

such as Fibonacci Retracements, include a "Levels" property which can be used

to add, remove, or edit levels displayed in objects drawn with that Drawing Tool.

The following Drawing Tools include a "Levels" property in the Drawing Objects

dialogue:

· Fibonacci Retracements

· Fibonacci Extensions

· Fibonacci Time Extensions

· Fibonacci Circle

· Andrew's Pitchfork

· Trend Channel

Managing Drawing Object Levels
To add, remove, or edit levels, first left mouse click on a Drawing Object to select

it, then either double-left mouse click the Drawing Object, or right mouse click it

and select the Properties menu item to open the Drawing Objects dialogue. The

Levels field will display the number of levels currently applied. Left mouse click

within this field to open the Levels dialogue, in which you can manage the levels

applied to that object.

NinjaTrader 8738

© 2023 NinjaTrader, LLC

Adding Drawing Object Levels
In the Levels dialogue, click the add option to add a new price level. A new level

will be added to the bottom of the list in the "Configured" section, and will be

automatically selected for editing. You can then customize the new level's line

color, dash style, width and value (in percent) the "Properties" section. You can

also enable or disable visibility of the level in this section.

Note: The value property of a level is always expressed in percentage terms,

and the placement of the line corresponding to that level will be based upon the

anchor points you set for that particular Drawing Object.

Removing Drawing Object Levels
To remove a level from within the Levels dialogue, first select the level you wish to

remove from the list, then select the remove option.

Operations 739

© 2023 NinjaTrader, LLC

Editing Drawing Object Levels
To edit an existing level from within the Levels dialogue, first select the level you

wish to edit, then change any of the properties for that level in the Properties

section. When all properties are set to your desired values, click the OK button to

save the changes and close the window.

1. Add new price levels with the add option

2. Remove existing price levels with the remove option

3. Edit properties for new or existing levels in the Properties section

10.6.11 Working with Automated Strategies

Automated NinjaScript strategies can be enabled within an open chart. Both real-time and

historical strategy trades will be displayed on the chart. For more information on creating and

managing NinjaScript strategies, see the NinjaScript Overview page.

Running a NinjaScript Strategy from a chart

Please see the Running a NinjaScript Strategy From a Chart page for more

information on applying and enabling strategies from charts, as well as more

information on managing strategy properties.

Working with automated strategies in a chart

NinjaTrader 8740

© 2023 NinjaTrader, LLC

Strategy Persistence
Automated strategies always persist on a chart whenever it is open, even if Enabled

is set to false inside the chart's Strategies window. For example, if you shut down

NinjaTrader with an enabled strategy in a chart, then reopen NinjaTrader, the

strategy will still be applied to the chart with the property Enabled being set to false.

This allows you to enable the strategy without having to reconfigure the parameters.

However, when the chart containing the automated strategy is closed, the strategy

will not persist; it will be disabled and removed.

Reloading NinjaScript
An automated strategy can be reloaded by right mouse clicking in the chart and

selecting the menu item Reload NinjaScript. Reloading an automated strategy will

remove the existing instance of the strategy and add a new one in the chart.

Viewing automated strategy executions in a chart

Executions
Automated strategy trade executions will be displayed in the chart, depending on the

Plot Executions parameter of the Data Series. The chart below shows several

executions from orders placed by an automated strategy, and each execution is

labeled with an appropriate name. Only executions pertaining to the strategy on the

chart will be visible when the strategy is enabled. Any manual executions, or

executions from strategies not applied to the chart, will NOT be shown. Execution

markers are configured for each Data Series by selecting the Plot Executions

parameter from the Data Series window.

Operations 741

© 2023 NinjaTrader, LLC

Note: You can view historical trades when a strategy is applied to a chart

because the IncludeTradeHistoryInBacktest property is set to true by default

when a strategy is applied to a chart. You can set this property to false in your

code for leaner memory management, at the cost of not being able to access

this information. For more information, see the Working with Historical Trade

Data page.

Viewing strategy performance

Strategy Performance
Real-time, Historical, or Historical & Real-time executions for the automated strategy

can be accessed within the open chart by right mouse clicking in the chart and

selecting the menu item Strategy Performance, then hovering the mouse over the

desired automated strategy and selecting the type of executions you wish to view

from the menu that appears. A Performance window will appear where you can view

and analyze the trade data.

NinjaTrader 8742

© 2023 NinjaTrader, LLC

The following categories of performance data can be selected:

Real-Time Displays performance statistics for trades the

strategy has taken in real-time ONLY

Historical Displays performance statistics for historical

trades ONLY, calculated before any real-time

trades are taken

Real-Time

and

Historical

Combines historical and real-time performance

statistics in a single report

Understanding strategy templates

Each NinjaScript strategy's parameters can be saved as a template for later use,

Operations 743

© 2023 NinjaTrader, LLC

and multiple templates can be saved for each strategy. Once saved in a template,

the customized parameters can be loaded quickly whenever the specified

template is applied to an instance of the strategy for which it was created.

What is Saved
All parameter settings are saved, with the following exceptions:

· Account defaults to the Sim101 account

· Enabled defaults to False

Saving Custom Strategy Settings
To save custom NinjaScript strategy parameters as default:

1. Set parameters to desired values

2. Left mouse click on the template text located in the bottom right of the properties

dialog. Selecting save will open the Save Strategy Template window, in which

you can enter a name for a new template or overwrite an existing template.

If you wish to load a previously saved template, you can select the load option after

left mouse clicking on the template text.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the template text and select the restore option.

NinjaTrader 8744

© 2023 NinjaTrader, LLC

1. In the image above, the "Sample MA Crossover" strategy is applied, as seen in

the "Configured" section.

2. A new template can be saved for the selected by clicking the template text, then

selecting save.

The Save Strategy Template window will allow you to name and save a new

template for the configured strategy.

Operations 745

© 2023 NinjaTrader, LLC

10.6.12 Saving Chart Defaults and Templates

NinjaTrader allows you to save many of your customized chart settings as default, or to save

templates for later use. This can save time by automatically setting up your Data Series,

indicators, NinjaScript strategies, chart properties, and drawing objects the way you prefer.

Saved default settings apply to any new instances of these items that you create, while

templates can be applied to either new or existing items.

Understanding Data Series default settings

Each Period Type and Chart Style can have different default settings saved for

the customizable Data Series parameters. Once saved as default, the

customized parameters will load when the Period Type is selected.

What is Saved
For Period Types, all parameter settings are saved, with the following exceptions:

· Bar width

· End date will default to the current day's date

· Label will default to the instrument name

· Panel will stay on its current panel

· Scale justification will default to "Right"

· Session template will default to "<Use instrument settings>"

For Chart Styles, all parameters within the Chart Style section of the Data
Series window will be saved.

Note: Period Type default settings overrule Chart Style default settings.
When you change the Period Type, the parameters saved in that Period
Type's default settings will change any parameters which may have already
been loaded. However, when a Chart Style is changed, any saved defaults for
that Chart Style will be used.

Saving Custom Data Series Settings by Period Type
To save Data Series parameters as default for a particular Period Type:

1. Set the Data Series parameters to desired values

2. Left mouse click on the preset text located in the bottom right of the properties

dialog. Selecting the option save will save these settings as the default used every

time you select that period type for a Data Series.

NinjaTrader 8746

© 2023 NinjaTrader, LLC

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the preset text and select the restore option to return to the

original settings.

1. In the image above, we have selected the Minute Period Type.

2. Notice the preset text changes to preset minute. By clicking save, data series

parameters will be saved for the Minute Period Type specifically.

Saving Custom Data Series Settings by Chart Style
To save Data Series parameters as default for a particular Chart Style:

1. Set the Chart Style parameters to desired values

2. Right mouse click on the Chart Style dropdown menu, then select Set Preset For

"X" Chart Style, where X represents the currently selected Chart Style.

In the image below, we can set the defaults for the Candlestick Chart Style

specifically.

Operations 747

© 2023 NinjaTrader, LLC

Understanding indicator default settings

Each individual indicator's parameters can be saved as default or as a custom

template. Once saved as default, the customized parameters will load whenever

the specified indicator is added to a chart.

What is Saved
All parameter settings are saved, with the following exceptions:

· Input series will default to the first Data Series applied to the chart

· Panel will use the default NinjaTrader settings

Saving Custom Indicator Settings
To save Indicator parameters:

1. Set the Data Series parameters to desired values

2. Left mouse click on the template text located in the bottom right of the

properties dialog. Selecting save will open the Save window, in which you can

enter a name for a new template or select an existing template to overwrite it.

Naming it Default will save these settings as the default used every time you

apply that indicator to a chart.

3. Click the Save button when finished

If you wish to load a previously saved template, you can select the load option after

left mouse clicking on the template text.

NinjaTrader 8748

© 2023 NinjaTrader, LLC

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the template text and select the restore option.

In the image below, the parameters will be saved for the selected SMA indicator.

Any time an SMA indicator is applied to a chart, the saved parameters will be

loaded.

Understanding strategy templates

Please see the Working with Automated Strategies page for more information on

saving and managing templates for NinjaScript strategies.

Understanding chart property default settings

Customized chart properties can be saved as default. Once saved as default, the

customized properties will be loaded whenever a new chart is opened. The Chart

Properties window can be opened by left mouse clicking on the Properties icon in

the chart toolbar, by selecting the menu item Properties from the right click menu

in the chart, or via the default CTRL + T Hot Key.

What is Saved
All property settings are saved.

Saving Custom Chart Property Settings

Operations 749

© 2023 NinjaTrader, LLC

To save custom chart parameters as default:

1. Set parameters to the desired values

2. Right mouse click within the chart window, then select the Templates menu

item, then select Save as Default.

All chart properties can be restored to NinjaTrader default settings by left mouse

clicking on the preset text within the Chart Properties window, then selecting

restore.

In the image below, all chart properties will be saved as the default for new charts.

Tip: Chart Templates (including the default chart template) will overrule chart

property default settings. If you wish to use your preset chart property defaults,

select <None> as the chart template when opening a new chart.

Understanding Drawing Object templates

Please see the Working with Drawing Tools & Objects page for more information

on saving and managing drawing object templates.

NinjaTrader 8750

© 2023 NinjaTrader, LLC

How to save a Chart Template

Chart properties, chart panel properties, and indicator settings can be saved as a

Chart Template. A Chart Template can be applied to a new chart or an open

chart to load customized chart settings, provided the template and chart share the

same number of Data Series objects.

Since templates are intended to be able to be applied to any data series, they do

not include items that would be unique to the data series, such as drawing objects.

A Trend Channel drawn on AAPL would not be relevant on a COKE chart.

Saving a Chart Template
To save a Chart Template:

1. Once you have a chart set up to your liking, right mouse click within the chart

and select the menu item Templates, followed by Save As

2. The Save As window will appear. Enter a name for your template and press

the save button.

In the image below, we are saving a new chart template named

"MyChartTemplate."

Changing the Default Chart Template
A Chart Template can be saved as the default template used for all new charts.

Once saved, the default template will determine the properties of each new chart

opened, unless you specify a different template.

To save a Chart Template as default:

1. Right mouse click within an open chart and select the Templates menu

2. Select the menu item Save as Default

Operations 751

© 2023 NinjaTrader, LLC

How to load, remove, or rename a Chart Template

Loading a Chart Template
A Chart Template that was previously saved can be loaded on any chart that has

the same number of Data Series as the chart which was used to save it.

To load a Chart Template:

1. Right mouse click and select the menu item Templates followed by the Load

menu item

2. The Load window will appear. Select the template to load from the list of

templates, then press the Load button.

Note: If a Chart Template is loaded, settings from that template will take

precedence over any settings manually configured on the Data Series. For

example, Trading Hours currently configured will be ignored, and the chart will

use the Trading Hours which were saved in the Chart Template.

Removing a Chart Template
To remove a Chart Template from the list of saved templates:

1. Right mouse click within a chart and select the menu item Templates followed

by either the Save As or Load menu items

2. The Save or Load window will appear, depending on which menu item you

selected. Right mouse click the template for removal from the list of templates,

then select the Remove menu item.

Renaming a Chart Template
To rename an existing Chart Template from the list of saved templates:

3. Right mouse click within a chart and select the menu item Templates followed

by either the Save As or Load menu items

4. The Save or Load window will appear, depending on which menu item you

selected. Right mouse click the template from the list of templates, then select

the Rename menu item.

In the image below, we can either remove or rename the selected Chart

Template.

NinjaTrader 8752

© 2023 NinjaTrader, LLC

10.6.13 Data Box

The Data Box and Mini Data Box allow you to access both bar and indicator values on your

chart at a glance. The Mini Data Box provides a compressed view of your chart data, while

the Data Box provides a more comprehensive view of the data.

Understanding the Mini Data Box

Opening the Mini Data Box
To access the Mini Data Box, hover your mouse cursor over the chart panel from

which you would like to see values, then press down on your middle mouse

button. After pressing and holding down your middle mouse button, the Mini Data

Box will appear with a range of information related to the data series and

indicators in the chart panel in which you click. You can then continue holding

down your middle mouse button as you move around the chart to view values for

other bars, or release your middle mouse button to hide the Mini Data Box once

more.

Mini Data Box Display
The Mini Data Box displays the Date/Time, Open, High, Low, Close and Volume

information of the selected bar on the chart, as well as the values of any indicators

plotted in that chart panel. This view is ideal for quick access to information on a

specific bar.

Operations 753

© 2023 NinjaTrader, LLC

The display order of data in the Mini Data Box is as follows:

Date Date of the bar corresponding to the location of your

cursor

Time End-of-bar time stamp corresponding to the

location of your cursor

Price

Data

Open, High, Low, and Close values for the bar

Volum

e

Volume for the bar

Indicat

or

Values

Values for indicators contained in the specific chart

panel in which you view the Mini Data Box.

Indicators will be displayed in the same order in

which they were added in the Indicators window.

Tip: If more than one data series is applied in the same chart panel, they will

be displayed in the Mini Data Box in the order in which they were added to the

chart, and all indicators using a specific data series as input will be displayed

beneath the data for that specific data series.

NinjaTrader 8754

© 2023 NinjaTrader, LLC

Understanding the Data Box

Opening a Data Box
The Data Box displays all bar data and indicator values on your chart, based on

your mouse cursor position. You can enable or disable this window via the right

mouse click context menu, the Show Data Box chart toolbar icon, or by using the

default shortcut CTRL+D. If you have multiple charts open, the Data Box will

display the values of the chart over which your mouse cursor is currently hovering.

Being able to use one Data Box for multiple charts eliminates the need to open

multiple Data Boxes, which conserves monitor space.

Data Box Display
The Data Box displays the date at the top of the window, followed by additional

data organized by panel. Under each panel heading, any data series displayed in

that panel will be listed first, followed by any indicators displayed in that panel.

In the image above, we can see:

Operations 755

© 2023 NinjaTrader, LLC

1. Panel 1 includes an ES ##-## data series and a 14-period SMA indicator using

the ES ##-## as its input series.

2. Panel 2 includes an ADL indicator only, using the ES ##-## as its input series.

3. Panel 3 includes a second data series, AAPL, with no indicators.

The column splitter can be re-sized by hovering your cursor until the sizing arrows

appear. Once the sizing arrows are showing you can press down on your left

mouse button and drag the column splitter to the desired location, then release the

left mouse button.

Note: Indicators or Data Series with the Display in Data Box parameter set to

false will NOT be displayed in the Data Box.

Indicator Time Stamps on Multi-Series Charts
Indicator plot names listed in the Data Box are followed by a time stamp indicating

which bar time the corresponding indicator uses as its input series. This will allow

you to quickly see which data series is being used by each indicator on a multi-

series chart.

NinjaTrader 8756

© 2023 NinjaTrader, LLC

As an example, notice the following about the image above:

1. Panel 1 contains a 1 minute Data Series.

2. Panel 2 contains a 5 minute Data Series.

3. In addition to the Data Series, Panel 1 also contains an SMA indicator which

uses the 5-minute Data Series (contained in Panel 2) as its input series. Although

this indicator is plotted in Panel 1, the time stamp reveals that its values are based

upon the Data Series in Panel 2.

Right Click Menu
Right click anywhere in the Data Box to access the right click menu.

Operations 757

© 2023 NinjaTrader, LLC

The following options are available:

Auto Size When enabled, your data box

will re-size as you move your

cursor between charts to meet

each chart's display

requirements.

Show Data Series Labels Enables or disables the display

of the Data Series labels

Show Indicator Labels Enables or disables the display

of the Indicator labels

Show Panel Numbers Enables or disables the display

of the Panel numbers

Show Bar Indexes Enables or disables the display

of the bar number of the bar

being viewed. The first bar on

the chart has an index of 0, and

each bar thereafter increments

its bar index by 1.

Show Bars Ago Enables or disables the display

of the Bars Ago value of the bar

being viewed. The latest bar on

the chart is considered 0 bars

ago, and each preceding bar

NinjaTrader 8758

© 2023 NinjaTrader, LLC

increments its Bars Ago value

by 1.

Always On Top When enabled, this will keep

the Data Box above all other

windows in your workspace, so

the values are always visible

Properties Opens the Data Box Properties

window

Data Box Properties
Many options in the Data box can be changed within the Data Box Properties

window. To access this window, first right click within the Data Box, then click

Properties. The following properties are available:

Operations 759

© 2023 NinjaTrader, LLC

Font Set the font family and size,

and enable or disable bold or

italics

Always On Top When enabled, this will keep

the Data Box above all other

windows in your workspace, so

the values are always visible

Auto Size When enabled, your data box

will re-size as you move your

cursor between charts to meet

each chart's display

requirements.

NinjaTrader 8760

© 2023 NinjaTrader, LLC

Show Data Series Labels Enables or disables the display

of the Data Series labels

Show Indicator Labels Enables or disables the display

of the Indicator labels

Show Panel Numbers Enables or disables the display

of the Panel numbers

Show Bar Indexes Enables or disables the display

of the bar number of the bar

being viewed. The first bar on

the chart has an index of 0, and

each bar thereafter increments

its bar index by 1.

Show Bars Ago Enables or disables the display

of the Bars Ago value of the bar

being viewed. The latest bar on

the chart is considered 0 bars

ago, and each preceding bar

increments its Bars Ago value

by 1.

Once you have your properties set to your preference, you can left mouse click on

the preset text located in the bottom right of the properties dialog. Selecting the

option save will save these settings as the default settings used every time you

open a new Data Box.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

10.6.14 Cross Hair

The Cross Hair changes the cursor to a pair of intersecting vertical and horizontal lines,

allowing you to use your cursor to pinpoint specific coordinates on your chart. The lines

displayed by the Cross Hair extend to the X (time) axis and Y (price) axis of the chart, and

include markers in both axes to display the precise position of the cursor. The Global Cross

Hair allows you to link Cross Hairs from multiple chart windows. This means that as you

Operations 761

© 2023 NinjaTrader, LLC

move the Global Cross Hair in one chart, all other Global Cross Hairs will move together by

automatically staying at the same time and price.

How to enable the Cross Hair

Enabling the Cross Hair
There are multiple ways to enable the Cross Hair within a chart window:

· Left mouse click on the Cursor icon in the chart toolbar and select the Local

menu item.

· Right mouse click within the chart and select the Crosshair menu, then select the

Local menu item.

· Use the default CTRL +Q Hot Key

The cursor icon within the chart toolbar will change to a cross hair icon, letting you

know that Cross Hair is enabled on the chart.

How to enable the Global Cross Hair

Enabling the Global Cross Hair
Just like the Cross Hair, there are multiple ways to enable the Global Cross Hair

within a chart window:

NinjaTrader 8762

© 2023 NinjaTrader, LLC

· Left mouse click on the Cursor icon in the chart toolbar and select the Global

menu item.

· Right mouse click within the chart and select the Crosshair menu, then select the

Global menu item.

· Use the default CTRL +G Hot Key

The cursor icon within the chart toolbar will change to a cross hair icon with a

square border, letting you know that Global Cross Hair is enabled on the chart.

Tips:

· If the active Global Cross Hair moves outside the viewable horizontal range

of any other chart with Global Cross Hair enabled, the horizontal axis in the

inactive charts will automatically scroll to keep aligned with the active cursor.

If you wish to use the Global Cross Hair with time-axis scrolling disabled,

you can select Global (No Time Scroll) from either the chart toolbar or the

Crosshair menu. With Global (No Time Scroll) selected, the cursor icon within

the chart toolbar will display a cross hair with a round border.

How to use the Global Cross Hair

Using the Global Cross Hair
The Global Cross Hair must be enabled on more than one chart in order to take

full advantage of its functionality.

The images below shows two CL charts, a 1 Minute and 5 Minute, both with

Global Cross Hair enabled. Notice the time and price cross hair values in each

chart are the same. When the cursor is moved in any chart with Global Cross

Hair enabled, cross hairs in all other charts with Global Cross Hair enabled will

move as well, to stay at the same time and price coordinates.

Operations 763

© 2023 NinjaTrader, LLC

1. The cursor is active on the 1-minute chart, and the time and price axis values

corresponding to the position of the Global Cross Hair are displayed.

2. The position of the Global Cross Hair on the 5-minute chart automatically

updates based on the position of the cursor in the 1-minute chart.

NinjaTrader 8764

© 2023 NinjaTrader, LLC

Cross Hair Options

Cross Hair Options
· You can optionally lock the crosshair in a specific point in time. To lock the time

(vertical) line of the Cross Hair or Global Cross Hair, while retaining the ability

to move the horizontal line, you can enable the Locked property within the

Crosshair section of the Chart Properties window, or use the default CTRL +L

Hot Key. When using the Global Cross Hair, locking will apply to all charts with

Global Cross Hair enabled.

· Additional options related to the Cross Hair or Global Cross Hair can be set in

the Chart Properties window. The following properties can be set:

Color Sets the color for the Cross Hair lines

Cross

hair

Type

Sets the type of Cross Hair to be enabled, including

Local, Global, Global (No Time Scroll), and Off

Dash

Style

Sets the style to be used for the Cross Hair lines,

including Solid, Dash, Dash Dot, Dash Dot Dot, and
Dot

Draw

cursor

only

Enables or disables drawing only a mini Cross Hair

without the full lines but including the price / time

axis labels. This mode can improve performance

for setups operating with a lesser powerful GPU.

Locked Enables or disables Cross Hair locking

Width Sets the width of the Cross Hair lines

10.6.15 Trading from a Chart

Please see the Chart Trader section under Order Entry section for more information on

trading in the chart.

10.6.16 Chart Properties

Many of the visual display settings of NinjaTrader charts can be customized using the Chart

Properties window.

Operations 765

© 2023 NinjaTrader, LLC

How to access the Chart Properties window

The Chart Properties window can be accessed in the following ways:

1. Left mouse click the Properties button in the chart toolbar

2. Right mouse click within the chart and select the menu item Properties

3. Use the default CTRL + T Hot Key

Available properties and definitions

The following chart properties are available for configuration within the Chart

Properties window:

NinjaTrader 8766

© 2023 NinjaTrader, LLC

Genera

l

Operations 767

© 2023 NinjaTrader, LLC

Allow the

selection

or

drag/drop

of chart

series

Enables or disables the selection of Data

Series and indicators for drag and drop

Equidistant

bar

spacing

Enables or disables plotting bars an equal

distance from each other. Please see the

"Working with Multiple Data Series" section of

the Help Guide for more information.

Font Sets the font display properties for the chart

Right side

margin

Sets the spacing between the Y-axis and the

current bar in pixels

Chart

trader

Sets the chart trader display mode.

Show date

range

Enables or disables showing the date range

label in to the top left of chart. The date range

reported are the dates that are currently visible

in the chart.

Show

scrollbar

Enables or disables showing the horizontal

chart scroll bar

Tab name Sets the name displayed in the tab. By default

the instrument name is displayed.

Chart

backgroun

d image

Enables or disables the option to use an image

as the background for the chart

Color

Chart

backgroun

d

Sets the chart background color

NinjaTrader 8768

© 2023 NinjaTrader, LLC

Crosshair

label

Sets the color for the cross hair label

Inactive

price

markers

Price markers display the current price of bars

and indicators on the Y-axis. When looking at

the current bar, the price markers will take the

color of the data series. When scrolling back

through historical bar data, the markers are

inactive (not real-time) and will be displayed by

the color set on this property

Text Sets the font display properties for the chart

Lines

Axis Sets the drawing properties for both the vertical

and horizontal chart axis

Crosshair Sets the drawing properties of the crosshair

Grid line -

horizontal

Sets the drawing properties of the horizontal

grid lines

Grid line -

vertical

Sets the drawing properties of vertical grid lines

Panel

splitter

Sets the drawing properties of the splitter drawn

between panels.

Windo

w

Always on

top

Sets if the window will be always on top of other

windows.

Defaults for the Chart Properties window can be saved by left mouse click on the

"Set Default" button. Please see the "Saving Chart Defaults" section of the Help

Guide for more information.

Operations 769

© 2023 NinjaTrader, LLC

Using Tab Name Variables

Tab Name Variables
A number of pre-defined variables can be used in the "Tab Name" field of the

Chart Properties window. For more information, see the "Tab Name Variables"

section of the Using Tabs page.

10.6.17 Reload Historical Data

While you are connected to a market data provider that supports historical data, right mouse

click within a chart to bring up the context menu and select the Reload All Historical Data

menu item. Historical data for the base interval unit (minute bars for a 5 minute chart for

example) will be reloaded for all charts of the same instrument. Reloading all historical data

will overwrite all locally stored cache and repository data.

NinjaTrader 8770

© 2023 NinjaTrader, LLC

10.6.18 How Bars are Built

NinjaTrader builds chart bars from the data provided by your data provider. There are multiple

elements in the bar building process that can influence how bars are built.

Understanding the variables involved in building chart bars

Bar Time Stamp
NinjaTrader stamps a bar with the closing time of the bar. For example, a minute bar
with a time of 9:31:00 AM has data from 9:30:00 AM through 9:30:59 AM. Using end of
bar time stamps is required in order to be able to plot multiple series of differing time
frames within a single chart all accurately synchronized to time.

Operations 771

© 2023 NinjaTrader, LLC

Discrepancies Between Different Data Feeds
Different data feeds produce different charts, especially when using tick based intervals

vs time based intervals. Market data vendors each employ various methods for tick

filtering, throttling and time stamping. As a result, no data stream is 100% identical and

thus can cause subtle differences in charts. Since NinjaTrader supports many of the

leading brokerage and data feed technologies, it is highly likely that two traders using

NinjaTrader on different data feeds will have minor differences when plotting the same

market and time interval.

Time Settings
Different session templates as well as the date range of data being plotted can affect

the chart display and indicator values.

Real-Time Tick Filter
If you have the real-time tick filter enabled, it is possible that your offset percent (the

percent away a tick is in value from the last traded price to be considered a bad tick)

may be too tight and thus a good tick (gap up/down on session open for example) could

be excluded from the bar.

Understanding the underlying base data type required for constructing various chart bars

Base Data Types Used to Build Bars
A chart bar (period type) requires a base data type as its source for bar

construction. Following are NinjaTrader supported period types and their required

base data type values. A check mark represents the data base value that is

needed to build the period type.

Period type Base data type values

Tick Minute Daily

Tick

Volume

Range

Second

NinjaTrader 8772

© 2023 NinjaTrader, LLC

Renko

Minute

Day

Week

Month

Year

The base data is important to understand. If you are connected to a market data

vendor that does NOT support "tick data," you will NOT be able to build chart bars

that use "tick data" as its base data such as tick, volume, range or second charts.

A matrix of supported data vendors and their varying levels of service is located

here.

Understanding why a chart can look different after reloading historical data from the server

As ticks come into NinjaTrader in real-time, they are time stamped based on your

local PC time if they do not already have an associated time stamp that is provided

from the real-time data source. NinjaTrader then builds bars based on the time

stamp of the incoming tick and displays these bars in your chart in real-time.

Let's say you have a tick (tick "A") with a time stamp of 10:31:00 AM which gets

packaged into the 10:32:00 AM bar and happens to be the high of that bar. An hour

later, you reload historical data from your historical data provider into NinjaTrader.

This process will overwrite the existing data. The 10:32:00 AM bar now looks

different since the high made by TICK "A" is now part of the prior bar, 10:31:00 AM.

How is this possible?

· Your PC clock could have been off so the time stamp is delayed

· Your internet may have been lagging so the tick came in slightly delayed and

therefore the time stamp is delayed

· Due to standard latency, even 50ms delay (which is normal) could be the

difference between a 10:30:59 and 10:31:00 time stamp

Operations 773

© 2023 NinjaTrader, LLC

· There is no way of knowing how the historical data provider packages their bars

The only way to ensure that data always looks the same is if every connectivity

provider sent ticks with time stamps AND that all vendors synchronized on time

stamps. Unfortunately, this is just not a reality nor plausible scenario.

Loading Historical Data
Please see the "Historical & Real-Time Data" section of the Help Guide for more

information.

10.6.19 How Trade Executions are Plotted

Trade executions in NinjaTrader are tied to specific timestamps based on when the

execution actually occurs as opposed to specific bars on the chart. NinjaTrader does it this

way to allow you the flexibility of using multiple charts of differing period types and still being

able to visualize where the trade executions occurred. The following article outlines some

scenarios with time based execution plotting.

Understanding trade executions and the local PC clock

When a trade execution occurs in NinjaTrader it is timestamped natively by your

provider if they support that or locally by NinjaTrader. One situation that can arise is that

your PC clock is not in sync with your data feed. When this happens the trade

execution may be shown on the chart on a bar where it seems like the fill is not

feasible.

Example: Data feed bar is currently timestamped as 4:26PM. Local PC clock is

4:21PM.

When a market order is placed under the above situation, the trade execution will

occur at 4:26PM prices, but be shown on the chart at 4:21PM.

To prevent these types of issues please ensure your local PC clock is in sync with your

data feed. Please reference the Historical & Real-Time Data chart to see if your data

provider timestamps their data or if the data is timestamped locally by your PC clock. It

is important to maintain a sync between your PC clock and the data feed's

timestamping.

Understanding trade executions on charts with tick based intervals

NinjaTrader 8774

© 2023 NinjaTrader, LLC

When using a chart with tick based intervals in NinjaTrader it is possible to have several

bars with the same timestamp. This usually happens during high volatility times when

heavy trading is happening within a very short amount of time. Since there are many

bars with the same timestamp, NinjaTrader can only plot the trade execution on the

first bar with the same timestamp of the execution since the executions are not tied to

specific bars, but tied to specific timestamps. This can appear as if the trade

execution occurred with an invalid fill price, but in reality the execution did occur on a

valid price, just on a later bar with the same timestamp.

Example: Many ticks occurred on the 16:35:54 timestamp seen in the x-axis below the

chart. Trade execution was at price 1058.75 on 16:35:54.

Since the execution occurred on 16:35:54 it is plotted on the first bar with the same

timestamp. In this particular case, the first bar was not at the same price as the

execution price so it would appear to be filled outside of the bar. Checking bars being

plotted later on we find that 1058.75 was a valid price for timestamp 16:35:54 and that

this execution was in fact on a valid price.

10.6.20 Break at EOD

Break at EOD (End Of Day)
You can optionally set NinjaTrader to break its bars on each new end of day session, or

continue building until completed. This property can impact the way price is analyzed during

the end of a trading session, and can therefore affect the way an indicator or strategy is

calculated.

With Break at EOD enabled, your bars are ensured to have a known starting point of which

to give you a consistent, repeatable chart. This is especially important for bar types that are

not based on time such as Volume and Tick based charts. However, for other bar types such

as Range, Point and Figure, or others which are built around price action, enabling this

property may cause bars to complete before their criteria has been satisfied. If you prefer the

bar to satisfy to completion before creating a new bar, regardless of the time of day, you will

want to ensure you have disabled the Break EOD property.

Break EOD vs Non-Break EOD
Below you will find a two examples which will compare how Range type bars will be handled

at the end of a trading session depending on the Chart's Break EOD property.

Operations 775

© 2023 NinjaTrader, LLC

1. Break EOD enabled - a new bar was formed during the new trading session before the 6

range bar had completed

NinjaTrader 8776

© 2023 NinjaTrader, LLC

2. Break EOD disabled - a new bar was not formed until the criteria for the 6 point range was

satisfied

Operations 777

© 2023 NinjaTrader, LLC

10.6.21 Order Flow +

Order Flow + Overview

NinjaTrader Order Flow + studies are powerful tools to assist in order flow, volume and

market depth analysis. Order Flow + studies are included for all NinjaTrader lifetime

license users.

Order Flow + contains the following bar type and indicators

› Order Flow Volumetric Bars

› Order Flow Cumulative Delta

› Order Flow VWAP

› Order Flow Volume Profile

› Order Flow Trade Detector

› Order Flow Market Depth Map

10.6.21.1 Order Flow Volumetric Bars

NinjaTrader Order Flow Volumetric bars provide a detailed ‘x-ray’ view into each price bar’s

aggressive buying and selling activity. This technique primarily attempts to answer the

question which side was the most aggressive at each price level. This is done by calculating

the delta (greek for difference) between buying and selling volume (please see the Delta type

property explanation below).

With the delta value known for each price level in the bar, it is then classified per each

session for analysis and emphasizes the buying / selling strength unfolding. This is done by a

gradient coloring approach shading the value cells in the bar, where the level of sensitivity for

the gradient can be set via the Shading sensitivity property. The higher this value is set, the

finer the gradient can be applied to various levels of strength - the NinjaTrader default is 20

levels.

This can be thought of as a way of not only saying who ‘won / lost’ the price level’s auction,

but also by what margin or strength. This is not a signal in itself per se, but rather a

mechanical means to classify the buying vs selling activity at each individual price level and

thus offer the trader a more detailed look what happens inside the price bars.

A second comparison of buy sell volumes is the Imbalance detection. Here the price level

buying and selling volumes are compared diagonally to understand which side of the market

was stronger by exceeding the set Imbalance ratio. For example if the buying volume was

1000 contracts and the selling volume diagonal below was 300 then buying Imbalance was

NinjaTrader 8778

© 2023 NinjaTrader, LLC

detected (assuming a default Imbalance ratio of 1.5). This can be helpful especially if multiple

Imbalances 'cluster' close together to form support / resistance areas.

NinjaTrader Order Flow Volumetric bars can provide a large degree of details and facilitate

displaying the information in a dynamically sized way, as the text is re-sized as your

horizontally or vertically adjust the chart's scale range.

Critical: To perform the delta buy / sell aggressor classification (DeltaType BidAsk),

historical bid / ask tick data access by your provider is needed. To see which data

providers can offer which type of data in NinjaTrader, please review this table. If your

provider could only support 'last' historical tick data, then the classification could still be

made using DeltaType UpDownTick mode.

Forex spot data charting is traditionally driven from the bid side only, since no 'true' last

exists. Provided values would not represent a centralized auction based market as with

stocks or futures - as such Order Flow Volumetric Bars would not be supported on Forex

spot data.

Order Flow Volumetric Overview

Order Flow Volumetric Overview:

You can apply the Order Flow Volumetric bars within a Chart Data Series window

under Type.

Operations 779

© 2023 NinjaTrader, LLC

Below we show a 5 minute Order Flow Volumetric BidAsk style chart of the

popular E-Mini S&P 500 contract. An exemplary bar in yellow is annotated to show

the different components you will work with on an Order Flow Volumetric chart.

1. Order Flow Volumetric bar

2. Sell Volume per each price level seen in the bar

3. Buy Volume per each price level seen in the bar

4. Open / Close bar

5. Maximum highlight in the bar - this shows the price(s) with the highest volume

or delta in the bar

6. Bar Statistics panel (only 3 out of possible 10 values activated here)

NinjaTrader 8780

© 2023 NinjaTrader, LLC

On the next image, we see an excerpt of the same chart, however now the chart

style type is changed to Delta. The bar highlighted yellow corresponds to the

annotated bar above - this style, instead of the individual buy / sell volumes, show

the combined delta value for each price level.

If positive the level was seeing buying strength, negative if selling strength.

Operations 781

© 2023 NinjaTrader, LLC

Now let's take a look how the actual values we see in the bar are calculated from

the market data, as an example take the first level of our Volumetric BidAsk bar in

the first screen-shot (numbers right below the 2/3 annotated numbers) :

We see a bid or selling volume of 220 and a ask or buying volume of 740.

Taking the difference (Buy volume - Sell volume) so 740 - 220 we get the delta

value of 520 - which we see as first cell value in the 2nd screen-shot showing the

Delta type.

The shading taking place in the bars will always be based on this delta value

calculated, the chart style just defines what kind of textual data detail will be

displayed (the actual Bid Ask Volumes or the Delta value).

Moving on to the lower portion Bar Statistics (6), we see the Buy Vol and Sell Vol

for the bar and a delta as well exposed - however, please note that these are

summed values for the entire bar.

If we sum all the buy volumes we would get 3463; summing sell volumes for the

bar is 4535. All the price level deltas summed would equal the delta of the entire

bar -1072.

Order Flow Volumetric Imbalance charting:

The screen-shot below explains the workings of the Imbalance detection in more

detail. You can see the Buy / Sell volumes are compared diagonally here to arrive

at the classification if buy or sell imbalance is present.

Let's run through the first calculation for the example bar in yellow:

1. Buy volume of 518 is compared to the diagonal below sell volume of 989

2. Dividing the buy volume into the sell volume we get a ratio of 989 / 518 =

1.9092...

3. NinjaTrader by default sets the ratio for Imbalance at 1.5, so this level gets

marked with Sell Imbalance (magenta text color per default).

4. As a further condition, a minimum difference between the compared values

must be present. This value is defaulted to 10 - which is valid in our example as

well.

In the case that both Imbalance and Maximum would trigger for the same cell, the

Maximum would override and be displayed (example shown below at annotation

1).

NinjaTrader 8782

© 2023 NinjaTrader, LLC

NinjaTrader 8.0.19.0 or newer also offers the option to compare horizontal for

Imbalance (Imbalance mode setting).

Order Flow Volumetric Bar Statistics:

The Volumetric Bar statistics show important values for each Volumetric bar in a

static grid-like fashion. The same gradient strength shading as for the main

Volumetric bars is applied here.

1. Via a right click in the price scale section the individual statistic values could be

enabled / disabled 'on the fly'.

Operations 783

© 2023 NinjaTrader, LLC

Order Flow Volumetric Bar data shown as profile:

Below chart is an example of showing the volumetric bid ask volume bar data as

distribution profile, additionally 'hide text' is checked - which means we see the

maximum (yellow) as well as imbalance (cyan / magenta) marked via the cell

borders coloring.

Showing the data in this fashion can give traders an easier read, as differences

between light and high volume price areas becomes visually more striking.

NinjaTrader 8784

© 2023 NinjaTrader, LLC

Order Flow Volumetric Imbalance Customization Example

Order Flow Volumetric Imbalance Customization example:

This section presents an example of how NinjaTrader Order Flow Volumetric bars

can be highly customized to your trading style. Traders focused on Order Flow

Volumetric Imbalances may consider working these charting ideas into their

NinjaTrader setup.

The settings we present below could be used as a starting point -

Operations 785

© 2023 NinjaTrader, LLC

NinjaTrader 8786

© 2023 NinjaTrader, LLC

The regular 5 Minute CandleStick chart is brought in to this chart via a second

Data Series, so forming a MultiSeries chart with our main 5min Order Flow

Volumetric bars. This can advantageous if you prefer to plot the regular bar /

candlestick portion in the middle of the bar between the Buy/Sell volume columns.

In NinjaTrader 8.0.19.0 or newer, this can now be also accomplished without a

second DataSeries by enabling the Center Open/Close bar plotting option.

Order Flow Volumetric Bars parameters

Data series:

Base period

type

Sets the base period type the Volumetric

bars should be calculated on, possible values

include:

Tick,

Volume,

Second,

Minute,

Day,

Operations 787

© 2023 NinjaTrader, LLC

Week,

Month,

Year,

Range

Base period

value

Period of your chosen Base period type for

Volumetric bars (i.e. 3 Minute, 450 Tick)

Delta type Sets how the delta is calculated for buy / sell

aggressor classification. Possible values are:

BidAsk or UpDownTick.

BidAsk - Accumulates the volume of orders

filled at the bid or less vs ask or more.

Orders filled at the ask or more price are

considered buying pressure. Orders filled at

the bid or less price are considered selling

pressure. If the current tick price is between

ask and bid, the volume will be recorded to

the same pressure as the previous tick.

UpDownTick - Accumulates the volume of up

ticks vs down ticks. Up ticks are considered

buying pressure. Down ticks are considered

selling pressure. If the current tick price is the

same as the previous tick price, the volume

will be recorded to the same pressure as the

previous tick.

Ticks per

level

Sets the level of aggregation for individual

price levels, i.e. if price levels should be

merged together, default 1 – so each price

level delta result is seen individually inside the

price bars

(Please note that with a higher Ticks per level

set, there could be Volumetric remainder

cells as a result that are actually smaller than

your set Ticks per level, as not all bar ranges

could be evenly divisible by the Ticks per

level value)

NinjaTrader 8788

© 2023 NinjaTrader, LLC

Size filter Default 0, could be set higher to limit seeing

the delta only for trades higher than the size

filter setting, for example tracking larger

trades only - keep in mind this could be

potentially set too high for your chart, so

Volumetric bars value cells could show 0

volume, so it never met this criteria then to be

considered in the analysis.

Tick replay Check to allow indicators or strategies to

access Tick replay data, the main Volumetric

bars though will always be built off a 1 tick

series.

Chart style:

Chart style

type

Sets the chart style type used, possible

values are : BidAsk or Delta

BidAsk - allows you seeing the individual

buy / sell volume cells inside the Volumetric

bar, buy (ask) volume is shown on the right

side, sell (bid) volume shown on the right

side. Additionally this style can highlight the

maximum and imbalance conditions.

Delta - allows to see the single value total net

delta per each price cell, maximum can be

shown as well (no imbalance option for this

style)

Center open

close bar

When checked, allows centering of the Open

/ Close bar on the BidAsk Chart style type

Show as

profile

Enables to show the Volumetric bar data as

profile / distribution

Show volume Enables to show the volume distribution to

the right of the Volumetric bar.

Operations 789

© 2023 NinjaTrader, LLC

Strength

sensitivity

Sets how many gradient levels should be

calculated to provide the buy / sell strength

shading for the Volumetric bars and Bar

Statistics, the default setting is 20. This is

reset at every session break to ensure the

gradient strength classifications easily

comparable across various days market

action.

Size display

filter

Allows only displaying Bid / Ask or delta

numbers higher than the threshold. Default 0

and a visual only setting.

Show

imbalance

Enables the display of Imbalance coloring

Only applicable for the Volumetric BidAsk

chart style type

With 'Hide text' checked will display

imbalances by coloring the respective

imbalance cell borders

Imbalance

ratio

Sets the ratio used for comparing the buy /

sell volumes for accessing if Imbalance is

present, default 1.5

Only applicable for the Volumetric BidAsk

chart style type

Imbalance

mode

Sets the comparison mode for Imbalance :

Diagonal or Horizontal

Minimum

delta for

imbalance

Sets the minimum delta to be seen diagonally

across compared buy / sell volume columns

for displaying Imbalance, default value is 10.

Only applicable for the Volumetric BidAsk

chart style type

Color

dominant

Enables to display the dominant ('winning')

strength side only in the Volumetric strength

NinjaTrader 8790

© 2023 NinjaTrader, LLC

side display

Only applicable for the Volumetric BidAsk

chart style type

Box outline Sets options for the display of the outline of

the Volumetric boxes

Box grid Sets options for the display of the inner grid

of the Volumetric bars

Candle body

outline

Sets options for the display of the body

outline of the Open/Close bar

Color for up

bars

Sets the up brush color used for Open/Close

bar

Color for

down bars

Sets the down brush color used for

Open/Close bar

Color for doji Sets the doji brush color used for

Open/Close bar

Color for

positive

strength

Sets the positive brush color used for positive

strength gradients

Color for

negative

strength

Sets the negative brush color used for

negative strength gradients

Color for buy

imbalance

Sets the brush color used for buy imbalance

Only applicable for the Volumetric BidAsk

chart style type

Color for sell

imbalance

Sets the brush color used for sell imbalance

Only applicable for the Volumetric BidAsk

chart style type

Operations 791

© 2023 NinjaTrader, LLC

Show

maximum

Enables the display of the maximum value for

the Volumetric bars, if identical values would

be seen across cells, then all cells sharing

the maximum would be highlighted.

BidAsk style: If Color dominant side is

checked, it will highlight both the Buy and Sell

price levels with the highest volume, else it

will highlight the price level with the highest

combined Buy / Sell volume (Total volume for

the price level)

Delta stye: highest absolute delta level would

be highlighted

With 'Hide text' checked will display the

maximum by coloring the respective

maximum cell borders

Color for

maximum

Sets the color used for maximum display

Hide text Enables to hide the Volumetric cell values

text display

Color for text Sets the text color used for the displaying the

Volumetric cell values

Show bar

statistics

Enables the display of the Volumetric bar

statistics in the lower portion (static location)

of the chart. You can checkmark each

desired statistic, possible statistics are -

Trade

s

The total number of trades in

the bar

Volum

e

The volume for the bar

NinjaTrader 8792

© 2023 NinjaTrader, LLC

Buy

vol

The Buy vol for the bar

Sell

vol

The Sell vol for the bar

Delta

(bar)

The total delta for the bar (all

individual price level delta

summed)

Delta

(%)

The bar delta expressed as

percentage of volume for the

bar

Cumul

ative

delta

The bar delta value cumulated

throughout the session

Min

delta

The minimum delta seen in the

bar (intrabar). This could be

positive as well, i.e. a strong up

bar with no selling pressure

Max

delta

The maximum delta seen in the

bar (intrabar). This could be

negative as well, i.e. a strong

down bar with no buying

pressure

Delta

chang

e

The change in delta from the

previous bar's delta value

Delta

SH

The delta since last time price

touched the high of the bar,

usually negative

Delta

SL

The delta since last time price

touched the low of the bar,

Operations 793

© 2023 NinjaTrader, LLC

usually positive.

The statistics can be toggled as well 'on the

fly' from the chart's right scale by clicking on

the statistic labels.

Color for

base

Sets the brush color used for base bar

statistics strength gradients (Trades,

Volume)

Statistics grid Sets options for the display of the bar

statistics grid of the Volumetric bars

Order Flow Volumetric Values NinjaScript access

For information on how to access the Order Flow Volumetric Bars and Bar

Statistic values in NinjaScript, please see the Order Flow Volumetric Bars page in

the NinjaScript section of the Help Guide.

10.6.21.2 Order Flow Cumulative Delta

Description
An indicator that accumulates the volume of orders filled at bid and ask prices or up and down
ticks throughout the session or bar and compares them to determine buy/sell pressure.

Order Flow Cumulative Delta Overview

Display
There are 2 view of the Order Flow Cumulative Delta, both of which can be calculated
on a Delta type of Bid Ask or Up Down Tick.

1) Session, in which the delta will accumulate over the session. Each close price will be
carried over to the open of the next bar.
2) Bar, in which the delta will accumulate over a bar. Each bars open will start over and
have an open of zero.

NinjaTrader 8794

© 2023 NinjaTrader, LLC

Using the Order Flow Cumulative Delta
A common function of the Order Flow Cumulative Delta is to confirm trends. In the
image below we can see that the price is bullish. However, this was not confirmed by
the Order Flow Cumulative Delta which was bearish. The market then became bearish.

Operations 795

© 2023 NinjaTrader, LLC

Another common function is to confirm new daily highs or lows. In this image we can
see that the price reached a new low for the day, but this was not confirmed by the
Order Flow Cumulative Delta. The bears could not hold momentum and then the
market became bullish.

NinjaTrader 8796

© 2023 NinjaTrader, LLC

Notes:

1. To plot historically with Delta type Bid Ask requires historical bid ask stamped tick

data. See the Data by Provider section for information on what providers offer

historical bid/ask stampted tick data.

2. Volume bars could split a single tick into multiple bars for both historical and real-

time data. As such Order Flow Cumulative Delta could run into tracking limitations

on the internally added 1 tick series, as all the volume would be processed on the

first 1 tick bar / delta calculation.

Critical: Forex instruments are not supported with the Delta type Bid Ask. Since

forex has no last price, this mode will result in the cumulative delta bars moving in

one direction. If using the Delta Type Up Down Tick mode, this will be calculated on

data series Price based on property. Last data is bid data for forex instruments.

Order Flow Cumulative Delta Parameters

Delta type

Operations 797

© 2023 NinjaTrader, LLC

Bid Ask Accumulates the volume of

orders filled at the bid or

less vs ask or more. Orders

filled at the ask or more

price are considered buying

pressure. Orders filled at the

bid or less price are

considered selling pressure.

If the current tick price is

between ask and bid, the

volume will be recorded to

the same pressure as the

previous tick.

Up Down

Tick

Accumulates the volume of

up ticks vs down ticks. Up

ticks are considered buying

pressure. Down ticks are

considered selling pressure.

If the current tick price is the

same as the previous tick

price, the volume will be

recorded to the same

pressure as the previous

tick.

Period

Session Accumulates volume per

session

Bar Accumulates volume per

bar

Size filter Input to exclude volume less than the

selected value

Candle body

outline

Color and line settings for the candle body

outline

NinjaTrader 8798

© 2023 NinjaTrader, LLC

Candle wick Color and line settings for the candle wick

Color for down

bars

Color for bars that have a close less than the

open

Color for up bars Color for bars that have an open greater than

the open

Order Flow Cumulative Delta Values NinjaScript access

For information on how to access the Order Flow Cumulative Delta values in

NinjaScript, please see the Order Flow Cumulative Delta page in the NinjaScript section

of the Help Guide.

10.6.21.3 Order Flow VWAP

Description
Volume Weighted Average Price. A total of the dollars traded for every transaction (price
multiplied by number of shares traded) and then divided by the total shares traded for the day.
Also included are standard deviation bands.

Order Flow VWAP Overview

Display
The VWAP line is the green and red line. The VWAP by default is LimeGreen when
below the price and Red when above the price.
The blue bands are the standard deviations of the VWAP. By default the closest one is
a 1X multiplier, followed by a 2X multiplier, and a 3X multiplier.

Operations 799

© 2023 NinjaTrader, LLC

Using the Order Flow VWAP
When using the Order Flow VWAP it is typical that users look for purchase signals
when the price is below the VWAP. This would indicate that the purchase would be at a
lower price than what is the average purchase per share for traders during the VWAP
period. The price being below the VWAP can also result in pressure for the market to
move back towards the VWAP. The opposite would be true for when the VWAP is
above the price.

NinjaTrader 8800

© 2023 NinjaTrader, LLC

The VWAP and standard deviations are often used to indicate potential levels of support
and resistance.

Since the Order Flow VWAP is a cumulative indicator, the longer it runs for the more

the VWAP can lag. Using the Trading hours parameter you can adjust during what

Operations 801

© 2023 NinjaTrader, LLC

times the indicator will run for. These settings work in combination with the selected

Data Series Trading hours and will not calculate outside of that.

Order Flow VWAP Parameters

Reset Interval
Session Resets VWAP calculations

every session

Week Resets VWAP calculations

weekly*

Month Resets VWAP calculations

monthly*

Resolution

Standard Runs indicator on selected

Input series

NinjaTrader 8802

© 2023 NinjaTrader, LLC

Tick Runs indicator on a 1 tick

time frame of the selected

Input series (*most accurate

and most resource

intensive, therefore not

available for Reset Intervals

of Week and Month*)

Trading hours Selection for what session to calculate on if

VWAP is in Reset Interval Session mode

Std Dev bands Selection for how many standard deviation

bands to display

Std Dev 1

multiplier

Input for what multiplier to use for standard

deviation 1

Std Dev 2

multiplier

Input for what multiplier to use for standard

deviation 2

Std Dev 3

multiplier

Input for what multiplier to use for standard

deviation 3

Color for above

price

Color for when the VWAP line is above the

price

Color for below

price

Color for when the VWAP line is below the

price

Color for band

area

Fill in color between the standard deviation

lines

Base opacity for

band area

Opacity for the most outer standard deviation

band. The opacity for each inner band is

increased by 10%

Order Flow VWAP Values NinjaScript access

Operations 803

© 2023 NinjaTrader, LLC

For information on how to access the Order Flow VWAP values in NinjaScript, please

see the Order Flow VWAP page in the NinjaScript section of the Help Guide.

10.6.21.4 Order Flow Volume Profile

Description
Order Flow Volume profile tools are available as both an Indicator and Drawing Tool and along
with the suite of the 'Order Flow +' tools only available to NinjaTrader lifetime license holders.
The indicator is used to plot singular static profiles containing a certain defined range of data
or repeating profiles on a per bar or per session basis. The drawing tool allows you to easily
define both the start and end point to create a custom profile for any bar range on a chart.

Order Flow Volume Profile Concepts

Profile Types
Order Flow Volume Profile has many settings which can be customized to achieve
several types of profiles. There are 3 modes for selecting what you want to use to
generate the profile.

V
o
l
u
m
e
P
r
o
f
i
l
e

V
o
l
u
m
e
p
r

NinjaTrader 8804

© 2023 NinjaTrader, LLC

o
f
i
l
e
s
d
i
s
p
l
a
y
l
a
s
t
t
r
a
d
e
d
v
o
l
u
m
e
d
a
t
a
u
s
i
n
g
y
o
u
r
s
e
l
e

Operations 805

© 2023 NinjaTrader, LLC

c
t
e
d
s
o
u
r
c
e
d
a
t
a
'
r
e
s
o
l
u
t
i
o
n
'
i
s
u
s
e
d
t
o
b
u
i
l
d
t
h
e
p
r
o
f

NinjaTrader 8806

© 2023 NinjaTrader, LLC

i
l
e
.

P
r
i
c
e
P
r
o
f
i
l
e

P

r

i

c

e

p

r

o

f

i

l

e

s

d

i

s

p

l

a

y

s

a

l

Operations 807

© 2023 NinjaTrader, LLC

e

t

t

e

r

o

r

b

l

o

c

k

i

f

u

n

d

e

r

l

y

i

n

g

t

r

a

d

e

s

i

n

s

i

d

e

o

f

a

s

p

NinjaTrader 8808

© 2023 NinjaTrader, LLC

e

c

i

f

i

c

t

i

m

e

w

i

n

d

o

w

.

T

h

e

s

e

t

i

m

e

w

i

n

d

o

w

s

a

r

e

3

0

m

i

n

Operations 809

© 2023 NinjaTrader, LLC

u

t

e

i

n

l

e

n

g

t

h

.

I

f

a

s

i

n

g

l

e

t

i

c

k

o

c

c

u

r

s

i

n

s

i

d

e

t

h

a

t

NinjaTrader 8810

© 2023 NinjaTrader, LLC

t

i

m

e

w

i

n

d

o

w

a

t

a

p

r

i

c

e

a

l

e

t

t

e

r

o

r

b

l

o

c

k

w

i

l

l

b

e

p

l

o

Operations 811

© 2023 NinjaTrader, LLC

t

t

e

d

.

I

n

l

e

t

t

e

r

d

i

s

p

l

a

y

m

o

d

e

t

h

e

'

A

'

l

e

t

t

e

r

s

t

a

r

t

NinjaTrader 8812

© 2023 NinjaTrader, LLC

s

a

t

8

:

0

0

C

S

T

.

T
i
c
k
P
r
o
f
i
l
e

T
i
c
k
p
r
o
f
i
l
e
s
d
i
s
p
l
a
y

Operations 813

© 2023 NinjaTrader, LLC

t
h
e
c
o
u
n
t
o
f
'
t
i
c
k
s
'
o
r
t
r
a
d
e
s
t
h
a
t
o
c
c
u
r
a
t
a
s
p
e
c
i
f
i
c
p

NinjaTrader 8814

© 2023 NinjaTrader, LLC

r
i
c
e
.
T
h
i
s
p
r
o
d
u
c
e
s
a
q
u
a
n
t
i
t
y
a
g
n
o
s
t
i
c
p
r
o
f
i
l
e
w
h
i
c
h

Operations 815

© 2023 NinjaTrader, LLC

d
i
s
p
l
a
y
p
u
r
e
t
r
a
d
i
n
g
a
c
t
i
v
i
t
y
i
r
r
e
g
a
r
d
l
e
s
s
o
f
v
o
l
u
m
e

NinjaTrader 8816

© 2023 NinjaTrader, LLC

.

Profile Components

1. Profile: Overlaid behind the bars each bar represents the profile per price. Multiple
price levels can be aggregated using 'Ticks per level'.

2. POC: The point of control (POC) is the single largest data point in the profile.

3. Value area: The range where 68% (configurable) of the volume traded, can be
referenced as 'VA' and has opacity settings to visually separate this area from the
rest of the profile.

4. Range: The highest price and lowest price of the profile.
5. Profile Summary: The total volume and range of a volume profile. Range metric is

configurable.

Profile Periods
There are 3 methods to select the 'period' you which to generate a profile for, each one

renders slightly differently. It is not uncommon to use multiple profile types on the same

chart as each profile gives you a different view on the underlying data.

Session Bars Composite

Operations 817

© 2023 NinjaTrader, LLC

This is a repeating profile

created for each session

defined. The profile by

default is displayed below

the bars and across all

bars that make up the

session. You can group

multiple sessions by

defining the property

'Sessions' greater then 1

(count is run from left to

right, so forward).

When Bars is selected,

one profile per bar is

rendered. Space is added

between the bars so that

the profile is readable.

This space is defined in

the 'Visual' section below

'Profile width (px)' which

is a defaulted to 100. You

can group multiple bars

by defining the property

'Bars' greater then 1.

A composite profile is a

single profile drawn as an

overlay on the entire chart

that is composed of data

defined by the 'Compose

by' sub property that is

exposed when this mode

is selected.

Display Modes
Multiple display modes can be used. By default there are 5 render modes available

which is changed with the 'Display mode' property on the indicator.

S

t

a

n

d

a

r

d

S

i

n

g

l

e

d

NinjaTrader 8818

© 2023 NinjaTrader, LLC

e

f

i

n

e

d

c

o

l

o

r

p

r

o

f

i

l

e

r

e

n

d

e

r

i

n

g

d

i

s

p

l

a

y

v

o

l

u

m

e

b

Operations 819

© 2023 NinjaTrader, LLC

y

p

r

i

c

e

i

n

f

o

r

m

a

t

i

o

n

.

T

h

e

c

o

l

o

r

c

a

n

b

e

s

e

l

e

c

t

e

d

b

y

NinjaTrader 8820

© 2023 NinjaTrader, LLC

m

o

d

i

f

y

i

n

g

t

h

e

'

C

o

l

o

r

f

o

r

p

r

o

f

i

l

e

'

p

r

o

p

e

r

t

y

.

T

h

e

Operations 821

© 2023 NinjaTrader, LLC

r

e

a

r

e

t

w

o

p

r

o

p

e

r

t

i

e

s

t

o

d

e

f

i

n

e

t

h

e

o

p

a

c

i

t

y

.

'

P

r

o

NinjaTrader 8822

© 2023 NinjaTrader, LLC

f

i

l

e

o

p

a

c

i

t

y

'

s

e

t

s

t

h

e

o

p

a

c

i

t

y

a

b

o

v

e

a

n

d

b

e

l

o

w

t

h

Operations 823

© 2023 NinjaTrader, LLC

e

v

a

l

u

e

a

r

e

a

a

n

d

'

V

a

l

u

e

a

r

e

a

o

p

a

c

i

t

y

'

s

e

t

s

t

h

e

o

p

a

NinjaTrader 8824

© 2023 NinjaTrader, LLC

c

i

t

y

u

s

e

d

w

h

e

n

d

r

a

w

i

n

g

t

h

e

a

r

e

a

i

n

t

h

e

v

a

l

u

e

a

r

e

a

Operations 825

© 2023 NinjaTrader, LLC

.

B

u

y

s

e

l

l

T

h

e

v

o

l

u

m

e

b

a

r

n

o

w

s

p

l

i

t

b

y

b

u

y

v

o

l

u

NinjaTrader 8826

© 2023 NinjaTrader, LLC

m

e

a

n

d

s

e

l

l

v

o

l

u

m

e

a

s

c

l

a

s

s

i

f

i

e

d

p

e

r

t

h

e

D

e

l

t

a

t

y

p

Operations 827

© 2023 NinjaTrader, LLC

e

p

r

o

p

e

r

t

y

.

N

o

t

e

:

T

h

i

s

m

o

d

e

r

e

q

u

i

r

e

s

'

T

i

c

k

'

r

e

NinjaTrader 8828

© 2023 NinjaTrader, LLC

s

o

l

u

t

i

o

n

d

a

t

a

.

D

e

l

t

a

D

i

s

p

l

a

y

s

t

h

e

s

t

a

n

d

a

r

d

v

.

Operations 829

© 2023 NinjaTrader, LLC

o

l

u

m

e

p

r

o

f

i

l

e

a

n

d

o

v

e

r

l

a

y

s

b

u

y

/

s

e

l

l

d

a

t

a

d

e

l

t

a

a

NinjaTrader 8830

© 2023 NinjaTrader, LLC

s

c

l

a

s

s

i

f

i

e

d

p

e

r

t

h

e

D

e

l

t

a

t

y

p

e

p

r

o

p

e

r

t

y

.

T

h

i

s

d

i

Operations 831

© 2023 NinjaTrader, LLC

s

p

l

a

y

m

o

d

e

h

i

g

h

l

i

g

h

t

s

i

m

b

a

l

a

n

c

e

s

i

n

b

u

y

/

s

e

l

l

v

o

NinjaTrader 8832

© 2023 NinjaTrader, LLC

l

u

m

e

.

N

o

t

e

:

T

h

i

s

m

o

d

e

r

e

q

u

i

r

e

s

'

T

i

c

k

'

r

e

s

o

l

u

t

Operations 833

© 2023 NinjaTrader, LLC

i

o

n

d

a

t

a

H

e

a

t

D

i

s

p

l

a

y

s

a

g

r

a

d

i

e

n

t

i

n

t

h

e

p

r

o

f

i

l

NinjaTrader 8834

© 2023 NinjaTrader, LLC

e

b

a

s

e

d

o

n

t

h

e

h

i

g

h

e

s

t

v

o

l

u

m

e

a

n

d

t

h

e

l

o

w

e

s

t

v

o

l

u

m

Operations 835

© 2023 NinjaTrader, LLC

e

i

n

t

h

e

p

r

o

f

i

l

e

.

H

i

g

h

v

o

l

u

m

e

a

r

e

a

s

a

r

e

e

m

p

h

a

s

i

z

e

NinjaTrader 8836

© 2023 NinjaTrader, LLC

d

i

n

t

h

i

s

m

o

d

e

.

O

u

t

l

i

n

e

D

i

s

p

l

a

y

s

t

h

e

v

o

l

u

m

e

p

r

Operations 837

© 2023 NinjaTrader, LLC

o

f

i

l

e

w

i

t

h

o

n

l

y

t

h

e

o

u

t

l

i

n

e

o

f

t

h

e

p

r

o

f

i

l

e

b

e

i

n

g

p

NinjaTrader 8838

© 2023 NinjaTrader, LLC

l

o

t

t

e

d

.

T

i

m

e

c

o

l

o

r

E

v

e

r

y

3

0

m

i

n

u

t

e

s

a

n

e

w

c

o

l

o

Operations 839

© 2023 NinjaTrader, LLC

r

i

s

p

l

o

t

t

e

d

a

n

d

d

i

s

p

l

a

y

e

d

i

n

t

h

e

p

r

o

f

i

l

e

.

T

h

e

p

r

o

NinjaTrader 8840

© 2023 NinjaTrader, LLC

f

i

l

e

c

o

l

o

r

i

s

d

e

f

i

n

e

d

i

n

t

h

e

p

r

o

p

e

r

t

i

e

s

'

T

i

m

e

s

'

s

Operations 841

© 2023 NinjaTrader, LLC

e

c

t

i

o

n

.

Y

o

u

c

a

n

s

e

e

w

h

a

t

t

i

m

e

o

f

d

a

y

t

h

e

m

a

j

o

r

i

t

y

o

NinjaTrader 8842

© 2023 NinjaTrader, LLC

f

t

h

e

v

o

l

u

m

e

o

c

c

u

r

r

e

d

i

n

t

h

e

m

o

d

e

.

Initial Balance
The initial balance is an optional feature which will enable plots to show you what the

current range, POC, and Value area a set number of minutes into the session. A typical

use case is so that you can compare what the POC and VA was early on in the profile

and make a comparison to where it ended up. The initial balance range needs to have

the property 'Initial balance time (in minutes)' set to a non-zero value. Once 'Initial

balance time' is defined the there are 3 lines which will be enabled and can be

configured, you can enable only the lines you wish to see to display the 'Initial Range',

'Initial POC', and 'Initial Value Area'.

Operations 843

© 2023 NinjaTrader, LLC

1. Initial Range: This is the range of the profile used in the initial profile calculation that

was traded during the 'initial balance time (in minutes)'

2. Initial POC: The value of where the point of control (POC) is located during the 'initial

balance time (in minutes)'

3. Initial Value Area: The value area during the 'initial balance time (in minutes)'

Developing POC and Value Area
The developing POC and Value Area is an optional feature which when enabled will

show you bar by bar how these value change overtime for the profile.

NinjaTrader 8844

© 2023 NinjaTrader, LLC

1. Developing POC: For each bar in the chart the value of the POC is plotted so you

can see the change over time.

2. Developing Value Area: For each bar in the chart the value of the value area high and

value area low so you can see the change over time.

Extended "Naked" Point of Control and Value Area
The extended "Naked" Point of Control and Value Area will take any POC of Value Area

of a profile and plot it forward from the end time of the profile until such time as the price

is traded again in the future. Uncovered or 'naked' are expected to be 'filled' sometime

in the future and may be an area of support or resistance. There visibility and plot

properties are set in the 'Lines' section

Operations 845

© 2023 NinjaTrader, LLC

1. Naked POC

2. Naked Value Area

Note: If a line is enabled, but it is not seen, it may be under another enabled line.

Understanding Price Profiles

Price Profiles
Price profiles displays a letter or block if the underlying instrument trades inside of a

specific time window. These time windows are 30 minute in length and if a single trade

occurs in the time range a single block or letter is plotted. NinjaTrader supports price

charts on intraday charts only. Its recommended to use a minute base chart such as

60 minute, 240 minute, 480 minute base chart types. Typically the 'Hide Bars' property

is enabled for price profiles. This allows you to focus on the price profile on its own, the

candles are no longer needed once you become proficient reading the price profile

since both time and price is displayed once you memorize the time/color chart below.

To easily see where the session has it's Open / (developing) Close NinjaTrader

displays separate O / C markers. These letters are then excluded in the time/color

letter progression for the session.

NinjaTrader 8846

© 2023 NinjaTrader, LLC

Scaling the Price Profile
Profile scaling may be required to get your price profile to render as you expect. When

rendering in letter mode if there is not enough space to render a letter which would be

large enough to read on the screen the profile will fall back to block rendering mode. In

this case we need to adjust chart scaling and ticks per level depending on the

instrument you wish to plot the price profile on.

1. To adjust the distance between profiles, use the time scale drag in the time axis to

compress and decompress the underling bars. If you've reached the maximum your

able to adjust using the time axis, try adjusting the underling bars up or down as

needed, start with a 60 minute chart and increase the minute range by double each

time to compress the chart in the time axis.

2. To adjust the price scale use left click and drag in the price label area to adjust price

scaling and put the chart into 'fixed' scaling mode. You can hold down left mouse

and drag and CTRL on the keyboard to move the range being displayed to focus in

on the area you wish to focus on. See the section 'Navigating a Chart' for more

information on working with price scales.

Price profile times
It is important to look into the 'Order Flow + Volume Profile' properties, specifically the

'Times' section to understand the time slices reported by the tool and what color and

letter is associated. The time displayed in converted to your local time zone and is a

fixed frame of referenced from starting at 8:00 CST. This time is arbitrarily picked and

provides all instruments to share the same time slice, therefore the letter 'A' and

associated color will always be the same calendar day and not effected by the

individual instrument, this allows comparison between charts based on a fixed time

scale. The color for each time slice is customizable, once you have it defined

Note: Only intraday charts are supported. Daily, weekly, or monthly charts are not

supported at this time.

Reference Table

A 8:00 - 8:30 AM CST

B 8:30 - 9:00 AM CST

D 9:00 - 9:30 AM CST

E 9:30 - 10:00 AM CST

a 8:00 - 8:30 PM CST

b 8:30 - 9:00 PM CST

d 9:00 - 9:30 PM CST

e 9:30 - 10:00 PM CST

Operations 847

© 2023 NinjaTrader, LLC

F 10:00 - 10:30 AM CST

G 10:30 - 11:00 AM CST

H 11:00 - 11:30 AM CST

I 11:30 - 12:00 PM CST

J 12:00 - 12:30 PM CST

K 12:30 - 1:00 PM CST

L 1:00 - 1:30 PM CST

M 1:30 - 2:00 PM CST

N 2:00 - 2:30 PM CST

P 2:30 - 3:00 PM CST

Q 3:00 - 3:30 PM CST

R 3:30 - 4:00 PM CST

S 4:00 - 4:30 PM CST

T 4:30 - 5:00 PM CST

U 5:00 - 5:30 PM CST

V 5:30 - 6:00 PM CST

W 6:00 - 6:30 PM CST

X 6:30 - 7:00 PM CST

Y 7:00 - 7:30 PM CST

f 10:00 - 10:30 PM CST

g 10:30 - 11:00 PM CST

h 11:00 - 11:30 PM CST

i 11:30 - 12:00 PM CST

j 12:00 - 12:30 AM CST

k 12:30 - 1:00 AM CST

l 1:00 - 1:30 AM CST

m 1:30 - 2:00 AM CST

n 2:00 - 2:30 AM CST

p 2:30 - 3:00 AM CST

q 3:00 - 3:30 AM CST

r 3:30 - 4:00 AM CST

s 4:00 - 4:30 AM CST

t 4:30 - 5:00 AM CST

u 5:00 - 5:30 AM CST

v 5:30 - 6:00 AM CST

w 6:00 - 6:30 AM CST

x 6:30 - 7:00 AM CST

y 7:00 - 7:30 AM CST

NinjaTrader 8848

© 2023 NinjaTrader, LLC

Z 7:30 - 8:00 PM CST z 7:30 - 8:00 AM CST

Operations 849

© 2023 NinjaTrader, LLC

Understanding Composite Profiles

Composite Profiles
A composite profile is a singular large profile rendered on either the left or right side of
the chart containing data as defined by the composite properties which become visible
once selected. Order Flow Volume Profile has many settings which can be customized
to achieve several types of profiles. Its not uncommon to apply a composite profile and
at the same time adjust the chart margin to allow for spacing on the right side of the
chart. To do this right click on the chart and select 'Properties', adjust the 'Right side
margin' property to a higher value. Depending on the 'Profile width (%)' selection of the
chart will determine the number of pixels you will need to enter, work in 100 px
increments until you find the right size for the configured chart.

You have several options to determine what data to be included in the composite

profile:

Weeks Back The number of weeks back to be factored in

this profile.

Days Back The number of days back from the current

day to include in the profile.

Start Date Manually specify a start date for the profile.

Chart All the data available in the charts 'Start date'

and 'End Date' are displayed in the profile.

Visible Screen

Range

The profile will dynamically update based on

the data determined from the first bar in view

in the chart and the last bar in view on the

chart. Moving the chart from left to right will

change what data is displayed in the profile.

NinjaTrader 8850

© 2023 NinjaTrader, LLC

Note: Composite profiles using 'minute' data being placed on a chart which has bar

ranges less then 1 minute is not compatible. In this scenario tick resolution must be

used.

Note: You want to make sure that the data you wish to compose a profile of actually

exists on your chart to have a complete profile. You may need to right click on the

chart > Data Series > and increase the days to load for the chart.

Understanding the Order Flow Volume Profile Drawing Tool

Order Flow Volume Profile Drawing Tool
The Order Flow + Volume Profile Drawing Tool allows you to configure a profile using
all the similar settings and configurations which are applicable from the indicator and
manually draw out and specify a start and end time for the profile right on the chart.
Settings which do not apply are not available on the drawing tool.

Drawing a Profile
To draw a profile bounds, in the Drawing tool menu select 'Order Flow Volume Profile'

from the menu and single click to define the start point of the profile. An outline box will

begin to be displayed where you drag your mouse to the ending point for the profile

bounds and left click again to complete the draw operation. The bounds box will stay

centered and overlaid of the data which will be display the profile. Once the bounds

have been selected NinjaTrader will attempt to load the requested data ('Calculating...'

text will appear inside the outline box), by default minute resolution data is used

however you can change the properties to use 'Tick' resolution data depending on the

Operations 851

© 2023 NinjaTrader, LLC

type of charts you will be drawing on. Minute works well for daily or any larger time

frame chart whereas on more granular intraday charts you will want to change the

default to 'Tick' resolution. The section below will detail how to change the default so

that future drawing do not require changing the property each time.

Configuring the Drawing Tool
Double clicking the drawing tool or single left click + right click and 'Properties' will allow

you to customize the drawing tools various properties. As there are several properties

you will want to set a preset for this drawing tool as you have it setup as you prefer. To

do this in the 'Drawing Objects' select 'template' and then save, if you save a template

with the name 'Default' this will be the template used moving forward on any newly

created volume profile. More detailed info on NinjaTrader's drawing tools and operating

them, could be reviewed here.

NinjaTrader 8852

© 2023 NinjaTrader, LLC

Note: The Order Flow Plus Volume Profile drawing tool will not work on time ranges

(historical data) outside the current selected playback range.

Order Flow Volume Profile 'Set up' Parameters

Profile type This is the top level parameter for selecting

the type of profile you would like to generate.

Each one of these profiles can be completely

different since its constructed with different

source data. Volume and tick share rendering

options however price is unique in that its

rendered using blocks or letters.

Operations 853

© 2023 NinjaTrader, LLC

Volume Volume profiles display last
traded volume data using
your selected source data
'resolution' is used to build
the profile.

Tick Tick profiles display the

count of 'ticks' or trades that

occur at a specific price.

This produces a quantity

agnostic profile which

display pure trading activity

irregardless of volume.

Price Price profiles displays a

letter or block if underlying

trades inside of a specific

time window. These time

windows are 30 minute in

length. If a single tick occurs

inside that time window at a

price a letter or block will be

plotted. In letter display

mode the 'A' letter starts at

8:00 CST.

Display mode Defines how the profile will be rendered and

what data is impressed.

Volume & Tick Display Modes:

Standard Single defined color profile

rendering display volume by

price information.

Buy sell The volume bar now split by

buy volume and sell volume

as classified per the Delta

type property.

NinjaTrader 8854

© 2023 NinjaTrader, LLC

Note: This mode requires

'Tick' resolution data.

Delta Displays the standard

volume profile and overlays

buy/sell data delta as

classified per the Delta type

property. This display mode

highlights imbalances in

buy/sell volume.

Note: This mode requires

'Tick' resolution data.

Heat Displays a gradient in the

profile based on the highest

volume and the lowest

volume in the profile. High

volume areas are

emphasized in this mode.

Outline Displays the volume profile

with only the outline of the

profile being plotted.

Time

color

Every 30 minutes a new

color is plotted and

displayed in the profile. The

profile color is defined in the

properties 'Times' section.

Price Display Modes:

Letters A letter is displayed if the

last price traded anywhere

in the price range in a 30

minute window. The letter

definitions can be found in

Operations 855

© 2023 NinjaTrader, LLC

the 'Times' category in the

indicator properties. Capital

'A' letter starts at 8:00 AM

CST. When not enough

space is available for a

'letter' to be rendered, the

profile we default to 'Boxes'

display mode below.

Boxes Instead of displaying a letter

as per 'letter' mode above,

only the corresponding color

to the letter is displayed.

This modes is used when

you want to display more

data on the screen.

Delta type (Only

visible when Buy

Sell or Delta

Display mode is

selected)

Sets how the delta is calculated for buy / sell

aggressor classification.

BidAsk Last trade at the ask or

higher is considered buying

volume, Last trade at the bid

or lower selling volume.

UpDownT

ick

Last trade happens while

Ask > Last Ask is

considered buying, Last

trade happens while Bid <

Last Bid considered selling,

all volume in between is

added to the prior direction -

this mode is an important

proxy for markets / data

providers where best bid /

ask information is not

available with last price tick

data

NinjaTrader 8856

© 2023 NinjaTrader, LLC

Profile period
Sessions Each session as defined by

the Charts Data Series or

the manual Trading hours

selected gets a rendered

Volume Profile. The profile

by default is displayed below

the bars and across all bars

that make up the session.

You can group multiple

sessions by defining the

property 'Sessions' greater

then 1 (count is run from left

to right, so forward).

Bars When Bars is selected, one

profile per bar is rendered.

Space is added between the

bars so that the profile is

readable. This space is

defined in the 'Visual'

section below 'Profile width

(px)' which is a defaulted to

100. You can group multiple

bars by defining the property

'Bars' greater then 1.

Composit

e

A composite profile is a

single profile drawn as an

overlay on the entire chart

that is composed of data

defined by the 'Compose by'

sub property that is exposed

when this mode is selected.

Compose by:

Wee

ks

Back

The number of

weeks back to

Operations 857

© 2023 NinjaTrader, LLC

be factored in

this profile.

Days

Back

The number of

days back from

the current day

to include in the

profile.

Start

Date

Manually specify

a start date for

the profile.

Char

t

All the data

available in the

charts 'Start

date' and 'End

Date' are

displayed in the

profile.

Visibl

e

Scre

en

Ran

ge

The profile will

dynamically

update based on

the data

determined from

the first bar in

view in the chart

and the last bar

in view on the

chart. Moving

the chart from

left to right will

change what

data is displayed

in the profile.

NinjaTrader 8858

© 2023 NinjaTrader, LLC

Note: You want to make

sure that the data you

wish to compose a

profile of actually exists

on your chart to have a

complete profile. You

may need to right click

on the chart > Data

Series > and increase

the days to load for the

chart.

Trading hours Only data defined in the trading hour template

will be used to calculate the volume profile.

The default will use all the data as displayed

in the chart.

Note: This setting can only be used as a

filter, meaning that all the base data must

exist in the chart. E.G. A chart set using

an ETH template and using a RTH

template volume profile will work correctly,

the opposite would not as the indicator will

not load the additional data needed for

outside RTH chart hours in our example.

Resolution
Minute The profile is generated

from 1 minute data for the

profile period selected. This

data is much faster to load

and works as a sensible

default to generate and

approximate profile. Volume

data is evenly divided

amongst each price

Operations 859

© 2023 NinjaTrader, LLC

between the high and the

low of the 1 minute bar.

Tick The profile is generated

using 1 tick data. This will be

the most accurate and most

resource intensive. Only

select tick when you know

the range of tick data you

will be processing is limited.

Ticks per level

Sets the level of aggregation for individual

price levels, i.e. if price levels should be

merged together, default 1 – so each price

level is seen and accounted for individually in

the profiles

Value area (%) The default of 68 percent for Value Area will

display a 1 standard deviation range from the

point of control and is customizable by the

user. Value area is shown using a different

opacity in the profile and additionally has a

'line' and 'label' which is drawn at the Value

area high and Value area low.

Order Flow Volume Profile 'Visual' Parameters

Profile alignment
Left The profile is drawn using

the left edge.

Right The profile is drawn using

the right edge.

NinjaTrader 8860

© 2023 NinjaTrader, LLC

Display in margin Only available for Profile period Composite, if

selected will display the profile and including

lines in the right side margin

Profile width (%)

or (px)

This will be in pixels or in percentage,

depending on the profile period selection.

With percentage it indicates what percentage

of space between sessions the bars will take.

With pixels it will be how many pixels of

space the bars will take.

Profile opacity This is the base opacity used in to render the

profile.

Show POC This will shade the POC (Point of Control) the

color you have selected in the 'Color for POC'

property.

Show Value area Enables the display of the value area.

Value area

opacity

Volume bars which are within the value area

are plotted with less opacity then the profile,

allowing them to standout. To disable this, set

the opacity to the same value as the 'Profile

opacity'

Color for POC The color which is used to define the highest

volume (Point of Control) seen for the profile.

Color for profile In 'Standard' draw mode, this property

defines the color for the profile.

Color for buy In 'BuySell' and 'Delta' draw mode, this

property defines the color for buy classified

orders.

Color for sell In 'BuySell' and 'Delta' draw mode, this

property defines the color for the sell

classified orders.

Operations 861

© 2023 NinjaTrader, LLC

Color for high

heat

In 'Heat' draw mode, this property defines the

top gradient for the highest volume seen in

the profile.

Color for low heat In 'Heat' draw mode, this property defines the

bottom gradient for the lowest volume seen in

the profile.

Hide bars Convenience method to hide the underlying

bars enhancing focus on the profiles. This

can be done using this option via the indicator

or by manually setting the DataSeries bar

color to 'Transparent'.

Order Flow Volume Profile 'Lines' Parameters

The 'Lines' section defined all available and configurable line plots. Each line property

once extended can have its Color, Dash style, Width, Visible, and Label property

defined.

POC Enable and customize display of the Point of

Control line. Please see 'Profile Components'

section in the Order Flow Concepts section

for more information.

Value area (%) Enable and customize display of the Value

area lines. Please see 'Profile Components'

section in the Order Flow Concepts section

for more information.

Range Enable and customize display of the Range

lines. Please see 'Profile Components'

section in the Order Flow Concepts section

for more information.

Initial POC Enable and customize display of the Initial

Point of Control line. Please see 'Initial

NinjaTrader 8862

© 2023 NinjaTrader, LLC

Balance' section in the Order Flow Concepts

section for more information.

Initial Value Area Enable and customize display of the Initial

Value Area lines. Please see 'Initial Balance'

section in the Order Flow Concepts section

for more information.

Initial Balance

Range

Enable and customize display of the Initial

Balance range lines. Please see 'Initial

Balance' section in the Order Flow Concepts

section for more information.

Developing POC Enable and customize display of the

Developing POC lines. Please see

'Developing POC and Value Area' section in

the Order Flow Concepts section for more

information.

Developing Value

Area

Enable and customize display of the

Developing Value Area lines. Please see

'Developing POC and Value Area' section in

the Order Flow Concepts section for more

information.

Extended naked

POC

Enable and customize display of the

Extended POC line. Please see 'Extended

'Naked' POC and Value Area' section in the

Order Flow Concepts section for more

information.

Extended naked

Value Area

Enable and customize display of the

Extended Value Area lines. Please see

'Extended 'Naked' POC and Value Area'

section in the Order Flow Concepts section

for more information.

Order Flow Volume Profile 'Label' Parameters

Operations 863

© 2023 NinjaTrader, LLC

The 'Lines' section defined all available and configurable line plots. Each line property

once extended can have its Color, Dash style, Width, Visible, and Label property

defined.

Font Font settings used for labels and summary

data.

Show volume

labels

Optionally display the underlying data that

makes up the volume profile. To visually see

text data you may be required to increase

'Ticks per level' to allow more space for the

text to render depending on the scale of the

chart.

Show profile

summary

This shows total volume, and range

information as summary statistics in the

bottom left of the profile range.

Summary display

unit

Configure the range display unit for summary

data (Price, Percent, Ticks, Currency, Pips)

Color for volume

labels

Sets the text color used when 'Show volume

labels' is enabled.

Color for profile

summary

Sets the text color used when 'Show profile

summary' is enabled.

10.6.21.5 Order Flow Trade Detector

Description
An indicator which displays significant trade volume either at a consistent bid/ask level, at
price levels, or individual block trades. The marker is colored based on what percent of orders
were considered buy or sell orders. Buy volume is volume that occurred at the ask or higher.
Sell volume is volume that occurred at the bid or lower.

Order Flow Trade Detector Overview

Display
In the image below we can see where considerable volume has occurred per the

NinjaTrader 8864

© 2023 NinjaTrader, LLC

settings that were input. The markers are plotted on the Last price, once the market
has finished building.
Hovering the mouse over the trade marker will display information about the marker by
default. Here there was a volume of 600 on the sell side (indicated by S: 600), there
was a volume of 310 on the buy side (indicated by the B: 310), the total volume was
910 (indicated by the V: 910), and the marker is at the price of 2800.25 (indicated by the
P: 2800.25).

Using the Order Flow Trade Detector
There are 3 main modes to help indicate areas of volume that may be of interest in your
order flow analysis.
1) Consistent bid/ask

2) Price

3) Block

1) To detect areas of significant volume that occurred while the last price jumped
between a bid and ask price that stayed the same, across multiple bars, you would
select Consistent bid/ask.

Operations 865

© 2023 NinjaTrader, LLC

2) To detect large volume that occurred at a price level within the bar, you would select

Price as seen in the image below.

3) To detect large volume from individual ticks, you would select Block as seen in the
image below.

NinjaTrader 8866

© 2023 NinjaTrader, LLC

Notes:

1. If there is an excessive amount of trade markers on the screen you will need to

increase the Minimum volume for a marker to decrease the number of markers.

2. To plot historically requires historical bid/ask stamped tick data. See the Data by

Provider section for information on what providers offer historical bid/as stamped

tick data.

3. May not display on Forex instruments as expected. Many Forex data providers do

not provide volume or they just assign a volume of 10,000 or 100,000 to every tick.

4. The study can appear to draw to an unexpected bar on bars types which call

RemoveLastBar (such as Renko, LineBreak etc.) due to the way these bars types

update already-closed bars.

Order Flow Trade Detector Parameters

Base large

volume on
Consisten

t bid/ask

With this setting volume will

continue to accumulate to

form a marker so long as

the bid and ask levels stay

the same. If the bid and/or

ask price changes, a new

accumulation of volume will

Operations 867

© 2023 NinjaTrader, LLC

occur to create the next

marker. The marker will be

plotted on the Last price.

Price With this setting volume will

continue to accumulate to

form a marker at each price

level within a bar. Each new

bar will restart accumulation

of volume at each price level

of the current bar.

Block With this setting a marker

will be plotted for each tick

that has a volume equal or

greater than the Minimum

volume for a marker.

Minimum volume

for marker

Indicates how much volume must occur

before a marker is plotted

Maximum marker

size

Indicates the diameter in pixels of the marker

which has the largest volume

Base marker

size on
Visible

area

The size associated to

markers will be distributed

based on the volume of the

markers in the visible area

Session The size associated to

markers will be distributed

based on the volume of the

markers in the current

session

Show values on

hover

When enabled and the mouse is hovered

over a marker the buy volume, sell volume,

NinjaTrader 8868

© 2023 NinjaTrader, LLC

total volume, and price will be displayed.

Notes: The values displayed will be for the top

marker if markers overlap one another.

Disabling this setting can improve

performance when there is a large amount of

markers on the screen.

Color for buys Color used for volume received at the ask or

more

Color for sells Color used for volume received at the bid or

less

Color for outline Outline color of the marker

Opacity Opacity of the marker

10.6.21.6 Order Flow Market Depth Map

Description
A real-time data indicator that displays the highest market depth volume received at each
price level per bar, then maps them to the chart in comparison to other market depth values
received within the visible area. This is done by taking the volume range and applying each
depth value 1 of 20 opacity values, set by selected bid/ask depth colors. The larger the depth
volume, the more opaque the area will be.

Order Flow Market Depth Map Overview

Display
After applying the Order Flow Market Depth Map it will begin to plot off of real time level II
data (Display mode Historical Depth shown) with 10 levels per side of the market by
default.
With the ES chart below there are 20 real-time market depth values, 10 at bid or below
and 10 at ask or above. By default, depth values received at higher or lower values will
be extended to the current bars.

1) The areas with the most opaque indicate the areas with the largest market depth
volume within the visible area.
2) The areas with the transparency indicate the areas with the smallest market depth
volume within the visible area.

Operations 869

© 2023 NinjaTrader, LLC

3) The area between the last price and the price axis is the current depth values
building for the current bar.

Shown in the image below, Enabling Show bid/ask line on close will display a line on
close for the bid and ask prices.

NinjaTrader 8870

© 2023 NinjaTrader, LLC

Order Flow Market Depth Map by default also shows Realtime Depth.

Realtime Depth means it displays the realtime Order Flow Market Depth Map values of

the currently forming bar. So this will display the largest depth that was received at that

price level within the most recent bars time frame. To more closely match the

SuperDOM or Level II window you would need to run the Order Flow Market Depth Map

on a 1 tick data series.

Operations 871

© 2023 NinjaTrader, LLC

Using the Order Flow Market Depth Map
The Order Flow Market Depth Map is able to easily display high and low levels of
market depth volume, both historical and real time.

NinjaTrader 8872

© 2023 NinjaTrader, LLC

Being able to see high market depth volume can help show potential areas of support
and resistance. In the image below we can see there is some large volume at 2790.00
which has created an area of support.

Operations 873

© 2023 NinjaTrader, LLC

Additionally the Order Flow Market Depth Map makes it easy to see when large volume
has been added and removed as seen in the image below.

NinjaTrader 8874

© 2023 NinjaTrader, LLC

Notes: Level II data is required for this indicator to function.

Critical: Equity instruments are not supported. There is a limitation in which only

one ECN or market marker will have depth provided per level.

Order Flow Market Depth Map Parameters

Base volume

range on
Percent Distributes the opacity levels

of the map based on the

depths percentage in

comparison to the exact

volume entered for the

Operations 875

© 2023 NinjaTrader, LLC

Maximum volume range and

Minimum volume range

Exact

volume

Distributes the opacity levels

of the map based on the

depths volume in

comparison to the exact

volume entered for the

Maximum volume range and

Minimum volume range

Maximum volume

range

Input that indicates what values would have

the most opacity

Minimum volume

range

Input that indicates what value would have the

least opacity

of market depth

levels

Input that indicates how many levels of depth

on the bid and ask side to show. How many

levels can be displayed will be limited by how

many levels the data provider supplies.

Opacity

distribution
Low More values have less

opacity

Normal Opacity levels are evenly

split between the highest

and lowest depth volume

received.

High More values have more

opacity

Display mode Sets which parts of the depth map are

displayed, possible values are:

· Realtime and Historical Depth (default)

NinjaTrader 8876

© 2023 NinjaTrader, LLC

· Realtime Depth

· Historical Depth

Real time depth

width

The margin of pixels (between the last price

and time axis) to display the currently building

realtime depth map

Extend last

known volume

If enabled, areas where no market depth was

reported, but a market depth was reported to

the previous bar’s price level, the value will be

carried over to the next bar. It will continue

carrying over until a new market depth is

received at that price.

Color for bid

depth

Color for depth on the bid side of the market

Color for ask

depth

Color for depth on the ask side of the market

Show bid/ask line

on close

If enabled show the line on close for the bid

and ask prices

10.6.22 Tick Replay

What is Tick Replay?
Tick replay is a property that can be optionally enabled on NinjaScript indicators and

strategies which will ensure that the market data (bid/ask/last) that went into building a bar is

loaded in the exact sequence of market data events. This guarantees that your indicators and

strategies are historically calculated tick-per-tick exactly as they would have been if the

indicator/strategy was running live during a period. Tick replay can be enabled for indicators

used in Charts, Market Analyzers, and Strategies.

Warning: It is important to note that this property implies that more PC resources are

used to calculate your indicators and strategies and as a result will lead to a performance

impact. The tick replay setting should only be reserved for indicators and strategies

which would truly benefit from the additional resources dedicated to arrive at these

calculations.

Operations 877

© 2023 NinjaTrader, LLC

For example, a simple Pivot indicator which just uses the current and previous daily price

levels would not see any advantage from using tick replay. In contrast, a Volume profile

indicator which relies on the exact sequence of trades to calculate various levels would

greatly benefit from using tick replay.

Note: Tick Replay is not intended to function in NinjaScript strategy backtests, and will not

provide the same results as running a strategy on live data with Tick Replay enabled. For

greater order-fill resolution in strategy backtests, you can use the High Fill Resolution in

the Strategy Analyzer.

Indicators and Strategies will only be able to take advantage of tick replay if they have been

explicitly programmed to calculate these market data events. If you are a programmer and

would like to learn how to use Tick Replay with your custom scripts, please see the using tick

replay section of our NinjaScript Help Guide.

Setting up Tick Replay
By default, tick replay will not be enabled. In order to expose this property for your indicators

and strategies, you will first need turn on the global tick replay option:

· Navigate to the Control Center > Tools > Options menu, and under the Market data

category, check "Show Tick Replay"

NinjaTrader 8878

© 2023 NinjaTrader, LLC

Once the "Show Tick Replay" option has been enabled from the Market data category of

the Options menu, you will find a "Tick Replay" option which you can select when setting up

your indicators or strategies, or when running a strategy in the Strategy Analyzer.

Note: The system bar types "Line Break" and "Renko" cannot be used with Tick Replay

and as a result, the Tick Replay option will be disabled when configured with those bar

types. There may be other 3rd party bar types which may also disable Tick Replay by

design. If you are a developer, please see the property IsRemoveLastBarSupported for

more information.

Operations 879

© 2023 NinjaTrader, LLC

10.6.22.1 Tick Replay Indicators

NinjaTrader includes several real-time volume based indicators that are designed to function

in real time only. However, Tick Replay allows these indicators to be used on historical data

by simulating real-time price movements within historical bars.

Note: When Tick Replay is disabled, these indicators function only on real-time data, and

therefore do not plot any values on historical data. If you change any property, interval, or

instrument on a chart with Tick Replay disabled, these indicators will be reloaded and any

accumulated real-time data plots will be lost. However, with Tick Replay enabled, they will

plot historical data, although due to the way that Tick Replay processes data, the

historical plots may not display precisely the same values as they would have if they had

been running in real time.

Buy Sell Volume

NinjaTrader 8880

© 2023 NinjaTrader, LLC

BuySellVolume Indicator
The BuySellVolume indicator displays a horizontal histogram of volume categorized as

Buy or Sell trades. Trades are categorized as a Buy when they occur at the Ask or

above, and as a Sell when they occur at the Bid or below. Trades that occur between

the Bid and Ask are ignored.

1) In the image above, the BuySellVolume indicator has just been applied with Tick

Replay enabled, allowing it to display historical data.

Operations 881

© 2023 NinjaTrader, LLC

2) In the image above, the BuySellVolume indicator has just been applied with Tick

Replay disabled, limiting it to only displaying what has been calculated in real time.

Buy Sell Pressure

BuySellPressure Indicator
The BuySellPressure indicator displays the current bar's buying and selling pressure as

percentage values, and categorizes trades as either Buys or Sells. Trades are

categorized as a Buy when they occur at the Ask or above, and as a Sell when they

occur at the Bid or below. Trades that occur between the Bid and Ask are ignored.

NinjaTrader 8882

© 2023 NinjaTrader, LLC

1) In the image above, the BuySellPressure indicator has just been applied with Tick

Replay enabled, allowing it to display historical data.

2) In the image above, the BuySellPressure indicator has just been applied with Tick

Replay disabled, limiting it to only displaying what has been calculated in real time.

Operations 883

© 2023 NinjaTrader, LLC

Volume Profile

Volume Profile Indicator
The VolumeProfile indicator plots a real-time volume profile as a vertical histogram on

a chart. Each bar represents the volume (number of trades) that accumulate at each

bar from the time the indicator is started or re-started on the chart. Bars are color

coded to represent the number of Buys (trades at the Ask or higher), Sells (trades at

the Bid or lower) and neutrals (trades between the market). This indicator provides you

with instant feedback to identify support and resistance levels and determine whether

accumulation or distribution is taking place at those levels. A cyan colored diamond is

automatically drawn at the starting bar of the VolumeProfile indicator.

1) In the image above, the VolumeProfile indicator has just been applied with Tick

Replay enabled, allowing it to display historical data.

NinjaTrader 8884

© 2023 NinjaTrader, LLC

2) In the image above, the VolumeProfile indicator has just been applied with Tick

Replay disabled, limiting it to only displaying what has been calculated in real time.

10.6.23 COT

Description
The COT indicator plots weekly data from the Commitment Of Traders report, indicating

holdings of different participants in the U.S. futures market.

The report is released every Friday at 3:30pm and contains position data supplied by reporting

firms from that Tuesday.

COT Overview

Getting Data
In order to plot the COT indicator you must first enable COT data to be download.

To do this, within the Control Center go to Tools> Options> Market Data then check

Download COT data at start up and restart NinjaTrader.

Operations 885

© 2023 NinjaTrader, LLC

If this option is not enabled and you attempt to apply the COT indicator to a chart, a

message will display on the chart saying "Download COT data at startup" must be

enabled in Options to receive the latest data.

Display
The COT indicator is able to display 1-5 plots at a time from a single instance of the
indicator for many U.S. futures instruments. By default it loads 4 plots with some of the
most frequently used report fields.

NinjaTrader 8886

© 2023 NinjaTrader, LLC

The Open Interest plot typically has a value much larger than the others and it may be
preferable to plot Open Interest on it's own.
To do this, within the indicator properties change the Number of COT plots to 1 and
change COT 1 to the Open interest Field. Adjust plot colors and values as desired.

Next add another COT indicator and set Number of COT plots to 3.

Operations 887

© 2023 NinjaTrader, LLC

Now you will have a chart with Open Interest on its own panel and the net position

report fields on their own panel to increase visibility.

Using the COT
COT data is often times used to compare what market participants are long vs short.
This information can then be used to help determine a position per your own trading
method.

NinjaTrader 8888

© 2023 NinjaTrader, LLC

Here we can see that the red Futures - Commercial net plot is 558k short, indicated by
the negative value, where as the blue Futures - Non-commercial net plot is 541k long.

Another common use is to see when a market participant reverses their position or

when market participants plots cross, potentially indicating a change in market

direction. Here we can see as the red commercials moved to long and crossed the

blue non-commercials the price started to move in a bullish direction.

Operations 889

© 2023 NinjaTrader, LLC

Note: Since the COT reports are weekly data, the most current data will continue to

plot forward until new data is available. After the new report is released on Friday at

3:30pm Eastern time, NinjaTrader will need to be restarted to download the updated

data. Since the data is from that weeks Tuesday, the plots will then be updated from

that Tuesday forward.

COT Parameters

Number of COT

plots

Indicates how many plots you would like the

indicator to have from 1-5

COT #
Report Indicates which

report to get data

from

Field Indicates what field

from the report you

want to plot

Note: Since this indicator is a historical weekly report and does not change based

on new prices or volume, there is no benefit to having this indicator Calculate On

price change or On each tick.

COT Values NinjaScript access

For information on how to access the COT values in NinjaScript, please see the

Commitment Of Traders (COT) page in the NinjaScript section of the Help Guide.

NinjaTrader 8890

© 2023 NinjaTrader, LLC

10.6.24 Wiseman

The Wiseman indicators group are provided by Profitunity and were developed by Bill M.

Williams. Profitunity is an educational partner and offers courses on using the Wiseman

indicators on their website www.profitunity.com

Wiseman Alligator

Description
The Wiseman Alligator is an indicator that consists of 3 moving averages with

offsets applied to identify trend absence, formation, and direction.

Display and using the Wiseman Alligator
With the default values the blue line is the jaw, the red line is the teeth, and the

green line is the lips. As these lines are intertwined, the alligator is sleeping and the

market is consolidating. As they spread apart and continue to move in the same

direction, a strong trend is indicated in the market.

Wiseman Alligator Properties

Jaw

period

The moving average period of the blue jaw line

Teeth

period

The moving average period of the red teeth line

http://www.profitunity.com

Operations 891

© 2023 NinjaTrader, LLC

Lips

period

The moving average period of the green lips line

Jaw

offset

The offset of the blue jaw line

Teeth

offset

The offset of the red teeth line

Lips

offset

The offset of the green lips line

Wiseman Awesome Oscillator

Description
The Wiseman Awesome Oscillator is a momentum indicator to identify trends and

reversals.

Display and using the Wiseman Awesome Oscillator
As the oscillator is below zero the market is considered a bear market. As the

oscillator is above the zero it is a bull market. The oscillator is colored green when

the value is greater than the previous bar and it is colored red when the value is

less than the previous bar.

NinjaTrader 8892

© 2023 NinjaTrader, LLC

Wiseman Awesome Oscillator Properties

Width The width of the bars

Color

up

Color for bar values higher than the previous bar

Color

down

Color for bar values lower than the previous bar

Note: For information on the Bar color properties, please contact

www.profitunity.com

Wiseman Fractal

Description
The Wiseman Fractal identifies areas of reversals. This is signaled by highs

surrounded by bars with lower highs or lows surrounded by bars with higher lows.

Display and using the Wiseman Fractal
A green arrow is formed when there is a high surrounded by lower highs per the

Strength input.

A red arrow is formed when there is a low surrounded by higher lows per the

Strength input.

http://www.profitunity.com

Operations 893

© 2023 NinjaTrader, LLC

Wiseman Fractal Properties

Strength How many bars out to the sides with lower highs

of a high bar or higher lows of a low bar to indicate

a reversal

Offset

(ticks)

How many tick from the high/low to place the pivot

marker

High

pivot

color

Color for bearish reversal pivots

Low

pivot

color

Color for bullish reversal pivots

NinjaTrader 8894

© 2023 NinjaTrader, LLC

10.7 Commissions

Commissions Overview

The Commissions window allows you to define global and per instrument commission

rates to be used on local Simulation or Live account. Commissions applied are visible

inside the Trade Performance window. Setting up commissions in a local simulation

account will help you make sure that you factor in the cost of trading into your Trade

Performance analysis and can also be used in live accounts so that you can keep track

of your actual PnL less commissions, which typically is not factored into PnL values

provided by brokers.

› Working with Commission Templates

› Applying Commission Templates

10.7.1 Working With Commission Templates

The Commissions window allows you to create and manage Commission Templates to be

applied to different trading accounts configured in NinjaTrader. These templates can be used

to set minimum and per-unit commissions for all instruments of a certain type, or to set

specific commissions for individual instruments, which will override any commissions set for

the instrument type.

Managing commission templates

Adding Commission Templates
The Commissions window includes several pre-built Commission Templates,

based on the currently available NinjaTrader software license types. Additional

templates can be set up by clicking the add button at the bottom of the

"Templates" section of the window. A new template will be created with a default

name, and specific commissions can then be saved for the template using the

steps in the sections below.

Once a new template has been added, you can edit it's name by selecting it in the

list in the "Templates" section, then entering a name in the "Name" field within the

"Properties" section.

Operations 895

© 2023 NinjaTrader, LLC

1) The add button is clicked

2) A new template with a default name is added to the list

3) The template name can be changed in the "Properties" section

Copying Commission Templates
There may be an instance in which you need to maintain two copies of a

Commission Template with a few small differences between the two. Rather

than creating a second version from scratch, you can copy an existing template in

the Commissions window, then make any needed changes to the new copy. To

do this, first select a template in the list of configured templates, then click the

copy button. A new copy will appear in the list, allowing you to make any necessary

changes.

Removing Commission Templates
To remove a Commission Template, first select one in the list of configured

templates, then click the remove button.

Managing commissions per instrument type

Adding Commissions Per Instrument Type
To add a commission for an entire asset class (instrument type), first select an

asset class listed in the "Commission Per Instrument Type" grid, then click the

NinjaTrader 8896

© 2023 NinjaTrader, LLC

edit button. Alternatively, you can double-click on any row in the grid to open the

Edit Commissions dialogue. Enter a value in the "Minimum Commission" field,

the "Per-Unit Commission" field, or both, then click OK.

Notes:

1. "Minimum Commission" is applied per trade and per side, regardless of

trade quantity, but is only applied if the total applied "per-unit" commissions

are less than the minimum value. "Per-unit commission" applies to each

unit in a trade, and is applied per-side.

2. When configuring Forex instrument types, "Per-unit commission" should

be divided by the accounts FX lot size per trade. For example, if your

commissions were $0.06 per 1000 FX lot, you would use "0.00006" as the

Per-unit commission value (e.g., 0.06 / 1000)

Managing instrument-specific commissions

Adding Instrument-Specific Commissions
To add commissions for specific instruments, first click the add button below the

"Commission Per Instrument" section to open the Edit Commission window.

Select an instrument in the "Instrument" dropdown menu, or click the magnifying

glass icon to search available instruments. Enter a value in the "Minimum

Commission" field, the "Per-Unit Commission" field, or both, then click OK.

Operations 897

© 2023 NinjaTrader, LLC

Notes:

1. Commissions entered for specific instruments will override settings for that

instrument's type. For example, setting instrument-specific commissions

for the E-Mini S&P 500 futures contract will override any commissions set

for all Futures instruments.

2. "Minimum Commission" is applied per trade and per side, regardless of

trade quantity, but is only applied if the total applied "per-unit" commissions

are less than the minimum value.. "Per-Unit Commission" applies to each

unit in a trade, and is applied per-side.

3. When configuring Forex instrument types, "Per-unit" commission should

be divided by the account FX lot size per trade. For example, if your

commissions were $0.06 per 1000 FX lot, you would use "0.00006" as the

Per-unit commission value (e.g., 0.06 / 1000)

Editing Instrument-Specific Commissions
To edit an instrument-specific commission, first select it in the list of instrument-

specific commissions for your chosen Commission Template, then click the edit

button. You can then follow the process outlined above to change the instrument

or commission values.

Removing Instrument-Specific Commissions
To remove an instrument-specific commission, first select it in the list of

instrument-specific commissions for your chosen Commission Template, then

click the remove button.

NinjaTrader 8898

© 2023 NinjaTrader, LLC

1) The edit button can be used to edit an existing instrument-specific commission.

2) The remove button can be used to remove an instrument-specific commission.

10.7.2 Applying Commission Templates

Once a Commission Template has been created, it must be applied to an account, whether it

be a live brokerage account connected via a data provider, or a simulation account used for

paper trading.

Applying commission templates to accounts

The Accounts Tab
Commission Templates can be applied directly in the Accounts tab of the Control

Center. To apply a Commission Template, first right-click any account listed in

the tab, then click the Edit Account menu item. In the Account window, select your

chosen template in the "Commission" field, then click the OK button. Commissions

will now be applied to any displayed unrealized PnL related to that account, as well

as the Trade Performance window.

Note: In case of the Playback101 account, it's settings including the applied

Commission Template is dictated by the Sim101 it duplicates.

Operations 899

© 2023 NinjaTrader, LLC

10.8 Control Center

NinjaTrader 8900

© 2023 NinjaTrader, LLC

Control Center Overview

The Control Center window is the default window which appears when NinjaTrader is

first installed and will always be displayed while NinjaTrader is running.

The NinjaTrader Control Center provides a centralized view of account, execution, order,

historical log, and position information. It also provides access to all of the various

NinjaTrader function windows and enables/disables global application features and

commands.

Menu System

› New Menu

› Tools Menu

› Workspaces Menu

› Connections Menu

› Orders Tab

› Strategies Tab

› Executions Tab

› Positions Tab

› Accounts Tab

› Log Tab

› Messages Tab

› Connection Status

10.8.1 New Menu

The following menus and items are available via the New menu of the NinjaTrader Control

Center.

Operations 901

© 2023 NinjaTrader, LLC

Basic

Entry

Creates new Basic Entry window

FX Pro Creates a new FX Pro window

Options

Chain

Created a new Option Chain window

NinjaTrader 8902

© 2023 NinjaTrader, LLC

Order

Ticket

Creates a new Order Ticket window

SuperDO

M

(Dynamic)

Creates a new SuperDOM (Dynamic) window

SuperDO

M (Static)

Creates a new SuperDOM (Static) window

Alerts Log Creates a new Alerts Log window

Chart Creates a new Chart window

FX Board Creates a new FX Board window

Hot List

Analyzer

Creates a new Hot List Analyzer window

Level II Creates a new Level II window

Market

Analyzer

Creates a new Market Analyzer window

Market

Watch

Created a new Market Watch window

News Creates a new News window

Strategy

Analyzer

Creates a new Strategy Analyzer window

T & S Creates a new Time & Sales window

Account

Data

Creates a new Account Data window

Trade

Performan

ce

Creates a new Trade Performance window

Operations 903

© 2023 NinjaTrader, LLC

NinjaScript

Editor

Creates a new NinjaScript Editor window

NinjaScript

Output

Opens the NinjaScript output window (this includes the

NinjaScript Utilization Monitor subwindow)

Strategy

Builder

Creates a new Strategy Builder window

AddOn

Framewor

k

This is an example for a custom NinjaScript AddOn

installed

10.8.2 Tools Menu

The following menus and items are available via the Tools menu of the NinjaTrader Control

Center.

Instrument

s

Opens the Instruments window

Instrument

Lists

Opens the Instrument Lists window

NinjaTrader 8904

© 2023 NinjaTrader, LLC

Database

Managem

ent

Opens the Database Management window

Hot Keys Opens the Hot Keys window

Historical

Data

Opens the Historical Data window

Commissi

ons

Opens the Commissions window

Risk Opens the Risk window

Trading

Hours

Opens the Trading Hours window

Vendor

Licensing

Opens the Vendor Licensing window

Import Opens the Import Sub Menu; Backup File, Historical

Data, NinjaScript Add-On, Stock Symbol List

Export Opens the Export Sub Menu; Backup File, Historical

Data, NinjaScript Add-On

Remove

NinjaScrip

t

Assembly

Opens the Remove NinjaScript assembly window

Global

Simulation

Mode

Enables or Disables Global Simulation Mode (Note:

Global simulation mode can only be enabled with a live

NinjaTrader License)

Client

Dashboar

d

Opens the web view of the Client Dashboard

Options Opens the Options window

Operations 905

© 2023 NinjaTrader, LLC

10.8.3 Workspaces Menu

The following menus and items are available via the Workspaces menu of the NinjaTrader

Control Center.

· A workspace named "Untitled1" will load automatically

· You can have multiple workspaces open simultaneously

· Open workspaces are indicated by the rectangle icon, if there is no icon then the

workspace is closed

· The currently active workspace has a filled green rectangle. You can only have one active

workspace

· You can toggle the currently displayed workspace by selecting the workspace you wish to

display from the Workspaces menu or using the Hot Key SHIFT + F3

· On application shut down you will be given the opportunity to save changes in all open

workspaces

Creating a workspace

Create a Workspace

1. From the NinjaTrader Control Center select the menu Workspaces

2. Select "new"

3. You will be prompted to type in a name for the new workspace.

4. On "OK" you will be switched to the new workspace.

Saving a workspace

Save a Workspace

NinjaTrader 8906

© 2023 NinjaTrader, LLC

1. From the NinjaTrader Control Center select the menu Workspaces

2. Move your mouse over the name of the workspace you want to save.

3. Select "save"

4. Any changes made to the currently displayed workspace will be saved

Save a Workspace to a New Workspace File

1. From the NinjaTrader Control Center select the menu Workspaces

2. Move your mouse over the name of the workspace you want to save to a new

workspace file

3. Select save as

4. You will be prompted to type in a name for the new workspace file.

5. On "OK" you will be switched to the new workspace, the old workspace will

persist with no changes and the workspace will be saved to the new

Workspace file

Opening a workspace

Open a Workspace

1. From the NinjaTrader Control Center select the menu Workspaces

Operations 907

© 2023 NinjaTrader, LLC

2. Move your mouse over the workspace that you would like to open and left
mouse click. In the screenshot above "Workspace3" is closed and clicking on
"Workspace3" will open it and make it the active currently displayed workspace.

Closing a workspace

Close a Workspace

1. From the NinjaTrader Control Center select the menu Workspaces

2. Move your mouse over the workspace you would like to close

3. Select "close". The selected workspace will be closed and can be reopened at

any time.

At least one workspace must remain open, if you close the last workspace a

temporary workspace will be created.

Removing a workspace

Remove a Workspace
1. From the NinjaTrader Control Center select the menu Workspaces

2. Move your mouse over the workspace you would like to remove

3. Select "remove". You will get a dialog asking you to confirm the delete as any

remove operation cannot be undone

NinjaTrader 8908

© 2023 NinjaTrader, LLC

Note: Removing a workspace will also remove previous versions from the

restore utility. However, it will not remove it from backups

How to quickly switch between workspaces

Quickly Switching Between Workspaces
Pressing SHIFT+F3 keys together will cycle to the next open workspace.

How to recover workspaces

Restore a Prior Version of Workspaces
If you need to restore a previously saved version of a saved workpspace, you can

do this within the Control Center by going to Tools and selecting Database

Management. In here you will see a Restore Workspace section to complete the

recovery. See the Database Operations section.

By default 10 previously saved versions of your workspaces will be retained. To

modify how many recovery versions are available within the Control Center go to

Tools and select Options. Within the General section go to Preferences and set the

Versions of recovery workspaces. See the Options General section.

If you are unable to recover a prior version, if a backup was done you can restore

from a backup. See the Backup & Restore section.

10.8.4 Connections Menu

The following menus and items are available via the Tools menu of the NinjaTrader Control

Center.

· You cannot remove the predefined constant connections: Kinetick - End Of Day (Free),

Playback Connection, Simulated Data Feed.

· You can connect to multiple connections simultaneously.

Operations 909

© 2023 NinjaTrader, LLC

· The connection status is reported to the left of the connection name in the connections

menu per provider. There is also an aggregated connection status in the bottom left hand

corner of the Control Center. For more information please see the "Connection Status"

section of the help guide.

· Connections menu will only show connections you are authorized to connect per your

license key. If you need to connect to more connections or change the connection

technology enabled on your license please contact platformsales@ninjatrader.com

Creating a new connection

Creating a new connection

1. Click configure to define a new connection.

2. See the connection guide for your provider for detailed steps on how to setup

your connection.

Connecting to a connection

Connecting to a connection

1. Click on the connection name to connect to the defined connection.

2. See the section "Connection Status" below for more information on connection

status.

Disconnecting from a connection

Disconnect a connection

NinjaTrader 8910

© 2023 NinjaTrader, LLC

1. When you are connected to a provider in the Connections menu you will see

disconnect for each active connection.

2. Select "disconnect" to disconnect from the provider.

Understanding the Pre-Built Connections

Pre-Built Connections
Although you will need to configure your own connection to a real-time market data

provider and your brokerage account, NinjaTrader comes pre-loaded with several

connections which can be used for different purposes.

Kinetick -

End of Day

(Free)

Provided free of charge by Kinetick, offers daily

End-of-Day updates for several instrument

types, including stocks, forex, and futures

Playback

Connection

Used to play Playback data at various speeds

(data must be downloaded prior to using the

Playback connection)

Simulated

Data Feed

Creates simulated data locally on your PC (not

based on real market movements)

10.8.5 Help Menu

The following menus and items are available via the Help menu of the NinjaTrader Control

Center.

Operations 911

© 2023 NinjaTrader, LLC

Resour

ces

Opens the NinjaTrader Support web page

Help

Guide

Opens the application help guide (or press F1)

Video

Guides

Opens the New User Video Guides web page

Email

Suppor

t...

Sends email support request

Remot

e

Suppor

t...

Starts the NinjaTrader Support remote connection (only use

this when instructed to do so by the support team)

Downlo

ad

Download the latest version of NinjaTrader

Apps &

Add-

Ons

Takes you to the NinjaTrader Ecosystem web page

Live

Events

Takes you to the live Events web page

NinjaTrader 8912

© 2023 NinjaTrader, LLC

3rd

party

licensin

g

Verification for 3rd party add on products

About... About NinjaTrader

10.8.6 Orders Tab

The Orders tab by default shows all orders in a data grid. The order grid can be filtered by

account and also be toggled to show inactive / active orders.

Understanding the orders tab

Order Grid
The order grid displays detailed information regarding the current day's orders.

The grid is also active in that you can modify an order directly in it. The active

order's State cell will be color coded for ease of use.

1. Modify the Quantity of an order by double left clicking your mouse in the QTY

field for the order you wish to modify.You can increase/decrease the Quantity

of an order by pressing the up/down arrow or scrolling the mouse wheel

up/down. Holding the CTRL key will modify the Quantity in multiples of 10.

2. Modify the Price of an order by double left clicking your mouse in the Limit or

Stop field. You can increase/decrease the Price of an order by pressing the

up/down arrow or scrolling the mouse wheel up/down. Holding the CTRL key

down will modify the order by 10 ticks.

3. Cancel an order by pressing on the "X" button.

Operations 913

© 2023 NinjaTrader, LLC

Columns can be re-ordered and re-sized at will, and individual columns can be

enabled or disabled via the Properties window accessible in the Orders grid's

Right-Click menu. The following columns are displayed in the Orders grid by

default:

Instrum

ent

The instrument on which the order is placed

Action Indicates whether the order is a Buy or a Sell

Type The order type

Quantity The quantity of the order

Limit The limit price, if applicable. This column will

display a zero for order types other than Limit or

Stop Limit.

Stop The Stop price, if applicable. This column will

display a zero for order types other than Stop

Market, Stop Limit, or Market if Touched.

State The current order state. See the Order State

Definitions page for a complete list of possible

states and their definitions.

Filled The quantity filled on a part-filled or fully-filled order

Avg.

Price

The average fill price of a filled order. This column

will display a zero for unfilled orders

Remaini

ng

The quantity remaining on a part-filled order

Name The name of an order placed by an ATM or

NinjaScript strategy. This column will be blank for

orders submitted manually without an ATM

strategy.

NinjaTrader 8914

© 2023 NinjaTrader, LLC

Strategy The name of the ATM or NinjaScript strategy

which submitted the order. This column will be

blank for orders submitted manually without an

ATM strategy.

OCO The One-Cancels-Other (OCO) identifier of the

order, if applicable.

TIF The Time-in-Force (TIF) setting applied to the

order. Possible values are DAY, GTC (Good Till

Cancelled), and GTD (Good Till Date)

Account

Display

Name

The Display Name of the account to which the

order is submitted

ID The NinjaTrader Order ID of the related order

Time The time at which the order was submitted

Cancel Contains buttons which can be used to cancel

resting orders.

The following additional columns can be applied through the grid's Properties

window:

Price The price at which the order will be triggered. For

Stop Limit orders, "Price" represents the order's

Stop Price

Increase Contains buttons which can be used to increase

the price of an active resting order

Decreas

e

Contains buttons which can be used to decrease

the price of an active resting order

Account

Name

The "Account Name" -- not to be confused with the

"Account Display Name." These two can differ for

Operations 915

© 2023 NinjaTrader, LLC

live brokerage accounts, and the "Account Display

Name" tends to be more descriptive.

Right Click Menu
Right mouse clicking within the orders grid opens the following menu:

Cancel

Order

Cancels the selected order

Increase

Price

Increases the price of the order by 1 tick

Decrease

Price

Decreases the price of the order by 1 tick

Cancel

All

Orders

Cancels all working orders

NinjaTrader 8916

© 2023 NinjaTrader, LLC

Filter By

Account

Filters orders by selected account

Filter

Orders

Filters shown orders, possible choices are -

· None (show all orders)

· Active Orders

· Filled Orders

· Rejected Orders

Always

On Top

Sets if the window will be always on top of other

windows

Show

Tabs

Sets if the window should allow for tabs

Export... Exports the grid contents to "CSV" or "Excel" file

format

Find... Search for a term in the grid

Print Select to print either the window or the order grid

area.

Share Select to share via your share connections.

Propertie

s

Configure orders tab properties

Tip

You can have multiple order grid tabs open at once, this gives you the ability to

have multiple order grids visible open and have each one filtering for a different

account. This gives you the flexibility to setup an orders grid for each account

you have for example so you can keep them totally separate.

Orders Tab Properties

Operations 917

© 2023 NinjaTrader, LLC

Orders Tab Properties

General

Filter by

account

Filters orders by selected account

Filter

orders

Filters shown orders, possible choices are -

· None (show all orders)

· Active Orders

· Filled Orders

· Rejected Orders

NinjaTrader 8918

© 2023 NinjaTrader, LLC

Grid font Sets the font for the order grid

Tab name Sets the tab name

Colors

Order -

limit

Sets the color used for background of the State

column for working limit orders

Order -

MIT

Sets the color used for background of the State

column for working MIT orders

Order -

profit

target

Sets the color used for background of the State

column for working ATM profit target orders

Order -

stop limit

Sets the color used for background of the State

column for working stop-limit orders

Order -

stop loss

Sets the color used for background of the State

column for working ATM stop loss orders

Order -

stop-

market

Sets the color used for background of the State

column for working stop-market orders

Columns Sets that columns are enabled or disabled in the

order grid.

How to preset property defaults
Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original factory

settings, you can left mouse click on the preset text and select the option to restore

to return to the original factory settings - please note though that you cannot save a

custom default to restore to.

Operations 919

© 2023 NinjaTrader, LLC

Note: A number of pre-defined variables can be used in the "Tab Name" field.

For more information, see the "Tab Name Variables" section of the Using Tabs

page.

10.8.7 Strategies Tab

The Strategies tab displays running and terminated strategies in a data grid.

Note: The IncludeTradeHistoryInBacktest property is set to false by default when a

strategy is applied directly in the Strategies tab. This provides for leaner memory usage,

but at the expense of not being able to access Trade objects for historical trades. Thus,

fields such as SystemPerformance.AllTrades.Count that rely on references Trade objects

will not have any such references to work with. If you would like to save these objects for

reference in your code, you can set IncludeTradeHistoryInBacktest to true in the

Configure state. For more information, see the Working with Historical Trade Data page.

Understanding the strategies tab

Strategy Display
Active and stopped strategies are listed as a grid and can be started/stopped by

left mouse clicking the check box in the Enabled column.

· Green highlighted "Strategy" name indicates a currently running strategy.

· Orange highlighted "Strategy" name indicates the strategy is waiting until it

reaches a flat position to be in sync with the account position before fully

starting. (Please see the Syncing Account Positions section for configuration

options)

· Black highlighted "Strategy" name indicates a disabled strategy.

NinjaTrader 8920

© 2023 NinjaTrader, LLC

Strategies using multiple instruments will be expandable so that each instrument's

strategy position can be viewed. In the image above, the second strategy is using

ES 06-14 as well as MSFT which is shown below it.

Columns can be re-ordered and re-sized at will, and individual columns can be

enabled or disabled via the Properties window accessible in the Strategies grid's

Right-Click menu. The following columns are displayed in the Strategies grid by

default:

Strategy The name of the strategy

Instrum

ent

The instrument on which the strategy is enabled

Data

Series

The interval type and value associated with the

strategy's instrument

Paramet

ers

The values of any user-defined parameter inputs

used by the strategy

Position The Strategy Position (independent of the Account

Position)

Acct.

Position

The Account Position (includes positions not

entered by the strategy)

Sync Compares the strategy position to the current real-

world account position relative to the configured

instrument. A value of true indicates the strategy

position is currently in sync with the account

position

For Multi Instrument strategies, a small red flag

can appear to the right of the sync value - this

would alert the user to expand the row to check

the sync for any additional instruments the

strategy trades as well.

Operations 921

© 2023 NinjaTrader, LLC

Note: A strategy which is in "Wait until

flat" (yellow) is considered "flat" regardless of the

historical strategy position

Avg.

Price

Average price of positions entered by the strategy

Unrealiz

ed

Any unrealized profit or loss of an open position

entered by the strategy

Realize

d

Any realized profit or loss of positions entered by

the strategy

Account

Display

Name

The Display Name of the account on which the

strategy is enabled

Connect

ion

The connection on which the strategy is running.

This column will be blank for disabled strategies

Enabled A checkbox indicating whether the strategy is

enabled. This box can be checked or unchecked

to enable or disable a strategy.

The following additional columns can be applied through the grid's Properties

window:

Account

Name

The "Account Name" -- not to be confused with the

"Account Display Name." These two can differ for

live brokerage accounts, and the "Account Display

Name" tends to be more descriptive.

Tip: Please note the sync column compares only the individual strategy

position to the account position, it will not generate a total strategy position for

all strategies run on the same instrument / account combination.

Right Click Menu
Right mouse clicking within the strategies grid opens the following menu:

NinjaTrader 8922

© 2023 NinjaTrader, LLC

New

Strategy...

Run a new automated NinjaScript strategy

Edit

Strategy

Brings up the Edit Strategy window to edit the

strategy parameters for the selected strategy.

(Only disabled strategies can be edited)

Synchroniz

e All

Strategies

Will aggregate all strategy positions and syncs

aggregate value to the accounts position for the

instruments that have running strategies.

Enable Enables the strategy

Disable Disables the strategy

Remove Removes the selected strategy from the grid

Operations 923

© 2023 NinjaTrader, LLC

Strategy

Performanc

e

Generates a performance report for the

selected strategy (See the "How to view

strategy performance" section below)

Filter Only

Active

Strategies

Displays only active strategies. Note: If this

item is checked and a new strategy is added

that is not yet enabled, the strategy will not be

displayed in this grid.

Filter By

Account

Sets which strategies to display by account

Always On

Top

Sets if the window should be always on top of

other windows

Show

Tabs

Sets if the window should allow for tabs

Export Exports the grid contents to "CSV" or "Excel"

file format

Find... Search for a term in the grid

Print Select to print either the window or the order

grid area.

Share Select to share via your share connections.

Properties..

.

Configure the strategies tab properties

How to view strategy performance

Strategy Performance
While the Account Performance tab will generate performance report against your

account's trade history, the Strategy Performance menu allows you to generate a

performance report against the trades generated by the selected strategy.

NinjaTrader 8924

© 2023 NinjaTrader, LLC

· Real-time - Generates performance data for your real-time trades only (since the

strategy started running) and will exclude historical trades. If your strategy held a

virtual position (calculated against historical data) upon starting, a virtual

execution representing the average price of this position will be injected into the

real-time results to ensure that a trade pair can be created with the executions

resulting from the closing of this position.

· Historical & Real-time - Generates performance data for both historical and real-

time trade data.

· Historical - Generates performance data for historical data only.

Strategy tab properties

Operations 925

© 2023 NinjaTrader, LLC

Strategy Tab Properties

General

Filter only

active

strategies

Displays only active strategies

Filter by

account

Displays only strategies running on the selected

account

Grid font Sets the font for the order grid

Tab name Sets the tab name

NinjaTrader 8926

© 2023 NinjaTrader, LLC

Columns Sets that columns are enabled or disabled

How to Save Property Presets
Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original factory

settings, you can left mouse click on the preset text and select the option to restore

to return to the original factory settings - please note though that you cannot save a

custom default to restore to.

Note: A number of pre-defined variables can be used in the "Tab Name" field.

For more information, see the "Tab Name Variables" section of the Using Tabs

page.

10.8.8 Executions Tab

The Executions tab displays all executions for the current day in the data grid.

Understanding the executions tab

Executions Data Grid
The current day's execution information will be shown in the data grid when

connected to your brokerage connection. Simulated trades (into any simulation

account) will appear when connected to any data feed connection.

Operations 927

© 2023 NinjaTrader, LLC

Columns can be re-ordered and re-sized at will, and individual columns can be

enabled or disabled via the Properties window accessible in the Executions

grid's Right-Click menu. The following columns are displayed in the Executions

grid by default:

Instrum

ent

The Instrument on which the execution took place

Action Indicates whether the execution was from a Buy or

Sell order

Quantity The quantity of the execution

Price The price at which the execution occurred

Time The time at which the execution occurred

ID A unique identifier for the execution

E/X Indicates whether the execution was an Entry or

Exit

Position Indicates the Account Position after the execution

Order

ID

The ID of the order executed

Name The name of the order executed

Commi

ssion

The commission applied to the execution

Rate The currency conversion rate used for the

execution. A value of "1" indicates that no currency

conversion took place

Account

Display

Name

The Display Name of the account to which the

execution was placed

NinjaTrader 8928

© 2023 NinjaTrader, LLC

Connec

tion

The connection through which the execution was

routed

The following additional columns can be applied through the grid's Properties

window:

Account

Name

The "Account Name" -- not to be confused with the

"Account Display Name." These two can differ for

live brokerage accounts, and the "Account Display

Name" tends to be more descriptive.

Right Click Menu
Right mouse clicking within the executions grid opens the following menu:

Chart Opens a chart of the instrument at the time of the

selected execution

Filter By

Account

Sets which executions to display by account

Always

On Top

Sets if the window will be always on top of other

windows

Operations 929

© 2023 NinjaTrader, LLC

Show

Tabs

Sets if the window should allow for tabs

Export... Exports the grid contents to "CSV" or "Excel" file

format

Find... Search for a term in the grid

Print Select to print either the window or the order grid

area.

Share Select to share via your share connections.

Propertie

s...

Configure the executions tab properties

Forex Executions
Forex executions hold additional data such as Rate and Account Lot Size

Rate
Executions on currency pairs that do not contain USD will try to grab a conversion

rate in real-time shown in the "Rate" column from your data provider. Should a

suitable USD conversion rate not be available, a rate of 1 will be used. This Rate

will be used in determining the PnL in USD for the forex trade in other areas like

the Account Performance tabs. The approach NinjaTrader follows is the GAIN

Capital approach, but may differ from what banks do since they base their

conversion rates off of the prior session's closing price of the currency pair. This

means that our calculation approach may result in slightly different PnL values

than the ones reported from your brokerage.

Note: NinjaTrader connection setting "Auto subscribe to required instruments"

must be enabled when creating your forex connection for NinjaTrader to

automatically get the currency rates needed for PnL conversion when the trade

execution occurs. For more information please see the connection guide for

your provider on how to enable this property.

Account Lot Size
Executions track the Account Lot Size used for the account when the execution

occured. This is used for accurate Pip PnL calculations as a 1 pip gain in

EURUSD for a 10,000 QTY sized mini lot trader is different then a 1 pip gain in

NinjaTrader 8930

© 2023 NinjaTrader, LLC

EURUSD for a 1,000 QTY sized micro lot trader. Account Lot Size is used by

NinjaTrader to normalize your Pip PnL reporting so that it is accurate to your

accounts base Forex lot size. The Account Lot Size is normally provided from your

broker automatically, however if the broker does not send the account lot size then

the connection settings for the account in NinjaTrader will have an option for you to

define the property "Forex lot size".

Executions tab properties

Executions Tab Properties

General

Operations 931

© 2023 NinjaTrader, LLC

Filter by

account

Filters orders by selected account

Grid font Sets the font for the order grid

Tab name Sets the tab name

Columns Sets that columns are enabled or disabled in the

order grid.

How to set preset property defaults
Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original factory

settings, you can left mouse click on the preset text and select the option to restore

to return to the original factory settings - please note though that you cannot save a

custom default to restore to.

Note: A number of pre-defined variables can be used in the "Tab Name" field.

For more information, see the "Tab Name Variables" section of the Using Tabs

page.

10.8.9 Positions Tab

The Positions tab displays the current open positions in a data grid.

Understanding the position tab

Positions Display
Open positions are displayed in the data grid.

NinjaTrader 8932

© 2023 NinjaTrader, LLC

The table below lists what connections natively or locally calculate positions.

Connecti

vity

Provider

Position calculation

Continuu

m

Native

CQG Native

cTrader Native

Forex.co

m/City

Index

Native

FXCM Local

Interactiv

e Brokers

Native

Rithmic Native

TD

Ameritrad

e

Native

Columns can be re-ordered and re-sized at will, and individual columns can be

enabled or disabled via the Properties window accessible in the Positions grid's

Right-Click menu. The following columns are displayed in the Positions grid by

default:

Instrum

ent

The instrument in which the position is held

Side Indicates whether the position is held on the Long

or Short side

Operations 933

© 2023 NinjaTrader, LLC

Quantity The quantity held in the position

Avg.

Price

The average fill price of the entry orders filled to

enter or increase the position

PnL The current unrealized profit or loss of the position

Account

Display

Name

The Display Name of the account

Connect

ion

The connection used to enter the position

The following additional columns can be applied through the grid's Properties

window:

Account

Name

The "Account Name" -- not to be confused with the

"Account Display Name." These two can differ for

live brokerage accounts, and the "Account Display

Name" tends to be more descriptive.

Close Contains a button which will allow you to close the

position

Working

Buys

The number of unfilled Buy orders currently resting

on the account

Working

Sells

The number of unfilled Sell orders currently resting

on the account

Right Click Menu
Right mouse clicking within the positions grid section opens the following menu:

NinjaTrader 8934

© 2023 NinjaTrader, LLC

Apply

ATM

Strategy

Allows you to apply a predefined ATM Strategy

Template to an open position using the current

market price as the entry price.

Close

Position*

Flattens the currently selected position in the grid

and cancels any working orders associated to the

position's instrument

Flatten

Everythin

g*

Flattens all open positions and cancels all

working orders

Roll

Position

Send a Market order to exit the position in the

current contract month and send another Market

order in the next contract month to roll your

position.

Filter By

Account

Sets which positions to display by account

Always

On Top

Sets if the window will be always on top of other

windows

Operations 935

© 2023 NinjaTrader, LLC

Show

Tabs

Sets if the window should allow for tabs

Export Exports the grid contents to "CSV" or "Excel" file

format

Find... Search for a term in the grid

Print Select to print either the window or the order grid

area.

Share Select to share via your share connections.

Propertie

s...

Configure the positions grid properties

*The Close Position and Flatten Everything functions are not guaranteed. (See the

"Risks of Electronic Trading with NinjaTrader" section for more information)

Position tab properties

NinjaTrader 8936

© 2023 NinjaTrader, LLC

Position Tab Properties

General

Filter by

account

Filters orders by selected account

Grid font Sets the font for the order grid

Operations 937

© 2023 NinjaTrader, LLC

Tab name Sets the tab name

Columns Sets that columns are enabled or disabled in the

order grid.

Window Sets that window management features are

enabled or disabled

How to preset property defaults
Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original factory

settings, you can left mouse click on the preset text and select the option to restore

to return to the original factory settings - please note though that you cannot save a

custom default to restore to.

Note: A number of pre-defined variables can be used in the "Tab Name" field.

For more information, see the "Tab Name Variables" section of the Using Tabs

page.

10.8.10 Accounts Tab

The Accounts tab displays current account information in a data grid. The account values that

are displayed is dependent on your connectivity provider. Not all connectivity providers

transmit complete account data.

NinjaTrader 8938

© 2023 NinjaTrader, LLC

Understanding the accounts tab

Understanding the Accounts Tab

Columns can be re-ordered and re-sized at will, and individual columns can be

enabled or disabled via the Properties window accessible in the Accounts grid's

Right-Click menu. The following columns are displayed in the Accounts grid by

default:

Connectio

n

The connection through which the account is

accessed

Display

Name

The account's Display Name

Operations 939

© 2023 NinjaTrader, LLC

Buying

Power

The account's buying power, taking margin into

account

Cash

Value

The cash value of the account

Excess

Intraday

Margin

Available (unused) intraday margin on the

account

Excess

Initial

Margin

Available (unused) initial margin on the account

Intraday

Margin

The margin enforced for positions held intraday

Initial

Margin

The percentage of the purchase price that must

be covered by the account's cash value

Maintenan

ce Margin

The minimum amount of cash that must be

maintained in the account

Excess

Maintenan

ce Margin

The cash value of the account above the

Maintenance Margin value

Net

Liquidation

The total worth of the account's assets

(including margin)

Gross

Realized

PnL

Realized profit or loss before commissions

have been subtracted

Realized

PnL

Realized profit or loss after commissions have

been subtracted

The following additional columns can be applied through the grid's Properties

window:

NinjaTrader 8940

© 2023 NinjaTrader, LLC

Close Contains a button which will allow you to close

the position

Commissi

on Name

The name of the Commission Template applied

to the account

Filled Buys The number of Buy orders filled in the current

session

Filled Sells The number of Sell orders filled in the current

session

Look

Ahead

Maintenan

ce Margin

Projected maintenance margin requirement as

of the next period's margin change

Name The name of the account. This can differ from

the account's Display Name

Net

Liquidation

by

Currency

Same as Net Liquidation, but for individual

currencies

Position The quantity held in all open positions on the

account

Total Cash

Balance

The total cash available in the account including

any debits or credits

Total

Commissi

ons

The total commissions paid in the account for

the session

Total PnL The sum of Unrealized PnL + Realized PnL

Unrealized

PnL

Total unrealized profit or loss for open positions

on the account

Operations 941

© 2023 NinjaTrader, LLC

Working

Buys

The number of unfilled Buy orders currently

resting on the account

Working

Sells

The number of unfilled Sell orders currently

resting on the account

Right Click Menu
Right mouse clicking within the positions grid section opens the following menu:

Add

Simulation

Account

Opens the Account window to configure a

new simulation account

Edit Account Opens the Account window to edit the

selected account (See the Edit Account Menu

section below)

Remove

Account

Removes the selected account (Note: The

Sim101 account cannot be removed)

Close All

Selected

Account

Positions

Closes all selected positions on the selected

account

NinjaTrader 8942

© 2023 NinjaTrader, LLC

Always on

Top

Sets the Control Center window to always be

on top of other windows

Show Tabs Used to enable or disable tabs in the Control

Center

Export Exports the grid contents to "CSV" or "Excel"

file format

Find... Search for a term in the grid

Print Select to print either the window or the order

grid area.

Share Select to share via your share connections.

Properties... Configure the positions grid properties

Edit Account Menu
Right mouse clicking within the positions grid section then selecting Edit Account

opens the following menu:

Operations 943

© 2023 NinjaTrader, LLC

Name Displays the name of the account

Denominatio

n

*Sets what currency to display the account

values. Must be set to the currency the

account is in.

Commission Sets what commissions template to apply

Forex lot

size

Sets the default order quantity for forex

Initial cash Sets the initial cash balance for the simulation

account

Max order

size

Sets a limit for order size

NinjaTrader 8944

© 2023 NinjaTrader, LLC

Max position

size

Sets a limit for position size

Risk Sets what risk template to apply

Minimum

cash value

Sets the minimum cash value that must be

available to place an order

Notes:

The Playback101 account cannot be edited, it inherits its settings from the

Sim101.

Adjusting the denomination requires a reconnect.

*Some providers will always display the denomination in US Dollars.

Not all properties display for all accounts.

Account Values Supported by Provider
The account values that are displayed depend upon your connectivity provider.

Some connectivity providers transmit partial account data, while others do not

transmit anything. Below is a table of the various account values displayed by

different connectivity providers.

Conn

ectivit

y

Provi

der

Buy

ing

Po

wer

Ca

sh

Val

ue

Exc

ess

 Intr

ada

y

Mar

gin

Exc

ess

Initi

al

Ma

rgi

n

Intr

ada

y

Ma

rgi

n

 Init

ial

Ma

rgi

n

Ne

t

Liq

uid

ati

on

Re

aliz

ed

Pn

L

Unr

eali

zed

Pn

L

Tot

al

Pn

L

NinjaT

rader

Local

Simul

ation

Accou

nts
(values

are all

NinjaTra

Operations 945

© 2023 NinjaTrader, LLC

der

calculate

d since

its a

simulatio

n

account)

Contin

uum
(values

exclude

commissi

ons)

* * * * *

CQG
(values

exclude

commissi

ons)

FORE

X.com

FXCM

Interac

tive

Broker

s
(values

include

commissi

ons)

Rithmi

c
(values

exclude

commissi

ons)

TD

Amerit

(Ninj

aTra

NinjaTrader 8946

© 2023 NinjaTrader, LLC

rade
(values

exclude

commissi

ons)

der

calc

ulate

d)

*With NinjaTrader Brokerage

Notes:
· If a Connectivity Provider supplies Unrealized PnL in NinjaTrader, but a risk template is

applied (example: local simulation accounts) the Unrealized PnL will be calculated
locally.

· Interactive Brokers reports forex trades in the instrument currency, not the account
currency, without commissions applied. So, forex trades are not applied to Realized
PnL.

· If a commissions template is applied, some values may include commissions, locally
calculated.

Understanding Currency Conversion
NinjaTrader will attempt to convert currency for forex and futures trades.

· Forex trades will be made for any currency pair that has a cross rate and that cross rate
data is available on your data feed.

· Futures trades we use the CME FX futures (6A, 6B, 6E, etc) to make the conversion as
long as you have access to that data from your data feed provider.

Notes:
· Commissions in the Account tab are calculated based on the Commission Template

applied to the account in your installation of NinjaTrader, and not pulled from any Data
Provider.

· Custom Margin Templates cannot be applied to live accounts
· Due to the CME FX Futures being mostly limited to US cross rates conversion will only

occur to US Dollar account denomination for futures trades.

Accounts tab properties

Operations 947

© 2023 NinjaTrader, LLC

Accounts Tab Properties

General

Filter by

account

Filters accounts display by selected account

Grid font Sets the font for the accounts grid

NinjaTrader 8948

© 2023 NinjaTrader, LLC

Tab name Sets the tab name

Columns Sets that columns are enabled or disabled in the

accounts grid.

How to preset property defaults
Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original factory

settings, you can left mouse click on the preset text and select the option to restore

to return to the original factory settings - please note though that you cannot save a

custom default to restore to.

Note: A number of pre-defined variables can be used in the "Tab Name" field.

For more information, see the "Tab Name Variables" section of the Using Tabs

page.

10.8.11 Log Tab

The Log tab displays historical application and trading events for the current day in a data grid.

Understanding the log tab

Log Display
Log events are categorized and color coded based on four distinct alert levels;

Information, Warning, Error and Alert.

Operations 949

© 2023 NinjaTrader, LLC

Each log event is displayed by date, category and message. In some cases, the

length of the message may be larger than the width of the "Message" column. In

this situation, you can hover your mouse above the message in order to have it

display in a pop-up type window.

Right Click Menu
Right mouse clicking within the log display section opens the following menu:

Always

On Top

Sets if the window will be always on top of other

windows

Show

Tabs

Sets if the window should allow for tabs

Export Exports the grid contents to "CSV" or "Excel" file

format

Find... Search for a term in the grid

Print Select to print either the window or the log grid

area.

Share Select to share via your share connections.

Propertie

s...

Configure the positions grid properties

Log tab properties

NinjaTrader 8950

© 2023 NinjaTrader, LLC

Log Tab Properties

General

Grid font Sets the font for the log grid

Tab name Sets the tab name

Colors

Alert Sets the color used for background for Alert log

messages

Error Sets the color used for background for Error log

messages

Operations 951

© 2023 NinjaTrader, LLC

Informatio

n

Sets the color used for background for

Information log messages

Warning Sets the color used for background for Warning

log messages

Window Sets that window management features are

enabled or disabled

How to preset property defaults
Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original factory

settings, you can left mouse click on the preset text and select the option to restore

to return to the original factory settings - please note though that you cannot save a

custom default to restore to.

Notes:

· A number of pre-defined variables can be used in the "Tab Name" field. For

more information, see the "Tab Name Variables" section of the Using Tabs

page.

· Columns cannot be resorted or removed.

10.8.12 Messages Tab

The Messages tab displays messages in relation to your account in a data grid.

Understanding the Messages tab

Messages Display
Unread messages will be displayed in bold and have the Mark as read button

enabled. The Date and time the message was sent is included. The tab will

display in a highlighted color if there are unread messages and indicate how many

unread messages there are.

NinjaTrader 8952

© 2023 NinjaTrader, LLC

Right Click Menu
Right mouse clicking within the log display section opens the following menu:

Mark All

As Read

Marks all unread messages as read

Always

On Top

Sets if the window will be always on top of other

windows

Show

Tabs

Sets if the window should allow for tabs

Export Exports the grid contents to "CSV" or "Excel" file

format

Find... Search for a term in the grid

Print Select to print either the window or the log grid

area.

Operations 953

© 2023 NinjaTrader, LLC

Share Select to share via your share connections.

Propertie

s...

Configure the positions grid properties

10.8.13 Connection Status

Connection Status
The connection status is reported in the connections menu per provider. There is also an

aggregated connection status in the bottom left hand corner of the Control Center.

1. Connection Status icon inside the Connections menu

2. Connection Status icon displayed in the Control Center

Tip: If you're using multiple connections, hovering your mouse cursor above the

connection status will show a tool tip which will give you the individual status of each

connection.

Please see the following connection states:

Connecte Indicates that NinjaTrader is fully connected

NinjaTrader 8954

© 2023 NinjaTrader, LLC

d

Connectin

g

Indicates that NinjaTrader is attempting to connect

Connectio

n Lost

(Price

Server)

Indicates that NinjaTrader has lost connection to

the price server

Connectio

n Lost

(Order

Server)

Indicates that NinjaTrader has lost connection to

the order server

Disconnec

ted

Indicates that NinjaTrader is not connected

10.9 Database

Database Window Overview

You can access the Database window by left mouse clicking in the Tools menu within the

NinjaTrader Control Center and selecting the menu item Database...

The Database window allows for the centralized management of all database related

functions.

› Database Operations

10.9.1 Database Operations

Various database operations can be performed from the Database window.

Operations 955

© 2023 NinjaTrader, LLC

NinjaTrader 8956

© 2023 NinjaTrader, LLC

Rollover futures instruments

Rollover Futures Instruments
This will rollover your futures instrument to the most recent expiries across all

open workspaces. If there are instruments open in the workspace that are eligible

to be rolled forward they will be shown in the grid. For more information on this

process please see the rolling over a futures contract section of the help guide.

Update instruments

Update Instruments
This will replace and update all instruments to current server definitions.

The NinjaTrader data server maintains definitions for Instruments, NinjaTrader will

update your local instrument general properties and symbol mappings should

there be any changes on the server automatically. However if you make any

changes to the either the general properties or the symbol mappings for an

instrument then the instrument would no longer be automatically updated. Using

this utility will remove any custom changes you have made locally and update the

instrument definition to the servers version.

General properties Sets if the General properties

of each instrument will be

replaced with the server

definition

Future expiries Sets if the Contract Months of

each Future instrument will

be replaced with the server

definition

Symbol mappings Sets if the Symbol mappings

of each instrument will be

replaced with the server

definition

Remove user added

instruments

Sets if instruments created

by the user will also be

Operations 957

© 2023 NinjaTrader, LLC

removed

Note: If you would like to report an incorrect or missing server definition please

send an email to platformsupport@ninjatrader.com and we will promptly

correct the issue.

Update instrument lists

Update Instruments Lists
This will replace and update all instrument lists to current server definitions.

The NinjaTrader data server maintains definitions for the following instrument lists:

· Dow 30

· FOREX

· Futures

· Indexes

· NASDAQ 100

· SP 500

Any time there is an instrument added or removed to the above instrument lists

they will be automatically updated by NinjaTrader. However if you add or remove

instruments from the list manually using the Instrument Lists window then the

instrument list will no longer continue to be updated automatically by NinjaTrader.

Should you wish to update and reset your instrument lists manually then you would

use the following update utility.

Predefined instrument lists Sets if the General properties

of each instrument will be

replaced with the server

definition

Remove user added

instrument lists

Sets if instruments created

by the user will also be

removed

NinjaTrader 8958

© 2023 NinjaTrader, LLC

Note: If you would like to report an incorrect or missing server definition please

send an email to platformsupport@ninjatrader.com and we will promptly correct

the issue.

Update trading hour templates

Update Trading Hour Templates
This will replace and update all trading hour templates to current server

definitions.

Update commissions templates

Update Commissions Templates
This will replace and update all commissions templates to current server

definitions.

Update risk templates

Update Risk Templates
This will replace and update all risk templates to current server definitions.

Restore workspace

Restore Workspace
This can be used to restore a previous saved version of a saved workspace.

When selecting Restore you will be directed to the location of the recovery

workspaces. They will be organized in folders with the names of the workspaces.

Double click the folder of the workspace you want to recover and then select the

recovery file with the date/time that you want to recover.

By default 10 previously saved versions of your workspaces will be retained. To

modify how many recovery versions are available within the Control Center go to

Tools and select Options. Within the General section go to Preferences and set the

Versions of recovery workspaces. See the Options General section.

Operations 959

© 2023 NinjaTrader, LLC

Note: Deleted workspaces cannot be restored using this feature. However, if

you have a backup you could restore it from there. See the Backup & Restore

section.

Reset DB

Reset the Database
This will remove historical trade data from the database. It will not remove chart

data or reset any Simulation accounts.

Historical orders Sets if the historical orders

stored in the database will be

removed

Historical executions Sets if the historical

executions in the database

will be removed

Repair DB

Repair the Database
This should only be used when directed by NinjaTrader support and performs a

repair on the NinjaTrader database. Depending on the size of the database this

can take a few moments to complete.

10.10 Data Grids

Data Grids Overview

Data grids are customizable tables which are used to display a multitude of information

throughout various product features.

› Working with Data Grids

NinjaTrader 8960

© 2023 NinjaTrader, LLC

10.10.1 Working with Data Grids

All data grids found throughout NinjaTrader are customizable.

Data Grids
With a data grid you can:

· Resize columns

· Enable and Disable columns

· Export data to Excel

· Save data as a CSV file

· Email the data as an image

· Print data

· Search data

Right Click Menu
Right mouse clicking within any data grid will bring up a menu with several grid actions.

You may want to export your execution history to Excel for further analysis as an

example. Simply go to any grid displaying execution history, right mouse click and

select the Export... menu item. Here you can choose the file type and file name to

export, select either "CSV" or "Excel".

Moving Columns
To adjust the order of columns within a data gird, left mouse click and hold on the

column header and drag it to the location you wish to place the selected column. Two

blue arrows will appear above and below the location in the grid you will be moving the

column to (see image below). Release the mouse button to place the column in the

new location.

Operations 961

© 2023 NinjaTrader, LLC

Enabling and Disabling Columns
Selecting the Properties menu item of the right mouse click of the window will give you

thew windows properties. In the properties window under the "Column" category you

can choose which columns you wish to show (make visible). Any column name with a

check-mark next to it will be visible and un-checking a column name will take the

column out of the data grid.

NinjaTrader 8962

© 2023 NinjaTrader, LLC

10.11 Depth Chart

Depth Chart Window Overview

You can access the Depth Chart window from within the NinjaTrader Control Center

window by left mouse clicking on the menu New, and then selecting the menu item Depth

Chart.

The Depth Chart window is available for futures and cryptocurrency instruments. It

displays the current book bid and ask volume data in a cumulative manner. It is used to

gauge cumulative strength and depth on either side of the market.

› Using the Depth Chart Window

› Depth Chart Properties

› Window Linking

10.11.1 Using the Depth Chart Window

Selecting a Cryptocurreny Instrument

There are multiple ways to select an Instrument in the Depth Chart window.

· Right clicking on the Depth Chart window and selecting the menu Instruments.

· With the Depth Chart window selected begin typing the instrument symbol

directly on the keyboard. Typing will trigger the Overlay Instrument Selector.

For more Information on instrument selection and management please see

Instruments section of the Help Guide.

Understanding the layout of the Depth Chart window

Operations 963

© 2023 NinjaTrader, LLC

 Quotes

The Quotes section displays various market data items.

Bid The current bid price

Ask The current ask price

Last The current last traded price

Open The current sessions open price

High The current sessions high price

Low The current sessions low price

Vol The current sessions total volume.

NinjaTrader 8964

© 2023 NinjaTrader, LLC

You can disable the Quotes section by clicking on your right mouse button and

deselecting the menu item Show Quotes.

 Graph

The Graph displays the cumulative buy and sell orders through the full available

book, so the vertical Y-axis value at any point is the result of summing all bids

(asks) from the best bid (ask) to the price value on the horizontal X axis.

You can use the +/- zoom buttons on the chart to set the zoom level (right click on

the chart > Reset zoom to reset the level to default).

 Tooltip

The tooltip displays:

- the selected Depth chart x-axis value

- the associated cumulative volume up to that value

- the currency cost of the cumulative volume

Right Click Menu
Right mouse click on the Depth Chart window to access the right click menu.

Operations 965

© 2023 NinjaTrader, LLC

Instruments Selects the instrument

Show Quotes Sets if the quotes section is displayed

Reset Zoom Resets the zoom level to default

Always On Top Sets if the window should be always on

top of other windows

Show Tabs Sets if the window will allow for tab support

Print Displays Print options

Share Displays Share options

Properties... Sets the Depth Chart Properties

Using Tabs

The Depth Chart window is a tabbed interface, this gives you the ability to have

multiple Depth Chart tabs configured in the same window. Please see the Using

Tabs section of the help guide for more information.

NinjaTrader 8966

© 2023 NinjaTrader, LLC

10.11.2 Depth Chart Properties

The Depth Chart window can be customized through the Depth Chart Properties window.

How to access the Depth Chart Properties window

You can access the Depth Chart properties dialog window by clicking on your right

mouse button and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the Depth Chart

Properties window:

Operations 967

© 2023 NinjaTrader, LLC

Property Definitions

General

Font Sets the font options

Gradient strength Sets how strong the gradient

coloring effect should be,

default is 0.5 - possible range

of values is 0.0 - 1.0 (0.0

deactives the gradient)

NinjaTrader 8968

© 2023 NinjaTrader, LLC

Show quotes Sets if the quotes section is

displayed

Show tooltip Sets if the data tooltip is

displayed

Tab name Sets the name of the tab,

please see Using Tab Name

variables for more

information.

Color

Axis Sets the axis color

Buy orders Sets the color for tracking

buy orders

Sell orders Sets the color for tracking sell

orders

Text Sets the text color

Window

Always on top Sets if the window will be

always on top of other

windows.

Show tabs Sets if the window will allow

for tab support

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

Operations 969

© 2023 NinjaTrader, LLC

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

Using Tab Name Variables

Tab Name Variables
A number of pre-defined variables can be used in the "Tab Name" field of the

Depth Chart Properties window. For more information, see the "Tab Name

Variables" section of the Using Tabs page.

10.11.3 Window Linking

Please see the Window Linking section of the Help Guide for more information on linking the

Depth Chart window.

10.12 FX Correlation

FX Corerlation Window Overview

You can access the FX Correlation window from within the NinjaTrader Control Center

window by left mouse clicking on the menu New, and then selecting the menu item FX

Correlation.

The FX Correlation window is available for Forex instruments and displays instruments

move in a similar direction, opposite direction, or have no correlation.

› Using the FX Correlation Window

› FX Correlation Properties

› Window Linking

10.12.1 Using the FX Correlation Window

Selecting a Forex Instrument

There are multiple ways to select a Forex Instrument in the FX Correlation Chart

window.

NinjaTrader 8970

© 2023 NinjaTrader, LLC

· Right clicking on the FX Correlation window and selecting the menu Add

Instrument(s).

· With the FX Correltion window selected begin typing the instrument symbol

directly on the keyboard. Typing will trigger the Overlay Instrument Selector.

For more Information on instrument selection and management please see

Instruments section of the Help Guide.

Understanding the layout of the FX Correlation window

 Range

The Range drop down menu indicates over how long of a period to calculate the

correlation for the instruments. It is based of of minute data so selecting Year

would be 1 minute data over the past year.

 Correlation instruments

The correlation instruments are the instruments that will be compared against

each other.

 Correlation values

Correlation values closer to 1 indicate that the instruments move in the same

direction. Values closer to -1 indicate that the instruments move in the opposite

direction. Value closer to 0 indicate no correlation.

Operations 971

© 2023 NinjaTrader, LLC

Right Click Menu
Right mouse click on the FX Correlation window to access the right click menu.

Add Instruments Selects the Forex instrument to add

Always On Top Sets if the window should be always on

top of other windows

Show Tabs Sets if the window will allow for tab support

Print Displays Print options

Share Displays Share options

Reload All

Historical Data

Reloads the historical bar data used for

Indicator calculations

Export... Exports the FX Correlaion contents to

"CSV" or "Excel" file format

Properties... Sets the FX Correlation Properties

Using Tabs

The FX Correlation Chart window is a tabbed interface, this gives you the ability

to have multiple FX Correlation Chart tabs configured in the same window.

Please see the Using Tabs section of the help guide for more information.

NinjaTrader 8972

© 2023 NinjaTrader, LLC

10.12.2 FX Correlation Properties

The FX Correlation window can be customized through the FX Correlation Properties

window.

How to access the FX Correlation Properties window

You can access the FX Correlation properties dialog window by clicking on your

right mouse button and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the FX Correlation

Properties window:

Operations 973

© 2023 NinjaTrader, LLC

Property Definitions

General

Grid Font Sets the font options

Tab name Sets the name of the tab,

please see Using Tab Name

variables for more

information.

Color

Grid background Sets the default color of the

display grid background

Grid foreground Sets the default color of the

text in a cell

Grid lines Sets the color of grid lines

Label row background Sets the default color for the

Label row background

Label row foreground Sets the default color for the

Label row foreground

Negative correlation Sets the color for negative

value correlations

Positive correlation Sets the color for positive

value correlations

Window

Always on top Sets if the window will be

always on top of other

windows.

NinjaTrader 8974

© 2023 NinjaTrader, LLC

Show tabs Sets if the window will allow

for tab support

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

Using Tab Name Variables

Tab Name Variables
A number of pre-defined variables can be used in the "Tab Name" field of the FX

Correlation Properties window. For more information, see the "Tab Name

Variables" section of the Using Tabs page.

10.12.3 Window Linking

Please see the Window Linking section of the Help Guide for more information on linking the

FX Correlation window.

Operations 975

© 2023 NinjaTrader, LLC

10.13 Historical Data

Historical Data Window

The Historical Data Window can be accessed by left mouse clicking the Tools menu

within the Control Center and selecting the menu item Historical Data..

The Historical Data Window provides access to all historical data and Market Replay

data used in NinjaTrader as supplied from your historical market data provider and/or

collected from a real-time data feed. The option to import, export, edit and download

historical data are available within the Historical Data Window window.

› Importing

› Exporting

› Editing

› Download

10.13.1 Loading Historical Data

NinjaTrader has 3 levels of data access: From provider, from cache, and from memory.

1. From provider is naturally the slowest, since data has to be transferred over the internet

from your connected data provider.

2. From cache is much faster, since we cache the data to the hard drive and load from there

on any subsequent request.

3. From memory is the fastest and typically results in "instant" chart loads, which is possible

since the data is already in use by NinjaTrader so we don't have to make a trip to the

cache or the provider.

The reality is for any chart load, there typically will be data returned from multiple levels of data

access. Where NinjaTrader will load as much as possible from the memory or cache and

make a request to fill any gap to the provider.

The NinjaTrader memory and speeding up the loading of data

Data that is currently being used will be in the memory and will first be used to

populate your charts. Additionally, to minimize the need to load data and to speed

up chart load times, NinjaTrader maintains an internal cache of your prior

accessed data. When data is in this cache, NinjaTrader will use it to populate your

charts instead of loading from your data provider.

NinjaTrader 8976

© 2023 NinjaTrader, LLC

There are two ways to ensure that the memory contains data for your instrument

of interest:

1. Load the instrument into a Market Analyzer window along with an indicator

column with the same chart parameters you plan to be loading.

2. Open and maintain a chart with the same data type and days to load that you

plan on loading.

When does NinjaTrader download historical data?

NinjaTrader loads data from your data provider whenever it determines it could

potentially not have all the data pertaining to the requested time period.

NinjaTrader will load data when:

1. The End date parameter of the Data Series window contains the current day

(this results in the current and prior day downloading)

2. The most recent day of data in your data request is not available in the data

repository (this results in the most recent day from your data request and prior

day downloading)

3. When the oldest day of data in your data request is not available in the data

repository or it only goes up to that date (this results in all requested historical

trading day data downloading and the prior day)

The prior day is included as many instruments trading days starts on the prior day.

What historical data is loaded from provider?

Examples of when NinjaTrader will fetch data if the data repository contains data

from 1/2/14 to 1/5/14 and the current date is 1/6/14:

1. Chart of 1/2/14 to 1/6/14 -> load data request for 1/6/14, use data stored in

memory/cache for other dates

2. Chart of 1/2/14 to 1/5/14 -> load data request for 1/5/14, use data stored in

memory/cache for other dates

3. Chart of 1/2/14 to 1/4/14 -> use data stored in memory/cache for all dates

4. Chart of 12/27/13 to 1/4/13 -> load data request for all dates

Expanded example for a more detailed explanation:

Operations 977

© 2023 NinjaTrader, LLC

Historical tick data in the repository from 12/1/2013 until 1/1/2014 2:00 PM

Historical minute data in the repository from 1/1/2013 until 1/1/2014 2:00 PM

Historical daily data in the repository from 1/1/2013 until 1/1/2014

Today is the 1/2/2014 9:00 AM and the Trading Hours Template is "CME US Index

Futures ETH"

Scenario Requested from

Local Repository

Downloaded

From Provider

1 tick chart 3 days

back with end

date of today

12/31/2013 7:00

PM to 1/1/2014

2:00 PM

1/1/2014 2:00 PM

to 1/2/2014 9:00

AM

1 minute chart 5

days back with

end date of today

12/29/2013 7:00

PM to 1/1/2014

2:00 PM

1/1/2014 2:00 PM

to 1/2/2014 9:00

AM

1 day chart 365

days back with

end date of today

1/2/2013 to

1/1/2014

2/1/2014

Critical: All NinjaTrader historical data requests are handled using calendar

days format, please keep this in mind when for example interpreting loading

results that include weekends or holidays periods where the may be no actual

data - the affected calendar day would still be counted as a 'day' in the request.

10.13.2 Data by Provider

Understanding the data provided by your connectivity provider
NinjaTrader, LLC is not a market data provider. Historical data is provided by our connectivity

providers that offer historical data as part of their service. The table below displays all

NinjaTrader supported connectivity providers as well as the historical and real-time data

provided by each:

Co

nn

ect

ivit

Re

al-

Ti

me

His

tori

cal

Tic

His

tor

ica

l

His

tori

cal

Bid

His

tor

ica

l

His

tori

cal

Mi

His

tor

ica

l

R

e

al

-

In

st

r

u

R

e

al

-

Ti

c

k

R

B

id

/A

s

D

ai

ly

B

S

et

tl

e

NinjaTrader 8978

© 2023 NinjaTrader, LLC

y

Pr

ovi

der

Dat

a

k

Dat

a

Bi

d/A

sk

Mi

nut

e

Da

ta

/As

k

Dai

ly

Dat

a

Bi

d/A

sk

Tic

k

Da

ta

nut

e

Dat

a

Dai

ly

Da

ta

T

i

m

e

T

i

m

e

st

a

m

p

m

e

nt

s

S

u

p

p

o

rt

e

d

Ti

m

e

N

e

w

s

e

pl

ay

k

S

ta

m

p

e

d

Ti

c

k

D

at

a

ar

s

T

ra

di

n

g

H

o

ur

s

m

e

nt

a

dj

u

st

e

d

C

lo

s

e

P

ri

c

e

F

o

r

D

ai

ly

B

ar

s

Nin

jaT

rad

er

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

N

at

iv

e

F,

I

N

O

Y

E

S

Y

E

S

E

xt

e

n

d

e

d

Tr

a

di

n

g

H

o

Y

E

S

Operations 979

© 2023 NinjaTrader, LLC

ur

s

Kin

eti

ck

ww

w.k

ine

tic

k.c

om

YE

S

(su

bsc

ripti

on

onl

y)

YE

S

(su

bsc

ripti

on

onl

y)

NO NO
*Y

ES

YE

S

(su

bsc

ripti

on

onl

y)

YE

S

N

at

iv

e

E

(

O

),

F(

O

),

F

X,

I

Y

E

S

Y

E

S

Y

E

S

S

y

m

b

ol

M

a

p

S

p

e

cif

ic

Y

E

S

Ba

rC

har

t

YE

S

YE

S
NO NO NO

YE

S

YE

S

N

at

iv

e

E,

F,

F

X,

I

N

O

Y

E

S

N

O

S

y

m

b

ol

M

a

p

S

p

e

cif

ic

Y

E

S

Coi

nb

as

e

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

N

at

iv

e

C

C

N

O

N

O

N

O

U

T

C

N/

A

Co

nti

nu

um

/C

QG

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

N

at

iv

e

F,

I

N

O

Y

E

S

Y

E

S

E

xt

e

n

d

e

d

Y

E

S

http://www.kinetick.com
http://www.kinetick.com
http://www.kinetick.com
http://www.kinetick.com
http://www.kinetick.com
http://www.kinetick.com

NinjaTrader 8980

© 2023 NinjaTrader, LLC

Tr

a

di

n

g

H

o

ur

s

Co

nti

nu

um

/C

QG

We

bA

PI

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

N

at

iv

e

F(

O

),

I

N

O

Y

E

S

Y

E

S

E

xt

e

n

d

e

d

Tr

a

di

n

g

H

o

ur

s

Y

E

S

cTr

ad

er

YE

S

YE

S
NO NO

YE

S

YE

S

YE

S

N

at

iv

e

C
N

O

Y

E

S

N

O

C

F

D

N/

A

eSi

gn

al

YE

S

YE

S
NO NO

YE

S

YE

S

YE

S

N

at

iv

e

E,

F,

F

X,

I

N

O

Y

E

S

N

O

S

y

m

b

ol

M

a

p

S

p

e

N

O

Operations 981

© 2023 NinjaTrader, LLC

cif

ic

FO

RE

X.c

om

/Cit

y

Ind

ex

YE

S

YE

S
NO NO NO

YE

S

YE

S

N

at

iv

e

F

X,

C

N

O

Y

E

S

N/

A

F

or

ex

N/

A

FX

CM

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

N

at

iv

e

F

X,

C

N

O

Y

E

S

N/

A

F

or

ex

N/

A

Int

era

cti

ve

Br

ok

ers

YE

S
NO

YE

S

YE

S
NO

YE

S

(liv

e

acc

oun

t

onl

y)

YE

S

(liv

e

ac

co

unt

onl

y)

L

o

c

al

C

,

E

(

O

),

F(

O

),

F

X,

I

N

O

N

O

N

O

E

xt

e

n

d

e

d

Tr

a

di

n

g

H

o

ur

s

N

O

IQ

Fe

ed

YE

S

YE

S
NO NO

*Y

ES

YE

S

YE

S

N

at

iv

e

E

(

O

),

F(

O

),

F

Y

E

S

Y

E

S

Y

E

S

S

y

m

b

ol

M

a

p

S

Y

E

S

NinjaTrader 8982

© 2023 NinjaTrader, LLC

X,

I

p

e

cif

ic

Rit

hm

ic

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

YE

S

N

at

iv

e

F
N

O

Y

E

S

Y

E

S

E

xt

e

n

d

e

d

Tr

a

di

n

g

H

o

ur

s

Y

E

S

TD

Am

erit

rad

e

YE

S
NO NO NO NO

YE

S

YE

S

L

o

c

al

E

(

O

),

I

N

O

N

O

N

O

R

e

g

ul

ar

Tr

a

di

n

g

H

o

ur

s

N

O

C = CFD

CC = CryptoCurrency

E = Equities

F = Futures

FX = Forex

I = Indexes

Operations 983

© 2023 NinjaTrader, LLC

(O) = Options on underlying instrument type

Notes:

There are various limitations on data from each provider and data is subject to change.

Options are not supported for NinjaScript use.

*Historical bid/ask comes from associated value at each historical last tick value.

Converting Real-Time Data into Historical Data
NinjaTrader by default will always loads historical data from your provider (Recommended).

However if you enable the option 'Record live data as historical' in the Control Center > Tools

> Options > Market Data Category then NinjaTrader will store real-time incoming tick data to

your local PC if you have a Chart or Market Analyzer (must have an indicator column added)

window open. This data can then be used as historical data. For example, if you open a chart

and let it run all day long, the data collected today, will be available as historical data when you

open the same chart tomorrow.

Warning: Recording live data uses more PC resources and is intended for connections

which DO NOT provide historical data. Enabling this option while also using a historical

data provider is not recommended as it may result in data gaps.

Connecting to your Broker and a Market Data Provider Simultaneously
If your broker technology does not support historical data, you can connect to a service like

Kinetick at the same time as connecting to your broker so that you can receive historical data.

Please see the topic on Multiple Connections for additional information.

10.13.3 Importing

Historical data can be imported from a text file with a ".txt" extension within the Loaded

section of the Historical Data Window. Several formats and data types are supported and

NinjaTrader can optionally build 'Minute' bars from tick data as well as 'Day' bars from tick or

minute data.

Understanding import options

NinjaTrader 8984

© 2023 NinjaTrader, LLC

Understanding import options
The following formats and options are available when importing a text file:

Format

Select one of three options available in the Format drop down menu:

1. NinjaTrader (timestamps in import file(s) represent end of bar time)

2. NinjaTrader (timestamps in import file(s) represent start of bar time)

3. Tick Data, LLC

Data Type

Select one of three options available for the data type:

1. Ask - Data values in the text file represent historical Ask prices

2. Bid - Data values in the text file represent historical Bid prices

3. Last - Data values in the text file represent historical Last prices (trades)

Operations 985

© 2023 NinjaTrader, LLC

Time Zone of Imported Data

Select the time zone of the data you are importing (not the time zone you are

importing to as all imported data will always be converted to local PC time). If you

are importing data exported from NinjaTrader then this should be left as UTC

because NinjaTrader exports are always done in the UTC time zone.

Generate 'Minute' Bars from Imported Tick Data:
Select this option to convert the tick data from the import file into historical 'Minute'

data. This allows any 'Minute' interval to be available within NinjaTrader.

Generate 'Day' Bars from Imported Tick or Minute Data:
Select this option to convert the tick or minute data from the import file into 'Day'

data. This allows the building of 'Day', 'Week', 'Month' and 'Year' bars within

NinjaTrader. (See the "Historical & Real-Time Data" section of the Help Guide for

more information on historical data.)

Note: Generating bars from imported tick data is done based off of the timestamps

of the tick data. It is possible that the generated bars do not perfectly match minute

or daily bars provided by the data provider as they may utilize a different

timestamp granularity than your import data for their own bar generations.

Understanding import file and data formats

File Name
When using the NinjaTrader format, the name of the text file to be imported must

be the NinjaTrader instrument name followed by a period and "Last", "Bid", or "Ask"

depending on the data type. For example:

MSFT.Last.txt for Microsoft stock last price data

ES 12-09.Bid.txt for the S&P E-mini December contract bid price data

EURUSD.Ask.txt for the Euro/U.S. dollar currency pair ask price data

Daily Bars Format
Each bar must be on its own line and fields must be separated by semicolon (;).

Only 1 day bars can be imported.

The format is:

yyyyMMdd;open price;high price;low price;close price;volume

Sample data:

NinjaTrader 8986

© 2023 NinjaTrader, LLC

20061023;1377.25;1377.25;1377.25;1377.25;86

20061024;1377.25;1377.25;1377.25;1377.25;27

20061025;1377.25;1377.25;1377.25;1377.25;24

20061026;1377.50;1377.50;1377.25;1377.25;82

Minute Bars Format
Each bar must be on its own line and fields must be separated by semicolon (;).

Only 1 minute bars can be imported.

The format is:

yyyyMMdd HHmmss;open price;high price;low price;close price;volume

Sample data:

20061023 004400;1377.25;1377.25;1377.25;1377.25;86

20061023 004500;1377.25;1377.25;1377.25;1377.25;27

20061023 004600;1377.25;1377.25;1377.25;1377.25;24

20061023 004700;1377.50;1377.50;1377.25;1377.25;82

Tick Format (Second Granularity)
Each tick must be on its own line and fields must be separated by semicolon (;).

The format is:

yyyyMMdd HHmmss;price;volume

Sample data:

20061107 000431;1383.00;1

20061107 000456;1383.25;25

20061107 000456;1383.25;36

20061107 000537;1383.25;14

Tick Format (Sub Second Granularity)
You can also import tick granularity to the ten millionth of a second. Each tick must

be on its own line and fields must be separated by semicolon (;).

The format is:

yyyyMMdd HHmmss fffffff;price;volume

Sample data: (Note: If you wanted to import in millisecond granularity data then

each line must have the remaining "0"'s behind it to import correctly.)

20061107 000431 1000000;1383.00;1

20061107 000456 1000000;1383.25;25

20061107 000456 2000000;1383.25;36

Operations 987

© 2023 NinjaTrader, LLC

20061107 000537 7000000;1383.25;14

Tip: You can also import historical tick data to be used with Tick Replay,

which includes the current bid and ask prices associated with the last price of

that tick (not to be confused with Playback "Market Replay" data which

CANNOT import manually). Importing tick replay data without sub-second

granularity is less accurate.

Tick Replay Format (Sub Second Granularity)
Each tick must be on its own line and fields must be separated by semicolon (;).

The format is:

yyyyMMdd HHmmss fffffff;last price; bid price; ask price;volume

Sample data: (Note: If you wanted to import in millisecond granularity data then

each line must have the remaining "0"'s behind it to import correctly.)

20061107 000431 1000000;1383.00;1383.00;1383.25;1

20061107 000456 1000000;1383.25;1382.50;1382.25;25

20061107 000456 2000000;1383.25;1383.25;1383.50;36

20061107 000537 7000000;1383.25;1383.25;1383.50;14

Tick Replay Format (Second Granularity)
Each tick must be on its own line and fields must be separated by semicolon (;).

The format is:

yyyyMMdd HHmmss;last price;bid price;ask price;volume

Sample data:

20061107 000431;1383.00;1383.00;1383.25;1

20061107 000456;1383.25;1382.50;1382.25;25

20061107 000456;1383.25;1383.25;1383.50;36

20061107 000537;1383.25;1383.25;1383.50;14

How to import historical data from a text file

Importing Tips
Please review the following before importing:

NinjaTrader 8988

© 2023 NinjaTrader, LLC

· If you are importing historical data for a futures or forex instrument, the

instrument MUST exist in the database. If it does not, you must add it first via the

Instruments window.

· Any data imported where the instrument does not exist in the database will

automatically be imported as a "Stock" instrument type

· Data points will be rounded to the instruments tick size as it is imported if the

price is not evenly divisible by the instrument's tick size

· Imported data, regardless of time zone, will be converted to the local time zone.

Importing Historical Text Data
To import historical data from a text file into NinjaTrader:

Choose the Format and Data type that correctly represent the data in the

import file (see the "Understanding the import options" section above)

Operations 989

© 2023 NinjaTrader, LLC

Optionally select any of the Generate... choices to have NinjaTrader create

other bar types from the import data

Select the Time zone of the imported data (Note: Any data exported from

NinjaTrader is always exported in UTC time zone)

Press the Import button

Select the text file from your PC to import and press the "Open" button.

NinjaTrader will attempt to import the text file. If successful, a window will appear

confirming this. If unsuccessful, an error window will appear and you should check

the Log tab of the Control Center to view the error(s).

Formatting data from Tick Data, LLC

When exporting data from Tick Data, LLC with their TickWrite utility, the data must

be exported in a format NinjaTrader can import and then the file will need to be

properly renamed.

Formatting data
Download the following file then unzip it to access the NinjaTrader.twj file:
TickDataLLC.zip.
Within TickWrite you can go to File and select Open Job to select the

NinjaTrader.twj file.

Now you can configure what data you want to export and when you execute the job

the data will be in the required format.

https://ninjatrader.com/support/helpGuides/nt8/samples/TickDataLLC.zip

NinjaTrader 8990

© 2023 NinjaTrader, LLC

Formatting the File Name
When using the NinjaTrader format, the name of the text file to be imported must

be the NinjaTrader instrument name followed by a period and "Last", "Bid", or "Ask"

depending on the data type. For example:

MSFT.Last.txt for Microsoft stock last price data

ES 12-09.Bid.txt for the S&P E-mini December contract bid price data

EURUSD.Ask.txt for the Euro/U.S. dollar currency pair ask price data

10.13.4 Exporting

Historical data stored within NinjaTrader can be exported to a text ".txt" file. This is done within

the Export section of the Historical Data Window window.

How to Export Historical Data
It is important to understand that the historical data you wish to export must currently be

saved in NinjaTrader as provided by the data provider or collected live. Please see the

"Historical & Real-Time Data" section of the Help Guide for more information. If you do

not have data, it can be downloaded from your data provider using the Download

section of the Historical Data Window Load tab.

Operations 991

© 2023 NinjaTrader, LLC

To export historical data to a text file:

 Select the instrument to export. The instruments you have data for will be available

for selection.

 Select the interval type to export. The interval type(s) "Tick," "Minute," or "Day" are

displayed if that type of data is available.

 Select the Data type to export. The data type(s) "Ask," "Bid," or "Last" are displayed

if that type of data is available.

 Select the desired Start date.

 Select the desired End date.

 Click "Export" and select an location and file name for the exported file.

NinjaTrader 8992

© 2023 NinjaTrader, LLC

The historical data is exported with End of Bar time stamps to the chosen folder as a

text file in the same format specified in the "Understanding import file and data formats"

section of the Importing page. The exported data will be in the UTC time zone.

10.13.5 Editing

Historical data saved in NinjaTrader can be edited via the Edit section of the Historical Data

Window.

How to edit historical data

Editing Historical Data
It is important to understand that the historical data you wish to edit must currently

be saved in NinjaTrader as provided by the data provider or collected live. Please

see the "Historical & Real-Time Data" section of the Help Guide for more

information. If you do not have data, it can be downloaded from your data provider

if they offer it by using the Load tab of the Historical Data Window.

To edit historical data available within NinjaTrader:

 Left mouse click the plus "+" for "Historical"

 Select the "+" for the Instrument.

 Select "Ask," "Bid," or "Last,"data type

 Select the "Tick", "Minute", "Day" data type

 Select the date.

The data for that data type and date will be shown in the data grid.

Operations 993

© 2023 NinjaTrader, LLC

· Changing data - Double left mouse click on a cell in the Open, High, Low, Close

or Volume column to edit the data value.

· Adding data - Left mouse click on a row to select it. Then right mouse click to

access the options to Add a new data row.

· Excluding data - Right mouse click on the desired row and select the menu item

Exclude to exclude the data. Excluded data is data that is intentionally ignored

and not used. NinjaTrader will remember this excluded data on a historical data

reload.

· Any changes that are made are both color coded as well as shown in the Status

column. The status column will report when any data has been modified from

original values.

NinjaTrader 8994

© 2023 NinjaTrader, LLC

Once the desired changes are made, press "save" in the bottom right hand corner

of the Edit tab to save the changes within NinjaTrader.

Note: If more than one row contains the same Date, Time and price values, all

similar rows will be edited.

Excluding Data
To exclude data right click on the row of data to be excluded and select "Exclude".

Note: All rows with the same date and time will be automatically excluded by

NinjaTrader.

Using the Edit Logs

Operations 995

© 2023 NinjaTrader, LLC

 Once any changes are saved to the historical data by pressing "save", an Edit

Logs node appears under the instrument node.

 The Edit Logs node contains all edits made to historical data for a specific

instrument. Edits can be undone by right mouse clicking on the change you wish

to undue and selecting the menu item Remove Exclusion. All edits can be removed

by right mouse clicking over the edit node and selecting the menu item Remove All

Edits.

How to delete historical data

Historical data saved in NinjaTrader can be deleted via the Loaded section of the

Historical Data Window.

Deleting Historical Data
It is important to understand that the historical data you wish to delete must

currently be saved in NinjaTrader as provided by the data provider or collected

live.

NinjaTrader 8996

© 2023 NinjaTrader, LLC

To delete historical data saved in NinjaTrader:

1. Left mouse click on any node available in the Edit tab of the Historical Data

Window to select it.

2. Right mouse click and select the menu item Delete or press the 'Delete' key

on your keyboard to delete all data contained in the node.

Note: Deleted historical data will be replaced when data is reloaded from the

connectivity provider. Please see the "Excluding Data" sub-section of the "How to

edit historical data" section above for more information on excluding data, which

will remain excluded when reloading data from the data provider.

10.13.6 Download

Historical data can be downloaded from the data provider via the Download section.

How to Download Historical Data
To download historical data first make sure NinjaTrader is connected and historical

data is available from your data provider.

 Select an instrument for data to be downloaded. (Tip: You may also select an

instrument list)

 Select the desired Start and End date range

 Select the desired Intervals and Data Types

 Press the "Download" button to begin the download

Operations 997

© 2023 NinjaTrader, LLC

A message in the bottom right of the Historical Data Window will appear and display

the status of the download.

To cancel a historical data request close the Historical Data Window window.

Notes:

· If you already have historical data for an instrument, please be sure to only select

a date range in which your data provider offers historical data. If you choose a

range older than what your data provider offers you may lose any data you had

stored on those dates in that range outside of what your data provider offers.

· Downloading historical data will function based on the Merge Policy being used.

Using MergeBackAdjusted or MergeNonBackAdjusted will switch what

contract month is being downloaded based on the rollovers occurring during the

selected date range. To download data for just the selected contract the Merge

Policy will need to be set to DoNotMerge. See the Merge Policy section for

more information on Merge Policies.

NinjaTrader 8998

© 2023 NinjaTrader, LLC

10.14 Hot Keys

Hot Keys Overview

You can access the Hot Key window by left mouse clicking in the Tools menu within the

NinjaTrader Control Center and selecting the menu item Hot Keys...

NinjaTrader allows you to assign specific key strokes as Hot Keys in order to quickly

perform a task. Hot Key utilization includes, but is not limited to: opening new windows,

performing tasks within open windows, and placing orders in an order entry window. The

Hot Key window allows you to add and remove Hot Key assignments to various

application actions.

› Working with Hot Keys

› Trading with Hot Keys

10.14.1 Working with Hot Keys

You can customize the Hot Keys by assigning the desired key stroke in the related action

field. You also have the ability to print the full list of actions and their related Hot Keys for easy

reference.

Understanding the Hot Keys window

Operations 999

© 2023 NinjaTrader, LLC

1. Active Window Categories

The Categories section displays a list of NinjaTrader windows where Hot Keys can

be assigned. Please see the "Understanding when Hot Keys are active" section of

this page for more information on the active window.

2. Available Actions and Hot Keys

The Keys section displays the actions available for Hot Key assignment within the

selected active window.

Assigning and Removing Hot Keys

Assigning a Hot Key
You can assign a key stroke as a Hot Key to the desired action by completing the

following steps:

1. Move your mouse over the action field where you want your Hot Key assigned, "Click

to record hot key" should display

2. Left mouse click on the field to begin recording

3. Use the keyboard to select the Hot Key combination

4. Recording will finish as you input the hot key on your keyboard or press esc to cancel

the recording

NinjaTrader 81000

© 2023 NinjaTrader, LLC

Note: If you try to assign a Hot Key that would conflict with an already defined Hot

Key you will be asked to reassign.

Removing a Hot Key
To remove a Hot Key left mouse click in the action field on the "X" icon.

Understanding when Hot Keys are active

Hot Keys are window sensitive. This means that Hot Keys will only work when the

active window is selected. The name of the window that needs to be active is

located in the left column of the Hot Keys window.

Operations 1001

© 2023 NinjaTrader, LLC

Global
Hot Keys assigned under the Global section are always active regardless of the

active NinjaTrader window with the exception of a modal window having focus.

See the "Understanding the risks in using Hot Keys for order entry" section of the

Trading with Hot Keys page of the Help Guide for more information on the modal

form exception.

Order Entry
Hot Keys assigned under the Order Entry section are active whenever an order

entry window is selected. Please see the Trading with Hot Keys section of the

Help Guide for more information on this topic.

How to print your Hot Keys for reference

NinjaTrader gives you the ability to print your assigned Hot Keys for convenient

reference.

Printing Hot Keys
1.To print a full list of your Hot Keys, right mouse click in the Hot Key Manager and

select the Print Hot Keys... menu item.

NinjaTrader 81002

© 2023 NinjaTrader, LLC

10.14.2 Trading with Hot Keys

Hot Keys can be assigned to order actions and used to place orders within NinjaTrader order

entry windows.

Understanding the risks in using Hot Keys for order entry

Hot Keys are a powerful and versatile trading tool. However, misuse can lead to

unexpected trades and therefore loss of money. There are several features of the

Hot Keys that you should become familiar with before using them for order entry to

limit the risk of unexpected order placement.

Active Window
You must always be aware of the current active window when using Hot Keys for

order entry. Order entry Hot Keys are window sensitive and will only execute an

action to the active order entry window. Please see the "Understanding where Hot

Key order entry is active" section on this page for more information on this topic.

Using the incorrect Hot Key

Operations 1003

© 2023 NinjaTrader, LLC

It is imperative that you know what Hot Key performs what action. It is easy to

confuse Ctrl+B with Shift +B which may both enter different types of orders. For

this reason, we recommend printing your Hot Keys after assigning for easy

reference. Please see the "How to print your Hot Keys for reference" section of the

Working with Hot Keys page of the Help Guide.

When Hot Keys are inactive
When you close the Hot Key window, you will see the message shown below. A

modal form is a window that is always on top and always selected. (An example is

the modal form message window itself.) It is important to understand that ALL Hot

Keys are inactive any time a model form window is open.

How to enable Hot Key order entry

To enable order entry Hot Keys
From within the Control Center window select the Tools menu and then select the

menu name Options. Once in the Trading category, select "Use order entry hot

keys"

Assigning Hot Keys
1. Move your mouse over the action field where you want your Hot Key assigned,

"Click to record hot key" should display

2. Left mouse click on the field to begin recording

3. Use the keyboard to select the Hot Key combination

4. Recording will finish as you input the hot key on your keyboard or press esc to

cancel the recording

NinjaTrader 81004

© 2023 NinjaTrader, LLC

Understanding where Hot Key order entry is active

Order Entry Hot Keys will only submit from the the active order entry window. This

is important to understand, especially if using multiple order entry windows.

Order Entry Windows
Below is a list of all of the order entry windows available in NinjaTrader.

Basic Entry

Chart Trader

FX Pro

FX Board

SuperDOM

Order Ticket

Identifying the Active Window
The active window is usually the window that was last clicked on and has the top

most view. You will also notice that the active window's close button in the upper

right hand corner is red compared to an inactive window that has a grey close

button.

Operations 1005

© 2023 NinjaTrader, LLC

The screen capture below to the left shows the SuperDOM with ES 06-14

selected as the active window whereas the screen capture in the right shows the

SuperDOM with NQ 06-14 selected and active. In the left screenshot any order

Hot Keys would be submitted to the ES 06-14. In the right screenshot any order

Hot Keys would be submitted to the NQ 06-14.

Pre-defined order actions and definitions

NinjaTrader 81006

© 2023 NinjaTrader, LLC

Pre-defined order actions

Buy

Ask

Submits a buy limit order at the current ask price

Buy

Bid

Submits a buy limit order at the current bid price

Buy

Market

Submits a buy market order

Sell

Ask

Submits a sell limit order at the current ask price

Sell

Bid

Submits a sell limit order at the current bid price

Sell

Market

Submits a sell market order

Operations 1007

© 2023 NinjaTrader, LLC

Breake

ven

ATM

Strateg

y

Modifies your stop loss order to your break-even

price for the ATM Strategy position on the active

window

Breake

ven

Positio

n

Modifies any stops to your break-even price for any

open position.

*Canc

el last

Order

Cancels the last submitted order

Close

ATM

Strateg

y

Cancels any pending orders and exits any open

positions activated by an ATM Strategy

Close

Positio

n

Closes any open position on the active order entry

window

*Decre

ase

Last

Order

Price

Decreases the price of the last submitted pending

order by one tick

*Increa

se

Last

Order

Price

Increases the price of the last submitted pending

order by one tick

*Modify

Last

Order

to Fill

Modifies the price of the last submitted pending

order by 15 ticks past the last traded price in order

to fill the order.

NinjaTrader 81008

© 2023 NinjaTrader, LLC

Revers

e

Closes your open position and any related ATM

orders and submits a market order in the opposite

direction to reverse your open position.

*Note: For any Hot Key that references "last order," such as "Cancel last

order," last order is defined as:

The last order submitted that is not a stop or target order generated by an ATM

Strategy

How to create custom order actions

NinjaTrader allows you to create custom order actions within the Order Entry

section of the Hot Key window.

Operations 1009

© 2023 NinjaTrader, LLC

To create a Custom Order action with an associated Hot Key
1. Select the Order Entry category of the Hot Key window.

2. Left click "add".

3. Select an Action.

4. Select an Order type (Limit offset allows you to enter the number of ticks your

limit order will be submitted away from the stop order when using a StopLimit

Order type).

5. Select the price the order will be submitted at. You can choose a number of

ticks above (Plus) or below (Minus) the current Ask or Bid.

6. Select the hot key to use to submit the Custom Order.

7. Press the OK button.

To remove Custom Order actions
Left click the Custom Order and select "remove"

NinjaTrader 81010

© 2023 NinjaTrader, LLC

10.15 Hot List Analyzer

Hot List Analyzer Overview

You can access the Hot List Analyzer window from within the NinjaTrader Control Center

window by left mouse clicking on the menu New, and then selecting the menu item Hot List

Analyzer.

The Hot List Analyzer is designed to work with the same functionality as the Market

Analyzer, with the added ability to dynamically add equity instruments based off of various

Hot Lists supplied by your data provider.

› Using the Hot List Analyzer

› Customizing the Hot List Analyzer

› Hot List Analyzer Properties

10.15.1 Using the Hot List Analyzer

 Understanding Hot Lists

What are hot lists?

Operations 1011

© 2023 NinjaTrader, LLC

Hot lists are a unique list of stocks which are constantly being monitored and

updated by your data provider. These lists will give you valuable information which

meet a specific criteria. For example, if you wanted to know which stocks trading

on the NYSE had the highest amount of volume today, you could select the "NYSE

Most Actives" hot list.

Who can I use hot lists with?
Hot lists can be used with the following data providers:

· Interactive Brokers

· TD AMERITRADE

What type of hot lists are there?
Hot lists are not hard coded into NinjaTrader and the type of lists that are available

will vary depending on your data provider and are subjected to change.

NinjaTrader's Hot list selector will display all current available hot lists from your

provider. If you would like to know what types of hot lists you can get with your data

provider, the best way to determine this information is to establish a connection to

the data provider and browse the Hot List Selector on the title bar of the Hot List

Analyzer.

Understanding the Hot List Analyzer Display

Display Overview

NinjaTrader 81012

© 2023 NinjaTrader, LLC

1. Hot List

Selector

Sets the hot list as determined by the data

provider.

2. Last

Update Time

Displays the time that the hot list was last

updated by the data provider

3. Hot List

Grid

Grid displays various instrument related

information, similar to the Market Analyzer

Columns

4. Hot List

Value

Column

Displays the value of each instrument in the

current selected hot list

Right Click Menu

Operations 1013

© 2023 NinjaTrader, LLC

Create

Instrument

List

Dynamically creates a list of all the current

instruments in the Hot List Analyzer display

which can be accessed from the Instrument

Lists window

Alerts Opens the Alerts window to configure user

defined alerts to be armed

Columns Opens the Columns menu to configure user

defined columns to be displayed

Row Filter Enables / Disables row filters

Send To Loads the selected instrument into another

NinjaTrader window

Always On

Top

Sets the Hot List Analyzer window to

always be on top of other windows

NinjaTrader 81014

© 2023 NinjaTrader, LLC

Show Tabs Sets if the Hot List Analyzer displays tabs

Export Exports the Hot List Analyzer contents to

"CSV" or "Excel" file format

Find Search for a term in the Hot List Analyzer

Print Displays Print options

Share Displays Print options

Reload All

Historical

Data

Reloads the historical bar data used for

Indicator calculations

Reload

NinjaScript

Reloads all of the NinjaScript columns to

recalculate the current values

Templates Access the templates menu to save / load

custom Hot List Analyzer settings

Properties Set the Hot List Analyzer properties

Hot List Analyzer vs Market Analyzer

What are the differences between the Hot List Analyzer and Market
Analyzer?
The primary difference between the Hot List Analyzer and the Market Analyzer

is that while the Market Analyzer allows you custom create rows of Instruments,

the Hot List Analyzer does not. Any instruments that are added to the Hot List

Analyzer are dynamically added based on the Hot List you have selected. The

Hot List Analyzer also does not allow you to remove instruments from the current

display.

Creating and customizing an Instrument List
If you would like to further customize a list of instruments based off a hot list you

have displayed, you can create a custom list of instruments by right clicking on the

Hot List Analyzer display and selecting Create Instrument List. Once the

Instrument List has been created, you can open the Instrument List window to

Operations 1015

© 2023 NinjaTrader, LLC

customize the list of instruments. You can also add the Instrument List to the

Market Analyzer for run analysis on your custom hot list.

10.15.2 Customizing the Hot List Analyzer

For information on how to configure and customize the display of the Hot List Analyzer,

please refer to the help topics on the Market Analyzer

10.15.3 Hot List Analyzer Properties

The Hot List Analyzer can be customized to your preferences in the Hot List Analyzer

Properties window.

How to access the Hot List Analyzer properties window

To access the Hot List Analyzer Properties window, press down on your right

mouse button inside the Hot List Analyzer window and select the menu
Properties...

Available properties and definitions

The following properties are available for configuration within the Hot List Analyzer

Properties window

NinjaTrader 81016

© 2023 NinjaTrader, LLC

Property Definitions

General

Grid font Sets the font

Row change
highlight
duration (ms)

Sets the duration (in seconds) the

instrument cell will remain highlighted. A

value of zero will disable highlighting.

Operations 1017

© 2023 NinjaTrader, LLC

Max # of rows Determines how many instrument rows can

be added to the Hot List Analyzer

Row filter Enables/Disables the automatic filtering of

rows from the grid display based on the Filter

Conditions of the columns.

Show total

row

Enables/Disables the Total row in the Hot

List Analyzer window display grid

Tab name Sets the tab name

Color

Grid

background

Sets the default color of the display grid

background

Grid

foreground

Sets the default color of the text in a cell

Grid lines Sets the color of grid lines

Row changed

highlight

background

Sets the color for the row change highlight

background

Row changed

highlight

foreground

Sets the color for the text in the row change

highlight

Total row

background

Sets the color of the Total row background

Window

Show tabs Enables/Disables the tab control

Always on top Enables/Disables if the window will be

always on top of other windows.

NinjaTrader 81018

© 2023 NinjaTrader, LLC

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

10.16 Instrument Lists

Instrument Lists Overview

Instrument Lists can be configured by left mouse clicking on the Tools menu within the

NinjaTrader Control Center and selecting the menu item Instrument Lists.

NinjaTrader supports grouping together instruments into easy to access lists. There are

several uses for an instrument list:

· Backtesting in the Strategy Analyzer

· Quickly adding multiple instruments to the Market Analyzer window

· Creating lists from the instruments from the Hotlist Analyzer window.

· Organizing instruments in the Instrument Selector for ease of access.

› Working with Instrument Lists

› Updating Splits and Dividends

10.16.1 Working with Instrument Lists

NinjaTrader comes predefined with a few instrument lists that are kept up to date on our

server. You also can create and manage your own instrument lists via this dialog.

Understanding the Instrument Lists window

Operations 1019

© 2023 NinjaTrader, LLC

1. Instrument Lists

The Lists section displays a list of Instrument Lists that can be configured. Please

see "Adding or Removing Instrument Lists" section below for information on how

to add and remove instrument lists.

2. Instruments
The Instruments section displays the selected lists instruments. Please see

"Adding or Removing instruments to a list" section below for information on how to

add and remove instruments to an instrument list.

Adding or Removing Instrument Lists

Adding an Instrument List
To create a new instrument list:

1. Select "add" in the Lists section of the Instrument Lists window

2. Type in the name of the instrument list you wish to add

NinjaTrader 81020

© 2023 NinjaTrader, LLC

Removing an Instrument List
To remove an instrument list:

1. Select the list you wish to remove in the Lists section of the Instrument Lists

window.

2. Select remove

Note: A predefined instrument lists cannot be removed.

Adding or Removing instruments to a list

The collection of instruments that are associated to the selected instrument list

are displayed in the "Instruments" section.

Adding an Instrument
To add an instrument to an instrument list

Operations 1021

© 2023 NinjaTrader, LLC

1. Start typing on the keyboard or select "add" for the overlay instrument selector

to be triggered.

NinjaTrader 81022

© 2023 NinjaTrader, LLC

2. Type in the instrument that you want to add or select the magnifying glass to

search for an instrument.

The instrument is added to the instrument list and will now be available throughout

the NinjaTrader application.

Removing an Instrument
To remove an instrument from an instrument list:

1. Left mouse click on the instrument you wish to remove from the instrument list

in the right pane of the Instrument Lists window.

2. Press remove

10.16.2 Updating Splits and Dividends

You can quickly update all Splits and Dividends on an instrument list via the Instrument Lists

window. Please follow the guide Adding Splits and Dividends for details on how to enable

NinjaTrader to do updates on the selected instrument list.

Updating Splits and Dividends
To trigger and update of all Split and Dividend data on all instruments on a specific instrument

list:

Operations 1023

© 2023 NinjaTrader, LLC

1. Right click on the Instrument List you want to trigger the mass update for and select

Update Splits & Dividends.

NinjaTrader will now request historical splits and dividend information from your provider and

populate the information in your local database.

NinjaTrader 81024

© 2023 NinjaTrader, LLC

10.17 Instruments

Instruments Window Overview

The Instruments window can be accessed by left mouse clicking on the Tools menu

within the NinjaTrader Control Center and selecting the menu item Instruments.

NinjaTrader supports multiple connectivity providers and therefore manages a single

instrument instance (master instrument) which maintains the parameters required to

establish market data and order permissions through the various connectivity sources.

The Instruments window manages the instrument data and can add or remove

instruments from the database. NinjaTrader maintains a predefined database of

commonly traded instruments on our server and your local database is updated

automatically on NinjaTrader application startup.

› Searching for Instruments

› Managing Instruments

› Editing Instruments

› Rolling Over Futures Contracts

› Adding Splits and Dividends

› TradeStation Symbol Mapping

› Importing a List of Stock Symbols

10.17.1 Instrument Types

NinjaTrader supports the following Instrument types, although what your individual connected

to provider can support will vary. Please consult this link for more info.

CFD (Contract for Difference)

· CFD instruments can be charted and traded

· Master instrument prefaced with a @ sign.

· The PnL will be currency converted to the account base denomination (execution tab "Rate"

can be used to see conversion rate details), NinjaTrader uses the corresponding CFD FX

instruments to make the conversion.

Cryptocurrency

· Cryptocurrencies can be charted but not traded.

· They have a dedicated Depth Chart window for analysis

Forex

· Forex instruments can be charted and traded

Operations 1025

© 2023 NinjaTrader, LLC

· These instruments do not trade on a centralized ("exchange") market, thus pricing

differences between providers are to be expected.

· The PnL will be currency converted to the account base denomination (execution tab "Rate"

can be used to see conversion rate details), NinjaTrader uses the corresponding Forex

instruments to make the conversion.

Future

· Futures contracts can be charted and traded

· They need to be requested with the specific desired expiry

· Per default NinjaTrader will built continuous 'merged' contracts, for more info please consult

this link.

· The PnL will be currency converted to the account base denomination, NinjaTrader uses

the CME FX futures (6A, 6B, 6E, etc) to make the conversion.

Index

· Indices can be charted but not traded.

· Master instrument prefaced with a ̂sign.

Stock

· Stocks can be charted and traded.

Option

· Options can be charted (real-time only) and traded

· Options master instruments and properties are dynamically injected into the database and

therefore are not search-able. Also they are removed as the database file is reset or

deleted.

· Options are requested through the dedicated Options Chain window

· Options can be less liquid than futures, especially before major economic data releases or

in less popular expiration's or strikes. Using market orders including use of Close or Flatten

all could result in a fill worse than using limit orders.

· Options are not supported for NinjaScript usage

10.17.2 Searching for Instruments

NinjaTrader has a predefined database of commonly supported instruments that you can

search through.

Searching Instruments

NinjaTrader 81026

© 2023 NinjaTrader, LLC

To search for an instrument within the database:

1. From the Instruments window, optionally select an available instrument type using

the Type drop down menu to narrow down your search.

2. Enter any search parameters in either the Search field. Typing in capital letters will

search for via the instrument name, typing in lowercase letters will search via the

instrument description.

3. As soon as you begin typing the Instruments window will immediately begin filtering

your results.

The image below displays the results of searching for any Futures with "ES" in the

instrument name.

Operations 1027

© 2023 NinjaTrader, LLC

You can double left mouse click on any search result to bring up the Instrument Editor

window for the selected instrument. Please see the Editing Instruments page for more

information on how to edit instruments.

10.17.3 Managing Instruments

NinjaTrader installs with a predefined database of commonly traded instruments that is

updated by the NinjaTrader data server automatically. There will be rare occasions where you

may need to manage the instruments manually in the Instruments window.

Adding an Instrument
1. Press the "new" button which opens the Instrument window
2. Add instrument parameters including the symbol mapping for your connectivity provider(s)

3. Press the "OK" button

Equities can be alternatively added by typing the symbol name into an open chart or Market

Analyzer and pressing the "Enter" key on your keyboard. Please see the "How to change a

Data Series" section of the Working with Price Data page of the Help Guide for more

information.

Note: The Master instrument field can only contain letters, digits, and underscores.

Removing an Instrument
1. Select an instrument in the instrument grid
2. Press "remove"

Editing an Instrument
1. Select an instrument in the instrument grid
2. Double left click the Instrument or select the instrument and press "edit"

For more information on editing instruments please see the Editing Instruments section of the

help guide.

Editing or Removing Multiple Instruments at a Time
NinjaTrader supports editing or removing multiple instruments at once. In the Instruments

window select multiple instruments by holding CTRL to toggle selection of instruments one at

a time or SHIFT to toggle selection of all instruments between the first selected instrument

and the next selected instrument.

When editing multiple instruments any property that is not the same between all selected

instrument will display as blank, allowing you to override the setting for all selected

NinjaTrader 81028

© 2023 NinjaTrader, LLC

instruments or leave if you do not want to change that specific property. If a property is the

same between all selected instruments the selected property will show its common property

setting.

Note: Although most database operations are instant, please be prepared for longer

database saving times when editing larger selections of instruments.

Resetting Instrument Defaults
If you ever needed to restore the Instruments to default settings you can do so via the

NinjaTrader Control Center Tools menu and accessing Database. In the Database window

use the Update instruments function. For more information on the Database window please

see the Database section of the help guide.

10.17.4 Editing Instruments

The Instrument window displays all parameters that define an instrument including symbol

mappings to your connectivity provider and symbol level commission values. The editor

allows you to change or add parameters to an instrument's profile. In general, instruments

that are predefined in NinjaTrader do not require any parameter modification. However, you

may want to override your global commission settings if a particular symbol has a unique

commission structure.

In the Instruments window, once an instrument is selected in the instrument grid, you can

double left mouse click or press the edit button to open the Instrument window.

Understanding General section

General Section
The General Section in the Instrument window displays parameters that uniquely

define an instrument.

Operations 1029

© 2023 NinjaTrader, LLC

Master

instrumen

t

The NinjaTrader master name of the instrument

Instrumen

t type

The instrument type (asset class)

Currency The currency the instrument trades in

Exchange

s

Click to select what exchanges the instrument trades on

Point

value

The currency value of 1 point of movement for the instrument

NinjaTrader 81030

© 2023 NinjaTrader, LLC

Merge

policy

The merge settings applied to historical data. (See the Data Tab

section of the Help Guide for more information on merge policies

and to set the global merge policy)

Sim feed

start price

The starting price for the internally generated data feed

(Simulated Data Feed connection). The price is automatically set

by NinjaTrader using the last seen price from a live data feed

connection.

Trading

hours

Sets the default trading hours for the instrument. (See the

Session Manager section of the Help Guide for more information)

Tick size The increment value the instrument trades in

Descripti

on

Description of the instrument

URL The website address of the instrument definition

Understanding the Symbol Map section

Symbol Mapping
If you add a new instrument that is not already in the NinjaTrader instrument

database, you will need to map the new instrument to the symbol used for the

connectivity provider (broker or data feed) that you will be requesting data from.

Most instruments in the database are already mapped.

Operations 1031

© 2023 NinjaTrader, LLC

Understanding Splits & Dividends section

Splits & Dividends
With an equity instrument selected, the Splits & Dividends section will be available

for editing. NinjaTrader will split and dividend adjust historical chart data based on

the information defined per instrument and if options are enabled to do so. Some

market data providers provide already adjusted data while others do not. Please

see the Adding Splits and Dividends page of the help guide for more information on

adding split and dividend data to an instrument.

Clicking the Update button will attempt to download Split & Dividend data directly

from your provider so that manual entry is not necessary.

NinjaTrader 81032

© 2023 NinjaTrader, LLC

Understanding the Contract months section

Contract Months
The Contract months section shows the contract months with associated

rollover dates. This information is automatically downloaded from the NinjaTrader

server whenever you are connected to your live data feed or the Simulated Data

Feed.

You can open up the defined contract months by left mouse clicking in the

Contract months field.

Operations 1033

© 2023 NinjaTrader, LLC

You can add and remove contract months by selecting the add and remove

buttons in the bottom of the Configured section.

You can also copy contract months that are defined in another instrument by right

clicking in the Configured section then selecting Load rollovers from instrument...

NinjaTrader 81034

© 2023 NinjaTrader, LLC

Contract Month Properties
Once a contract is selected in the Configured section you may edit it properties.

The Contract month, Offset value, and Rollover date are used when

NinjaTrader automatically merges historical data.

The Offset value is used to connect the last value of a contract month with the

next one.

Although NinjaTrader will attempt to download the Offset values from the data

server, if they do not exist on the data server, they will be calculated locally.

Offsets are only downloaded when the "Offset" field is left blank and the rollover

date matches the date defined on the server.

When NinjaTrader will calculate the Offset value locally:

· The Offset field in the Contract Months window is blank

· Historical data exists in the database for both the new and old contract near the

rollover date

Operations 1035

© 2023 NinjaTrader, LLC

· The Merge Back Adjusted policy must be selected in the Market data category

of the Options menu

· You must be connected to your data provider and requesting data for the

instrument

How NinjaTrader will calculate the Offset value locally:

· Request the old and new expiry’s daily price data for calculations

· If daily data is not offered by the data provider, use minute data

· If minute data is not offered by the data provider, default Offset value
will be 0

· One day prior to the rollover date, calculate the difference between the close
price of the new expiry and the close price of the old expiry. This is the Offset
value.

· If you wish to overwrite the calculated Offset value you can input in
your own

· When using minute data, the close price at the ending time as
defined in the default session template for the instrument will be
used

Notes:

1. If you inputted your own Offset value, it will be overwritten by values

downloaded from the data server if it exists there. To prevent this you will

need to ensure that your rollover date is not the same as the ones coming

from the data server.

2. The rollover date is the date to roll into the selected contract month and

NOT out of.

10.17.5 Rolling Over Futures Contracts

Batch Rollover
NinjaTrader allows batch rollover of the contract expiry of all instruments across all instrument

lists and windows on all open workspaces. To perform this batch rollover please see the

steps below.

1. Select the Tools menu within the Control Center followed by the Database Management

menu item.

2. The grid for the Rollover futures instruments section will show each instrument that is

eligible to be rolled over. A contract is eligible to be rolled when today's date is greater then

or equal to the rollover date defined for the instruments next contract month.

3. When selecting "Rollover" any instrument with a check mark in the Update column will be

updated to the contract month in the New Expiry column.

NinjaTrader 81036

© 2023 NinjaTrader, LLC

Note: Rolling over futures instruments will update the expiry of the instruments across all

instrument lists and windows using the instruments on all open workspaces. These changes

on workspaces will need to be saved should you wish to preserve them. If there are areas you

still wish to use the old expiry with please be sure to switch them back to the old expiry or do

not rollover at this time.

Note: NinjaScript strategies are not rolled forward and must be manually rolled over.

Manual Rollover
You can choose to manually rollover each window to the next contract month. This may be

useful for when you want to only partially roll over your workspace.

Manually rolling the contract is done by typing in the next contract expiry in the windows

instrument selector.For example: "ES 09-16" to "ES 12-16".

Rollover of Drawing Objects
To rollover your drawing objects you can complete either a batch rollover or a manual rollover.

Closing your chart and opening a new chart would result in the drawing objects being lost.

When rolling over, your drawing objects will be kept at the same price level they were

originally placed. If a Merge Policy of MergeBackAdjusted is being used, this will result in the

adjusted bars moving the price away from the original placement of the drawing objects.

Using a Merge Policy of MergeNonBackAdjusted will keep the previous contracts prices the

same, keeping the drawing object's placement with the bars.

If you have a strategy that places drawing objects, the drawing objects will be redrawn when

rolling over based on the bar's placement after rollover.

Operations 1037

© 2023 NinjaTrader, LLC

For more information on merge policies, see the Merge Policy section of this guide.

10.17.6 Adding Splits and Dividends

You can automatically update an instrument with historical split adjustment data from within

the Instrument window. You can choose to update split information from the following

connections:

1. IQFeed

2. Kinetick (you must have a subscription - the free Kinetick EOD does NOT provide splits

and dividend information)

Adding Splits via the instruments window
To automatically update an instrument with historical split data follow the steps below. If you

have already defined one of the connections above then you may skip step 1.

1. Create a connection to one of the providers above, see the Connection Guide for more

information

2. Connect to the provider by left mouse clicking on the menu Connect and selecting your

connection.

3. Open the Instruments window by left mouse clicking on the menu Tools and select the

menu item Instruments.

4. Select a single stock or select multiple stock that you wish to update with historical split

data Note: Hold down CTRL to individually toggle instrument selection or SHIFT to toggle

selecting a group of instruments.

5. Right click on one of the selected stocks and left mouse click the menu Update Splits.

NinjaTrader will now request historical splits information from your provider and populate the

information in your local database.

Notes:

The Update Splits menu item is only enabled when you are connected to one of the

providers mentioned above.

At this time, no supported connections provider dividends. Dividends must be manually

added.

Adding Splits for a predefined instrument list
You can perform the same steps above on a predefined instrument list by going to the

NinjaTrader Control Center Tools menu and selecting Instrument Lists. Here you can right

click on the instrument list name and select Update Splits.

10.17.7 TradeStation Symbol Mapping

The following section outlines the requirements for proper TradeStation to NinjaTrader symbol

mapping when using the Automated Trading Interface (both DLL or Email interface).

NinjaTrader 81038

© 2023 NinjaTrader, LLC

Note: Mapping is NOT required for stocks or Forex symbols.

How to map an individual futures contract

Mapping an Individual Futures Contract
To send orders via the NTExternalFeed strategy through the ATI to NinjaTrader

from an individual futures contract such as the Emini S&P June contract "ESM14"

in TradeStation you have to correctly set up mapping within NinjaTrader.

For this example, let's map the "ESM14" contract.

1. From the NinjaTrader Control Center window select the menu Tools and select

the Instruments menu item.

2. Highlight the ES contract from the main grid which is the NinjaTrader S&P 500

Emini contract.

3. Press the "edit" button to bring up the Instrument window.

5. In the Symbol Map category for the External data feed set the value to "ES".

6. Press the "OK" button.

* The symbol map name "ES" in the image below needs to be the TradeStation

symbol base name.

This procedure would be repeated for any other symbols you wish to map

between TradeStation and NinjaTrader.

* Most popular futures contracts already have mapping set up

Operations 1039

© 2023 NinjaTrader, LLC

How to map a continuous futures contract

Mapping a Continuous Futures Contract
NinjaTrader can map continuous contracts in one of two ways:

· Automatically map to the next closest expiration date

· User defined contract mapping

For automatic mapping, follow the instructions above for "How to map an individual

futures contract" otherwise follow the instructions below.

If you run the TradeStation Automated Trading Interface through the email protocol

follow the instructions below. We will use the "@ES" continuous contract symbol

and front month of June 2014 for example purposes.

1. From the NinjaTrader Control Center window select the menu Tools and select

the Instruments menu item.

2. Highlight the ES contract from the main grid which is the NinjaTrader S&P 500

Emini contract.

3. Press the "edit" button to bring up the Instrument window.

5. In the Symbol Map category for the External data feed set the value to "ES|06-

14".

6. Press the "OK" button.

* The symbol map name "ES|06-14" in the image below needs to be the

TradeStation symbol base name.

NinjaTrader 81040

© 2023 NinjaTrader, LLC

Automated Trading Interface - Orders generated for "@ES" will now be routed to

the NinjaTrader "ES 06-14" contract.

Please remember to change this when the contract rolls over.

10.17.8 Importing a List of Stock Symbols

Importing a Stock List
Importing a list of stock symbols is an efficient way to add instruments to the

instruments database in bulk.

Within the Control Center window select the Tools menu. Then select the menu item

Import and left mouse click on the menu item Stock Symbol List...

Press the Load button to open a text file that contains your symbol list or type each

symbol into the editor manually

The text file must contain valid symbols separated by either -

· User defined character such as a semicolon or comma

· White space

· Carriage return

The symbols for import are listed in the editor

Select the exchange the instruments are traded on

Select the currency the instruments are traded in

Optionally add the instruments to an Instrument List (optionally create a new one by

selecting "New" in the combo box.)

Select a Session template for the instruments

Enter any user defined separator characters

Press the OK button to import

Operations 1041

© 2023 NinjaTrader, LLC

Note: Instruments with illegal characters such as a period will be converted to use

an underscore instead automatically when running through the import or migration

process.

NinjaTrader 81042

© 2023 NinjaTrader, LLC

10.18 Level II

Level II Window Overview

You can access the Level II window from within the NinjaTrader Control Center window

by left mouse clicking on the menu New, and then selecting the menu item Level II.

The Level II window displays bid and ask data color coded by price. It is used to gauge

strength and depth on either side of the market. Each price row in the Details section

shows a Market Maker or ECN for that price level. For non-Nasdaq stocks, market depth is

displayed for the regional exchange the market is traded.

› Using the Level II Window

› Level II Properties

› Window Linking

10.18.1 Using the Level II Window

Selecting an Instrument

There are multiple ways to select an Instrument in the Level II window.

Operations 1043

© 2023 NinjaTrader, LLC

· Right clicking on the Level II window and selecting the menu Instruments.

· With the Level II window selected begin typing the instrument symbol directly

on the keyboard. Typing will trigger the Overlay Instrument Selector.

For more Information on instrument selection and management please see

Instruments section of the Help Guide.

Understanding the layout of the Level II window

 Quotes
The Quotes section displays various market data items.

Bid The current bid price

NinjaTrader 81044

© 2023 NinjaTrader, LLC

Ask The current ask price

Last The current last traded price

Open The current sessions open price

High The current sessions high price

Low The current sessions low price

Prior Close Yesterdays sessions close price

Net Chg. Calculated net change in points from the prior

close to the current last traded price

Vol The current sessions total volume.

You can disable the Quotes section by clicking on your right mouse button

and deselecting the menu item Show Quotes.

 Summary
The Summary section displays total size per price level.

Price The bid price by ask price

Depth Number of market participants on the bid by ask

price

Size The total number of shares/contracts on the bid

by ask price

Spread The spread between the bid and ask price

Graph Visual display of either Size or Depth (number of

market participants)

Operations 1045

© 2023 NinjaTrader, LLC

You can change the graph type via the Level II

properties dialog window.

You can disable the Summary section by clicking on your right mouse

button and selecting the menu Show Summary.

 Details
The Details section displays bid data on the left and ask data on the right.

ID The Market Maker or ECN identification

Price The bid or ask price

Size The number of shares/contracts at that price level

available for buy or sell by the specific Market

Maker or ECN

Time The last time the bid/ask was refreshed by the

Market Maker or ECN

You can disable the Details section by clicking on your right mouse button

and de-selecting the menu item Show Details.

Right Click Menu
Right mouse click on the Level II window to access the right click menu.

NinjaTrader 81046

© 2023 NinjaTrader, LLC

Instruments Selects the instrument

Tracked Market

Makers

Selects Market Maker ID's to be tracked

Show Details Sets if the details section is displayed

Show Quotes Sets if the quotes section is displayed

Show Summary Sets if the summary section is displayed

Always On Top Sets if the window should be always on top of

other windows

Print Displays Print options

Share Displays Share options

Properties... Sets the Level II properties

Using Tabs

Operations 1047

© 2023 NinjaTrader, LLC

The Level II window is a tabbed interface, this gives you the ability to have

multiple Level II tabs configured in the same window. Please see the Using Tabs

section of the help guide for more information.

10.18.2 Level II Properties

The Level II window can be customized through the Level II Properties window.

How to access the Level II Properties window

You can access the Level II properties dialog window by clicking on your right

mouse button and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the Level II Properties

window:

NinjaTrader 81048

© 2023 NinjaTrader, LLC

Property Definitions

General

Grid font Sets the font options

Graph Graphs the total size at a

price level or depth which is

number of market

participants

Operations 1049

© 2023 NinjaTrader, LLC

Number of price levels -

detailed

Sets the number of visible

price levels in the details

section of the Level II window

Number of price levels -

summary

Sets the number of visible

price levels in the summary

section of the Level II window

Show details Sets if the details section is

displayed

Show quotes Sets if the quotes section is

displayed

Show summary Sets if the summary section

is displayed

Size divided by 100 (stocks

only)

Displays the the size column

values divided by 100 for

stock instruments only

Tab name Sets the name of the tab,

please see Managing Tabs

for more information.

Color

Price level X Sets the background color for

a specific price level

Tracked market makers

background

Sets the background color for

tracked market makers

Tracked market makers

foreground

Sets the foreground color for

tracked market makers

Up tick background Sets the background color for

the ask,bid, and last cells on

uptick.

NinjaTrader 81050

© 2023 NinjaTrader, LLC

Down tick background Sets the background color for

the ask,bid, and last cells on

downtick.

Window

Always on top Sets if the window will be

always on top of other

windows.

Show Tabs Sets if the window will allow

for tab support

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

Using Tab Name Variables

Tab Name Variables
A number of pre-defined variables can be used in the "Tab Name" field of the

Level II Properties window. For more information, see the "Tab Name Variables"

section of the Using Tabs page.

10.18.3 Window Linking

Please see the Window Linking section of the Help Guide for more information on linking the

Level II window.

Operations 1051

© 2023 NinjaTrader, LLC

10.19 Market Analyzer

Market Analyzer Overview

You can access the Market Analyzer window from within the NinjaTrader Control Center

window by left mouse clicking on the menu New, and then selecting the menu item Market

Analyzer.

The Market Analyzer window is a high powered quote sheet that enables real-time

market scanning of multiple instruments based on your own custom criteria. You can use

the Market Analyzer to display indicator, market and trade data in a highly customizable

manner.

Management

› Creating a Market Analyzer Window

› Working with Instrument Rows

› Working with Columns

› Dynamic Ranking and Sorting

› Window Linking

Conditions

› Creating Cell and Filter Conditions

Performance

› Performance Tips

› Reloading Indicators & Columns

10.19.1 Creating a Market Analyzer Window

NinjaTrader 81052

© 2023 NinjaTrader, LLC

Understanding the Market Analyzer display

Market Analyzer Display Overview
Each NinjaTrader Market Analyzer is a free floating window that can be manually

resized by dragging the edges of the window and moved by left mouse clicking

and dragging in the upper most margin for arrangement within the open

Workspace.

The image below shows some of the common features of a Market Analyzer

window:

1.

Colum

ns

Displays the column name

2.

Instru

ment

row

Displays the instrument name

Operations 1053

© 2023 NinjaTrader, LLC

3.

Label

row

Displays a user defined label row.

4. Link

button

Window linking links windows to the same

instrument and can be applied to many NinjaTrader

windows.

5.

Total

row

Displays the sum of all rows for a specific column.

Can be applied in the Market Analyzer Properties

window.

6.

Loadin

g

dialog

Display a message indicating when an indicator or

historical data is being loaded into the Market

Analyzer

Right Click Menu
All functions of the Market Analyzer can be accessed by pressing on your right
mouse button within the Market Analyzer window to bring up the right click menu.

NinjaTrader 81054

© 2023 NinjaTrader, LLC

Add

Instrument

(s)

Adds an individual instrument or list of

instruments to the Market Analyzer display

Create

Instrument

Lists...

Dynamically creates a list of all the current

instruments in the Market Analyzer display

which can be accessed from the Instrument

Lists window

Add Blank

Row

Adds a blank row to the Market Analyzer

display

Add Label

Row

Adds a Label Row to the Market Analyzer

display

Operations 1055

© 2023 NinjaTrader, LLC

Remove

Row

Removes a selected row from the Market

Analyzer display

Columns... Opens the Columns menu to configure user

defined columns to be displayed

Alerts Opens the Alerts window to configure user

defined alerts to be armed

Auto Sort Enables/Disables the dynamic sorting and

ranking

Row Filter Enables/Disables row filters

Send To Loads the selected instrument into another

NinjaTrader window

Always On

Top

Sets the Market Analyzer window to always be

on top of other windows

Export... Exports the Market Analyzer contents to

"CSV" or "Excel" file format

Find... Search for a term in the Market Analyzer

Print Displays Print options

Share Displays Share options

Reload All

Historical

Data

Reloads the historical bar data used for

Indicator calculations

Reload

NinjaScript

Reloads all of the NinjaScript columns to

recalculate the current values

Templates Access the templates menu to save/load

custom Market Analyzer settings

NinjaTrader 81056

© 2023 NinjaTrader, LLC

Properties Set the Market Analyzer properties

10.19.2 Working with Instrument Rows

The Market Analyzer window allows you to display a variety of real-time quotes, indicator

values, and position information on multiple instruments. You can add, remove, and organize

individual instrument rows, Instrument Lists, Label rows, Blank rows, and a Total row with the

instructions listed below.

How to add instruments

Adding an Instrument
You can add an individual instrument to the Market Analyzer through one of the

techniques below:

· Press down on your right mouse button in the Market Analyzer window and

select the menu item Add Instrument(s). Through the Instrument Selector

menu, you can navigate through various instrument lists to locate the instrument

you desire, and left click on the instrument to add the individual instrument to the

Market Analyzer.

Operations 1057

© 2023 NinjaTrader, LLC

· With the Market Analyzer window selected begin typing the instrument symbol

directly on the keyboard. Typing will trigger the Overlay Instrument Selector.

· Double left mouse click in a Blank row under the Instrument column to get a

flashing text cursor. After the cursor is showing in the row you can type in the

symbol of your choice and press enter to add the instrument.

Editing an Instrument Row
To change an instrument, double click on an existing Instrument cell which will

give you a flashing text cursor, allowing you to edit the instrument to a new

instrument of your choice.

Adding an Instrument List
You can rapidly add a list of instruments to the Market Analyzer window.

· Press down on your right mouse button in the Market Analyzer window and

select Add Instrument(s) > and then select the desired "Instrument List" and

then Select All. Please see the Instrument Lists section of the user help guide

for additional information on creating, editing, and deleting Instrument lists.

Tip: It is more efficient to add instruments after defining the columns of

your Market Analyzer window. This will minimize NinjaTrader re-loading

historical data into the Market Analyzer window.

How to Create an Instrument List from the Market Analyzer

Creating an Instrument List

NinjaTrader 81058

© 2023 NinjaTrader, LLC

If you have a Market Analyzer setup with a number of different instruments you

would like to save for later, you can quickly add the entire display of instruments into

an Instrument List for quick access.

· Press down on your right mouse button in the Market Analyzer window and select

the menu Create Instrument List , then give the Instrument List a unique name

and press OK.

You will now be able to access this list from other features of NinjaTrader using the

Instrument Selector. You can further edit this list by using the Instrument Lists

window

How to add Label rows

Label rows are user defined and can be used to separate groups of instruments in
any way (by asset class, instrument list, etc.).

Adding Label Rows in the Market Analyzer Window
Press down on your right mouse button inside the Market Analyzer window and

select the menu Add Label Row. Once the Label row is added you can type in any

user defined name.

Editing the Label Row Name
If you have an existing Label row you wish to go back and change the text, double

clicking on the exiting Label row text will give you a flashing cursor, allowing you to

type in a new name for the Label row.

Operations 1059

© 2023 NinjaTrader, LLC

Dynamic Sorting within Label Rows
Instruments you drag or add under a Label row will "auto-sort" with only the other

instruments under the same Label row. For example, if you have one Label row for

futures and one for stocks, when you sort the columns, the instruments listed

under the futures label would be sorted only against other instruments under the

futures label, while instruments under the stocks label would be sorted only

against instruments under the stocks label. For more information on ranking and

sorting within the Market Analyzer see the Dynamic Ranking and Sorting section of

the user help guide.

Aligning a Label Row
The label of a Label Row can be aligned to the left, center or right of the row. This
is done by right mouse clicking within the Market Analyzer and selecting the
Properties menu. Change the property Label row text alignment to either "Left",
"Center", or "Right".

How to add Blank rows

Adding Blank rows to the Market Analyzer window
Blank rows can be used to create space between instruments in the Market

Analyzer window or if you need to add more instruments. To add a Blank row

press down on your right mouse button in the Market Analyzer window and select

the menu Add Blank Row. The Blank row will be added above the row you right

clicked in.

How to move Instrument, Label and Blank rows

Moving Rows in the Market Analyzer Window

NinjaTrader 81060

© 2023 NinjaTrader, LLC

Instrument, Label and Blank rows can all be moved up or down within the Market

Analyzer window. To move a row in the Market Analyzer window press down and

hold on your left mouse button in the row you would like to move and drag it to the

new location. When your cursor is hovering over the new desired location release

your left mouse button to set the row down in the new location.

How to remove Instrument, Label and Blank rows

Removing Instrument, Label and Blank Rows
To remove an Instrument, Label or Blank row left mouse click on the row to select

it and then press the delete button on your keyboard, or press down on your right

mouse button within the row you want to remove and select the menu Remove

Row.

How to add and remove a Total row

A Total row can total any column of values and is displayed at the top of the Market

Analyzer window. For example, you could choose to display your total Realized

PnL and total Traded Contracts for all instruments displayed in the Market

Analyzer.

Operations 1061

© 2023 NinjaTrader, LLC

Adding the Total row to the Market Analyzer window
To add a Total row in the Market Analyzer you must enable both the Total row and

the columns you would like totalled with the following steps:

1. Press down on your right mouse button in the Market Analyzer window and

select the menu Properties.

2. In the Properties menu scroll down to the Total Row section and check the

box to enable. You can also choose to customize the color of this row with the

 Total row background property.

3. Press the Apply button to apply the changes or press the OK button to apply

the changes and exit the Properties menu.

NinjaTrader 81062

© 2023 NinjaTrader, LLC

4. To show each column’s total in the Total row press down on your right mouse

button inside the Market Analyzer window and select the menu Columns.

5. Check the Show in Total row property each column you want totaled in the

Total row.

Operations 1063

© 2023 NinjaTrader, LLC

6. Press the Apply button to apply the changes or press the OK button to apply

the changes and exit the Columns window.

Removing the Total row from the Market Analyzer window
To remove the Total row press down on your right mouse button inside the Market

Analyzer window and select the menu Properties. Scroll down to the Total Row

section and uncheck the property. Then press the Apply button to apply the

changes or press the OK button to apply the changes and exit the Properties

window.

Understanding Row Filtering

Row Filtering allows you to filter out (hide) rows from the Market Analyzer grid

display based on a cell's value. Filter conditions can be setup for any column

applied to the Market Analyzer.

NinjaTrader 81064

© 2023 NinjaTrader, LLC

To enable Row Filtering:

1. Press down on your right mouse button in the Market Analyzer window and

select the menu Row Filter.

2. To access the Columns menu where you can add filtering conditions to each

column press down on your right mouse button and select the menu Columns.

For more information on Row Filtering see the Creating Filter Conditions section of

the user help guide.

10.19.3 Working with Columns

The Market Analyzer allows you to add a variety of columns ranging from indicators to position

information. To add, remove, and customize columns in your Market Analyzer window please

review the information below.

Understanding the Columns window

The Columns window is used to add, remove, and edit columns within the Market

Analyzer window.

Operations 1065

© 2023 NinjaTrader, LLC

Accessing the Columns Window
To access the Columns window press down on your right mouse button in the

Market Analyzer window and select the menu item Columns...

Sections of the Columns Window
The image below displays the four sections of the Columns window.

1. List of available columns

2. Current columns applied to the Market Analyzer

3. Selected column's parameters

How to add columns

A wide variety of columns can be added to your Market Analyzer window allowing

you to see indicator, position, or price information at a glance.

NinjaTrader 81066

© 2023 NinjaTrader, LLC

Adding columns to the Market Analyzer window
To add a column to the Market Analyzer window:

1. Open the Columns window (see the "Understanding the Columns window"

section above)

2. Select the column you want to add from the list of available columns

3. Press the Add button or simply double click on the column you want to add

4. The column will now be visible in the list of applied columns

5. The column's parameters will be editable on the right side of the Columns

window when the column is selected from the applied columns list (see the

"How to customize columns" section below)

6. Press the OK button to apply the column(s) to your Market Analyzer, and exit

the Columns window

Adding an Indicator Column
To add an indicator column to the Market Analyzer window:

Operations 1067

© 2023 NinjaTrader, LLC

1. Open the Columns window (see the "Understanding the Columns window"

section above)

2. Left mouse click on the Indicator column and press the Add button or simply

double click on it

3. The column will now be visible in the list of applied columns and listed as "ADL

on 1 Min data"

4. You can now select the indicator of your choice from the Indicator parameter

How to customize columns

Once you have added columns to your Market Analyzer window (see the "How to

add columns" section above) you can customize the column by editing the

column's parameters.

Editing a Column's Parameters
You can customize any column from the Columns window.

1. Open the Columns window (see the "Understanding the Columns window"

section above)

2. Highlight the column you would like to edit in the list of Configured columns

(as shown by the image below).

3. Once highlighted this column's parameters will be editable on the right hand

side

4. You can choose to display the column Type as Regular or as a BarGraph

5. You can configure the color settings, including checking Enable color

distribution to apply a range of colors based on their values

6. You can set Cell or Filter conditions for any column from the Conditions

parameters section

NinjaTrader 81068

© 2023 NinjaTrader, LLC

Changing the Order and Width of Columns
To order columns in the Market Analyzer window you can use "up" or "down" in

the Configured columns section.

Operations 1069

© 2023 NinjaTrader, LLC

· Left mouse click "up" to move the selected applied column left in the Market

Analyzer window

· Left mouse click "down" to move the selected applied column right in the

Market Analyzer window

Please see the Data Grids section of the user help guide for information on sizing

and ordering columns.

Understanding Indicator Column Properties
An Indicator column has many unique properties used to determine how the

indicator is calculated. It is important to understand how these properties will

impact the resulting indicator value displayed in your Market Analyzer column.

Indicator

Indicator Selects the indicator used for

the column

Plot Selects which of the

indicator's plot is used.

Some indicators will have

several plots.

Data Series

Input Series Selects the price type used.

Close is the most common

Price based on Selects the data type used.

Last is the most common

Type Selects the bar type which

the indicator is calculated on

Value Selects the interval used in

correlation to the bar type

Time Frame

NinjaTrader 81070

© 2023 NinjaTrader, LLC

Load data based on Select from Bars, Days or a

Custom Range in terms of

historical data used for the

indicator

Bars to load Selects the number of bars

(or days) used requested to

calculate the indicator.

End date Sets the last day used for

calculation.

Trading hours Sets the trading session

used for calculation

Break at EOD Sets if the indicator values

are reset at the end of each

session

Set up

Calculate Sets the frequency that the

indicator calculates. On bar

close will slow down the

calculation until the close of a

bar; On price change will

calculate on when there has

been a change in price; On

each tick calculate the

indicator's value which each

incoming tick.

Maximum bars look back Max number of bars used for

calculating an indicator's

value. The

TwoHundredFiftySix setting

is the most memory friendly.

Operations 1071

© 2023 NinjaTrader, LLC

Note: Setting the Type to Bar Graph under Data Series for text based columns

will result in the column being blank. Text based columns require the Type to

be Regular.

Saving a Customized Column Presets
Once you have an individual column properties set to your preference, you can left

mouse click on the "preset" text located in the bottom right of the properties dialog.

Selecting the option "save" will save these settings as the default settings used

every time you apply a new column.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

How to remove columns

Columns can be removed from the Columns window or from the Market Analyzer

directly.

Removing Columns from the Market Analyzer Window
There are two ways to remove a column:

1. From the Market Analyzer window left mouse click on the column header and

hold down the left mouse button to drag the column outside the Market Analyzer

window, once the cursor changes to a black X release the left mouse button to

remove the column.

2. Open the Columns window (see the "Understanding the Columns window"

section above). Highlight the column you would like to remove in the list of

Configured columns (as shown in the image below) then press the Remove

button.

NinjaTrader 81072

© 2023 NinjaTrader, LLC

Dynamic ranking and sorting

See the Dynamic Ranking and Sorting section of the user help guide for

information on sorting and raking your Market Analyzer columns.

10.19.4 Dynamic Ranking and Sorting

The Market Analyzer window can automatically rank and sort the data rows.

How to Enable Automatic Ranking and Sorting
To enable ranking and sorting for a column:

1. To set the column you wish to sort press down on your left mouse button in the column

header. You can set the column to sort in either descending (down arrow) or ascending (up

arrow) order.

Operations 1073

© 2023 NinjaTrader, LLC

2. You can enable dynamic sorting by pressing down on our right mouse button inside the

Market Analyzer and selecting the menu Auto Sort.

3. You can set the auto sort interval within the Market Analyzer Properties window.

10.19.5 Creating Cell and Filter Conditions

Market Analyzer columns can have cell and filter conditions applied to them for a more

convenient display of information.

Understanding cell conditions

Cell Conditions
Cell Conditions allow you to define the display behavior of a cell based on the cell's

value, and are defined per column. You can choose to alter both the color and text

of a cell with Cell Conditions.

Creating Cell Conditions
To create a Cell Condition:

1. Open the Columns window

2. Select the column you would like to create a Cell Condition for in the applied

column section.

3. Under the Conditions parameters section, move your mouse over the Cell

field and then press the "Add condition..." button which will appear.

NinjaTrader 81074

© 2023 NinjaTrader, LLC

4. Press the Add button to add a new Cell Condition to the list of Configured

conditions displayed in the left side of the Cell Conditions window

5. Set the Cell Condition properties in the right side of the Cell Conditions window

Operations 1075

© 2023 NinjaTrader, LLC

The example Cell Condition in the above image will:

· Trigger once the cell value is greater than 30

· Applies to "All" Instruments (please see the Understanding the apply to

trigger section at the bottom of this page for more information)

· Display a lime green background with black text

· Display "over 30" as the text

You can remove a Cell Condition by pressing the Remove button.

Multiple Cell Conditions
Cell Conditions are evaluated from top to bottom.

Assume you have the following conditions defined:

Change cell if value is greater than 30

Change cell if value is greater than 100

NinjaTrader 81076

© 2023 NinjaTrader, LLC

In this example, if the value of the cell was greater than 100, the first condition of

"greater than 30" would change the cell's color since its first in the list of conditions

to be evaluated. The "greater than 100" condition would never trigger in this

example since "greater than 30" will always trigger the color change first. To

ensure that both conditions trigger a color change so that you get the desired

alerting behavior you want, you have to list the conditions in this order:

Change cell if value is greater than 100

Change cell if value is greater than 30

This will guarantee that a cell value over 100 will fall in the "greater than 100"

condition and cell values between 30 and 100 will be triggered by the "greater than

30" condition.

Understanding filter conditions

Filter Conditions
Filter Conditions allow you to define conditions that filter out rows from the Market

Analyzer grid display based on the cell's value and are defined per column.

Creating Filter Conditions
To create a Filter Condition:

1. Open the Columns window

2. Select the column you would like to create a Filter Condition for in the applied

column section.

3. Under the Conditions parameters section, move your mouse over the Filter

field and then press the "Add condition..." button which will appear.

Operations 1077

© 2023 NinjaTrader, LLC

4. Press the Add button to add a new Filter Condition to the list of Configured

conditions displayed in the left side of the Filter Conditions window

5. Set the Filter Condition properties in the right side of the Filter Conditions

window

NinjaTrader 81078

© 2023 NinjaTrader, LLC

The example Filter Condition in the above image will:

· Filter out the row from the Market Analyzer grid display when the cell value is

less than 30

· Applies to "All" Instruments (please see the Understanding the apply to

trigger section at the bottom of this page for more information)

· The row will be displayed in the Market Analyzer grid display when the cell value

is greater than or equal to 30

You can remove a Filter Condition by pressing the Remove button.

To enable/disable filtering press down on your right mouse button in the Market

Analyzer window and select the menu Row Filter. When enabled, the Market

Analyzer will filter out rows from the grid display based on the Filter Conditions of

the columns.

Understanding the apply to trigger

Operations 1079

© 2023 NinjaTrader, LLC

Applying conditions to specific instruments
When setting up Cell and Filter conditions, the default behavior is to apply these

conditions to all instruments in the Market Analyzer.

However, you can optionally reconfigure these conditions to apply to instruments

with specific names. For example, if you had a Market Analyzer setup with several

different instruments (as per the screen shot above), but only wanted your Cell

conditions to work on only the Futures instruments, you can redefine your

conditions to only include those instruments by:

1. Select your Configured condition

2. Press the Magnify glass icon next to the Apply to field

NinjaTrader 81080

© 2023 NinjaTrader, LLC

3. From the newly opened Instruments window, select the instruments you wish

to apply the condition

Tip

Multi-select is supported in the Instrument window:

· To select a consecutive instruments, click the first instrument, press and

hold down the Shift key, and then click the last instrument.

· To select non-consecutive instruments, press and hold down the Ctrl key,

and then click each instrument that you want to select.

4. Press OK on the Instruments window

Operations 1081

© 2023 NinjaTrader, LLC

5. Your Apply to field will now list the instrument names you selected earlier,

indicating that conditions will only be triggered on instruments contained in this

list.

6. Press OK Conditions window

NinjaTrader 81082

© 2023 NinjaTrader, LLC

Your Market Analyzer window will now only apply these conditions to the

instruments which mach the name you configured

Operations 1083

© 2023 NinjaTrader, LLC

10.19.6 Market Analyzer Properties

The Market Analyzer can be customized to your preferences in the Market Analyzer

Properties window.

How to access the Market Analyzer properties window

To access the Market Analyzer Properties window, press down on your right

mouse button inside the Market Analyzer window and select the menu Properties...

Available properties and definitions

The following properties are available for configuration within the Market Analyzer

Properties window

NinjaTrader 81084

© 2023 NinjaTrader, LLC

Property Definitions

General

Auto sort Enables/Disables the automatic ranking and

sorting of rows

Operations 1085

© 2023 NinjaTrader, LLC

Auto sort

seconds

Sets the interval time in seconds between

automatic resorting of rows

Grid font Sets the font

Label row text

alignment

Sets the alignment for the label rows

Row change
highlight
duration (ms)

Sets the duration (in milliseconds) the

instrument cell will remain highlighted.

Note: The lowest value which will take

effect is 1000 (ms)

Row filter Enables/Disables the automatic filtering of

rows from the grid display based on the Filter

Conditions of the columns.

Show total

row

Enables/Disables the Total row in the Market

Analyzer window display grid

Tab name Sets the tab name

Color

Grid

background

Sets the default color of the display grid

background

Grid

foreground

Sets the default color of the text in a cell

Grid lines Sets the color of grid lines

Label row
background

Sets the default color for the Label row

background

Label row

foreground

Sets the default color for the Label row

foreground

NinjaTrader 81086

© 2023 NinjaTrader, LLC

Row changed

highlight

background

Sets the color for the row change highlight

background (set to transparent to disable)

Row changed

highlight

foreground

Sets the color for the text in the row change

highlight (default is disabled, as set to grid

foreground)

Total row

background

Sets the color of the Total row background

Window

Show tabs Enables/Disables the tab control

Always on top Enables/Disables if the window will be

always on top of other windows.

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

Market Analyzer Columns along with custom properites can be saved within a

Market Analyzer Template.

10.19.7 Working with Templates

NinjaTrader allows you to save your customized Market Analyzer layout as a template that

can be loaded in an open Market Analyzer or set as the default for new Market Analyzer

windows.

How to save a Market Analyzer Template

Operations 1087

© 2023 NinjaTrader, LLC

What is Saved
The following are saved within a Market Analyzer template:

· Column layout

· Column parameters and conditions

· Market Analyzer properties

· Instrument Rows

Saving a Market Analyzer Template
To save a Market Analyzer template (shown in the image below):

1. Configure your desired Market Analyzer columns and properties (see the

"Working with Columns" and "Market Analyzer Properties" sections of the Help

Guide for more information)

2. Right mouse click within the Market Analyzer

3. Select the menu item Templates

4. Select the menu item Save As...

(You can optionally select the menu item Save As Default to save the current

settings as default. Any new Market Analyzer will load with these new default

settings)

NinjaTrader 81088

© 2023 NinjaTrader, LLC

5. Enter a name for your Market Analyzer template

6. Optionally check Save Instruments to save the current display of instrument

rows in the Market Analyzer template

Operations 1089

© 2023 NinjaTrader, LLC

7. Press the Save button

How to load a Market Analyzer Template

Loading a Market Analyzer Template
To load a saved Market Analyzer template:

1. Right mouse click within the Market Analyzer

2. Select the menu item Templates

3. Select the menu item Load

4. Select the template you wish to load from the Load dialog menu and press the

OK button

How to remove a Market Analyzer Template

Removing a Market Analyzer Template
To remove a saved Market Analyzer template:

1. Right mouse click within the Market Analyzer

NinjaTrader 81090

© 2023 NinjaTrader, LLC

2. Select the menu item Templates

3. Select the menu item Load

4. Right click on the template you wish to remove from the Load dialog menu and

select the Remove menu item

Note

If you wish to rename an existing template, you can select Rename from the

same menu

10.19.8 Performance Tips

The following performance tips are specific to the Market Analyzer window.

Number of Instruments and Columns.
· The Market Analyzer has no limit to the number of instruments that can be added. It is

important to monitor computer resources to understand your PC's limit.

· The Market Analyzer has no limit to the number of columns, specifically indicator columns,

that can be added. Depending on the indicator and "Time Frame" property described

below, it may take a few seconds to calculate the indicator. This time is multiplied by the

number of instruments in the Market Analyzer which can result in a few minutes of loading

time. Decrease the number of instruments or indicator columns to lessen this loading time.

Operations 1091

© 2023 NinjaTrader, LLC

Indicator Columns
· The Time Frame ("Bars to load", "Days back", "Custom range") property determines the

minimum number of bars required to properly initialize each indicator column. The higher

the number, the longer it will take to load data and the more memory (RAM) NinjaTrader will

use to hold the data in memory.

· Each indicator has a Maximum bars look back parameter in the Columns window that

determines how many historical indicator values are stored for access. It is set to

TwoHundredFiftySix by default for optimal performance. Setting this to Infinite will take

longer to calculate and NinjaTrader will use more memory (RAM) to hold the extra values in

memory.

Indicator Calculate on Bar Close Parameter
· All indicators added to the Market Analyzer have the parameter "Calculate" set to "On bar

close" as default which only calculates the indicator value on the bar close to help with PC

performance. This parameter can optionally be set to "On price change" which will only

calculate when there has been a change in price, or "On each tick" which allows for a tick-

by-tick calculation (which will use more CPU resources).

Dynamic Ranking and Sorting Frequency
· Depending on the number of Instruments you have added to your Market Analyzer display,

using a low "Auto Sort seconds" value can cause your CPU to spike as the auto sort feature

continues to re-evaluate the ranking of the column you are sorting. For example, using a

value of 1 second on 100 instruments could potentially overwork your CPU. Setting this to a

higher value, such as every 10-30 seconds, will reduce the CPU workload, and still maintain

dynamic sorting at a customizable interval. You should monitor your CPU workload to find

the number of seconds that work for your system.

10.19.9 Reloading Indicators & Columns

When compiling custom NinjaScript indicators and columns, the Market Analyzer window will

not automatically reload the changes. To force a reload of any changed indicators or columns

you must select the menu item Reload NinjaScript via the right mouse button context menu or

alternatively, press the "F5" Hot Key.

10.19.10Window Linking

One of the most useful features of the Market Analyzer is the ability to link the instruments

displayed in the Market Analyzer grid to any other window in the NinjaTrader application.

This allows you to cycle through a custom list of instruments and quickly load the desired

symbols in a Chart, SuperDOM, or any other feature which uses the Window Linking

feature.

In order to accomplish this setup, please see the steps and image below:

1. Select a Link Color in the Market Analyzer

2. Select the same Link Color in any number of windows you wish to have updated

NinjaTrader 81092

© 2023 NinjaTrader, LLC

3. Using your mouse, left or right mouse click on any instrument row in the Market Analyzer

In the example image below, doing so will change the current instrument displayed in the

Chart (ADI) with the instrument that was selected in the Market Analyzer (ALTR).

All windows that are linked by the same color will receive the same change of instrument

request.

Operations 1093

© 2023 NinjaTrader, LLC

10.20 Market Watch

Market Watch Window Overview

You can access the Market Watch window from within the NinjaTrader Control Center

window by left mouse clicking on the menu New, and then selecting the menu item Market

Watch.

The Market Watch window displays tiles of the selected instrument(s) that display a 1

minute net change graph of the current session, last price, and net change in points &

percent for a quick glance at the market(s).

› Display Overview

› Working with Instrument Tiles

› Market Watch Properties

10.20.1 Display Overview

To open the Market Watch window, select the New menu from the NinjaTrader Control

Center. Then left mouse click on the menu item Market Watch.

NinjaTrader 81094

© 2023 NinjaTrader, LLC

Instruments will need to be added to the Market Watch window to display the instrument tile.

One of the ways to do this is by right clicking on the window and going to Add Instrument(s).

See the Working with Instrument Tiles section for more information.

Tile Display
1. The display for the selected instrument of the tile & instrument selector

2. The last price

3. The net change displayed in points and percent

4. The net change chart. With default settings the green area are prices that were above the

last close and the red area are prices that were below the last close.

Notes:

1. Market Watch requires Last Close to be provided by the data connection. If the data

connection does not support Last Close, Market Watch will not properly display (for

example FXCM / Forex.com / eSignal are known to not provide Last Close)

2. Tiles do not have a time relation to one another. For each tile the left of the tile is the

open of the session and the right is the end of the session per the default session

template for the instrument.

10.20.2 Working with Instrument Tiles

The Market Watch can be setup for use with an unlimited number of instrument tiles which

are used to display a net change chart, last price, and net change in points & percent.

Managing instrument tiles

Adding an Individual Instrument

Operations 1095

© 2023 NinjaTrader, LLC

You can add as many individual instrument tiles to your Market Watch window

as you would like.

· Press down on your right mouse button in the Market Watch window and select

the menu item Add Instrument(s). Through the Instrument Selector menu, you

can navigate through various instrument lists to locate the instrument you desire,

and left click on the instrument to add the individual instrument to the Market

Watch.

Adding a List of Instruments
You can also rapidly add an entire list of predefined instruments to the Market

Watch window.

· Press down on your right mouse button in the Market Watch window and select

the menu item Add Instrument List. Then select the instrument list you would like

to add to the Market Watch.

Please see the Instrument Lists section of the user help guide for additional

information on creating, editing, and deleting instrument lists.

Changing Instruments
Once an instrument tile has been added to the Market Watch display, you can

quickly change the instrument by using the Instrument Selector.

Arranging Tiles
You can customize the arrangement in which each instrument tile is displayed

by left clicking and dragging the instrument tile to the desired location.

Removing Instruments

NinjaTrader 81096

© 2023 NinjaTrader, LLC

To remove an instrument tile, simply right click on the desired tile and select
Remove Tile.

Creating instrument lists from the Market Watch

Creating an Instrument List
If you have a Market Watch setup with a number of different instruments you

would like to save for later, you can quickly add the entire display of instruments

into an Instrument List for quick access.

· Press down on your right mouse button in the Market Watch window and select

the menu item Create Instrument List, then give the Instrument List a unique

name and press OK.

You will now be able to access this list from other features of NinjaTrader using

the Instrument Selector. You can further edit this list by using the Instrument Lists

window

10.20.3 Market Watch Properties

The Market Watch window can be customized through the Market Watch Properties

window.

How to access the Market Watch Properties window

You can access the Market Watch properties dialog window by clicking on your

right mouse button and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the Market Watch

Properties window:

Operations 1097

© 2023 NinjaTrader, LLC

Property Definitions

General

Tab name Sets the name of the tab,

please see Managing Tabs

for more information.

Tile size Select the size used for all

tiles in the Market Watch

display

Colors

Up area Sets the area color for prices

above last close

NinjaTrader 81098

© 2023 NinjaTrader, LLC

Down area Sets the area color for prices

below last close

Opacity Sets the area opacity

Up outline Sets the outline color for

prices above last close

Down outline Sets the outline color for

prices below last close

Background Sets the background color for

the tile

Window

Always on top Sets if the window will be

always on top of other

windows.

Show Tabs Sets if the window will allow

for tab support

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

Using Tab Name Variables

Tab Name Variables

Operations 1099

© 2023 NinjaTrader, LLC

A number of pre-defined variables can be used in the "Tab Name" field of the

Market Watch Properties window. For more information, see the "Tab Name

Variables" section of the Using Tabs page.

10.21 News

News Window Overview

The News window can be opened by left mouse clicking on the New menu within the

NinjaTrader Control Center and selecting the News menu item.

The News window allows you to display, filter and create alerts for real-time news. You

will receive real-time news if are subscribed to a news service through a market data

vendor or broker.

› News Window

› News Properties

10.21.1 News Window

News sent from the connectivity provider is displayed in the News window. Alerts and filters

can be configured based on keywords in the news headline.

Understanding the News Window

News Window Display
The News window give you the ability to:

1. Filter news based on individual instruments or instrument list

2. Setup user defined Keyword filters

3. View a list of real-time news headlines

NinjaTrader 81100

© 2023 NinjaTrader, LLC

Reading Pane

And optional Reading Pane can be enabled below the list of real-time news

headlines by right clicking on the News window and selecting Show Reading Pane.

Headline Window

Operations 1101

© 2023 NinjaTrader, LLC

Double clicking on a headline will open the Headline Window which will display the

content of the news article.

Note: For the News window to populate information, you must be connected to

a data provider that supports real-time news. See the Data by Provider section

for information on what providers support news.

How to create a filter condition

Creating a Filter Condition

The News window gives you the ability to filter News Articles based off of user-

defined Keywords

To enable this type of conditional filtering:

1. Select the Filter Icon from the News window

NinjaTrader 81102

© 2023 NinjaTrader, LLC

2. From the Filter window, insert the Keywords you wish to filter (multiple

keywords can be separated by commas)

3. Optionally uncheck any Sources you may wish to exclude from your results

4. Press OK

Filtering on specified instrument(s)

You can also define news filters based on a specific instrument, or even a list of

predefined instruments.

To enable this type of filtering, simply select the desired Instrument or Instrument

List from the Instrument Selector of the News Window

How to create an alert on news article

An alert will visually and audibly notify you when a new article is received.

Operations 1103

© 2023 NinjaTrader, LLC

 Enabling News Alert

To turn on/off the Alerts feature:

Right click on the News window and check or uncheck Alert on New Article

You can customize the sound file, priority, and colors of the Alerts which are

generated from the News Properties

Alerts will be sent to the Alerts Log window

10.21.2 News Properties

The News window can be customized through the News Properties window.

How to access the News Properties window

You can access the News properties dialog window by clicking on your right

mouse button and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the News Properties

window:

NinjaTrader 81104

© 2023 NinjaTrader, LLC

Property Definitions

General

Alert on new

article

Sets the option to receive alerts when new

article is received

Grid font Sets the font options

Tab name Sets the name of the tab, please see

Managing Tabs for more information

Alert

Color for

background

Sets the alert background color

Operations 1105

© 2023 NinjaTrader, LLC

Color for

foreground

Sets the alert text color

Priority Sets a user defined priority

Sound file Sets the sound file that will play when the alert

is triggered

Window

Always on

top

Sets if the window will be always on top of

other windows.

Show

reading pane

Sets if the Reading Pane is displayed

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

10.22 Option Chain

The Option Chain window can be opened by left mouse clicking on the New menu within the

NinjaTrader Control Center and selecting the Option Chain menu item.

NinjaTrader 81106

© 2023 NinjaTrader, LLC

Option Chain Overview

The Option Chain window displays a listing of all available options contracts, along with

current quotes, for the selected security.

Display

› Display Overview

Misc

› Properties

Order and Position Management

› Submitting Orders

10.22.1 Display Overview

To open the Option Chain Window, select the New menu from the NinjaTrader Control

Center. Then left mouse click on the menu item Option Chain.

The image below shows the three sections in the of the Option Chain window:

1) Quotes grid

2) Ticker list

3) Options quotes

Operations 1107

© 2023 NinjaTrader, LLC

Understanding the quotes grid section

Quotes Grid
The Quotes Grid displays current day quotes for the underlying security of the

Option Chain window.

Column Definitions

Bid The bid price

Ask The ask price

Last The last price

Open The daily open price

High The daily high price

Low The daily low price

Pr close The prior day close price

Net chg The net change since the

prior day close in points

Vol The daily volume

Understanding the ticker list section

Ticker List
The Ticker List displays the active options tickers for the selected underlying

security in the Option Chain window.

NinjaTrader 81108

© 2023 NinjaTrader, LLC

1) Expiration date

2) Ticker name

3) Days until expiration

Filtering Options Contracts
With the filter button at the top of the window you can check or uncheck what

tickers you want the Option Chain window to display.

Understanding the option quotes grid section

Operations 1109

© 2023 NinjaTrader, LLC

Option Quotes
The Option Quotes displays calls and puts quotes for each strike price of the

expanded options ticker in the Option Chain window.

1) Columns display - the last, bid, ask, and strike columns (additional columns can

be added in the Properties)

2) Calls & Puts quotes - call quotes are on the left and put quotes are on the right

3) In The Money (ITM) options - indicated by the shaded area the ITM triangle is

pointing towards on the calls and puts section

4) Last price for the underlying security - indicated by the marker on top of the

strike prices

Changing Sort Direction of Strike Prices
Clicking on the Strike column header will change the sort direction of the strike

prices. This can also be adjusted in the Properties.

NinjaTrader 81110

© 2023 NinjaTrader, LLC

10.22.2 Submitting Orders

Submitting options orders is done by linking an order entry window then clicking on a bid or

ask price within the options quotes section of the Option Chain. For more information on the

order entry windows please see the Order Entry section of the user help guide.

How to link the Option Chain to an order entry window

You can link the Option Chain window to an order entry window by

1) Setting a link color in the Option Chain window

2) Then setting a matching link color in an order entry window

Operations 1111

© 2023 NinjaTrader, LLC

For more information on window linking please see the Using Window Linking

section of the user help guide.

To load the desired options in the order entry window

3) Click on the Bid or Ask price within the options quotes at the desired Strike price

on the Calls or Puts side

4) The options instrument will then automatically be populated into the Instrument

drop down menu of the order entry window

10.22.3 Properties

The Options Chain window is highly efficient by design but can also be customized to your

preferences through the Options Chain Properties menu.

How to access the Option Chain properties window

You can access the Option Chain properties dialog window by clicking on your

NinjaTrader 81112

© 2023 NinjaTrader, LLC

right mouse button within the Option Chain window and selecting the menu

Properties.

Available properties and definitions

The following properties are available for configuration within the Option Chain

properties window:

Operations 1113

© 2023 NinjaTrader, LLC

Property Definitions

General

NinjaTrader 81114

© 2023 NinjaTrader, LLC

Tab name Sets the tab name

Number of strikes Sets the number of strikes to

display

Sort direction Sets if the strike prices are

listed in descending or

ascending order

Show quotes Enables and disabled the

quotes grid for the underlying

security

Columns

Columns checkboxes Enables/disabled what

columns to display on the

Option Chain

Window

Always on top Sets if the window will be

always on top of other

windows

Show tabs Sets if the window should

allow for tabs

How to set the default properties

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to

return to the original settings.

Operations 1115

© 2023 NinjaTrader, LLC

Using Tab Name Variables

Tab Name Variables
A number of pre-defined variables can be used in the "Tab Name" field of the

Option Chain Properties window. For more information, see the "Tab Name

Variables" section of the Using Tabs page.

10.23 Order Entry

Order Entry Overview

Various Order Entry windows can be opened by left mouse clicking on the New menu

within the NinjaTrader Control Center and selecting the name of order entry window.

NinjaTrader provides six graphical interfaces for order, position, and ATM Strategy

management. These interfaces provide complete functionality for the management of

orders, positions and discretionary exit and stop strategies in a highly visual and efficient

manner. The majority of your time using NinjaTrader will be spent in one of these six

interfaces if you are primarily a discretionary trader.

Order Entry Windows

› Basic Entry

› Chart Trader

› FX Pro

› FX Board

› Order Ticket

› SuperDOM

Misc

› Trade Controls

› Simulated Stop Orders

› Order State Definitions

› FIFO Optimization

Notes:

Although the Basic Entry, Chart Trader, Order Ticket, and SuperDOM interfaces may

be used to trade any of the NinjaTrader supported asset classes, the Basic Entry window

is geared towards trading equities, the SuperDOM is geared towards trading futures, and

the FX Pro and FX Board windows are used for FOREX and CFD instruments only.

To be able to fully utilize all order entry windows it is required to use a mouse with left,

right, and middle buttons.

NinjaTrader 81116

© 2023 NinjaTrader, LLC

10.23.1 Attaching Orders To Indicators

Indicator Tracking
Adding indicators to the SuperDOM or Chart Trader gives you the ability to "attach" a

working order to the Indicator price level, which will automatically modify the price of the order

as your indicator values change. The frequency of the modifications will depend on the

Calculate settings of the indicator.

After you have configured an indicator to be displayed on the SuperDOM or Chart Trader,

right clicking on a working order will now have a right click menu option called "Attach to

Indicator". This feature will be available for both manually placed Entry/Exit orders as well as

pre-configured ATM Strategy Stop Loss and Profit Target orders.

Note: ATM Strategies will only work with Attach to Indicator for stop orders which do

not have a Stop Strategy configured. Enabling Attach to Indicator on an ATM Strategy

which has an associated Stop Strategy will disable the Stop Strategy and will then be

managed by the indicator instead.

Operations 1117

© 2023 NinjaTrader, LLC

Attaching an order to an indicator

Configuring Attach to Indicator Properties
To setup the parameters to Attach to Indicator:

NinjaTrader 81118

© 2023 NinjaTrader, LLC

1. Right mouse click on a submitted order

2. Hover your mouse cursor over the order details

3. Navigate to the Attach to Indicator menu

4. Left mouse click on the Attach to Indicator Properties menu item

This will open an Attach to Indicator Properties window which will allow you to

define the following properties:

Indicator Selects the indicator plot* which is used for the

indicator tracking

Offset

(ticks)

The number of ticks (+/-) the order will follow

the indicator value

Modify

toward last

price only

Enables / Disables the ability to hold the order

price and only modify should the indicator

change to a price closer to the last traded

price. This prevents orders from modifying to

price that would be worse than the previous

value.

After you have configured your desired settings, pressing the OK button will

automatically enabled Attach to Indicator on the order you configured which will

immediately modify the order price if necessary.

Operations 1119

© 2023 NinjaTrader, LLC

Note: Many indicators will have multiple plots. Please ensure you are

selecting the correct plot and that the current values would be valid for the

order you are attaching to the indicator to prevent unwanted fills or order

rejections. For example, attaching a Buy Limit order to the Upper Band of a

Bollinger indicator that is currently above the current market price will

automatically modify that order to above the market price resulting in an

immediate fill.

Disabling indicator tracking

Disabling Indicator Tracking
Orders that are attached to an indicator will be 100% managed by the Attach to

Indicator feature. Should you attempt to manually modify an order, you will

receive a prompt reminding you that this order is being managed by an Indicator. If

you wish to manually modify the order, you can select "Yes" to on this prompt to

disable the indicator management and allow you to change the order price if

desired.

NinjaTrader 81120

© 2023 NinjaTrader, LLC

You can also disable Attach to Indicator through the right click menu on the order

itself allowing you to re-configure your Attach to Indicator Properties if desired.

1. Right mouse click on a submitted order

2. Hover your mouse cursor over the order details

3. Navigate to the Attach to Indicator menu

4. Uncheck Enabled which will disable indicator tracking

As long as the order has not been filled/cancelled, you can always go back to this

menu and re-check enabled to turn the Attach to Indicator feature back on.

10.23.2 Simulated Stop Orders

A Simulated Stop order (SS) is a conditional locally held (PC simulated) order type that allows

you to execute either a market or a limit order once the market touches your order price and

satisfies a user defined volume trigger. SS orders are very powerful and can be misused if

not fully understood. Please take the time to review this section in it's entirety prior to using

this order type.

Operations 1121

© 2023 NinjaTrader, LLC

Note: Simulated Stop (SS) orders are not supported in the NinjaTrader Direct Edition.

Understanding the benefits of the Simulated Stop

Benefits
· Hide your order from the market place

· Delay the triggering of a stop-market or stop-limit order (prevent having your

position stopped out prematurely due to a quick drop and pop into your stop loss

price level)

· Execute a limit order at an improved price from the stop price trigger (for

example, you wish to trigger a buy limit order at 999 once the market price

reaches 1000)

Understanding the risks of the Simulated Stop

Risks
· SS orders are held and simulated locally on your PC and are therefore subject to

issues such as loss of internet connection and computer crashes

· SS orders require stable and reliable market data since they are simulated; if

market data stops flowing the SS order stops simulating

· SS market order types can experience slippage during high volume periods

and/or highly volatile markets

Warning: Since SS orders are held on your PC and submitted live when they

trigger, it is possible that the order is rejected should you not have available

margin to place this order. PLEASE BE AWARE OF YOUR ACCOUNT

MARGIN LIMITATIONS.

Understanding the SS Volume Trigger

Volume Trigger
A SS order requires a Volume Trigger value to be set. This is the number of

shares/contracts that represents a floor that once penetrated will trigger the SS

order. SS orders trigger once the market price is trading at the SS order price and

the Volume Trigger condition is breached. Volume Triggers for Stop Loss orders

NinjaTrader 81122

© 2023 NinjaTrader, LLC

are set as part of a Stop Strategy, Volume Triggers for all other stop orders are set

via the properties dialog window of any order entry window.

SS orders are set to Initialized state (see Order State Definitions) and are color

coded yellow in all of the NinjaTrader order display windows. Once triggered, either

a limit order or a market order is submitted.

Note: Simulated Stop Volume Triggers are not supported for Forex

instruments. NinjaTrader will ignore this value when set for Forex instruments

and instead will submit the stop order when price trades at the Simulated Stop

price level.

Simulated Stop examples

Sell Stop-Market Example
Order Type - Sell Stop-Market

Stop Price - 1975.00

Volume Trigger - 100

1. In the example below, even though the Bid price has reached our Sell Stop

Price of 1975.00, the order has not executed because the Bid volume is still

greater than our Volume Trigger of 100.

2. As soon as the Bid volume falls below the Volume Trigger at the Stop Price

level, then a market order is issued, which takes us into position at the market

price.

Operations 1123

© 2023 NinjaTrader, LLC

NinjaTrader 81124

© 2023 NinjaTrader, LLC

Note: If this was a Buy order, the Ask volume would be monitored.

Buy Stop-Limit Example
Order Type - Buy Stop-Limit

Stop Price - 1975.00

Limit Price - 1975.25 (1 tick offset)

Volume Trigger - 100

3. In this example, we again see that the Ask price has reached our Buy Stop

Price of 1975.00, however the order has not executed because the Ask volume is

still greater than our Volume Trigger of 100

4. As soon as the Ask volume falls below the Volume Trigger at our Stop Price,

a Limit order is immediately submitted at the price of 1975.25, which takes us into

position at our limit price or better.

Operations 1125

© 2023 NinjaTrader, LLC

NinjaTrader 81126

© 2023 NinjaTrader, LLC

Operations 1127

© 2023 NinjaTrader, LLC

Note: If this was a Sell order, the Bid volume would be monitored.

Sell Stop with Improved Limit Price Example
Order Type - Sell Stop-Limit

Stop Price - 1975.25

Limit Price - 1976.25 (- 4 tick offset)

Volume Trigger - 100

5. This example will once again trigger as the Bid price trades at our Stop Price

of 1975.25 and the Bid volume is less than 100 contracts.

6. The interesting thing about this set up is that what we are doing is triggering a

limit order at a higher price in order to try and get a better fill. This order strategy is

not possible with standard order types and can only be done using NinjaTrader SS

NinjaTrader 81128

© 2023 NinjaTrader, LLC

technology. Once triggered, a limit order is submitted to sell at a price of 1976.25,

4 tics above our Stop Price.

Operations 1129

© 2023 NinjaTrader, LLC

NinjaTrader 81130

© 2023 NinjaTrader, LLC

Note: If this was a Buy order, the Ask volume would be monitored.

Understanding when to avoid using Simulated Stop orders

Avoid SS Orders
· During high volume and trade rate periods such as the first five minutes of

trading

· During major economic events that can substantially affect volatility

· Markets that consistently trade with a large spread between the ask and bid

price

· Markets that trade where the ask or bid price can consistently change by more

than one tick

Operations 1131

© 2023 NinjaTrader, LLC

10.23.3 Order State Definitions

The table below describes the various order States your orders can be in as well as the color

that represents this state in NinjaTrader. The colors can be seen when submitting, modifying

or cancelling orders in the Order Entry windows as well as the Orders tab of the Control

Center.

NinjaTrader Order State Definitions

Order

State

Definition Color Code

Initialized Order information

validated on local PC

Yellow

Submitted Order submitted to the

connectivity provider

Orange

Accepted Order confirmation

received by broker

Order type color

Working Order confirmation

received by exchange

Order type color

Suspende

d

Order held by broker

and ready to be

submitted when

triggered

Order type color

Change

submitted

Order modification

submitted to the

connectivity provider

Orange

Cancel

pending

Order cancellation

submitted to the

connectivity

provider/exchange

Orange

Cancelled Order cancellation

confirmed cancelled by

exchange

No color

Rejected Order rejected locally,

by connectivity provider

No color

NinjaTrader 81132

© 2023 NinjaTrader, LLC

Order

State

Definition Color Code

or exchange

Partially

filled

Order partially filled No color

Filled Order completely filled No color

Trigger

pending

Order held locally on

PC and ready to be

submitted to

connectivity provider

Yellow

Notes: For orders in a Accepted or Working Order State, the order color will be

reflective of the order type. For example, a Limit order would by Cyan (by default) when

Working.

FXCM and Rithmic do not support GTD orders. These order will be submitted as GTC and

the GTD functionality will be simulated on NinjaTrader. NinjaTrader must be connected for

it to function

10.23.4 FIFO Optimization

All of the NinjaTrader order entry interfaces preserve FIFO (First In First Out) status with the

exchanges when possible.

Why is FIFO important?

FIFO is important since getting your orders filled is dependant on a FIFO algorithm

which basically means orders submitted ahead of yours at your order's price level

will get filled ahead of you. Think of it like a long line at the grocery store. You are

checked out only when those in line ahead of you have been checked out.

NinjaTrader preserves your place in line when possible giving you the best

possible advantage of getting your orders filled.

How does NinjaTrader preserve FIFO?

All NinjaTrader order entry interfaces simplify the visualization of orders. Let's say

that you have a buy limit order for 1 contract, and then want to modify this order

Operations 1133

© 2023 NinjaTrader, LLC

from 1 contract to 2 contracts. Most other programs will simply change this order

directly, but behind the scenes (at the broker's order servers) what is really

happening is that the original order is cancelled (removed from the line) and then a

new order for 2 contracts is submitted which then goes to the back of the line

putting you at a disadvantage. Imagine waiting in the grocery store check out line

for ten minutes. You forgot to get some bread, you leave the line in order to get the

bread that you wanted (changing your order) and upon your return to the check out

line, you have to start at the back of the line and wait all over again! With

NinjaTrader, when you modify the order from 1 contracts to 2 contracts, an

additional order for 1 contract is submitted. Now you have the original order for 1

contract waiting in the middle of the line somewhere and the new order for 1

contract at the back of the line. Your original order is not penalized and you

maintain your position in line. The opposite is true for decreasing an order size.

Although there are two working orders NinjaTrader consolidates the display so it

looks as if there is only one order working. You decide to decrease the order size

from 2 contracts back to 1. NinjaTrader will modify the newest orders first and the

oldest orders last in order to preserve your FIFO status. Following our example,

the second order that was placed would be cancelled and you would be left with

the original order for 1 contract with its maintained position in the order queue.

Exceptions to FIFO

NinjaTrader will attempt to use FIFO when possible, but there are a few scenarios

where this would not be possible.

Non-Aggregated Order Displays
Most of NinjaTrader's order interfaces (Basic Entry, SuperDOM, Chart Trader,

etc) will have an aggregated order display to consolidate orders

submitted/modified at the same price level and have also been designed for FIFO

optimization. However any order feature that uses a non-aggregated order

display, such as the Orders Tab of the Control Center or Account Data window,

modifications will not be able to maintain FIFO optimization and will modify the

order directly via a cancel/replace operation. If FIFO is important for your style of

trading, you will want to consider making modifications from an aggregated order

display feature, rather than directly from grid of the Orders Tab.

Quantity Modification for Stocks
NinjaTrader's features which support stocks will have an option to set how order

modifications are handled when trading stocks. You will find this setting by right

clicking on the Order Entry feature, selecting Properties, and will be called

Quantify modification for stocks with the following options:

NinjaTrader 81134

© 2023 NinjaTrader, LLC

Increase quantity

of preexisting

order

When modifying quantity or price on an

aggregated order NinjaTrader will

modify the order with the least time in

the market via a cancel/replace

operation.

Submit new order

for additional

quantity

Orders will use FIFO optimization as

normal

If the account you are trading with your stock brokerage charges you commission

per individual share, you will want to consider using "Increase quantity of

preexisting order" setting. While you will lose the FIFO optimization, order

modifications will not incur an additional commission charge as a result of the

additional orders that would otherwise be placed in response to your modification

request.

Futures, Forex, and CFD's will always use FIFO optimization on aggregated

orders.

10.23.5 Working With Forex

NinjaTrader supports trading and viewing market data for spot forex pairs, in addition to other

supported instrument types. Due to the unique nature of forex markets, there are a number of

features throughout the platform tailored specifically to these instruments, and a few

considerations to keep in mind when working with forex in NinjaTrader.

Pips Calculation Mode

Pips vs. Ticks
The "Pips" Calculation Mode can be used to calculate PnL and performance

metrics throughout the platform. This mode allows you to tailor performance

reporting specifically to your forex trades. Similar to the "Ticks" mode, "Pips" takes

the lowest granularity of price movement for a forex instrument (called a tick in

NinjaTrader), then divides it by 10 to arrive at the pip value for the instrument. For

example, when viewing a USD/JPY quote of 113.67'5, the "7" would be the pip

value, and the "5" would be the tick. Using the Pips Calculation Mode, the number

of ticks in profit (the "5" in the example) will be divided by 10 to arrive at the number

of pips of profit or loss.

Operations 1135

© 2023 NinjaTrader, LLC

Setting the Pips Calculation Mode
The Pips calculation mode can be used in realized/unrealized PnL fields in trading

windows (Chart Trader, SuperDOM, Basic Entry, etc.), the Trade Performance

window, and the Strategy Analyzer. In Trading Windows, the calculation mode can

be changed by left-clicking within the PnL field, or by opening the window's

Properties dialogue. For more information, see the relevant pages for each trading

window.

In the Trade Performance window and Strategy Analyzer, the calculation mode

can be changed via the Display dropdown menu, which affects all relevant

statistics.

NinjaTrader 81136

© 2023 NinjaTrader, LLC

Pips in ATM Strategies

ATM Strategy Parameters
The Parameter Type field within the ATM Strategy Parameters window can be

changed to "Pips" to affect the way that stop loss and profit target prices are set by

an ATM strategy. Just like the Pips PnL calculation mode, the Pips parameter type

is based on a multiplicative factor of the Ticks parameter type (1 Pip = 10 Ticks).

For example, rather than entering 200 ticks for your profit target (200 ticks = 20

pips), you can simply specify 20 pips.

Operations 1137

© 2023 NinjaTrader, LLC

Note: If your forex data provider supports tenth-pip quotes, then you can also

use the Ticks parameter type to set ATM orders with a sub-pip granularity.

Forex Lot Sizes

Setting Your FX Lot Size
A "Forex Lot Size" property can be set for accounts shown in the Accounts tab of

the Control Center. This setting affects the default position size populated in

trading windows when a forex instrument is selected. To access this property, first

select the Accounts tab in the Control Center. Next, right click on the account you

wish to edit, and select the Edit Account menu item. In the window that appears,

set the Forex Lot Size property to your desired value. You can enter any amount

here, whether or not it corresponds to a standard position size (Lot, Mini-Lot,

Micro-Lot). For example, you could enter "102000" to automatically use a position

size equal to one standard lot (100,000) plus two micro lots (2,000).

NinjaTrader 81138

© 2023 NinjaTrader, LLC

Notes:

· The Forex Lot Size property does not prevent you from entering or selecting

different position sizes in trading windows, but only controls what is

populated in the Quantity field by default.

Forex-Specific Trading Windows

FX Pro
The FX Pro window is laid out similarly to the Basic Entry window, with a few

enhancements and modifications tailored specifically to forex instruments. For

more information on using this window, see the FX Pro page.

FX Board
The FX Board is a unique forex trading window featuring a grid of two-sided tiles

updated in real time, offering market data, spread info, and order management

functionality for multiple pairs at once. FX Pro and FX Board windows can be

linked together via Instrument Linking. When linked, you can simply click any tile in

the FX Board, and the corresponding instrument will be selected in a linked FX Pro

window. For more information on using this window, see the FX Board page.

Other Windows
Forex instruments can be traded in other windows, as well, and are not limited to

the two mentioned above. Forex-specific windows can also be linked to others via

Instrument Linking. Other windows, such as Chart Trader or the Market Analyzer,

do not include forex-specific features, but are capable of handling FX instruments

just like any others.

How Bars Are Built and Orders Filled

Building Bars with "Last Price" Data Type
Forex price quotes do not use the concept of "Last Price" the same as other

markets; only Bid and Ask quotes are available. Thus, when building bars using

the default "Last" price type, the Bid price will be used instead. Using this price

type, all bars on a chart will be built using Bid price updates, but you can choose to

use the Ask price instead, if you wish. To change the price type used, first open

the Data Series window on a chart, then toggle the value in the "Price Based On"

field to your desired type.

Operations 1139

© 2023 NinjaTrader, LLC

Realtime Order Fills vs. Backtesting
Due to the absence of a last traded price quote in forex, all Buy orders in a live

market are filled at the Ask price, and all Sell orders are filled at the Bid. However,

when backtesting NinjaScript strategies, all simulated order fills will occur at the

Bid price, regardless of whether they were Buy or Sells orders

1. Ask Price: All realtime Buy orders are filled at the Ask

2. Bid Price: All realtime Sell orders and all backtest Buys and Sells are filled at

the Bid

Note: In backtesting, a slippage value can be set to recreate the impact of the

Bid/Ask spread on trade profit and loss. NinjaScript developers can calculate

the spread in strategy logic, then dynamically set the Slippage property before

entering orders. For non-programmers, an estimated slippage value can be

applied to all trades via the Backtest/Optimization Properties section in the

Strategy Analyzer.

Forex Trading Hours

NinjaTrader 81140

© 2023 NinjaTrader, LLC

Forex Trading Hours Template
All forex instruments are configured to use the pre-defined "Forex" Trading Hours

template, which runs 24 hours per day from 5:00pm EST on Sunday to 5:00pm

EST on Friday, with an End-of-Day session break at 5:00pm each day. This

covers the full range of forex trading throughout the week, but other Trading Hours

templates can be applied to restrict the data on your charts to be in line with any

local market timing on which you may wish to focus. For more information, see the

Trading Hours page.

Calculating Pip Value

How to Calculate the Pip Value for a Forex Pair
Multiplying the pip size of your currency pair by the lot size of your order will

provide you the pip value. This will be in the quote/counter currency of the forex

pair. The quote/counter currency is the second currency in the pair.

Example in USD for an USD Quote/Counter Currency
In the following example we will do this for a 10,000 lot on the EURUSD. The

quote/counter currency is USD and the EURUSD's point size is 0.0001.

10,000 x 0.0001 = 1

This indicates that 1 pip would be $1 USD.

Operations 1141

© 2023 NinjaTrader, LLC

Example in USD for a GBP Base Currency
In the following example we will use the EURGBP. Let's say our account is in USD

and we want to convert the pip value to USD. Again we will say we are trading a

10,000 lot size and the pip value for the EURGBP is 0.0001.

10,000 x 0.0001 = 1

This indicates that 1 pip would be £1 GBP. We would then multiply this by what the

GBPUSD is trading at.

In this example the GBPUSD is trading at $1.26 (rounded).

1 x 1.26 = 1.26

This indicates that 1 pip would be $1.26 USD.

Note: If the conversion rate is not available the PnL information will be in the

counter/quote currency of the pair. This would create a discrepancy in your

NinjaTrader 81142

© 2023 NinjaTrader, LLC

Trade Performance.

10.23.6 Where do your orders reside?

NinjaTrader
Orders in a state "Accepted" or "Working" or "Suspended" are at the brokerage or exchange.

If the exchange does not support a specific order type, the order will be active on the

NinjaTraders servers.

Most OCO (One Cancels Other) functionality is simulated on your local PC.

Continuum/CQG
Orders in a state "Accepted" or "Working" are at the brokerage or exchange. If the exchange

does not support a specific order type, the order will be active on the Continuum servers.

Most OCO (One Cancels Other) functionality is natively supported on their servers, but

please see the disclaimer section here for more information:

https://support.ninjatrader.com/s/article/Connecting-To-Your-NinjaTrader-Continuum-Feed

FOREX.com/City Index
Orders in a state "Accepted" or "Working" are on FOREX.com servers.

OCO (One Cancels Other) functionality is simulated on your local PC.

FXCM
Orders in a state "Accepted" or "Working" are on FXCM servers.

OCO (One Cancels Other) functionality is natively supported on their servers.

Interactive Brokers
Orders in a state "Accepted" or "Working" are at the brokerage or exchange. If the exchange

does not support a specific order type, the order will be active on the Interactive Broker

servers.

OCO (One Cancels Other) functionality is natively supported on their servers.

Rithmic
Orders in a state "Accepted" or "Working" are at the brokerage or exchange. If the exchange

does not support a specific order type, the order will be active on the Rithmic servers.

OCO (One Cancels Other) functionality is simulated on your local PC.

TD Ameritrade
Orders in a state "Accepted" or "Working" are at the brokerage or exchange. If the exchange

does not support a specific order type, the order will be active on the TD Ameritrade servers.

OCO (One Cancels Other) functionality is natively supported on their servers.

https://support.ninjatrader.com/s/article/Connecting-To-Your-NinjaTrader-Continuum-Feed

Operations 1143

© 2023 NinjaTrader, LLC

Note: Please note that MIT orders and Simulated Orders, which are in TriggerPending

state, could not be recovered by NinjaTrader, if the provider does not provide native

support. The order state after connection recovery would then be 'Unknown'.

10.23.7 Trade Controls

Trade Controls are located in various Order Entry windows available throughout the product.

NinjaTrader 81144

© 2023 NinjaTrader, LLC

Trade Controls

Many of the NinjaTrader Order Entry features will have a number of shared controls

design to aid you in setting various order parameters such as Quantity, Price, TIF, or

used to display account/instrument Position information. These controls are designed to

behave in the same manner no matter which order entry feature you're using.

› Closing a Position or ATM Strategy

› Position Display

› Price Selector

› Quantity Selector

› TIF Selector

10.23.7.1 Closing a Position or ATM Strategy Position

Closing a position or ATM Strategy with the Close button
In all NinjaTrader order entry windows there are CLOSE action buttons which will close a

position or an ATM Strategy depending on which mouse button is pressed (the left mouse

button will close the current position and cancel any working orders associated with the

instrument/account combination and the middle mouse button (scroll wheel) will close the

selected active ATM Strategy position only).

When a position or ATM Strategy position is closed, NinjaTrader goes through the following

process: (Assume we are long on the S&P E-mini contract at an entry price of 1000.)

1. Identify the active account and instrument

2. Send cancellation requests for any open orders on the active instrument/account

3. Wait up to five seconds for cancellation confirmations from the connected brokerage

4. After receiving confirmation for all cancellation requests, send an offset order to close any

open position (For example, a Buy order for 3 contracts would be sent to close an open

short position of 3 contracts)

The exception are currencies (FOREX) where all working orders are cancelled and then a

market order is submitted to close the position. (Does not apply to currencies with Interactive

Brokers where the previously described process is used.)

Why not just submit a market order?
A lot of traders consume near 100% of their available margin. For example, you may have 1

contract position with one stop and target that consumes 90% of your margin. If you close a

position by submitting a market order, the market order will get rejected due to insufficient

funds and therefore cause grief if getting out of the position is critical.

The NinjaTrader approach offers several benefits:

Operations 1145

© 2023 NinjaTrader, LLC

· Modifying existing limit orders avoids the potential problem of breaching your account

margin limitations when closing a position

· With some brokers, modifying existing orders is more efficient than submitting new orders

by up to 500 milliseconds

· Cancellation of non essential orders unlocks available margin that could potentially get

consumed if a market order is required to close out any remaining contracts that are not

covered by existing limit orders

This approach essentially guarantees the most efficient way to exit a position.

10.23.7.2 Position Display

The current selected account and instrument's position will be reflected directly on the Order

Entry window with the following information:

1. Position Quantity and Direction Display

2. PnL (Profit and Loss) Display

3. Average Entry Price Display

The image above shows that we are in a 1 Long position, with an Average Entry Price of

1974.00, and that our current open PnL is 1.25 points.

Tip: If you are trading using multiple ATM Strategies, it is possible to reconfigure the

position display to only display the position of the current selected ATM Strategy. Please see

our Help Guide section on ATM Strategy Selection mode for more information.

Understanding Position Quantity and Direction Display

Position Information
The current number of contracts in position will be displayed as a number in the

position display. The direction of the position will be also represented in a highly

visual manner:

· When not in a position, the text display will say "Flat" without a color

· Long positions will be reflected by a Green background color

· Short positions will be reelected by a Red background color

Understanding Average Entry Price Display

NinjaTrader 81146

© 2023 NinjaTrader, LLC

Average Entry Price
When in a position, the Average Entry Price Display will show you the current

price which is being used to calculate your open PnL. As you scale in and scale

out of position at different prices, your Average Entry Price will be recalculated to

reflect the new average price. The way this is calculated is set under the Trading

category of NinjaTrader's general options menu.

Note: The SuperDOM's average entry price will be displayed directly on the

Price ladder display rather than a text field.

Understanding PnL Display

Profit and Loss
The PnL Display can be easily switched between Currency, Percent, Points,

Pips, Ticks and None (hides your PnL). There are two ways to configure the PnL

Display:

1. Single left clicking on the PnL Display itself will cycle between each display

mode (with the exception of "none")

2. Right clicking on the order entry feature and selecting Properties will allow you

to select the PnL display unit property directly

You can also configure the PnL Display to show you your selected account's

Realized PnL for the current trading session when not in a position. To enable

this feature, right click on the order entry feature, select Properties, and check

Show realized PnL when Flat.

Tip: Show realized PnL when Flat will show you your overall account

PnL and not the selected instrument's PnL. If you'd like to see each

individual instruments PnL, you can use the Market Analyzer's Realized

profit loss and Unrealized profit loss Columns to display this information per

instrument.

Note: When viewed in Ticks, Points, or Pips the PnL will be calculated

according to the average entry price for one unit. When viewed in Currency,

PnL will be multiplied by the number of units in a position. When viewed in

Percent, PnL will be percentage change of the Average Entry Price. This is

Operations 1147

© 2023 NinjaTrader, LLC

due to the fact that the Ticks, Points, and Pips display modes are intended

to provide easily comparable measures of raw performance between

trades, by eliminating the position size from the equation.

10.23.7.3 Price Selector

NinjaTrader order entry feature which have the ability to place custom orders for Stop-

Market, Stop-Limit, Limit and MIT orders such as the Order Ticket, Basic Entry, FX Pro,

and FX Board use a standard Price Selector which is used to specify the exact price used

for these types of orders.

Setting and Adjusting Price
The price selector allows you type directly into the editor to specify a price, however you can

also use a few shortcuts to obtain current market prices, as well as make quick adjustments

to the selected price using your mouse. The table below shows the various shortcuts that

can be used with the Price Selector:

Middle Mouse

Click

Sets the current Last Price

Ctrl + Middle

Mouse Click

Sets the current Ask Price

Alt + Middle

Mouse Click

Sets the current Bid Price

Middle Scroll

Up/Down

Adjusts the current price 1 tick

Ctrl + Middle

Scroll

Up/Down

Adjusts the current price 10 ticks

Order Types and Price Fields
Upon selecting an order type, the relevant fields specific to that type of order will be enabled to

allow you to edit the order price before submitting the order. If a field is not relevant to an

NinjaTrader 81148

© 2023 NinjaTrader, LLC

order type, it will be disabled. Note that a Stop-Limit order has both fields enabled which

implies that both fields must have a value in order to place this type of order.

Limit Order - Limit Field

Market Order - No Fields

MIT Order - Stop Field

Stop-Limit Order - Stop and Limit Fields

Stop-Market Order - Stop Field

10.23.7.4 Quantity Selector

The Quantity Selector is a standard control available from all order entry features which

allows you to select the number of contracts that are prepared for an custom order.

Default Order Quantities

Minimum Quantity Size
The Quantity Selector is smart in that it will automatically fill in the minimum

quantity value depending on the type of instrument that is selected. This is

particularly useful when switching from one instrument type to another.

The table below will show the minimum quantity for each instrument type:

Operations 1149

© 2023 NinjaTrader, LLC

Instrument

Type

Default Minimum Quantity

Future 1

Stock 100

CFD 1

Option 1

Forex Forex lot size - 100K (Full), 10K (Mini), or

1K (Micro)

Note: Forex lot sizes are automatically determined by your Forex brokerage

account connection. For Simulation account Forex lot size, see "Managing

simulation accounts" section of the global Trading options

Increasing or Decreasing Quantity

Adjusting Quantity
The Quantity Selector allows you to type directly in the quantity field to specify an

exact quantity with your keyboard.

You can also control the quantity using the up/down arrows next to the quantity

selector, or by using the scroll wheel on your mouse. These methods will change

the quantity depending on the instrument type's minimum values described in the

"Default Order Quantities" section above.

For example with a Stock selected, simply scrolling up with your mouse will

change a quantity of 100 to 200. Holding the CTRL key on your keyboard and

modifying the order quantity will increase or decreasing the value by 10. This

means if you were to hold the CTRL key while scrolling on the Quantity Selector

will increase Stock quantity from 100 to 1,100.

Preset Quantity Pad

NinjaTrader 81150

© 2023 NinjaTrader, LLC

Using Preset Quantities
Middle mouse clicking on the Quantify Selector will display a Preset Quantity

Pad which will allow you to optionally predefine the number of contracts used as

the quantity.

1. Quick Sets the order quantity used to an exact pre-

defined quantity

2.

Increme

nt

Increases the current order quantity value by pre-

defined value

For example if your current quantity was set to a value of 1, and you wanted to

quickly set the quantity to 10, you would simply select 10 from the left side of the

Preset Quantity Pad. If you wanted to increase the current quantity by 2, you

would select the +2 from the right side of the Preset Quantity Pad. Doing so will

increase the current value from 1 to 3. Selecting +2 again would then change the

quantity from 3 to 5.

Selecting the "clear" button will reset the current order quantity to the instrument's

minimum order quantity size.

Customizing Preset Quantities
You can customize the preset quantity values that are displayed in these fields by

selecting the "configure" button from the Preset Quantity Pad.

Operations 1151

© 2023 NinjaTrader, LLC

Adding a Custom Preset
1. Select the desired Preset (Quick or Increment) from the left side Presets

panel

2. Press the "add" button in the right panel

3. Set the desired Quantity value

4. Press OK

Removing a Custom Preset
1. Select the desired Quantity/Increment value from the right side Quantities
panel
2. Select the "remove" button

Note: Order quantities will always be organized from low to high values

10.23.7.5 TIF Selector

The TIF Selector is a standard control available from all order entry features which allows

you to set the TIF (Time-In-Force) to be submitted with a custom order. The selected TIF

parameter is sent to your broker on order submission and will instruct how long you would like

the order to be active before it is cancelled.

NinjaTrader 81152

© 2023 NinjaTrader, LLC

Note: An order's TIF is not managed by the NinjaTrader application and any cancellations

are managed by the brokerage system.

Available TIF Options
The available TIF options are determined by the connection technology of the current

selected account. If a provider's connection technology does not support a certain TIF, it will

not be listed to ensure a valid TIF is always been used. Possible TIF options are described in

the table below:

DAY Orders will remain active until the end of the

trading session for the current day

GTC (Good 'Til

Cancelled)

Orders will remain active until explicitly cancelled

GTD (Good 'Til

Date)

Orders will remain active until the end of trading

session on a user defined date

How to Submit an Order as GTD
When selecting GTD as the TIF for an order, you will be presented with a Date Selector to

specify the date you would like the order to be cancelled.

In the image above, the current date is Thursday July, 17th. If you would like the prepared

order to be live until end of session on the following Monday July 21st, you can simply select

the 21st from the Date Selector.

Operations 1153

© 2023 NinjaTrader, LLC

10.23.8 Basic Entry

The Basic Entry window can be opened by left mouse clicking on the New menu within the

NinjaTrader Control Center and selecting the Basic Entry menu item.

Basic Entry Overview

The Basic Entry order entry window is comprised of several components: market data

display, Order Grid, action buttons, as well as order entry and ATM Strategy

management.

Display

› Display Overview

Misc

› Properties

Order Management

› Submitting Orders

› Modifying and Cancelling Orders

› Managing Positions

10.23.8.1 Display Overview

To open the Basic Entry Window, select the New menu from the NinjaTrader Control Center.

Then left mouse click on the menu item Basic Entry.

NinjaTrader 81154

© 2023 NinjaTrader, LLC

The image below shows each of the four sections in the Basic Entry window

1. Order Grid

2. Position and Level 1 (current inside market) display

3. Action Buttons

4. Order entry and ATM Strategy management

Note: Positions and orders will only display for the selected Account and Instrument.

Operations 1155

© 2023 NinjaTrader, LLC

Please see the sections below for more information on each on: Order Grid, Market

Display, Action Buttons, and Order Control.

Understanding the order grid section

Order Grid Display

NinjaTrader 81156

© 2023 NinjaTrader, LLC

The Order Grid displays active orders for the account and instrument selected in

the Basic Entry window.

Column Definitions

Name Order name such as Stop1 or Target1

Action Buy or Sell

Type Order type

Price Order price

Rema

ining

Number of contracts/shares remaining to be filled

Canc

el

Cancels the order(s)

Understanding the market display section

Market Data Display
The market display section of the Basic Entry window is used to display market

prices and position information. The market price displays will change colors

when an uptick or a downtick has been detected.

Operations 1157

© 2023 NinjaTrader, LLC

1. Current best ask price and size

2. Current best bid price and size

3. Last traded price and size

4. Market position (FLAT or green background with position size for long, red

background for short)

5. Position average entry price

6. Unrealized profit or loss for current position (Clicking on this cell with your left

mouse button will change the display between points, ticks, currency, percent, and

pips)

Understanding the action buttons section

Action Buttons
The Basic Entry has several buttons which are used to invoke a number of order

related actions.

NinjaTrader 81158

© 2023 NinjaTrader, LLC

BE

(Break-

even)

Adjusts any open stop orders opposite of your

position to the positions average entry price

Buy Ask Submits a Buy Limit order at the current ask price

Sell Ask Submits a Sell Limit order at the current ask price

Buy Mkt

(Market)

Submits a Buy Market order at the current market

price

Sell Mkt

(Market)

Submits a Sell Market order at the current Market

price

Buy Bid Submits a Buy Limit order at the current bid price

Sell Bid Submits a Sell Limit order at the current bid price

Rev Closes the current open position and open a

reverse position.

Close Closes the current position and cancel any

working orders associated to the

instrument/account combination.

Buy Submits a Buy order based on the current Order

Controls configured

Sell Submits a Sell order based on the current Order

Controls configured

Please see the Submitting Orders section for more information on using these

buttons.

Understanding the order control section

Order Controls
The Order Control section of the Basic Entry is used to specify several

attributes for a pending order to be submitted.

Operations 1159

© 2023 NinjaTrader, LLC

Type Selects the order Type to be submitted

Limit Sets the order Limit price

Stop Sets the order Stop Price

Instrume

nt

Sets the Instrument

TIF Sets the order Time in Force

Quantity Sets the order Quantity

Account Sets the Account

ATM

Strategy

Selects the ATM Strategy

Understanding the right click menu

The Basic Entry window has two right click menus, depending on where you

click:

· Right clicking on the Basic Entry window itself will bring up menu items specific

to the Basic Entry

· Right clicking in the Order Grid will bring up menu items specific to orders

Basic Entry Control Right Click Menu

NinjaTrader 81160

© 2023 NinjaTrader, LLC

Right clicking on the Basic Entry window itself will bring up a number of menu

items specific to the Basic Entry

Auto

Close

Position

Automatically Closes the current instruments

position at a specified time

OCO

Order

Enables/Disables the OCO (one cancels other)

function for a pending order

Simulated

Order

Enables/Disables the Simulated Order

functionality for a pending order

Cancel All

Orders

Cancels all active orders on the current account

Flatten

Everything

Closes all open positions and cancels all open

orders on every account associated with

NinjaTrader

Always On

Top

Sets if the window should be always on top of

other windows

Operations 1161

© 2023 NinjaTrader, LLC

Show

Tabs

Sets if the window should allow for tabs

Print Displays Print options

Share Select to share via your share connections

Properties Configure the Basic Entry window properties

Order Grid Control Right Click Menu
Right clicking in an empty grid will bring up a number of general menu items
specific to the Order Grid

Cancel All

Orders

Cancels all active orders on the current account

Export... Exports the grid contents to "CSV" or "Excel" file

format

Find... Search for a term in the grid

Print Displays Print options

NinjaTrader 81162

© 2023 NinjaTrader, LLC

Share Select to share via your share connections

Propertie

s

Configure the Basic Entry window properties

By moving your mouse cursor over an order and pressing down on your right
mouse button, you will see a context menu listing all individual orders consolidated
at the corresponding price and any relevant actions that you can perform on those
orders.

Cancel

order

Cancels the individual order selected

Increase

Price

Changes the price of the order +1 tick

Decrease

Price

Changes the price of the order -1 tick

Cancel All

Orders

Cancels all active orders on the current

account

10.23.8.2 Submitting Orders

Submitting orders within the Basic Entry order entry window is both easy and efficient. In

addition to entry and exit orders the Basic Entry window also offers access to NinjaTrader's

ATM Strategies. For more information on ATM Strategies please see the ATM section of the

user help guide or attend one of our free live training events.

https://ninjatrader.com/futures/livestreams

Operations 1163

© 2023 NinjaTrader, LLC

Selecting instruments and account

How to Select an Instrument
There are multiple ways to select an Instrument in the Basic Entry window.

· Select the Instrument Selector to open a list of recently used instruments or

instruments contained in a predefined list

· With the Basic Entry window selected begin typing the instrument symbol

directly on the keyboard. Typing will trigger the Overlay Instrument Selector.

For more Information on instrument selection and management please see

Instruments section of the Help Guide.

How to Select an Account
A list of all connected accounts will be listed in the "Account" drop down list. To

change the account select the account you wish to trade through via this drop

down list.

Understanding order settings

To submit an Order
1. Set the order "Quantity" field (info)

2. Set the "TIF" (Time in Force) field (info)

3. Set the "ATM Strategy" (info)

4. Enter an order with any of the methods described below

How to submit orders with quick buttons

NinjaTrader 81164

© 2023 NinjaTrader, LLC

Quick Buttons
You can enter orders rapidly by pressing on any one of the quick order buttons.

Buy Ask Submits a Buy Limit order at the current ask price

Sell Ask Submits a Sell Limit order at the current ask price

Buy Mkt

(Market)

Submits a Buy Market order at the current market

price

Sell Mkt

(Market)

Submits a Sell Market order at the current Market

price

Buy Bid Submits a Buy Limit order at the current bid price

Sell Bid Submits a Sell Limit order at the current bid price

How to submit custom orders

Custom Orders
You can place a custom order by setting order parameters.

1. Select the order Type
2. Set the Limit price if applicable
3. Set the Stop price if applicable
4. Left mouse click either the BUY or SELL button

Operations 1165

© 2023 NinjaTrader, LLC

Tips

1. You can quickly retrieve the current last, bid, or ask price in the Limit and Stop
price fields using the following commands:

· Middle click in the field to retrieve the last traded price,

· CTRL + middle click in the filed to retrieve the best ask price

· ALT + middle click in the field to retrieve the best bid price

2. Hold down the CTRL key when increasing/decreasing limit/stop prices to
change the price in steps of 10 tick increments.

Understanding the OCO (One Cancel Other) function

OCO Orders (One Cancels Other)
Stop Loss and Profit Target orders (submitted automatically via an ATM
Strategy) are always sent as OCO, however, you can submit entry or exit orders
as OCO orders as well. Why? The market may be trading in a channel and you
wish to sell at resistance or buy at support, whichever comes first by placing two
limit orders at either end of the channel.

NinjaTrader 81166

© 2023 NinjaTrader, LLC

To place OCO orders, press down on your right mouse button inside the Basic
Entry window and select the menu name "OCO Order or use the short cut key
CTRL+Z.

The "OC" (OCO indicator) will light up green at the top of the Basic Entry window.
All orders placed while this indicator is lit will be part of the same OCO group.
Once any order of this group is either filled or cancelled, all other orders that
belong to this group will be cancelled.

If you want each OCO order to create it's own set of Stop Loss and Profit Target
orders ensure that the ATM Strategy control list is set to either <Custom> or a
strategy template name before you submit each OCO order.

After you have placed your orders, it is advised to disable the OCO function via the
right click menu, or use the short cut key CTRL+Z.

Warning: If an order which was part of an OCO group has already been filled
or cancelled, you will need to submit the pending order with a new OCO ID
otherwise the pending order will be rejected.

Operations 1167

© 2023 NinjaTrader, LLC

To reset an OCO ID, simply disable the OCO function, and re-enable. This will
generate a new OCO ID and allow you to place new orders.

Break Out/Fade Entry Example
One of the great features of NinjaTrader is its ability to submit two entry orders,
one of which will cancel if the other is filled.

You can accomplish a breakout/breakdown approach by:

· Right clicking in the Basic Entry window and selecting the menu item "OCO

Order" to enable the OCO function
· For your first order, select the desired option from the "ATM Strategy" drop

down list
· Submit your stop order to buy above the market

· For your second order, select the desired option from the "ATM Strategy" drop
down list

· Submit your stop order to sell below the market

· CRITICAL: Right click in the Basic Entry window and select the menu item
"OCO Order" to disable OCO for future orders.

For a market fade approach just substitute limit orders for stop orders.

How to submit Simulated Stop Orders (Simulated Order)

Simulated Stop Orders (Simulated Order)
To submit a Simulated Stop Order (entry and exit NOT Stop Loss; simulated
Stop Loss orders are enabled via an ATM stop strategy) you must enable
Simulated Order mode via the right mouse click context menu by selecting the
Simulated Order menu item..

NinjaTrader 81168

© 2023 NinjaTrader, LLC

The "SO" (Simulated Order indicator) will light up green at the top of the Basic
Entry window. All stop orders placed while this indicator is lit will be submitted as
a Simulated Stop Orders.

10.23.8.3 Modifying and Cancelling Orders

You can modify an existing order's quantity, price, or cancel an order entirely from Order

Grid display of the Basic Entry window.

Modifying existing orders

Changing the Price of an Order
1. You can increase the price of an order in one tick increments by right mouse
clicking on the order in the order grid and selecting "Increase Price".

2. You can decrease the price of an order in one tick increments by right mouse
clicking on the order in the Order Grid and selecting "Decrease Price".

3. Double clicking on the Price field will enable the price editor which will allow
you to type in a new price manually, or use the scroll wheel on your mouse to
select a relative price.

Operations 1169

© 2023 NinjaTrader, LLC

Tip:
Hold down the CTRL key when scrolling in the price editor to change the price in
steps of 10 tick increments.

Enabling Increase and Decrease Columns
You can optionally enable columns on the Order Grid display which will allow you
to increase or decrease the price of an order using a button click.

To enable these columns:

1. Right click on the Basic Entry Window and select Properties
2. Expand the "Columns" section
3. Check the "Increase" and/or the "Decrease" options
4. Press "OK"

1. You can increase the price of an order in one tick increments by left mouse
clicking on the "+" button. Holding the CTRL key down while pressing the "+"
button will modify the order by 5 tick increments, and holding the ALT key will
modify the order by 10 tick increments.

2. You can decrease the price of an order in one tick increments by left mouse
clicking on the "-" button. Holding the CTRL key down while pressing the "-" button
will modify the order by 5 tick increments, and holding the ALT key will modify the
order by 10 tick increments.

Changing the Quantity of an Order
You can change the size of an order by left clicking in the "Remaining" column,
typing in a new quantity value and pressing the "Enter" key on your keyboard.

Changing the quantity of an existing order will submit a new order the same price
to preserve your place in queue. Your orders will now show up as "stacked"
indicated by the small letter "s" next to the order.

NinjaTrader 81170

© 2023 NinjaTrader, LLC

If you would like to break up these orders to manage individually, you can right click
on the Order and select "Unstack"

Cancelling orders

Cancelling an Individual Order
1. You can cancel an order by left mouse clicking on the "X" button.

2. You can also right click on the order itself and press the "Cancel Order" menu

item

Cancelling Stacked Orders
If you have stacked orders, indicated by the small letter "s" in the Remaining

column, you can cancel one of the orders, and leave the other remaining using the

steps below:

1. Right click on the stacked order row

2. Move your mouse over the order individual order

3. Select "Cancel Order"

Operations 1171

© 2023 NinjaTrader, LLC

10.23.8.4 Managing Positions

How to Manage Open Positions
1. Clicking on the "BE" (break-even) button with your left mouse button will adjust any

stop orders in the opposite direction of your open position (if position is long it will adjust

stop sell orders) to the positions average entry price. Clicking on this button with your

middle mouse button (scroll wheel) will only adjust any Stop Loss orders associated to

the selected active ATM Strategy in the strategy drop down list. Orders resting at a

better price than the average entry price will NOT be modified.

2. Clicking on the "Rev" button will close the current open position and open a reverse

position.

3. Clicking on the "Close" button with your left mouse button will close the current

position and cancel any working orders associated to the instrument/account

combination. Clicking on this button with your middle mouse button (scroll wheel) will

close the selected active ATM Strategy only. This means that the position size of the

ATM Strategy will be closed and any working orders associated to that ATM Strategy

will be cancelled.

Please see the help topic on Closing a Position or ATM Strategy for more information

on the mechanics behind closing various types of positions.

NinjaTrader 81172

© 2023 NinjaTrader, LLC

10.23.8.5 Properties

The Basic Entry order entry window is highly efficient by design but can also be customized

to your preferences through the Basic Entry Properties menu.

How to access the Basic Entry properties window

You can access the Basic Entry properties dialog window by clicking on your right

mouse button within the Basic Entry window and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the Basic Entry

properties window:

Operations 1173

© 2023 NinjaTrader, LLC

Property Definitions

General

ATM strategy selection mode Sets the behavior mode of

the price ladder display and

strategy selector (see more)

Grid font Sets the font options

PnL display unit Sets the display unit for profit

and loss

Scale quantity Sets the scale order quantity

amount.

Show realized PnL when flat Displays realized profit and

loss for the selected account

when flat

Simulated order volume

trigger

Sets the value for a simulated

order volume trigger (for entry

and exit orders and NOT

used for stop loss)

Tab name Sets the tab name

Quantity modification for

stocks

Sets if modifying an existing

stock order quantity changes

the the order, or submits a

new order

Colors

Action button Sets the color for action

buttons (CLOSE, BE etc...)

Buy button Sets the color for all the buy

buttons

NinjaTrader 81174

© 2023 NinjaTrader, LLC

Downtick background Sets the background color of

the market data display when

a downtick is detected

Downtick foreground Sets the foreground (text)

color of the market data

display when a downtick is

detected

Order - limit Sets the color used for limit

orders

Order - MIT Sets the color used for MIT

orders

Order - profit target Sets the color used for profit

target orders

Order - stop limit Sets the color used for stop-

limit orders

Order - stop loss Sets the color used for stop

loss orders

Order - stop-market Sets the color used for stop-

market orders

Sell button Sets the color used for all the

sell buttons

Uptick background Sets the background color of

the market data display when

an uptick is detected

Uptick foreground Sets the foreground (text)

color of the market data

display when an uptick is

detected

Columns

Operations 1175

© 2023 NinjaTrader, LLC

Order Columns (...) Expanding this section will

allow you to disable / enable

any of the columns in the

Orders Grid display

Window

Always on top Sets if the window will be

always on top of other

windows.

Show tabs Sets if the window should

allow for tabs

How to set the default properties

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to

return to the original settings.

Using Tab Name Variables

Tab Name Variables
A number of pre-defined variables can be used in the "Tab Name" field of the

Basic Entry Properties window. For more information, see the "Tab Name

Variables" section of the Using Tabs page.

10.23.9 Chart Trader

Chart Trader can be enabled within any chart window via the chart properties dialog window

or by left mouse clicking on the Chart Trader icon in the chart toolbar.

NinjaTrader 81176

© 2023 NinjaTrader, LLC

Chart Trader Overview

When enabled, the Chart Trader panel will be visible on the right side of the chart

window. You will be able to submit, modify and cancel orders directly from within the chart.

› Order & Position Display

› Hidden View

› Submitting Orders

› Modifying and Canceling Orders

› Attach to Indicator

› Chart Trader Properties

10.23.9.1 Order & Position Display

Chart Trader allows for the placement of orders, and the management of orders and

positions, directly from a chart. Orders and positions within Chart Trader are displayed in a

visual manner, allowing you to quickly compare them with current market movements while

modifying orders in real-time. Chart Trader contains two primary components: the Chart

Trader panel, which is used to place, modify, or cancel/close orders and positions, and the

chart panel, on which Chart Trader draws visual representations of resting orders and open

positions.

Understanding order display

Operations 1177

© 2023 NinjaTrader, LLC

Order Display
A resting order is displayed on the chart as a color-coded line connecting an order

price label in the right margin of the chart with a second label displaying the order

quantity and type.

Limit

Order

Default color is cyan with the text "LMT"

Stop-

Market

Order

Default color is pink with text "STP"

Stop-

Limit

Order

Default color is violet with text "SLM"

Market

Order

Market orders are not displayed (see Control

Center Orders Tab for more information)

Market if

Touched

(MIT)

Order

Default color is spring green with the text "MIT"

Stop

Loss

Order

Default color is red

Profit

Target

Order

Default color is lime

Chart trader color properties can be set via the Chart Trader properties window.

The image below displays how orders are visualized in a NinjaTrader chart with

Chart Trader enabled.

NinjaTrader 81178

© 2023 NinjaTrader, LLC

1. Buy stop-limit order for 1 contract at a price of X

2. Buy stop-market order for 1 contract at a price of X

3. Buy limit order for 1 contract at a price of X

Note: Orders will only display for the selected Account and Instrument.

Understanding Position Display

Position Display
An open position is displayed slightly differently. A position is displayed on the chart

as a colored line connecting an entry price label in the right margin of the chart

with a second label displaying the position size and current unrealized profit or

loss. The text displaying the profit and loss is color coded, with green representing

profit and red representing loss. The quantity displayed in the left-hand label is

color coded, as well, with green representing a long position and red representing

a short position.

Operations 1179

© 2023 NinjaTrader, LLC

Note: The display of unrealized PnL in Chart Trader can be switched between

points, currency, pips, ticks, and percent by either left mouse clicking in the PnL

field in the Chart Trader panel, or via the Chart Trader Properties window.

The image below displays the chart with an active position managed by an

Advanced Trade Management strategy.

1. Two profit target orders

2. Position size and PnL flag for 2 contracts long

3. Two stop loss orders*

4. Average entry price

5. PnL in Chart Trader panel

* The stop loss line and flag represents two orders, as indicated by the letter "s"

next to the qty number "2."

Note: Positions will only display for the selected Account and Instrument.

Working with multiple instruments

NinjaTrader 81180

© 2023 NinjaTrader, LLC

Multi-Series Charts
NinjaTrader charts include the ability to plot multiple instruments within a single
chart window, and each individual instrument on a chart can be selected and
worked with separately using Chart Trader. For more information on how to
manage instruments on a chart, see the Working with Multiple Data Series page.

In the image above, we have applied a EURUSD instrument, an FDAX ##-##
instrument, and a BIDU instrument in three separate panels of the same chart.

Selecting Data Series
With more than one instrument applied to a chart, you can change the instrument

upon which Chart Trader will act via the Instrument dropdown menu. This menu

will list all of the Data Series currently applied to your chart. When an instrument

is selected, only orders and positions for that particular instrument will be

displayed in the chart panel, and any quick buttons used or order parameters set

in the Chart Trader panel will apply to that instrument.

Operations 1181

© 2023 NinjaTrader, LLC

1. With the EURUSD selected in the Instruments dropdown menu, we can only

that instrument's orders and positions.

NinjaTrader 81182

© 2023 NinjaTrader, LLC

2. With BIDU selected, we see a different set of orders and positions.

10.23.9.2 Hidden View

Chart Trader can be displayed fully, disabled fully, or collapsed. When the collapsed view is

enabled, the order and position display functionality of Chart Trader is still enabled, and

orders can still be placed and managed directly from the chart panel, but the Chart Trader

panel itself will be hidden. This serves to maximize screen space for charts while maintaining

much of the important functionality of Chart Trader.

Collapsing and restoring the Chart Trader panel
There are two ways to collapse the Chart Trader panel. You can either click the Chart

Trader icon on the chart toolbar, then select the "Chart Trader (Hidden)" menu item, as seen

in the image below, or you can edit the "Chart Trader" property within the chart Properties

window. When you wish to view the Chart Trader panel once more, you can use the same

methods to select the "Chart Trader" menu item.

Operations 1183

© 2023 NinjaTrader, LLC

In the image above, we see an open position and a modifiable resting order on the chart, even

though the Chart Trader panel is hidden.

10.23.9.3 Submitting Orders

There are several methods that can be used to submit orders directly from a chart using

Chart Trader.

How to submit an order

Submitting Orders
To submit an order via the Chart Trader panel:

1. If you have more than one instrument applied to the chart, select an instrument

on which to place the order via the Instrument dropdown menu

2. Select the order time-in-force via the TIF dropdown menu

3. Select an account via the Account dropdown menu

4. Enter an order quantity in the Order Qty field

5. If you would like to use an Advanced Trade Management (ATM) strategy with the

order, set the ATM Strategy options via the ATM Strategy dropdown menu.

Options in this menu include:

a) None: Orders are submitted without an attached ATM Strategy

b) Custom: This will open the Custom Strategy Parameters window, in

which you can create and save a new ATM Strategy.

c) <Strategy Name> - X: A strategy template name followed by a number

represents an active instance of an ATM Strategy on the chart.

d) User Defined Strategy Template: Stops and targets are submitted from a

predefined user template

A more thorough explanation of these concepts can be found on the ATM Strategy

Parameters page.

With these parameters set, you can then enter an order with any of the methods

described in the sections below.

Understanding order options in the right click menu

Order Options

NinjaTrader 81184

© 2023 NinjaTrader, LLC

Order options will appear in the right click menu when Chart Trader is enabled.

These options provide the ability to select pre-defined order types and prices

based on the location of your mouse cursor. After right mouse clicking in the chart

panel to view the right click menu, left mouse click on the desired order option to

submit an order. After an order has been submitted in this way, it can be moved or

canceled at will before it is filled.

Note: Available order types in the right click menu will be limited to those which

will be accepted by a brokerage, based on the side of the market on which you

right click. For example, in the image above, Buy Limit is not an option, since

the right mouse button was clicked above the market price, and Buy Limit

Operations 1185

© 2023 NinjaTrader, LLC

orders cannot be placed above the market price. Sell Stop Market and Sell

Stop Limit are missing in the image above, as well, for the same reason.

Stop-Limit Offset
When submitting a stop-limit order, a numeric field will appear, allowing you to set

the limit offset of the order (the number of ticks away at which you wish to place

the Limit price of the Stop-Limit order). Either by using your mouse scroll wheel or

clicking on the up/down arrows in the numeric field, set the number of ticks and

press the checkmark button to complete the order submission. For example, if you

intend to place an order with a buy Stop price of 1000 and a Limit price of 1001 (4

ticks for the S&P E-mini contract), you would set the numeric field value to 4.

Following the same example and submitting a sell stop-limit order, setting the

numeric field value to 4 would result in a stop price of 1000 and a limit price of 999.

Pressing the "X" button will cancel the order submission operation.

The numeric field also supports negative values. When a negative value is

entered, a Simulated Stop order will be place (see the "Understanding Simulated

Stop Orders" section below).

Understanding the Quick Buttons

Quick Buttons
You can quickly submit orders via the Chart Trader panel's Quick Buttons.

Button Actions

Buy Mkt - Submits Buy order at market

Sell Mkt - Submits Sell order at market

NinjaTrader 81186

© 2023 NinjaTrader, LLC

Buy Ask - Submits a Buy Limit order at the Ask price

Sell Ask - Submits a Sell Limit order at the Ask price

Buy Bid - Submits a Buy Limit order at the Bid price

Sell Bid - Submits a Sell Limit order at the Bid price

How to scale in or out of an active ATM strategy

Scaling In or Out of an Active ATM Strategy
When you have an active strategy selected in the ATM Strategy dropdown menu,

any new orders submitted will scale into or out of that active strategy instance.

Once filled or partially filled, existing stop loss and profit target orders will be

modified to reflect the new position strategy size. You can preset a default scale in

or out quantity via the "Scale Quantity" property accessible via the Chart Trader

properties window. As an example, your initial strategy may call for opening a

position of four contracts, but you want subsequent scale orders to be only one

contract. If the Chart Trader's "Scale Quantity" property is set to a value of 1, the

Qty (Quantity) field will be set to a value of 1 automatically when an active strategy

is selected in the list.

Note: For a complete understanding of order submission and subsequent

actions that you can have NinjaTrader automate, see the ATM Strategy

Parameters page.

Understanding "One Cancels Other" (OCO) orders

OCO Orders (One Cancels Other)
One Cancels Other functionality ties two resting order together, so that when one

is canceled or filled, the other will be canceled automatically. This can be ideal for

manually placing bracket entry orders, or placing Stop Loss and Profit Target

orders. Stop loss and profit target orders submitted automatically via an ATM

strategy are always sent as OCO; however, you can submit entry or exit orders as

OCO orders as well. Why? The market may be trading in a channel and you wish

to sell at resistance or buy at support, whichever comes first by placing two limit

orders at either end of the channel.

Operations 1187

© 2023 NinjaTrader, LLC

To place OCO orders, first right mouse click within the Chart Trader panel, then

select the menu item OCO Order or use the default Hot Key CTRL+Z.

All orders placed while OCO is enabled will be part of the same OCO group. Once

any order of this group is filled or cancelled, all other orders that belong to this

group will be cancelled. If you want each OCO order to create it's own set of stop

loss and profit target brackets, ensure that the ATM Strategy drop down menu is

set to either Custom or an ATM Strategy template before you submit each OCO

order.

Warning: After placing two orders within the same OCO group, it is important
to disable OCO functionality before submitting any other orders. If you wish to
place another set of OCO orders immediately after placing an initial set, first
disable, then re-enable OCO before placing the second set of orders. This will
generate a new OCO ID, rather than adding the new orders to an existing
OCO group.

Example:

Below are steps for submitting a Sell Limit and a Buy Limit order via OCO.

1. Enable OCO

NinjaTrader 81188

© 2023 NinjaTrader, LLC

2. Notice that there is a green OC at the top right of the chart, indicating OCO is

enabled. Place a Buy Limit order

Operations 1189

© 2023 NinjaTrader, LLC

3. If you are initiating two orders to enter a new strategy, then re-select the strategy

in the strategy selection list

4. Place a Sell Limit order

NinjaTrader 81190

© 2023 NinjaTrader, LLC

5. Disable OCO (it is critical that you disable OCO before submitting another OCO

group)

Understanding simulated stop orders

Simulated Stop Orders (Simulated Order)
Simulated Stop Orders allow you to place orders that trigger at a specific price but

try to fill at a better price. To submit a Simulated Stop order, you must enable

Simulated Orders via the right click menu and select the Simulated Order menu

item, or use a user-defined Hot Key. All stop orders placed while this setting is

enabled will be submitted as a Simulated Stop order.

Notes:

· This applies to entry and exit orders specifically, NOT Stop Loss orders;

simulated Stop Loss orders are enabled via a stop strategy

· When a Simulated Stop order is displayed in the chart panel via Chart

Trader, it's line and type/quantity label will be colored yellow by default to

differentiate it from a Stop Limit order

Operations 1191

© 2023 NinjaTrader, LLC

One of the powerful features of Simulated Stop orders is that you can submit a

"negative limit stop-limit" order. This means that you can place an order in which

the Limit price is better than the Stop price. As an example, you may want to buy

on strength indicated by a move up to a particular price. Once that occurs, you

want to enter at a better price using a limit order several ticks below the stop price.

Any stop-limit order submitted with a negative limit offset automatically becomes a

simulated order and will be held on your PC until the stop is triggered or canceled.

10.23.9.4 Modifying and Cancelling Orders

An order can be modified or canceled within a chart when Chart Trader is enabled.

How to modify an order price

Modifying Order Price
To modify the price of an order, left mouse click on the label at the left side of the

order line. A ghost order line will appear and display the number of ticks you are

away from the inside market.

When the ghost order line is above the Ask price, the label will display a positive

value. When it is below the Bid price, the label will display a negative value. At the

Ask the label will display "@Ask," and at the Bid the label will display "@Bid."

Once you have the ghost order at the price you desire, left click with your mouse

to complete the modification. This is a click and click method, rather than a click

and drag method.

NinjaTrader 81192

© 2023 NinjaTrader, LLC

To cancel a pending order price modification, press the "Esc" key on your

keyboard.

How to modify an order size

Modifying Order Size
To modify the size of an order:

Left mouse click on the area of the order label that displays the order quantity. An

order size modification control will appear. Modify the quantity in the quantity field

by using either the up/down arrows, the mouse scroll wheel, or by typing the

desired quantity. When done, click the check mark to accept the modification, or

press the X to cancel the modification.

How to cancel an order

Cancelling an Order
To cancel an order, left mouse click on the red X on the order marker. Remember

that if you cancel an order that is part of an OCO group, any other orders in that

group will be canceled, as well. For more information on using OCO orders with

Chart Trader, see the "Understanding 'One Cancels Other' (OCO) Orders"

section of the Submitting Orders page.

Operations 1193

© 2023 NinjaTrader, LLC

10.23.9.5 Attach to Indicator

Chart Trader provides the ability to attach an order to an indicator plot, automatically moving

the order in lockstep with the indicator as its plot value changes. This feature can be used for

entries as well as resting exit orders such as Stop Losses and Profit Targets.

Attach to Indicator

NinjaTrader 81194

© 2023 NinjaTrader, LLC

How to attach an order to an indicator

Attaching an Order to an Indicator
Use the following steps to attach an order to an indicator:

1. Apply at least one indicator to your chart, in the same panel as the Data Series

to which you wish to place the order (See the Working with Indicators page for

more information).

2. Apply a resting order to the chart (See the Submitting Orders page for more

information).

3. Left mouse click the order label at the left side of the order line.

4. Hold the Ctrl key on your keyboard. You will see a ghost order line matching up

with an indicator plot on the chart, with a label that reads "attach."

5. Left mouse click anywhere within the chart while continuing to hold the Ctrl key.

6. The Attach to Indicator Properties window will appear, in which you can

select the specific indicator to which to attach the order (if more than one is

applied to the chart).

7. Change any properties as needed (see the "Attach to Indicator Properties"

section below), then click the OK button.

In the image above, the Ctrl key is held down on the keyboard after left mouse

clicking the order label. The next left mouse click will bring up the Attach to

Operations 1195

© 2023 NinjaTrader, LLC

Indicator Properties window, which allows us to attach the order to the SMA plot

on the chart.

Attach to Indicator properties

Attach to Indicator Properties
The Attach to Indicator Properties window can be accessed in one of two ways.

Using the process outlined above to attach an order to an indicator will bring up

this window automatically, allowing you to set parameters for the indicator tracking

before attaching an order. Alternatively, you can use the process outlined below:

1. Right mouse click the label connected to the order line for an order on the chart

2. Hover your cursor over the order listed in the right click menu that appears

3. Select the Attach to Indicator menu item

4. Select the Properties menu item

The Attach to Indicator Properties window allows you to set the following

properties:

Indicator Allows the selection of a specific indicator to

which to attach an order

Offset Sets an offset value to allow an order to trail

above or below an indicator plot

Modify

toward

last price

only

Restricts an order to only move towards the last

traded price as it follows an indicator plot, never

further away

NinjaTrader 81196

© 2023 NinjaTrader, LLC

10.23.9.6 Chart Trader Properties

Many of the visual display settings of Chart Trader can be customized using the Chart

Trader Properties window.

How to access the Chart Trader Properties window

To access the Chart Trader Properties window:

1. Right mouse click within the Chart Trader panel

2. Select the Properties menu item

Available properties and definitions

The following Chart Trader properties are available for configuration within the

Chart Trader Properties window:

Operations 1197

© 2023 NinjaTrader, LLC

ATM

Strategy

selection

mode

Sets the behavior of the ATM Strategy

dropdown menu (see the ATM Strategy

Selection Mode page for more information)

Auto scale Enables or disables the inclusion of orders and

positions in the chart's auto scaling

NinjaTrader 81198

© 2023 NinjaTrader, LLC

Order

display bar

length (% of

chart)

Sets the length an order bar is displayed

horizontally across the chart as a percentage

PnL display

unit

Sets the display unit for profit loss in currency,

percent, ticks, pips, or points

Predefined

stop limit

offset

Enables or disables the to set the offset the

limit price is away from the stop price for

entry/exit stop-limit orders. When enabled

another property called Predefined stop limit

offset value will appear to set the offset value.

Quantity

modification

for stocks

Set whether new orders submitted to price

levels where an orders already exists will

increase the original orders size or be

submitted as a separate order (only applies to

stocks)

Scale

quantity

Sets the scale order quantity amount

Show

realized

PnL when

flat

Displays realized profit and loss for the

selected account in the PnL field when flat

Simulated

order

volume

trigger

Sets the value for a simulated order volume

trigger (for entry and exit orders, NOT Stop

Loss orders)

Colors Sets the colors to be used for various Action

buttons

Lines Sets the color, dash style, and width of lines

used to represent specific order types

How to set the default properties

Operations 1199

© 2023 NinjaTrader, LLC

Once you have your Chart Trader properties set to your liking, you can left mouse

click on the preset text, then click the save option to save these properties as

default.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the preset text, then click the restore option.

10.23.10FX Pro

The FX Pro window can be opened by left mouse clicking on the New menu within the

NinjaTrader Control Center and selecting the FX Pro menu item.

FX Pro Overview

The FX Pro order entry window is comprised of several components: the Order Grid, the

Level II panel (optional), position and level 1 display, as well as order entry and ATM

Strategy management.

Display

› Display Overview

Misc

› Properties

Order and Position Management

› Submitting Orders

› Modifying and Cancelling Orders

› Managing Positions

NinjaTrader 81200

© 2023 NinjaTrader, LLC

10.23.10.1Display Overview

To open the FX Pro window, select the New menu from the NinjaTrader Control Center. Then

left mouse click on the menu item FX Pro.

The image below shows each of the 5 sections in the FX Pro window

1. Order Grid

2. Optional Level II panel

3. Position and Level 1 (current inside market) display

4. Action Buttons

5. Order entry and ATM Strategy management

Operations 1201

© 2023 NinjaTrader, LLC

Please see the sections below for more information on each of these sections.

Note: Positions and orders will only display for the selected Account and Instrument.

NinjaTrader 81202

© 2023 NinjaTrader, LLC

Understanding the order grid section

Order Grid Display
The Order Grid displays active orders for the account and instrument selected in

the Basic Entry window.

Column Definitions

Name Order name such as Stop1 or Target1

Action Buy or Sell

Type Order type

Price Order price

Remainin

g

Number of contracts/shares remaining to be filled

Cancel Cancels the order(s)

Understanding the level II (market depth) section

Level II (Market Depth) Display
The Level II panel displays bid and ask market depth data color coded by price.

The Level II display can be enabled/disabled by right mouse clicking inside the

Level II display and selecting the menu item Show Level II.

Operations 1203

© 2023 NinjaTrader, LLC

Note: the Level II panel that is displayed only for brokerages that support ECN

style FX trading. If your brokerage does not support ECN FX then you will not

see this panel on your FX Pro window.

Column Definitions

Price The bid or ask price. The bid data is shown in the

left section and the ask in the right.

Size The number of lots at that price level available to

buy or sell (represented in short hand notation

where K represents 1000)

Time The last time the bid/ask was refreshed

If a price is at a sub pip level, the sub-pip value is displayed as a value after an

apostrophe, as in the following example in which the sub-pip value is highlighted in

red.

Example: 1.4115'5 (The price is at 1.4115 pips plus 5 half pips)

Customizing the Number of Price Levels Displayed
By default the Level II display in the FX Pro window will display five rows of

market depth, however you can configure the Level II display to show additional

rows by following the steps below:

1. Right mouse click inside the FX Pro window

2. Select Properties

3. Input the desire number of rows in the Number of price levels field

4. Press OK

NinjaTrader 81204

© 2023 NinjaTrader, LLC

Tip: Depending on the size of your FX Pro window, the additional rows can

potentially extend below the viewable range of the Level 2 display, at which

point a scroll bar (1) will appear to allow you to access those levels. You may

optionally resize the Level 2 display by clicking on and dragging on the section

splitter (2) between the Order Grid and Level 2 display.

Understanding the market display section

Market Display
The Market Display panel shows the inside bid and ask along with current position

information.

Market Display Definitions
1. The current spread between the best bid and best ask (the image below is

showing a spread of 2.5 pips)

2. Position information

3. The handle of the current bid (current ask is on the right side of the spread)

4. The current bid

5. Tenth-pip value. In the image below, the current bid is 0.9401 and 0/10 of a pip

displayed as 0.9401'0

6. Current volume (displayed as 100K when volume is not available)

7. The direction of the last tick (blue up arrow for an uptick, red down arrow for

down tick)

Operations 1205

© 2023 NinjaTrader, LLC

Note: FX brokerage technologies that do not support an ECN model will NOT

display sub pips, nor will bid/ask volume be displayed.

Understanding the action buttons section

The FX Pro has several buttons which are used to invoke a number of order
related actions.

BE

(Break-

even)

Adjusts any open stop orders opposite of your

position to the positions average entry price

Close Closes the current position and cancel any working

orders associated to the instrument/account

combination.

NinjaTrader 81206

© 2023 NinjaTrader, LLC

Buy Bid Submits a Buy Limit order at the best bid price

Sell Submits a Sell order based on the current Order

Controls configured

Buy Submits a Buy order based on the current Order

Controls configured

Sell Ask Submits a Sell Limit order at the best ask price

Please see the Submitting Orders section for more information on using these
buttons.

Understanding the order control section

Order Entry Controls
The Order Control section of the FX Pro is used to specify several attributes for

a pending order to be submitted.

Type Selects the order Type to be submitted

Limit Sets the order Limit price, if applicable

Stop Sets the order Stop Price, if applicable

Instrume

nt

Sets the Instrument

Operations 1207

© 2023 NinjaTrader, LLC

TIF Sets the order Time in Force

Quantity Sets the order Quantity

Account Sets the Account

ATM

Strategy

Selects the ATM Strategy

Understanding the right click menu

The FX Pro window has two right click menus, depending on where you click:

· Right clicking on the FX Pro window itself will bring up menu items specific to

the FX Pro

· Right clicking in the Order Grid will bring up menu items specific to orders

FX Pro Control Right Click Menu
Right clicking on the FX Pro window itself will bring up a number of menu items

specific to the FX Pro

NinjaTrader 81208

© 2023 NinjaTrader, LLC

Auto

Close

Position

Automatically Closes the current instruments

position at a specified time

OCO

Order

Enables/Disables the OCO (one cancels other)

function for a pending order

Simulated

Order

Enables/Disables the Simulated Order

functionality for a pending order

Cancel All

Orders

Cancels all active orders on the current account

Flatten

Everything

Closes all open positions and cancels all open

orders on every account associated with

NinjaTrader

Show

Level II

Enables/Disables the Level II display panel

Always On

Top

Sets if the window should be always on top of

other windows

Show

Tabs

Sets if the window should allow for tabs

Print Displays Print options

Share Select to share via your share connections

Properties Configure the FX Pro window properties

Order Grid Control Right Click Menu
Right clicking in an empty grid will bring up a number of general menu items
specific to the Order Grid

Operations 1209

© 2023 NinjaTrader, LLC

Cancel All

Orders

Cancels all active orders on the current account

Export... Exports the grid contents to "CSV" or "Excel" file

format

Find... Search for a term in the grid

Print Displays Print options

Share Select to share via your share connections

Propertie

s

Configure the FX Pro Window's properties

By moving your mouse cursor over an order and pressing down on your right
mouse button, you will see a context menu listing all individual orders consolidated
at the corresponding price and any relevant actions that you can perform on those
orders.

NinjaTrader 81210

© 2023 NinjaTrader, LLC

Cancel

order

Cancels the individual order selected

Increase

Price

Changes the price of the order +1 tick

Decrease

Price

Changes the price of the order -1 tick

Cancel All

Orders

Cancels all active orders on the current account

10.23.10.2Submitting Orders

The FX Pro window is designed for efficient order-entry. In addition to entry and exit orders,

the FX Pro window also offers access to NinjaTrader's ATM Strategies. For more information

on ATM Strategies, please see the Advanced Trade Management page or attend one of our

free live training events.

Selecting instruments and account

How to Select an Instrument
There are multiple ways to select an Instrument in the FX Pro window.

· Select the Instrument Selector to open a list of recently used instruments or

instruments contained in a predefined list

· With the FX Pro window selected begin typing the instrument symbol directly on

the keyboard. Typing will trigger the Overlay Instrument Selector.

https://ninjatrader.com/futures/livestreams

Operations 1211

© 2023 NinjaTrader, LLC

For more Information on instrument selection and management please see

Instruments section of the Help Guide.

How to Select an Account
A list of all connected accounts will be listed in the "Account" drop down list. To

change the account select the account you wish to trade through via this drop

down list.

Understanding order settings

To Submit an Order
1. Set the order "Quantity" field (info)

2. Set the "TIF" (Time in Force) field (info)

3. Set the "ATM Strategy" (info)

4. Enter an order with any of the methods described below

How to submit orders with quick buttons

Quick Buttons
You can enter orders rapidly by pressing on any one of the quick order buttons.

NinjaTrader 81212

© 2023 NinjaTrader, LLC

Buy Bid Submits a Buy Limit order at the best bid price

Sell Submits a Sell order based on the current Order

Controls configured

Buy Submits a Buy order based on the current Order

Controls configured

Sell Ask Submits a Sell Limit order at the best Ask price

How to submit custom orders

Custom Orders
You can place a custom order by setting order parameters.

1. Select the order Type
2. Set the Limit price if applicable
3. Set the Stop price if applicable
4. Left mouse click either the BUY or SELL button

Operations 1213

© 2023 NinjaTrader, LLC

Tips:
1. You can quickly retrieve the current bid or ask price in the Limit and Stop

price fields using the following commands:

· CTRL + middle click in the filed to retrieve the best ask price

· ALT + middle click in the field to retrieve the best bid price

2. Hold down the CTRL key when increasing/decreasing limit/stop prices to

change the price in steps of one-pip increments (10 tenth-pips)

3. Left clicking on a price in the Level II panel will load that price into the limit

and stop price fields automatically.

Understanding the OCO (One Cancel Other) function

OCO Orders (One Cancels Other)
Stop Loss and Profit Target orders (submitted automatically via an ATM
Strategy) are always sent as OCO, however, you can submit entry or exit orders
as OCO orders as well. Why? The market may be trading in a channel and you
wish to sell at resistance or buy at support, whichever comes first by placing two
limit orders at either end of the channel.

To place OCO orders, press down on your right mouse button inside the FX Pro
window and select the menu name "OCO Order or use the short cut key CTRL+Z.

NinjaTrader 81214

© 2023 NinjaTrader, LLC

The "OC" (OCO indicator) will light up green at the top of the FX Pro window. All
orders placed while this indicator is lit will be part of the same OCO group. Once
any order of this group is either filled or cancelled, all other orders that belong to
this group will be cancelled.

If you want each OCO order to create it's own set of Stop Loss and Profit Target
orders ensure that the ATM Strategy control list is set to either <Custom> or a
strategy template name before you submit each OCO order.

After you have placed your orders, it is advised to disable the OCO function via the
right click menu, or use the short cut key CTRL+Z.

Warning: If an order which was part of an OCO group has already been filled
or cancelled, you will need to submit the pending order with a new OCO ID
otherwise the pending order will be rejected.

To reset an OCO ID, simply disable the OCO function, and re-enable. This will
generate a new OCO ID and allow you to place new orders.

Break Out/Fade Entry Example
One of the great features of NinjaTrader is its ability to submit two entry orders,
one of which will cancel if the other is filled.

You can accomplish a breakout/breakdown approach by:

· Right clicking in the FX Pro window and selecting the menu item "OCO Order" to

enable the OCO function
· For your first order, select the desired option from the "ATM Strategy" drop

down list
· Submit your stop order to buy above the market

· For your second order, select the desired option from the "ATM Strategy" drop
down list

· Submit your stop order to sell below the market

· CRITICAL: Right click in the FX Pro window and select the menu item "OCO

Order" to disable OCO for future orders.

Operations 1215

© 2023 NinjaTrader, LLC

For a market fade approach just substitute limit orders for stop orders.

How to submit Simulated Stop Orders (Simulated Order)

Simulated Stop Orders (Simulated Order)
To submit a Simulated Stop Order (entry and exit NOT Stop Loss; simulated
Stop Loss orders are enabled via an ATM stop strategy) you must enable
Simulated Order mode via the right mouse click context menu by selecting the
Simulated Order menu item..

The "SO" (Simulated Order indicator) will light up green at the top of the FX Pro
window. All stop orders placed while this indicator is lit will be submitted as a
Simulated Stop Orders.

NinjaTrader 81216

© 2023 NinjaTrader, LLC

10.23.10.3Modifying and Cancelling Orders

You can modify an existing order's quantity, price, or cancel an order entirely from Order

Grid display of the FX Pro window.

Modifying existing orders

Changing the Price of an Order
1. You can increase the price of an order in tenth-pip increments by right mouse

clicking on the order in the order grid and selecting "Increase Price".

2. You can decrease the price of an order in tenth-pip increments by right mouse
clicking on the order in the Order Grid and selecting "Decrease Price".

3. Double clicking on the Price field will enable the price editor which will allow
you to type in a new price manually, or use the scroll wheel on your mouse to
select a relative price.

Tip:
Hold down the CTRL key when scrolling in the price editor to change the price in
half-pip increments.

Enabling Increase and Decrease Columns
You can optionally enable columns on the Order Grid display which will allow you
to increase or decrease the price of an order using a button click.

To enable these columns:

1. Right click on the FX Pro Window and select Properties
2. Expand the "Columns" section
3. Check the "Increase" and/or the "Decrease" options
4. Press "OK"

Operations 1217

© 2023 NinjaTrader, LLC

1. You can increase the price of an order in tenth-pip increments by left mouse
clicking on the "+" button. Holding the CTRL key down while pressing the "+"
button will modify the order by half-pip increments, and holding the ALT key will
modify the order by one full pip.

2. You can decrease the price of an order in tenth-pip increments by left mouse
clicking on the "-" button. Holding the CTRL key down while pressing the "-" button
will modify the order by half-pip increments, and holding the ALT key will modify the
order by one full pip.

Changing the Quantity of an Order
You can change the size of an order by double left clicking in the "Remaining"
column, typing in a new quantity value and pressing the "Enter" key on your
keyboard.

You can also use the scroll wheel on your mouse, or left mouse click on the
up/down arrows in the remaining field using the up/down arrows to scroll to a new
size by 1K (1000).

Tip: Holding down the CTRL key and scrolling will change the FX order size by
100K (100,000)

Changing the quantity of an existing order will submit a new order the same price
to preserve your place in queue. Your orders will now show up as "stacked"
indicated by the small letter "s" next to the order.

If you would like to break up these orders to manage individually, you can right click
on the Order and select "Unstack"

NinjaTrader 81218

© 2023 NinjaTrader, LLC

Cancelling orders

Cancelling an Individual Order
1. You can cancel an order by left mouse clicking on the "X" button.

2. You can also right click on the order itself and press the "Cancel Order" menu

item

Cancelling Stacked Orders
If you have stacked orders, indicated by the small letter "s" in the Remaining

column, you can cancel one of the orders, and leave the other remaining using the

steps below:

1. Right click on the stacked order row

2. Move your mouse over the order individual order

3. Select "Cancel Order"

Operations 1219

© 2023 NinjaTrader, LLC

10.23.10.4Managing Positions

How to Manage Open Positions
1. Clicking on the "BE" (break-even) button with your left mouse button will adjust any stop

orders in the opposite direction of your open position (if position is long it will adjust stop sell

orders) to the position's average entry price. Clicking on this button with your middle mouse

button (scroll wheel) will only adjust any Stop Loss orders associated to the selected active

ATM Strategy in the strategy drop down list. Orders resting at a better price than the average

entry price will NOT be modified.

2. Clicking on the "Close" button with your left mouse button will close the current position

and cancel any working orders associated to the instrument/account combination. Clicking on

this button with your middle mouse button (scroll wheel) will close the selected active ATM

Strategy only. This means that the position size of the ATM Strategy will be closed and any

working orders associated to that ATM Strategy will be cancelled.

Please see the help topic on Closing a Position or ATM Strategy for more information on the

mechanics behind closing various types of positions.

10.23.10.5Properties

The FX Pro order entry window is highly efficient by design but can also be customized to

your preferences through the FX Pro Properties menu.

How to access the FX Pro properties window

You can access the FX Pro properties dialog window by clicking on your right

mouse button within the FX Prowindow and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the FX Pro

Properties window:

NinjaTrader 81220

© 2023 NinjaTrader, LLC

Property Definitions

General

ATM strategy

selection mode

Sets the behavior mode of the price

ladder display and strategy selector

(see more)

Grid font Sets the font options

Number of price

levels

Sets the number of rows shown in

the Level II display panel

Operations 1221

© 2023 NinjaTrader, LLC

PnL display unit Sets the display unit for profit and

loss

Scale quantity Sets the scale order quantity amount.

Show level II Enables / Disables the Levell II

display panel

Show realized PnL

when flat

Displays realized profit and loss for

the selected account when flat

Simulated order

volume trigger

Sets the value for a simulated order

volume trigger (for entry and exit

orders and NOT used for stop loss)

Tab name Sets the tab name

Quantity modification

for stocks

Sets if modifying an existing stock

order quantity changes the the order,

or submits a new order

Colors

Action button Sets the color for action buttons

(CLOSE, BE etc...)

Buy button Sets the color for all the buy buttons

Order - limit Sets the color used for limit orders

Order - MIT Sets the color used for MIT orders

Order - profit target Sets the color used for profit target

orders

Order - stop limit Sets the color used for stop-limit

orders

Order - stop loss Sets the color used for stop loss

orders

NinjaTrader 81222

© 2023 NinjaTrader, LLC

Order - stop market Sets the color used for stop-market

orders

Price level (...) Sets the color used for each

individual price color (rows 1 through

10)

Sell button Sets the color used for all the sell

buttons

Columns

Order Columns (...) Expanding this section will allow you

to disable / enable any of the

columns in the Orders Grid display

Window

Always on top Sets if the window will be always on

top of other windows.

Show tabs Sets if the window should allow for

tabs

How to set the default properties

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to

return to the original settings.

Using Tab Name Variables

Tab Name Variables

Operations 1223

© 2023 NinjaTrader, LLC

A number of pre-defined variables can be used in the "Tab Name" field of the FX

Pro Properties window. For more information, see the "Tab Name Variables"

section of the Using Tabs page.

10.23.11FX Board

The FX Board window can be opened by left mouse clicking on the New menu within the

NinjaTrader Control Center and selecting the FX Board menu item.

FX Board Overview

The FX Board is a real-time dealing rates interface which can be used to execute live

custom orders for any number of Forex and CFD instruments.

Display

› Display Overview

› Working with Instrument Tiles

Misc

› Properties

Order and Position Management

› Submitting Orders

› Modifying and Cancelling Orders

› Managing Positions

10.23.11.1Display Overview

NinjaTrader 81224

© 2023 NinjaTrader, LLC

To open the FX Board window, select the New menu from the NinjaTrader Control Center.

Then left mouse click on the menu item FX Board.

The FX Board is divided into two sections:

1. Market Data Display

2. Order Grid Display (optional)

Operations 1225

© 2023 NinjaTrader, LLC

Please see the sections below for more information on: Market Display and Order Grid

Note: Positions and orders will only display for the selected Account and Instruments.

Understanding the market data section

Market Display
The Market Display panel shows the inside bid and ask along with current position

information. Each tile will have two panels, representing the bid and ask price,

where each respective panel will flash to represent when a tick has been received

and the direction of the tick.

Market Display Definitions
1. The current spread between the best bid and best ask (the image below is

showing a spread of 2.5 pips)

2. Position information

NinjaTrader 81226

© 2023 NinjaTrader, LLC

3. The handle of the current bid (current ask is on the right side of the spread)

4. The current bid

5. Sub pip value

6. The direction of the current tick (blue panel for an up tick, red panel for down

tick)

7. The direction of the last tick received (blue arrow for an up tick, red arrow for

down tick)

8. Current day high/low values

Instrument tiles also give you the ability to quickly place orders, or can be

"flipped" to place custom orders. Please see the section on Submitting Orders for

more information.

Understanding the order grid section

Order Grid Display
The Order Grid displays active orders for the account and instrument tiles

selected in the FX Board window.

Operations 1227

© 2023 NinjaTrader, LLC

Column Definitions

Instrume

nt

Name of the instrument

Name Order name such as Stop1 or Target1

Action Buy or Sell

Type Order type

Quantity Number of contracts submitted

Price Order price

State State of the order

Remainin

g

Quantity remaining to be filled

Strategy Name of ATM Strategy associated with the order

Cancel Cancels the order(s)

Order Grouping
Orders that are submitted to the same instrument will be grouped together in the

Order Grid and displayed in an aggregated view to consolidate these orders

together.

1. Orders that are part of an ATM Strategy will be further aggregated by the ATM

Strategy template name, as well as control specific to ATM Strategies (see the

section on Managing Positions for more information on these controls)

2. Orders that are not part of an ATM Strategy will be aggregated under the row

heading name "Unmanaged Orders" indicating that there is no ATM Strategy

associated with that particular order

Tip: You can collapse orders under an instrument header by selecting the down

arrow next to the instrument name.

NinjaTrader 81228

© 2023 NinjaTrader, LLC

Understanding the right click menu

The FX Board window has two right click menus, depending on where you click:

· Right clicking on the FX Board window itself will bring up menu items specific to

the FX Board

· Right clicking in the Order Grid will bring up menu items specific to orders

 FX Board Control Right Click Menu
Right clicking on the FX Board window itself will bring up a number of menu items

specific to the FX Board

Operations 1229

© 2023 NinjaTrader, LLC

Add

Instrument(

s)

Adds an individual instrument or list of

instruments to the FX Board window

Create

Instrument

List...

Dynamically creates a list of all the current

instruments in the FX Board window which

can be accessed later

Remove

Tile

Removes the current selected instrument tile

Quick order

entry

Enables/Disables the ability to place quick

orders from the Instrument tiles

Send To Loads the selected instrument into another

NinjaTrader window

Always On

Top

Sets the FX Board window to always be on

top of other windows

Show Tabs Sets if the window should allow for tabs

Show

Orders Grid

Enables/Disables the Orders Grid panel

display

Print Displays Print options

Share Select to share via your share connections

Properties Configure the FX Board window properties

Order Grid Control Right Click Menu
Right clicking in an empty grid will bring up a number of general menu items

specific to the Order Grid

NinjaTrader 81230

© 2023 NinjaTrader, LLC

Cancel

All

Orders

Cancels all active orders on the current account

Show

Orders

Grid

Enables/Disables the Orders Grid panel display

Export Exports the grid contents to "CSV" or "Excel" file

format

Find... Search for a term in the grid

Print Displays Print options

Share Select to share via your share connections

Propert

ies

Configure the FX Board Window's properties

By moving your mouse cursor over an order and pressing down on your right

mouse button, you will see a context menu listing all individual orders consolidated

at the corresponding price and any relevant actions that you can perform on those

orders.

Operations 1231

© 2023 NinjaTrader, LLC

Cancel

Order

Cancels the individual order selected

Increas

e Price

Increases the price of the order by one tenth-pip

Decrea

se

Price

Decreases the price of the order by one tenth-pip

Cancel

All

Orders

Cancels all active orders on the current account

10.23.11.2Working with Instrument Tiles

The FX Board can be setup for use with an unlimited number of Forex or CFD instrument

tiles which are used to display current market data, as well as used for order entry.

Managing instrument tiles

Adding an Individual Instrument
You can add as many individual Forex or CFD instrument tiles to your FX Board

window as you would like.

· Press down on your right mouse button in the FX Board window and select the

menu item Add Instrument(s). Through the Instrument Selector menu, you can

navigate through various instrument lists to locate the instrument you desire, and

left click on the instrument to add the individual instrument to the FX Board.

NinjaTrader 81232

© 2023 NinjaTrader, LLC

Adding a List of Instruments
You can also rapidly add an entire list of predefined instruments to the FX Board

window.

· Press down on your right mouse button in the FX Board window and select the

menu item Add Instrument List. Then select the instrument list you would like to

add to the FX Board.

Please see the Instrument Lists section of the user help guide for additional

information on creating, editing, and deleting instrument lists.

Changing Instruments
Once an instrument tile has been added to the FX Board display, you can

quickly change the instrument by using the Instrument Selector.

Arranging Tiles
You can customize the arrangement in which each instrument tile is displayed

by left clicking and dragging the instrument tile to the desired location.

Removing Instruments
To remove an instrument tile, simply right click on the desired tile and select
Remove Tile.

Creating instrument lists from the FX Board

Creating an Instrument List

Operations 1233

© 2023 NinjaTrader, LLC

If you have a FX Board setup with a number of different instruments you would

like to save for later, you can quickly add the entire display of instruments into an

Instrument List for quick access.

· Press down on your right mouse button in the FX Board window and select the

menu item Create Instrument List, then give the Instrument List a unique name

and press OK.

You will now be able to access this list from other features of NinjaTrader using

the Instrument Selector. You can further edit this list by using the Instrument Lists

window

Flipping tiles for custom order entry

Flipping Tiles
Each instrument tile located on the FX Board display has a reverse side which

can be flipped over allowing for custom order entry.

To flip a tile, simply click the icon on the top right corner of the instrument

tile.

Once the tile has been flipped, you will see a number of additional controls which

can be used to define and submit custom orders.

NinjaTrader 81234

© 2023 NinjaTrader, LLC

Please see the section on Submitting Orders for more information on how to use

these controls.

Tip: It is possible to add two tiles of the same instrument, allowing you to display

the Market Display and Custom Order Entry sides simultaneously.

Customizing tiles

Tile size
You can optionally reduce, or increase the size of the instrument tiles displayed

in the FX Board window by choosing one of 3 preset options.

To change the size of the instrument tiles:

· Right click on the FX Board window, select Properties, locate the Tile size

property and select: Small, Medium, or Large

Operations 1235

© 2023 NinjaTrader, LLC

Disabling Quick Order Entry
By default, Sell and Buy buttons of each instrument tile will act as a order entry

feature to quickly submit and execute market orders. However, this feature can be

disabled which will allow you to only use the front of the instrument tile for market

data and position display.

To disable Quick Order Entry, right click on the FX Board and uncheck Quick

Order Entry.

With his configuration, you will still have the ability to flip the instrument tile and

use the custom controls to place orders.

Highlight Duration
When a new tick is received on an instrument, the Sell or Buy button of an

instrument tile will highlight to represent the direction of the current tick. The

default duration for this highlight is 1000ms, or 1 second. The FX Board will allow

you increase, or decrease the amount of time the tile will remain highlighted to

your preferences.

To configure this property:

· Right click on the FX Board window, select Properties, locate the Highlight

duration (ms) property and input a custom value (in milliseconds).

The higher the value used, the longer the tile will remained highlighted. Setting the

highlight duration to a value of "0" (zero) will disable highlighting all together.

Market Data Display Text
Instrument tiles will display the current daily high/low value for the selected

instrument as determined by your data provider. However, this text can be

changed to display the amount of time since last tick, or the text can disabled

completely.

To configure this setting:

· Right click on the FX Board window, select Properties, locate the Display

property, and choose from one of the following display options in the table below

Daily High low Time last tick None

NinjaTrader 81236

© 2023 NinjaTrader, LLC

Note: Customizations will apply to the entire FX Board window, and will not

be applied on a per instrument tile basis.

For further customization of the FX Board window, please see the FX Board

Properties topic.

10.23.11.3Submitting Orders

Submitting orders within the FX Board order entry window is both easy and efficient. In

addition to entry and exit orders the FX Board window also offers access to NinjaTrader

 ATM Strategies. For more information on ATM Strategies please see the ATM section of

the user help guide or attend one of our free live training events.

Selecting accounts

How to Select an Account
A list of all connected accounts will be listed in the Account selector located at

the top of the FX Board window.

http://www.ninjatrader.com/webinars.php

Operations 1237

© 2023 NinjaTrader, LLC

To change the account, select the account name or number you wish to trade

through via the account selector. The account selected will be the account used

for all instruments in the FX Board window.

How to submit orders with quick buttons

Quick Market Orders
You can rapidly execute market orders directly from an instrument tile.

1. Set the order Quantity field (info)

2. Set the ATM Strategy option (info)

3. Pressing the Sell button on the left will execute a Sell Market order

4. Pressing the Buy button on the right will execute a Buy Market order

Quick Limit Orders
Holding down the CTRL key will switch the quick entry button to submit an order

at the bid or ask.

NinjaTrader 81238

© 2023 NinjaTrader, LLC

1. Holding down CTRL on your keyboard and pressing the Buy Bid button on the

left will submit a Buy Limit order at the best bid price

2. Holding down CTRL on your keyboard and pressing the Sell Bid button on the

right will submit a Sell Limit order at the best ask price.

How to submit custom orders

Custom Orders
You can place a custom order by setting order parameters.

1. Set the order Quantity field (info)

2. Select the order Type

3. Set the Limit price if applicable

4. Set the Stop price if applicable

5. Set the ATM Strategy option (info)

6. Left mouse click on the Sell button to submit a SELL order

- or -

7. Left mouse click on the Buy button to submit a BUY order

Operations 1239

© 2023 NinjaTrader, LLC

Tips

1. You can quickly retrieve the current last, bid, or ask price to be used in the

Limit price field or Stop price field using the following commands:

· Middle click in the price field to retrieve the last traded price

· Left click on the Bid button to retrieve the best ask price

· Left click on the Ask button to retrieve the best bid price

2. Hold down the CTRL key when increasing/decreasing limit/stop prices to
change the price in steps of 10 tick increments.

10.23.11.4Modifying and Cancelling Orders

You can modify an existing order's quantity, price, or cancel an order entirely from Order

Grid display of the FX Board window.

Modifying existing orders

Changing the Price of an Order
1. You can increase the price of an order in tenth-pip increments by right mouse

clicking on the order in the Order Grid and selecting "Increase Price".

2. You can decrease the price of an order in tenth-pip increments by right mouse
clicking on the order in the Order Grid and selecting "Decrease Price".

NinjaTrader 81240

© 2023 NinjaTrader, LLC

3. Double clicking in the price field will enable the price editor which will allow
you to type in a new price manually, or use the scroll wheel on your mouse to
select a relative price.

Tip: Hold down the CTRL key when scrolling in the price editor to change the

price in steps of half-pip increments.

Enabling Increase and Decrease Columns
You can optionally enable columns on the Order Grid display which will allow you
to increase or decrease the price of an order using a button click.

To enable these columns:

1. Right click on the FX Board window and select Properties

2. Expand the Columns - Orders section
3. Check the Increase and/or the Decrease options
4. Press OK

1. You can increase the price of an order in tenth-pip increments by left mouse
clicking on the "+" button
2. You can decrease the price of an order in tenth-pip increments by left mouse
clicking on the "-" button

Tips:
1. Holding the CTRL key down while pressing the "+" or "-" button will modify

the order by half-pip increments

Operations 1241

© 2023 NinjaTrader, LLC

2. Holding the ALT key down while pressing the "+" or "-" button will modify
the order by one pip increments

Changing the Quantity of an Order
You can change the size of an order by double left clicking in the either the
Quantity or Remaining column, typing in a new quantity value, and pressing the
"Enter" key on your keyboard.

You can also use the scroll wheel on your mouse, or left mouse click on the
up/down arrows in the remaining field using the up/down arrows to scroll to a new
size by 1K (1000).

Tip: Holding down the CTRL key and scrolling will change the FX order size by
100K (100,000)

Note: Changing the quantity of an existing order will submit a new order the
same price to preserve your place in queue. Your orders will now show up as
"stacked" indicated by the small letter "s" next to the order.

If you would like to break up these orders to manage individually, you can right click
on the order row and select Unstack

NinjaTrader 81242

© 2023 NinjaTrader, LLC

Cancelling orders

Cancelling an Individual Order
1. You can cancel an order by left mouse clicking on the "X" button.

2. You can also right click on the order itself and press the "Cancel Order" menu

item

Cancelling Stacked Orders
If you have stacked orders, indicated by the small letter "s" in the Quantity

column, you can cancel one of the orders, and leave the other(s) remaining using

the steps below:

1. Right click on the stacked order row

2. Move your mouse over the order individual order

3. Select "Cancel Order"

Operations 1243

© 2023 NinjaTrader, LLC

10.23.11.5Managing Positions

Closing Positions
Clicking on the "Close" button with your left mouse button will close the current position, as

well as cancel any working orders associated to the instrument/account combination.

NinjaTrader 81244

© 2023 NinjaTrader, LLC

Clicking on this button with your middle mouse button (scroll wheel) will close the selected

active ATM Strategy only. This means that the position size of the ATM Strategy will be

closed and any working orders associated to that ATM Strategy will be cancelled.

Please see the help topic on Closing a Position or ATM Strategy for more information on the

mechanics behind closing various types of positions.

Understanding the FX Board's ATM Strategy position controls

Closing an ATM Strategy
If you have an open position protected by an active ATM Strategy, or have

submitted an entry order with an active ATM Strategy, you can close the strategy

by selecting the "close strategy" button on the order grid of the FX Board.

1. Closing an active ATM Strategy in position will close the instrument position

and cancel the working profit target and stop loss.

2. Closing an active ATM Strategy entry order will cancel the order and

terminate the associated ATM Strategy.

Breakeven
Clicking on the "breakeven" button with your left mouse button will adjust any ATM

Strategy stop orders in the opposite direction of your open position (if position is

long it will adjust stop sell orders) to the positions average entry price.

Adding or Removing ATM Strategy Targets
If you have an active ATM Strategy displayed in the FX Board window, you can

add or remove targets. For example, you may have a 2 contract position with 1

Stop Loss and Profit Target for 2 contracts each. You may decide to split this

target (add target) so that you can exit the final contract at a higher price. Pressing

the "+ target" button on an active ATM Strategy will add an addition target, while

pressing the "- target" button will remove a target.

How to Scale in or out of an Active ATM Strategy
When you have an active ATM Strategy selected in the strategy control list,

orders submitted scale into or out of the strategy. Once filled or partially filled, the

Operations 1245

© 2023 NinjaTrader, LLC

existing stop loss and profit target orders are modified to reflect the new position

strategy size.

10.23.11.6Properties

The FX Board order entry window is highly efficient by design but can also be customized to

your preferences through the FX Board Properties menu.

How to access the FX Board properties window

You can access the FX Board properties dialog window by clicking on your right

mouse button within the FX Board window and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the FX Board

properties window:

NinjaTrader 81246

© 2023 NinjaTrader, LLC

Property Definitions

General

ATM strategy

selection mode

Sets the behavior mode of the price

ladder display and strategy selector

(see more)

Display Selects the Market Data Display Text

Grid font Sets the font options

Operations 1247

© 2023 NinjaTrader, LLC

Highlight duration

(ms)

Sets the amount of time a tile will

remain highlighted after a new tick

Note: The lowest value which will

take effect is 500 (ms)

PnL display unit Sets the display unit for profit and

loss

Quick order entry Enables / Disables the quick order

functionality on the front of an

instrument tile

Tab name Sets the tab name

Tile size Select the size used for all tiles in the

FX Board display

Colors

Button background Sets the color for all buttons

Button foreground Sets the text color for all buttons

Downtick background Sets the color used for highlighting

when a down tick is detected

Downtick foreground Sets the text color used for

highlighting when a down tick is

detected

Order - limit Sets the color used for limit orders

Order - MIT Sets the color used for MIT orders

Order - profit target Sets the color used for profit target

orders

Order - stop limit Sets the color used for stop-limit

orders

NinjaTrader 81248

© 2023 NinjaTrader, LLC

Order - stop loss Sets the color used for stop loss

orders

Order - stop market Sets the color used for stop-market

orders

Uptick background Sets the color used for highlighting

when a down tick is detected

Uptick foreground Sets the text color used for

highlighting when a down tick is

detected

Columns - Orders

Columns (...) Expanding this section will allow you

to disable / enable any of the

columns in the Orders Grid display

Window

Always on top Sets if the window will be always on

top of other windows.

Show tabs Sets if the window should allow for

tabs

Display orders grid Enables / Disables the Order Grid

display

How to set the default properties

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

Operations 1249

© 2023 NinjaTrader, LLC

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to

return to the original settings.

Using Tab Name Variables

Tab Name Variables
A number of pre-defined variables can be used in the "Tab Name" field of the FX

Board Properties window. For more information, see the "Tab Name Variables"

section of the Using Tabs page.

10.23.12Order Ticket

The Order Ticket window can be opened by left mouse clicking on the New menu within the

NinjaTrader Control Center and selecting the Order Ticket menu item.

Order Ticket Overview

The Order Ticket order entry window allows you to view market data and submit orders.

Display

› Display Overview

Misc

› Properties

Order Management

› Submitting Orders

10.23.12.1Display Overview

To open the Order Ticket Window, select the New menu from the NinjaTrader Control

Center. Then left mouse click on the menu item Order Ticket.

The image below shows the two sections in the of the Order Ticket window:

1. Market Display

2. Order Entry

NinjaTrader 81250

© 2023 NinjaTrader, LLC

Note: Positions and orders will only display for the selected Account and Instrument.

Understanding the market display section

Market Display
The Order Ticket will display current market data information for the selected

instrument.

Market Display Definitions
1. Instrument Description

2. Last Price

3. Current day net change

4. Best ask price and ask size

5. Best bid price and bid size

6. Current day high, low, and open

Operations 1251

© 2023 NinjaTrader, LLC

Understanding the order control section

Order Entry Controls
The Order Control region of the Order Ticket is used to specify several attributes

for a pending order to be submitted.

Instrum

ent

Sets the Instrument

Accoun

t

Sets the Account

Quantit

y

Sets the order Quantity

NinjaTrader 81252

© 2023 NinjaTrader, LLC

OCO Sets a user defined OCO ID

Order

Type

Sets the order type to be submitted

TIF Sets the Time in Force

Limit

Price

Sets the order Limit price

Stop

Price

Sets the order Stop price

Buy Submits an order to buy

Sell Submits an order to sell

Understanding the right click menu

Right Click Menu
Right mouse click on the Order Ticket window to access the right click menu.

Always

On Top

Sets if the window should be always on top of

other windows

Show

Tabs

Sets if the window should allow for tabs

Print Displays Print options

Operations 1253

© 2023 NinjaTrader, LLC

Share Displays Share options

Propertie

s

Sets the Order Ticket properties

10.23.12.2Submitting Orders

The Order Ticket window is used to quickly define and submit custom orders. This interface

does not display any type of position or trade management features. For those purposes, you

would want to consider one of the other order management features: Basic Entry, Chart

Trader, FX Pro, FX Board, or SuperDOM.

Selecting instruments and account

How to Select an Instrument
There are multiple ways to select an Instrument in the Order Ticket window.

· Select the Instrument Selector to open a list of recently used instruments

or instruments contained in a predefined list

· With the Order Ticket window selected begin typing the instrument symbol

directly on the keyboard. Typing will trigger the Overlay Instrument Selector.

For more Information on instrument selection and management please see

Instruments section of the Help Guide.

How to Select an Account
A list of all connected accounts will be listed in the Account Selector. To change

the account select the account you wish to trade through via this drop down list.

How to submit custom orders

To Submit an Order
1. Set the order Quantity field (info)

2. Select the order Type

3. Set the TIF (Time in Force) field (info)

4. Set the Limit price if applicable

5. Set the Stop price if applicable

6. Left mouse click either the BUY or SELL button

NinjaTrader 81254

© 2023 NinjaTrader, LLC

Tips

1. You can quickly retrieve the current last, bid, or ask price in the Limit and Stop
price fields using the following commands:

· Middle click in the field to retrieve the last traded price,

· CTRL + middle click in the filed to retrieve the best ask price

· ALT + middle click in the field to retrieve the best bid price

2. Hold down the CTRL key when increasing/decreasing limit/stop prices to change
the price in steps of 10 tick increments.

Close Tab on Order Submission
The Order Ticket window can optionally be configured to automatically close the

current tab or window after the order has been submitted. This was designed to

help discard unwanted Order Ticket displays when trading multiple instruments.

To enable this functionality:

Operations 1255

© 2023 NinjaTrader, LLC

1. Right click on the Order Ticket tab or window

2. Select Properties...

3. Check Close tab on order submission

4. Press OK

After the order has been submitted, it can be referenced from the Orders Tab of the

Account Data or Control Center window.

Understanding the OCO (One Cancel Other) function

OCO Orders (One Cancels Other)
The Order Ticket window allows you to specify a custom user defined OCO ID

using any combination of numbers and letters in the OCO field.

The image below shows the Order Ticket window configured a pending order in

which we've input an OCO ID of "OCO1".

NinjaTrader 81256

© 2023 NinjaTrader, LLC

In the example above, any additional orders placed with the OCO ID set to

"OCO1" will be tied together in an order group as long as these orders are active.

If one order in the group is either filled, cancelled or rejected, all orders in the group

with the same OCO id will be cancelled.

Warning: If an order which was part of an OCO group has already been filled

or cancelled, you will need to submit the pending order with a new OCO ID

otherwise the pending order will be rejected.

10.23.12.3Properties

The Order Ticket order entry window is highly efficient by design but can also be customized

to your preferences through the Order Ticket Properties menu.

How to access the Order Ticket properties window

You can access the Order Ticket properties dialog window by clicking on your right

mouse button within the Order Ticketwindow and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the Order Ticket

Properties window:

Operations 1257

© 2023 NinjaTrader, LLC

Property Definitions

General

Close tab on order

submission

Enables/Disables the feature which

closes the current tab after an order

is submitted

Show net change in

pips for forex

Enables/Disables forex daily net

change to reflect pips. Otherwise,

uses points

Tab name Sets the tab name

NinjaTrader 81258

© 2023 NinjaTrader, LLC

Colors

Buy button Sets the color for all the buy buttons

Sell button Sets the color used for all the sell

buttons

Window

Always on top Sets if the window will be always on

top of other windows.

Show tabs Sets if the window should allow for

tabs

How to set the default properties

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to

return to the original settings.

Using Tab Name Variables

Tab Name Variables
A number of pre-defined variables can be used in the "Tab Name" field of the

Order Ticket Properties window. For more information, see the "Tab Name

Variables" section of the Using Tabs page.

10.23.13SuperDOM

The SuperDOM window can be opened by left mouse clicking on the New menu within the

NinjaTrader Control Center and selecting either the Static SuperDOM or Dynamic SuperDOM

menu items.

Operations 1259

© 2023 NinjaTrader, LLC

SuperDOM Overview

The SuperDOM provides complete functionality for the management of orders, positions,

and discretionary exit and stop strategies in a highly visual and efficient manner. The

DOM at the end of SuperDOM stands for Depth of Market which you can see displayed in

the Buy and Sell columns of the NinjaTrader SuperDOM.

Display

› Price Ladder Display

› Static Vs Dynamic

› Order Display

Misc

› Using SuperDOM Columns

› Working with Indicators

› Properties

Order and Position Management

› Submitting Orders

› Modifying and Cancelling Orders

› Managing Positions

10.23.13.1Price Ladder Display

The SuperDOM is designed to allow the trader to view market prices, market depth, current

inside market, indicator price levels, PnL, current positions, and pending orders at a glance.

The unique display of each item within the SuperDOM Price Ladder display makes managing

open orders and positions easy and efficient.

To open the SuperDOM Window, select the New menu from the NinjaTrader Control Center.

Then left mouse click on the menu item SuperDOM (Static) or SuperDOM (Dynamic) (Please

see Static vs Dynamic Price Ladder Display for more information)

Understanding the function of each column in the Price Ladder display

The price ladder is broken down into three functional columns by default, and can

be extended to display any number of additional custom columns.

Buy Column

The left column is the Buy column which is used to:

· Submit buy orders

NinjaTrader 81260

© 2023 NinjaTrader, LLC

· Modify buy orders

· Display the total contracts on the bid at their respective prices (also known as

market depth)

Price Column

The center column, known as the Price column, is used to:

· Modify stop loss and profit target orders

· Display market prices

· Display the current bid, ask, and last traded prices

· Display indicator price levels

Sell Column

The right column is the Sell column which is used to:

· Submit sell orders

· Modify sell orders

· Display the total contracts on the ask at their respective prices (also known as

market depth)

Operations 1261

© 2023 NinjaTrader, LLC

Note: To view market depth for equities the Level II window must be used.

Columns

You can optionally configure additional Columns to display other points of

interest relative to the ladder display.

NinjaTrader 81262

© 2023 NinjaTrader, LLC

By default, NinjaTrader will come pre-loaded with the following columns:

· APQ (Approximate Position in Queue)

· Notes

· PnL

· Volume

We also support custom NinjaScript column development, meaning that

programmers and vendors can create custom columns which can be installed to

extend functionality of the SuperDOM display.

Please see our Help Topic on Understanding SuperDOM Columns for more

information.

Operations 1263

© 2023 NinjaTrader, LLC

Understanding how market data is displayed

The Price Ladder display section of the SuperDOM displays the current inside

market and market depth. Various aspects of this display can be user defined in

the SuperDOM Properties window.

The following market depth items can be displayed:

1. Bid Depth

2. Ask Depth

3. Best Bid

4. Best Ask

Last traded price and size (yellow cell in the image below)

How to use the quick buttons at the bottom of the Price Ladder display

The bottom row of the price ladder contains three functions: Buy Market, PnL, and

Sell Market.

Market (left cell)

NinjaTrader 81264

© 2023 NinjaTrader, LLC

Submits buy market, limit at ask, or limit at bid orders

PnL (center cell)
Displays unrealized profit or loss for the current position

Market (right cell)
Submits sell market, limit at ask, or limit at bid orders

You can change the type of order the MARKET cells submit by holding down the

SHIFT key to place limit orders at the ask, or by holding down the CTRL key to

place limit orders at the bid. Clicking with your left mouse button on the PnL cell

will change the display between points, ticks, currency, percent and pips.

How to display the daily high and low prices

Daily High and Low

The market's daily high and daily low can be optionally displayed. To

enable this feature:

· Right click on the SuperDOM, select Properties, check Show daily high/low

markers

You can further customize the color of the markers in the SuperDOM Properties

dialog window.

Operations 1265

© 2023 NinjaTrader, LLC

Note: Daily High and Low values are not calculated by NinjaTrader and are

sent from your data provider. Not all data providers provide this information for

all instrument types.

Understanding how position and profit & loss information is displayed

PnL Display
The PnL field in the bottom of the Price column will show the current unrealized

profit/loss for your current open position, and read as PnL when you are FLAT.

You can optionally enable "Show PnL when flat" in the SuperDOM Properties to

view your daily account PnL when FLAT

Current Position Display

NinjaTrader 81266

© 2023 NinjaTrader, LLC

The cell between the CLOSE button and the REV button will tell you your current

position.

When long the field will show as green and list the number of contracts, and when

short field will show as red and list the number of contracts. When you do not have

an open position the field will say FLAT.

How to adjust the Price Ladder display

Adjusting the Price Ladder display
Move your cursor into the Price Ladder region and use your mouse scroll wheel to

adjust market prices up or down.

You can also left mouse click on the "C" button at any time to center the inside

market.

Optionally, the Auto Center property will automatically center the inside market

price should the last traded price trade outside the visible range on the Price

Ladder. You can enable or disable Auto Center at any time by clicking on your right

mouse button in the border of the SuperDOM and selecting the menu name Auto

Center.

http://www.ninjatrader.com/support/movies/nt7/helpGuide/operations/orderEntry/superDOM/adjustingThePriceLadderDisplay/Adjusting-The-Price-Ladder-Display.htm

Operations 1267

© 2023 NinjaTrader, LLC

Number of Visible Price Rows
The number of price rows will be dynamically adjusted by vertically re-sizing the

SuperDOM window. The larger the size of the SuperDOM window, the more

price levels will be added in automatically.

This achieved in the same manner you would use to resize any other sort of

general application window, by moving your mouse cursor to the edge of the

window and clicking and dragging until you have reached your desired size.

Increasing / Decreasing the Number of Market Depth Levels
By default, the SuperDOM will display 10 levels of market depth. However you

can configure additional levels of depth to be displayed and is only limited by the

NinjaTrader 81268

© 2023 NinjaTrader, LLC

number of levels provided by the exchange/data provider combination you are

using.

For example, an exchange might provide 20 levels of market depth for an

instrument you are trading. If you would like to view all 20 of these levels on the

SuperDOM, simply right click on the SuperDOM, select Properties, and set the #

of market depth levels property value to 20 and the press OK.

10.23.13.2Static vs Dynamic Price Ladder Display

Operations 1269

© 2023 NinjaTrader, LLC

You may have the option of using either a static (original SuperDOM) or dynamic price ladder

display depending on your FCM or broker. The difference between these options is how the

inside market is displayed in the Price Ladder.

Understanding the Static Price Ladder display

Static
The inside market (ask/bid and last price) climb up and down the Price Ladder in

response to a change in market price.

The price rows are static (do not change).

Understanding the Dynamic Price Ladder display

Dynamic
The inside market (ask/bid and last price) is in a fixed location in the Price Ladder

display.

The price rows are dynamic in that each row's price changes in response to a

change in market price.

NinjaTrader 81270

© 2023 NinjaTrader, LLC

Suspending the Dynamic Price Ladder
To assist with submitting and modifying orders in the Dynamic Price Ladder

display during volatile market activity you can choose to suspend (freeze) the

Price Ladder display simply by moving your mouse cursor over the Price Ladder.

Once suspended, the ladder will highlight red in color and you can now safely

submit or modify an order without the price of the underlying row changing. In

addition, the inside market will be displayed in the top row of the SuperDOM while

the price ladder is frozen.

In the image below, we can easily tell that the Price Ladder has been has been

suspended as the ladder has been highlighted in red. We can also identify the

following information displayed in the top row:

1. Best bid

2. Net change (last traded price) from the time the display was suspended

3. Best ask

Operations 1271

© 2023 NinjaTrader, LLC

The Price Ladder will remain suspended until you remove your cursor from the

price ladder display, at which point all rows will begin updating dynamically once

again.

10.23.13.3Order Display

NinjaTrader 81272

© 2023 NinjaTrader, LLC

Orders are displayed in a highly visual manner. Different order types and order objectives

(stop loss or profit target orders) are uniquely color coded.

Understanding how orders are displayed

Order Display
All orders are displayed by coloring a cell or group of cells within the Price Ladder

1) Limit

Order

Default color is cyan with the text "LMT"

2) Stop-Limit

Order

Default color is violet with text "SLM"

3) MIT Order Default color is spring green with text "MIT"

4) Stop-

Market Order

Default color is pink with text "STP"

5) Simulated

Stop Order

Default color is yellow with text "SLM" or

"STP"

Operations 1273

© 2023 NinjaTrader, LLC

The image below shows a working limit, stop-market, and stop-limit order for one

contract each.

Note: Orders will only display for the selected Account and Instrument.

Understanding how the quantity of an order are displayed

Size Marker

NinjaTrader 81274

© 2023 NinjaTrader, LLC

There is also an associated Size Marker which displays the remaining contracts to

be filled for the order(s) at the corresponding price. In the image blow, three

contracts are remaining to be filled and are working at a price of 1963.25

Understanding how multiple orders at the same price are displayed

Consolidated Order Display
The SuperDOM will consolidate the display of all orders resting at the same price

and mark an "s" within the Size Marker display to indicate that there are multiple

orders stacked at that price. The Size Marker then indicates the cumulative

remaining contracts for all orders resting at that price. The image blow depicts a

consolidated display of two limit orders for 1 contract each.

By moving your mouse cursor over the order (cyan colored cell) and pressing

down on your right mouse button, you will see a context menu listing all individual

orders consolidated at the corresponding price and any relevant actions that you

can perform on those orders.

Understanding how Stop Loss and Profit Target orders are displayed

Operations 1275

© 2023 NinjaTrader, LLC

Stop Loss and Profit Target display
Orders submitted as Stop Loss and Profit Target orders are uniquely displayed by

coloring all three cells in the price row where the order(s) are working. This makes

it very easy to visualize your stop and profit objectives relative to the current

market. All other orders are displayed by coloring a single cell in either the BUY or

SELL column.

The two below displays an image of a Stop Loss and Profit Target pair, notice that

the Size Marker displays the number of contracts remaining to be filled, and that

they are sell orders since they are displayed on the sell side of the Price Ladder.

Also note the brown colored cell at price level 1974.25, this represents the average

entry price for the open position.

How to view out of range Stop Loss and Profit Target orders

Displaying Stop Loss and Profit Target orders outside the visible
range
There may be times when your Stop Loss or Profit Target orders are outside of

the visible price range of the SuperDOM price ladder. You can easily bring these

orders in range by first disabling Auto Center from the SuperDOM right click

menu, and then clicking with your middle mouse button in the Price column.

NinjaTrader 81276

© 2023 NinjaTrader, LLC

As long as Auto Center is disabled, clicking on the bid or above with your middle

mouse button will bring into visible range the first stop loss or profit target order

above the highest displayed price of the price ladder. Clicking below the bid with

your middle mouse button will bring into visible range the first stop loss or profit

target order below the lowest displayed price of the Price Ladder.

You can then quickly navigate back to the last traded price by either re-enabling

Auto Center, or pressing the C button to manually re-center the price.

Note: This function only works if "Single Click Order Modification" is set to

False in the SuperDOM Properties window. If set to true, middle click will

instantly modify your Stop Loss or Profit Target orders. Please see the help

topic on Modifying and Cancelling Orders for more information on that feature

10.23.13.4Submitting Orders

Operations 1277

© 2023 NinjaTrader, LLC

Orders are submitted in the NinjaTrader SuperDOM using different combinations of mouse

clicks and keyboard keys. Limit, stop-market, stop-limit, and MIT orders are placed with the

following conventions:

Left Mouse Button
· Limit orders are placed with the left mouse button

· MIT orders are placed with the Ctrl key + left mouse button

You can optionally reconfigure these default settings to allow for the left click to submit MIT

orders from the SuperDOM Properties:

· Check "Left mouse button is MIT"

With this configuration, the left mouse button will now submit MIT orders, and Ctrl + Left

mouse button will submit Limit orders

Middle Mouse Button (Scroll Wheel)
· Stop-market orders are placed with the Ctrl key and middle mouse button

· Stop-limit orders are placed with the middle mouse button

Or you configure the Middle mouse button to submit stop-market orders from the SuperDOM

Properties:

· Check "Middle mouse button is stop market"

With this configuration, the middle mouse button will now submit stop-market orders, and

Ctrl + middle mouse button will submit stop-limit orders

Note: It is highly recommended that you review the Advanced Trade Management (ATM)

section for a complete understanding of order submission and subsequent actions that

you can have NinjaTrader automate.

Selecting instruments and account

How to Select an Instrument
There are multiple ways to select an Instrument in the SuperDOM window.

· Select the Instrument Selector to open a list of recently used instruments or

instruments contained in a predefined list

NinjaTrader 81278

© 2023 NinjaTrader, LLC

· With the SuperDOM window selected begin typing the instrument symbol

directly on the keyboard. Typing will trigger the Overlay Instrument Selector.

For more Information on instrument selection and management please see

Instruments section of the Help Guide.

How to Select an Account
A list of all connected accounts will be listed in the Account Selector drop down

list. To change the account select the account you wish to trade through via this

drop down list.

Understanding order settings

To submit an Order
1. Set the order "Quantity" field (info)

2. Set the "TIF" (Time in Force) field (info)

3. Set the "ATM Strategy" option (info)

4. Enter an order with any of the methods described below

How to submit a limit order

Limit Orders
To submit a limit order, select either the Buy column for buy orders or the Sell

column for sell orders and press down on your left mouse button in the cell

that corresponds to the price you wish the limit order to be submitted at.

Operations 1279

© 2023 NinjaTrader, LLC

Clicking at the location marked in the image above would submit a buy limit order

at the price 1965.00.

How to submit a stop-market order

Stop-Market
To submit a stop-market order, select either the Buy column for buy orders or the

Sell column for sell orders and press down on your

middle mouse button (scroll wheel) while holding the CTRL key down in the cell

that corresponds to the price you wish the stop-market order to be submitted at.

NinjaTrader 81280

© 2023 NinjaTrader, LLC

In the image above, holding down the CTRL key on your keyboard and middle

mouse clicking on the price point would enter a buy stop-market order at 1967.50.

How to submit a stop-limit order

Stop-Limit Order
To submit a stop-limit order, select either the Buy column for buy orders or the

Sell column for sell orders and press down on your middle mouse button
(scroll wheel) in the cell that corresponds to the price you wish the stop limit order
to be submitted at.

A numeric field (image lower right) will appear that represents the number of ticks

away you wish the limit price of the stop-limit order to be placed at. Either by

using your mouse scroll wheel or clicking on the up/down arrows in the numeric

field, set the number of ticks and press the "check mark" button to complete the

order submission. Pressing the "x" button will cancel the order submission

operation.

For example, if you intend to have an order with a stop price of 1967.50 and a limit

price of 1968.50 (4 ticks spread for the SP Emini contract) you would set the

numeric field value to 4. Following the same example submitting a sell stop-limit,

Operations 1281

© 2023 NinjaTrader, LLC

setting the numeric field value to 1 would result in a stop price of 1967.50 and a

limit price of 1967.25.

Negative Stop-Limit Offset
You will notice that there are also negative values. By selecting a negative value,

you automatically submit a Simulated Stop order, which is indicated by a yellow

order flag. This allows you to place orders that trigger at a break out price but try

to fill you at a better price.

NinjaTrader 81282

© 2023 NinjaTrader, LLC

Single Click Stop-Limit Orders
If you generally place stop-limit orders using the same offset between limit and

stop price, you can enable single click submission of stop-limit orders by setting

the "Stop-limit offset" property to an integer value via the SuperDOM properties. By

default, this setting is set to "Off" which forces the numeric field (image above

right) to display. Setting this property to a value of 1 would instantly place a stop-

limit order with a stop price of X and a limit price of X + 1 for buy orders or X - 1 for

sell orders.

How to submit an MIT (Market If Touched) order

MIT Orders
To submit a MIT order, select either the Buy column for buy orders or the Sell

column for sell orders and press down on your left mouse button while holding
the CTRL key down in the cell that corresponds to the price you wish the MIT to
be submitted at.

In the image above, holding down the CTRL key on your keyboard and left mouse

clicking on the price point would enter a buy MIT order at 1965.00

Operations 1283

© 2023 NinjaTrader, LLC

Understanding the OCO order (one cancels other) function

OCO Orders (One Cancels Other)
Stop loss and profit target orders (submitted automatically via an ATM strategy)

are always sent as OCO, however, you can submit entry or exit orders as OCO

orders as well. Why? The market may be trading in a channel and you wish to sell

at resistance or buy at support, whichever comes first by placing two limit orders

at either end of the channel. To place OCO orders, via the right mouse click

context menu select the menu name "OCO Order" or use the shortcut key Ctrl + Z.

The "oc" (OCO indicator) will light up green. All orders placed while this indicator is

lit will be part of the same OCO group. Once any order of this group is either filled

or cancelled, all other orders that belong to this group will be cancelled.

If you want each OCO order to create it's own set of Stop Loss and Profit Target
orders ensure that the ATM Strategy control list is set to either <Custom> or a
strategy template name before you submit each OCO order.

After you have placed your orders, it is advised to disable the OCO function via the
right click menu, or use the short cut key CTRL+Z.

NinjaTrader 81284

© 2023 NinjaTrader, LLC

Warning: If an order which was part of an OCO group has already been filled
or cancelled, you will need to submit the pending order with a new OCO ID
otherwise the pending order will be rejected.

To reset an OCO ID, simply disable the OCO function, and re-enable. This will
generate a new OCO ID and allow you to place new orders.

Break Out/Fade Entry Example
One of the great features of NinjaTrader is its ability to submit two entry orders,

one of which will cancel if the other is filled.

You can accomplish a breakout/breakdown approach by:

· Right click in the SuperDOM and select the menu item "OCO Order" to enable

the OCO function

· For your first order, select the desired option from the "ATM Strategy" drop down

list

· Submit your stop order to buy above the market

· For your second order, select the desired option from the "ATM Strategy" drop

down list

· Submit your stop order to sell below the market

· CRITICAL: Right click in the SuperDOM and select the menu item OCO Order to

disable OCO from being applied to subsequent orders.

Operations 1285

© 2023 NinjaTrader, LLC

For a market fade approach just substitute limit orders for stop orders.

Using the OCO Function to Bracket an Open Position
If you have an open position without an ATM strategy attached, and you wish to

add limit and stop orders to protect the position follow these steps:

· Set the ATM strategy in the ATM Strategy selection drop down box to a value of
<None>

· Right click in the SuperDOM and enable OCO order placement by selecting the

menu name "OCO Order"

· Then place a limit order where you want to exit at a profit

· Then place a stop order where you want to exit at a loss

· Lastly, right click again and select the menu item "OCO Order" to disable the

OCO order placement

NinjaTrader 81286

© 2023 NinjaTrader, LLC

Now you have a target and a stop placed protecting your open position, and when

one of these orders is filled the other will be cancelled automatically.

How to submit simulated stop orders (Simulated Order)

Simulated Stop Orders
To submit a Simulated Stop Order (entry and exit NOT stop loss; simulated stop

loss orders are enabled via an ATM stop strategy) you must enable Simulated

Order mode via the right mouse click context menu by selecting the "Simulated

Order" menu item or use the shortcut key Ctrl + A. The "so" (Simulated Order

Operations 1287

© 2023 NinjaTrader, LLC

indicator) will light up green. All stop orders placed while this indicator is lit will be

submitted as a Simulated Stop Orders.

One of the powerful features of Simulated Stop Orders is that you can submit a

"negative limit stop-limit" order. This means that you can place an order where the

limit price is better than the stop price. As an example, you may want to buy on

strength indicated by a move up to a particular price. Once that occurs, you want

to enter at a better price using a limit order several ticks below (if you are buying)

the stop price.

For more information please visit the Simulated Stop Orders section of the user

Help Guide.

How to submit orders with the Quick Buttons

Quick Buttons
Setting “Show Quick Buttons” to true in the SuperDOM Properties enables: Ask

and Bid buttons in the Buy and Sell Columns, a +Target (add target) button, and a

-Target (remove target) button.

NinjaTrader 81288

© 2023 NinjaTrader, LLC

When enabled, pressing an "Ask" button with the left mouse button will submit a

limit order at the ask price, pressing a "Bid" button will submit a limit order at the

bid price.

For more information on adding and removing targets please view the Managing

Positions section of the user help guide.

10.23.13.5Modifying and Cancelling Orders

Orders are modified within the SuperDOM by selecting the order and clicking on the new

price cell. Optionally you can also enable Single Click Order Modification of your Profit Target

and Stop Loss orders within the SuperDOM Properties.

Operations 1289

© 2023 NinjaTrader, LLC

How to modify the price of entry and exit orders

Modifying entry and exit orders
Pending orders in NinjaTrader may be modified by clicking to select the order and

clicking once more at the new price point. This approach is more effective than

drag and drop because it eliminates the potential errors made by accidentally

letting go of your mouse button and dropping an order on the wrong price.

1. Click using your left mouse button on the order you wish to modify.

2. Once selected, you will see the cursor change to a hand from an arrow, then
choose the price you are modifying the order to and click using your left mouse
button to complete the modify process.

The left mouse button is used to modify the price of limit, stop-market, stop-limit,

and MIT orders. You can cancel out of a price modification (remove the hand

cursor) by pressing the ESC key.

You can also increase or decrease the price of an order by pressing down on the

right mouse button with the mouse cursor hovering over the order, which will

display all orders consolidated at that price. You can then select any individual

order to increase price or decrease price in one tick increments

How to modify the price of Stop Loss and Profit Target orders

NinjaTrader 81290

© 2023 NinjaTrader, LLC

Modifying Stop Loss and Profit Target orders

1. Click with your left mouse button in the center column on the Stop Loss or
Profit Target order you want to modify.

2. Once selected, you will see the cursor change to a hand from an arrow, then
choose the price you are modifying the order to and click using your left mouse
button to complete the modify process.

Note: If there are multiple orders consolidated at a price level, modifying the price

will modify all orders at that price level.

How to modify the size of an order

Modifying the size of an order
To modify the size of an order, click on the Size Marker (marked by the green

arrow in the image below) with your left mouse button

http://www.ninjatrader.com/support/movies/nt7/helpGuide/operations/orderEntry/superDOM/modifyingStopLossAndProfitTargetOrders/Modifying-Stop-Loss-And-Profit-Target-Orders.htm

Operations 1291

© 2023 NinjaTrader, LLC

The quantity field will appear which allows you to set the new order quantity by

either entering a new quantity or using the mouse wheel to scroll the value higher

or lower. Either press the "OK" button to submit the change or the "X" button to

cancel the operation.

Order size changes are handled according to NinjaTrader's advanced FIFO

optimization capabilities.

Tips:

1. Holding the Ctrl key + scrolling will increment order quantities by a value of

10

2. Middle clicking on the order quantity will bring up the Quantity Selector

How to modify Stop Loss and Profit Target orders with a single click

Single Click Order Modification
You have the option of enabling Single Click Order Modification for ATM Stop Loss

and Profit Target orders via the SuperDOM Properties dialog window accessible

by right mouse click context menu. This is an advanced feature that can provide

you with the clear advantage of efficiently modifying orders in fast moving markets.

If you are a scalper then this option is for you.

Once enabled, to modify Stop Loss and Profit Target orders click in the

center/PRICE column. Clicking in the PRICE column on the BID or above when

long will adjust your Profit Target order prices, below the BID will adjust Stop Loss

order prices. Clicking in the PRICE column on the ASK or below when short will

adjust your Profit Target order prices, above the ASK will adjust your Stop Loss

order prices.

NinjaTrader 81292

© 2023 NinjaTrader, LLC

Left

Mouse

Click

Modifies the closest Stop Loss or Profit Target order

Middle

Mouse

Click

Modifies the second closest Stop Loss or Profit

Target order

Middle

Mouse

Click

+

CTRL

Key

Modifies the third closest Stop Loss or Profit Target

order

Notes:

1. Single Click order Modification for Stops and Targets are limited to only the

first 3 nearest stops and targets

2. If you have more than one active strategy working in the market, single click

modification will be applied to the stops and targets associated to the

selected strategy as indicated in the strategy control list (drop down list) in

the lower portion of the SuperDOM window.

3. This advanced mode DOES NOT provide single click access to working

orders (Entry/Exit) that reside in either the BUY or SELL columns.

How to cancel orders

Cancelling Orders
There are several options for cancelling orders within the NinjaTrader SuperDOM.

1. Pressing down on the left mouse button on the black "X" will cancel all orders
consolidated at the corresponding price level.

2. Pressing down on the right mouse button with the mouse cursor hovering over
the order will display all orders consolidated at that price. You can then select
any individual order for cancellation.

3. Pressing on the large "X" will cancel all orders on either the "BUY" side (in this
example) or the sell side.

Operations 1293

© 2023 NinjaTrader, LLC

You can also cancel "ALL" orders by right mouse clicking inside the SuperDOM

and selecting the menu item Cancel All Orders.

10.23.13.6Managing Positions

The SuperDOM has action buttons that allow you to quickly: close open positions, reverse

positions, or even add/remove targets to your ATM Strategy

NinjaTrader 81294

© 2023 NinjaTrader, LLC

1. Left mouse clicking on the "Rev" will close the current open position and open a reverse

position.

2. Left mouse clicking on the "Close" will close the current position and cancel any working

orders associated with the instrument/account combination. Clicking on this button with

your middle mouse button (scroll wheel) will close the selected active strategy only. This

means that the position size of the strategy will be closed and any working orders

associated to that strategy will be cancelled.

Note: Positions will only display for the selected Account and Instrument.

How to scale in or out of an active ATM strategy

When you have an active strategy selected in the strategy control list indicated by

the lightning bolt icon (see image below), orders submitted scale into or out of

the selected strategy. Once filled or partially filled, existing stop loss and profit

target orders are modified to reflect the new position strategy size. You can preset

a default scale in or out quantity via the "Scale quantity" property accessible via the

SuperDOM properties window.

As an example, your initial strategy may call for opening a position of 4 contracts

but you want subsequent scale orders to be only 1 contracts. If the SuperDOM

"Scale quantity" property is set to a value of 1, when an active strategy is selected

in the strategy control list, the SuperDOM "Order qty" field will be set to a value of 1

automatically.

Operations 1295

© 2023 NinjaTrader, LLC

Adding or Removing Targets

How to Add or Remove Targets
If you have an active ATM strategy displayed in the SuperDOM, you can add or

remove targets. For example, you may have a 2 contract position with 1 Stop Loss

and Profit Target for 2 contracts each. You may decide to split this target (add

target) so you can exit the final contract at a higher price.

It is important to understand the following logic:

· If you have 1 target and you remove a target, you will be left with a stop loss order

only

· New targets are added 4 ticks from your current outside target for futures, $0.20

for stocks

Two Methods for Adding and Removing Targets
There are two locations within the SuperDOM where you can add or remove a

target.

1. Pressing down on the Left mouse button on the "+ TARGET" (to add) or "-
TARGET" (to remove) buttons when "Show Quick Buttons" is set to True in the
SuperDOM properties dialog window

2. Right mouse click context menu and select Add Target or Remove Target

10.23.13.7Using SuperDOM Columns

NinjaTrader 81296

© 2023 NinjaTrader, LLC

In addition to the standard Price Column used to display bid/ask data, the NinjaTrader

SuperDOM has the ability to add additional columns for even further analysis for real-time

market prices. NinjaTrader comes with 4 pre-built system columns (displayed in the image

below), with many more which can be downloaded to extend functionality.

Operations 1297

© 2023 NinjaTrader, LLC

Understanding the Columns window

The Columns window is used to add, remove and edit all columns within a

SuperDOM

Accessing the Columns Window
Right mouse click on the SuperDOM window and select the menu Columns

Sections of the Columns Window
The image below displays the three sections of the Columns window:

NinjaTrader 81298

© 2023 NinjaTrader, LLC

1. List of Available columns (a description of the selected column can be viewed

by clicking on the symbol, see the green arrow in the image below)

2. Current columns Configured on the SuperDOM

3. Selected columns Properties

How to add columns

Adding a Column
To add an column to a SuperDOM:

1. Open the Columns window (see the "Understanding the columns window"

section above)

2. Left mouse click on the Available column you want to add and press the Add

button or simply double click on it

3. The column will now be visible in the list of Configured columns

4. The column's parameters will now be editable on the right side of the columns

window (see the "How to edit a column's parameters" section below)

Operations 1299

© 2023 NinjaTrader, LLC

How to edit a column's parameters

Editing a Column
You can customize any column from the Columns window:

1. Open the columns window (see the "Understanding the columns window"

section above)

2. Highlight the column you would like to edit from the list of applied columns (as

shown in the image below).

3. Once highlighted this column's parameters will be available to edit on the right

hand side.

NinjaTrader 81300

© 2023 NinjaTrader, LLC

Column Parameters
The following parameters are common to most columns:

Setup

Label Sets the text used for the column header

Visual

Color for

backgroun

d

Sets the color used for the column cells

Color for

foreground

Sets the color used for the column text

Operations 1301

© 2023 NinjaTrader, LLC

Visible Enables / Disables if the column should be

displayed on the SuperDOM

Time

Frame

Trading

Hours

Sets the hours used for historical bar

calculations

Each column will have its own set of parameters specific to that column. Please

see the "Understanding the default systems columns" section below for more

information on each of NinjaTrader's pre-built columns. For any custom columns

that have been downloaded, please refer to the column's developer for more

information on settings specific to their custom column.

Understanding the APQ (Approximate Position in Queue) Column

APQ (Approximate Position in Queue) Column
The APQ column will calculate the number of contract resting ahead of your Limit

orders based on the number of contracts that were advertised at the time the

order was submitted, in other words - it will give you the worst possible position in

the queue for your order - so you know conservatively how many contracts need to

be filled before it's your orders turn.

NinjaTrader 81302

© 2023 NinjaTrader, LLC

1. Let's say you place a Buy limit order at a price of 1963.50, and at the time the

order was confirmed as working from the exchange, there were 1233 contracts

working at this level ahead of you.

2. APQ will assume that your order has a queue position of 1234, and will

continue to monitor the number of contracts that are advertised at this level, and

give you the number of contracts that are remaining based off the volume updates

that occur at that price level.

Notes:

· The value displayed in the APQ is a calculation based on the level II volume

from your data provider. For simulated orders, there is no way to accurately

track your order against the live orders that are being sent from the data

provider and filled at a live exchange, and as a result, the estimate will have

little to no value to your simulation orders. An order placed on a live account

would be more accurately reflected, however it should be noted that this

calculation is a client side calculated theoretical value.

· Stop orders do not have an APQ as it has no queue effect. A stop order will

trigger once the market trades at the stop price.

Operations 1303

© 2023 NinjaTrader, LLC

Understanding the Notes Column

Notes Columns
The Notes column will give you the ability to record custom user-defined text at

any price row on the SuperDOM. This will allow you to monitor and track

individual price levels with any text you may find useful.

To record a note:

1. Double click on the corresponding price row in the Notes column to enter the

text-edit mode

2. Using your keyboard, type in the text you wish to display

3. Press Enter on your Keyboard accept the text.

Your custom note will now be synchronized with the price corresponding price row

and will remain at that price level as your scroll up or down on the SuperDOM.

To remove a note, simply double click on the note row to re-enter the text-edit

mode which will allow you to erase the text using your backspace or delete key on

your keyboard.

NinjaTrader 81304

© 2023 NinjaTrader, LLC

Understanding the Pulling/Stacking Column

Pulling/Stacking Columns
The Pulling/Stack column is a customizable display that indicates the changes in

the market depth based on user settings or if a reset notification is received on the

SuperDOM.

Operations 1305

© 2023 NinjaTrader, LLC

Example: In the screenshot above the sell depth at 4520.75 was initially at 91, but

dropped to 84 resulting in a display of -7.

NinjaTrader 81306

© 2023 NinjaTrader, LLC

Column Properties

Displ

ay

Sets the ability to display values for Ask, Bid, or Ask &

Bid

Rese

t

when

Bid/Ask change: It will start tracking changes as soon

as a price starts receiving real-time depth data and

continue to accumulate the changes so long as the

associated bid/ask price is consistent. If the

associated bid/ask price moves, the values reset. It

will only track values within the “# of market depth

levels”.

No longer receiving depth data: It will start tracking

changes as soon as a price starts receiving real-time

depth data and continue to accumulate the changes

so long as real-time depth data is being received at

that price level. If the price then moves and there is

no longer depth data at that price level since it is

outside of the “# of market depth levels”, it would then

reset.

Rese

t

Toler

ance

This is a conditional item for Reset When so that if

the change occurs, but returns back within the

specified milliseconds, it will not rest.

Understanding the Recent Bid/Ask Column

Recent Bid/Ask Columns
The Recent Bid/Ask column is a customizable display that indicates the recent

volume that occurred at the bid or ask prices on the SuperDOM.

Operations 1307

© 2023 NinjaTrader, LLC

Example: in the above screenshot we can see a volume of 1 occurred at the bid

price and a volume of 4 occurred at the ask.

Column Properties

Displa

y

Sets the ability to display values for Ask, Bid, or Ask

& Bid

Reset

when

Price returns: The accumulated volume will stay

displayed until the associated bid/ask price leaves

the price then later returns to that price level.

Bid/Ask change: The accumulated volume will stay

displayed so long as the bid/ask price stays the

same. When the bid/ask price change, the value will

reset.

Reset

Tolera

nce

This is a conditional item for Reset When so that if

the change occurs, but returns back within the

specified milliseconds, it will not rest.

Understanding the PnL Column

PnL Column

NinjaTrader 81308

© 2023 NinjaTrader, LLC

The PnL column will display the amount of Profit or Loss for each price row based

on your average entry price. This column has a setup property to display the

number of units in Currency, Percent, Pips, Points, or Ticks (please see "How to

edit a column's parameters" section above)

Once there is a position opened on the selected instrument, the PnL column will

then calculate what you can expect your PnL to be at each price row on the

SuperDOM based on the current position size, entry price and the tick size / point

value of the instrument that is being traded.

Understanding the Volume Column

Volume Column

Operations 1309

© 2023 NinjaTrader, LLC

The Volume Column will display the number of contracts that have traded in the

current session. This column has two Setup Properties to determine how the

volume information is displayed. You data feed provider must support historical

tick data and is using the Volume Column in Buy/Sell mode must also support

Historical Bid/Ask tick data.

Note: The SuperDOM Volume Column will reset as the first tick of the next

session comes in. If you open a fresh SuperDOM Volume Column outside of

the instruments trading hours you will not see any Volume until the next

sessions opening tick.

Display

value in

Volume Displays the actual number of contracts executed

at each price level

Percent Displays a value percentage based off of the total

number of contracts traded in the session

Type

1.

Standar

d

Trades are represented as the cumulative number

of contracts that have been executed at each

price level

2.

BuySell

Trades are categorized as a buy (at the ask or

above) or as a sell (at the bid or below) and then

color coded based on the color parameters used

in the Visual section (see "How to edit a column's

parameters" section above

NinjaTrader 81310

© 2023 NinjaTrader, LLC

How to remove columns

Removing a Column
To remove a column from your NinjaTrader SuperDOM:

· Open the Columns window (see the "Understanding the Columns window"

section above), select a column from the Configured columns list, press the

Remove button, and then press the OK button to exit the Columns window.

Customize the display of columns

Moving/Resizing Columns
Each column added to the SuperDOM can be individually resized or moved.

To move the order of columns in the SuperDOM window

· Right click on the SuperDOM and select Columns.

· From the Columns window you can use "up" or "down" in the Configured

columns section.

· Left mouse click "up" to move the selected applied column left in the SuperDOM

window

· Left mouse click "down" to move the selected applied column right in the

SuperDOM window

To resize the width of a column:

· Move your cursor to the edge of the column you wish to resize, where your

cursor will turn into a left and right facing arrow

Operations 1311

© 2023 NinjaTrader, LLC

· Left mouse click and drag to meet the width you desire

Trade Control On Left
By default, the Trade Control will be displayed on the bottom of the SuperDOM.

However you can optionally set the Trade Control to be displayed on the left of the

SuperDOM Price Ladder for a more compacted view which has been optimized

for using multiple columns on the SuperDOM. To enable this display, simply right

click on the SuperDOM window and select the Trade Control On Left menu item.

NinjaTrader 81312

© 2023 NinjaTrader, LLC

Custom column development

In addition to the 4 system columns that come pre-built with the NinjaTrader

application, you also have the ability to create custom columns of your own. For

example, you could create your own custom volume column to apply to your

NinjaTrader SuperDOMs.

For more information on using NinjaScript to build custom SuperDOM Columns

please see the NinjaScript section of the user help guide.

The option to hire a https://ninjatraderecosystem.com/search-results/?

fwp_category=programming-services to build your custom indicators is also

available.

https://ninjatraderecosystem.com/search-results/?fwp_category=programming-services
https://ninjatraderecosystem.com/search-results/?fwp_category=programming-services

Operations 1313

© 2023 NinjaTrader, LLC

10.23.13.8SuperDOM Templates

SuperDOM templates allow you to save a variety of visual and functional properties for the

SuperDOM, allowing you to quickly recall these settings at a later time.

How to save a SuperDOM Template

A SuperDOM Template can be applied to a new or previously opened

SuperDOM to load customized settings, including any additional columns saved

as part of the template.

Saving a SuperDOM Template
To save a SuperDOM Template:

1. Once you have a SuperDOM set up to your liking, right mouse click within the

window and select the menu item Templates, followed by Save As

2. The Save As window will appear. Enter a name for your template and press

the save button.

Changing the Default SuperDOM Template
A SuperDOM Template can be saved as the default used for all new SuperDOM

windows. Once saved, the default template will determine the properties of each

new SuperDOM opened, unless you specify a different template.

To save a SuperDOM Template as default:

1. Right mouse click within an open chart and select the Templates menu

2. Select the menu item Save as Default

In the image below, we are saving a new chart template named "My Template."

How to load, remove, or rename a SuperDOM Template

NinjaTrader 81314

© 2023 NinjaTrader, LLC

Loading a SuperDOM Template
A SuperDOM Template that was previously saved can be loaded on any

SuperDOM window.

To load a SuperDOM Template:

1. Right mouse click and select the menu item Templates followed by the Load

menu item

2. The Load window will appear. Select the template to load from the list of

templates, then press the Load button.

Removing a SuperDOM Template
To remove a SuperDOM Template from the list of saved templates:

1. Right mouse click within a chart and select the menu item Templates followed

by either the Save As or Load menu items

2. The Save or Load window will appear, depending on which menu item you

selected. Right mouse click the template for removal from the list of templates,

then select the Remove menu item.

Renaming a SuperDOM Template
To rename an existing SuperDOM Template from the list of saved templates:

3. Right mouse click within a chart and select the menu item Templates followed

by either the Save As or Load menu items

4. The Save or Load window will appear, depending on which menu item you

selected. Right mouse click the template from the list of templates, then select

the Rename menu item.

In the image below, we can either remove or rename the selected SuperDOM

Template.

Operations 1315

© 2023 NinjaTrader, LLC

10.23.13.9Working with Indicators

The SuperDOM's Price Ladder display has the ability to add any number of price action

indicators which can be used to visualize and analyze indicator values in relation to the

SuperDOM display, as well as attaching working orders to the indicator price level for a

hand-free trade management system.

NinjaTrader 81316

© 2023 NinjaTrader, LLC

NinjaTrader comes with over 30 pre-built indicators which can be added the SuperDOM.

Indicators can be added, removed and edited via the Indicators window.

Understanding the Indicators window

The Indicators window is used to add, remove and edit all indicators within a

SuperDOM.

Accessing the Indicators Window
· Right mouse click in the SuperDOM select the menu Indicators

Sections of the Indicators Window
The image below displays the three sections of the Indicators window.

1. List of Available indicators (a description of the selected indicator can be

viewed by clicking on the symbol, see the green arrow in the image below)

2. Current indicators Configured on the SuperDOM

3. Selected indicator's Properties

Operations 1317

© 2023 NinjaTrader, LLC

How to add an indicator

Adding an Indicator
To add an indicator to a SuperDOM:

1. Open the Indicators window (see the "Understanding the Indicators window"

section above)

2. Left mouse click on the Available indicator you want to add and press the Add

button or simply double click on it

3. The indicator will now be visible in the list of Configured indicators

4. The indicator's parameters will now be editable on the right side of the

Indicators window (see the "How to edit an indicator" section below)

NinjaTrader 81318

© 2023 NinjaTrader, LLC

How to edit an indicator's parameters

Editing an Indicator
You can customize any indicator from the Indicators window:

1. Open the Indicators window (see the "Understanding the Indicators window"

section above)

2. Highlight the indicator you would like to edit from the list of applied indicators (as

shown in the image below).

3. Once highlighted this indicator's parameters will be available to edit on the right

hand side.

Operations 1319

© 2023 NinjaTrader, LLC

Indicator Parameters
The following parameters are common to all indicators:

Data

Series

Input

Series

Please see the Input series section for further

information.

Price

based on

Sets the type of market data used to drive the

Data Series. (Last, Ask, Bid)

Type Sets the bar type of the Data Series. (See the

Bar Types section of the Help Guide for more

information)

Value Sets the Data Series value.

NinjaTrader 81320

© 2023 NinjaTrader, LLC

Time

frame

Load data

based on

Determines how much data is loaded based on

number of bars, number of days, or a custom

date range.

Bars to

load

Sets the number of bars or days to load data.

End date Sets the end date of the data used in indicator's

calculation

Trading

hours

Sets the Trading hours used for the Data

Series. (See the Trading Hours section of the

Help Guide for more information)

Break at

EOD

Enables or disables the bars being reset at

EOD (End Of Day). (See the "Understanding

Historical Data" section of the Help Guide for

more information)

Set up

Calculate Sets the frequency that the indicator calculates.

On bar close will slow down the calculation

until the close of a bar; On price change will

calculate on when there has been a change in

price; On each tick calculate the indicator's

value which each incoming tick.

Maximum

bars look

back

Max number of bars used for calculating an

indicator's value. The TwoHundredFiftySix

setting is the most memory friendly.

Visual

Visible Sets if the indicator plot is visualized on the

display

Operations 1321

© 2023 NinjaTrader, LLC

Plots (...) Allows you to customize the appearance of the

indicator by changing the Color or Thickness

Saving an Indicator's Parameters as Default
You can optionally save your customized indicator's parameters as a default

preset. Doing so will recall your customized settings the next time you add this

specific indicator to a SuperDOM.

Once you have your indictor's properties set to your preference, you can left

mouse click on the "preset" text located in the bottom right of the properties

dialog. Selecting the option "save" will save these settings as the default settings

used every time you open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to

return to the original settings.

Indicator Input Series
The indicator Input Series window allows you to select the input series for your

indicator's calculations. This allows you to configure different data types, such as

the High, or Open price, or even calculate your indicators based off of multiple

nested indicators.

To access this window, move your mouse over the Input Series field, which will

change to an "Edit input..." button.

1. You can then select the Close, High, Low, Median, Open, Typical, or Weighted

value of any Data Series within a SuperDOM.

2. Additionally, you can also choose another indicator as the input series. When

you select another indicator as the input series, you can define the properties used

in the input series for the second indicator. Once you have selected the input

series of your choice left mouse click the OK button to exit the Input Series

window.

NinjaTrader 81322

© 2023 NinjaTrader, LLC

Understanding how indicators are displayed

Indicator Display
Once an indicator has been configured and applied to the SuperDOM, the indicator
plot will be displayed in the Price column above the corresponding price row.

Operations 1323

© 2023 NinjaTrader, LLC

In the image above, you can see an orange highlighted price row at 1959.75, rounded

to nearest price from the calculated EMA indicator (1959.63). Hovering your mouse

cursor over the indicator plot will display a tool tip which will give you details pertaining

to input settings of the indicator.

Note: It is possible for indicators to be calculated out of range of the current

Price Ladder Display. You can right click on the SuperDOM and uncheck Auto

Center which will allow you to scroll up or down on the Price Ladder Display to

locate the indicator that has been added.

How to remove an indicator

Removing an Indicator
To remove an indicator from your NinjaTrader SuperDOM:

· Open the Indicators window (see the "Understanding the Indicators window"

section above), select an indicator from the Configured indicators list, press

the Remove button, and then press the OK button to exit the Indicators window.

Custom indicator development

NinjaTrader 81324

© 2023 NinjaTrader, LLC

In addition to the over 30 price action indicators that come pre-built with the

NinjaTrader application, you also have the ability to create custom indicators of

your own. For example, you could create your own custom multi-series indicators

to apply to your NinjaTrader SuperDOMs.

Note: In order for a custom indicator to show up in the list of available

SuperDOM Indicators, you must set the IsOverlay property to true in the

indicator's State.SetDefaults.

For more information on using NinjaScript to build custom indicators please see

the NinjaScript section of the user help guide. Click here to view NinjaScript

tutorials.

The option to hire a NinjaScript Consultant to build your custom indicators is also

available.

10.23.13.10Properties

The SuperDOM is highly visual by design but can also be customized to each trader's

preferences.

How to access the SuperDOM properties menu

You can access the SuperDOM properties dialog window by clicking on your right

mouse button within the SuperDOM border and selecting the menu Properties.

Available properties and definitions

https://ninjatraderecosystem.com/search-results/?fwp_category=programming-services

Operations 1325

© 2023 NinjaTrader, LLC

General

NinjaTrader 81326

© 2023 NinjaTrader, LLC

of market

depth

levels

Sets the number of market depth (Level 2) rows

displayed

ATM

strategy

selection

mode

Sets the behavior mode of the price ladder

display and strategy selector (more information

here)

Auto center Enables or disables auto centering of the last

traded price when it trades outside of range

Price

ladder font

Sets the font options for the price ladder

Last trade

displayed

in price

column

When true, the last trade volume is displayed in

the center price column otherwise it is

displayed in either the buy or sell column

Left mouse

button is

MIT

Sets if the left mouse uses a MIT order (Limit

order by default)

Middle

mouse

button is

stop

market

Sets if the middle mouse (scroll wheel) button

is stop-market (Stop-Limit by default)

PnL

display unit

Sets the display unit for profit and loss

Quantity

modificatio

n for

stocks

Sets if new orders submitted at the same price

will modify the quantity of exiting orders, or an

entirely new order is submitted (stacked) at the

same level

Scale

quantity

Sets the scale order quantity amount

Operations 1327

© 2023 NinjaTrader, LLC

Show

cumulative

depth

Enables or disables cumulative market depth to

be shown

Show daily

high/low

markers

Enables or disables the daily high and low

markers to be shown

Show

market

depth

Enables or disables market depth

Show

quick

buttons

Enables or disables the quick buttons rapid

order entry section

Show

realized

PnL when

flat

Displays realized profit and loss for the

selected account when flat

Simulated

order

volume

trigger

Sets the value for a simulated order volume

trigger (for entry and exit orders and NOT used

for stop loss)

Single click

order

modificatio

n

Enables or disables single click stop loss and

profit target order modification

Predefined

stop limit

offset

Sets the offset the limit price is away from the

stop price for entry/exit stop-limit orders. Set to

'Off' to disable single click stop-limit order

submission.

Tab name Sets the tab name

Colors

NinjaTrader 81328

© 2023 NinjaTrader, LLC

Action

button

Sets the set the color for any action button's

background

Ask price Sets the color of the ask price font

Bid price Sets the color of the bid price font

Buy button Sets the color of the buy button

Buy

column

backgroun

d

Sets the color of the buy column background

Buy

column

foreground

Sets the color of the buy column font

Daily high

price

Sets the color of the daily high price marker

Daily low

price

Sets the color of the daily low price market

Entry price Sets the color of the average entry price marker

Highlight

backgroun

d

Sets the color for row and button highlighting

Last trade Sets the color for the last trade market

Order - (...) Sets the color for various orders displayed

Price

column

backgroun

d

Sets the color for the price column background

Operations 1329

© 2023 NinjaTrader, LLC

Price

column

foreground

Sets the color for the price column font

Sell button Sets the color for the sell button

Sell

column

backgroun

d

Sets the color of the sell column background

Sell

column

foreground

Sets the color of the sell column font

Window

Always on

top

Sets if the window will be always on top of other

windows

Show tabs Sets if the window should allow for tabs

Trade

control on

left

Sets if the SuperDOM Trade Control is

displayed on the left of the price column

How to set the default properties

Once you have your SuperDOM Properties set to your liking, you can left mouse

click on the preset button, then click save. Presets will be applied to all windows of

that type opened in the future.

If you change your settings and later wish to go back to the original factory

settings, you can left mouse click on the preset button, then click restore to return

to the factory settings.

Using Tab Name Variables

Tab Name Variables

NinjaTrader 81330

© 2023 NinjaTrader, LLC

A number of pre-defined variables can be used in the "Tab Name" field of the

SuperDOM Properties window. For more information, see the "Tab Name

Variables" section of the Using Tabs page.

10.24 Playback Connection

Playback Connection Overview

The Playback Connection can be accessed by left mouse clicking on the Connection

menu within the NinjaTrader Control Center and selecting the Playback menu item. You

must close all other connections before connecting to Playback.

Playback utilizes the ability to download or record market data and replay it at another

time. It is the same idea as recording your favorite TV show during the day and watching it

at some other more convenient time. Unlike most products that only allow you to replay

one market at a time, NinjaTrader provides synchronous replay of any and all recorded

markets and delivers this market data to all NinjaTrader windows as if it was happening in

real-time. Therefore, you can have multiple SuperDOMs and charts replaying different

markets all at the same time. You can trade in simulation against this data at varying

levels of replay speed.

› Set Up

› Playback

› Data Files

10.24.1 Set Up

You can Playback either Market Replay data or historical tick data. For the most accurate

reflection of live market conditions you would want to use Market Replay data.

Notes:

Operations 1331

© 2023 NinjaTrader, LLC

1. Market Replay data holds the exact sequence level I and Level II (market depth) data

and must be recorded or downloaded by NinjaTrader.

2. Alternatively, historical tick data can be used to playback chart data (without market

depth). The granularity and accuracy of historical mode will be dependent on your data

provider.

3. The Playback101 account properties (e.g., Commissions, Risk, etc.) are created from

the Sim101 account when connecting to the Playback Connection and cannot be reset

while connected. The Playback101 account will reset with current Sim101 account

properties when reconnecting.

4. TimeInForce logic such as order expiration / cancellation at the end of a session, is not

supported for the Sim101 or Playback101 accounts.

5. It is recommended to close and save your live workspaces then use dedicated

workspaces for Playback before connecting to Playback to ensure items, such as

drawing objects, are not affected in your live workspaces.

How to download playback data from the NinjaTrader server

Downloading Market Replay data for the Playback connection

NinjaTrader 81332

© 2023 NinjaTrader, LLC

Market Replay data holds the exact sequence level I and Level II (market depth)

data. NinjaTrader offers a limited amount of Market Replay data free to download

for playback purposes. Only the most common instruments are currently

available.

Notes:

1. Enable market recording for playback must be disabled from the Market

Data category of the Options menu before downloading replay data.

2. Downloading Market Replay data is NOT available when connected to the

Playback connection. You must disconnect from Playback connection

prior to downloading.

To download playback data:

1. Open the Historical Data window. The Historical Data window will open when

initially connection to Playback or by going to the Control Center and selecting

Tools then Historical Data. Here the section "Get Market Replay data" can be

expanded.

2. Select the instrument and date of the desired replay data and press the OK

button to begin the download.

Operations 1333

© 2023 NinjaTrader, LLC

The status of the download will appear in the lower right hand corner of the

Historical Data Window.

Note: Closing the Historical Data Window will cancel the download.

Downloading historical tick data for the Playback connection
If Market Replay data is not available, or you do not need the accuracy that

Market Replay data provides, you can optionally use playback using historical

tick data offered from your data provider. You can download, export, import

historical tick data via the Historical Data Window.

How to enable the market replay recorder

Enabling the Market Replay Recorder

NinjaTrader 81334

© 2023 NinjaTrader, LLC

To enable the replay recorder:

1. Left mouse click on the Tools menu and select the menu item Options.

2. In the Market Data category enable the option "Enable market recording for

playback".

All live data from instruments that are active in any NinjaTrader window will now be

recorded for playback. (see the "How to record live market data" section below)

How to record live market data

Recording Data
Once Enable market recording for playback is enabled (see the "How to enable

the market replay recorder" section above), data is recorded for any instrument in

any NinjaTrader window that is receiving live market data. Level II (market depth)

data is only recorded if a Level II, SuperDOM, or FX Pro window is open and

receiving data for the instrument. The Market Analyzer window is the

recommended recording window as multiple instruments can be added to one

Market Analyzer window and all recorded at the same time.

Operations 1335

© 2023 NinjaTrader, LLC

10.24.2 Playback

Once market replay data or historical tick data is available by either recording or downloading

(See the "Set Up" page of the Help Guide), it can be replayed in all NinjaTrader windows.

How to connect to Market Replay data

Connecting to Replay Data
To connect to Market Replay data:

1. Left mouse click on the Connections menu in the Control Center

2. Select the menu item Playback Connection menu item

The Playback connection should now be connected and the Playback Control

should be visible.

Note: When disconnecting, the Playback account's trade history will be reset.

How to work with replay data

Playback Control
Once connected to the Playback connection (see the "How to connect to Market

Replay data" section above for how to connect), the Playback control window will

appear.

NinjaTrader 81336

© 2023 NinjaTrader, LLC

In the caption bar of the Playback control you will see the current date and time of

where the play head is located.

Controls
The Playback control is set up much like a DVD player. The following controls are

available:

Playback

Type

Select either "Market Replay" or

"Historical"

Start Sets the start date for the left side of the

slider

End Sets the end date for the right side of the

slider

Play Starts the market replay.

Slide control Selects a point in time to start replay (sliding

during playback will reset the Replay101

account trade history)

Speed control Each successive click increases the speed

of the playback. Playback of "Max" will

process data at fastest possible speed.

Right Click Menu
Right mouse clicking in the Replay control window will bring up the right click

menu with the two following menu items:

Operations 1337

© 2023 NinjaTrader, LLC

Show

Available

Data...

Brings up the Historical Data Window window.

Instruments with replay data will be displayed

with the level 1 (L1) and level 2 (L2) Begin and

End dates and times.

Go To... Brings up the Go To window where you can

specify a date and time to jump the replay file to.

There must be recorded data available for the

selected time.

Playback

Current

Day

Only the current day will be played back from

Market Replay when dragging the slider between

multiple days, for past days historical data would

be loaded.

Playback

from

selected

All historical data is loaded from historical data

and Market Replay data is only used going

forward. This is the fastest and default mode.

This mode is sufficient when there's no

NinjaScripts that need the sequence of events for

each historical tick.

Playback

from start

Market Replay data is played back for every day

between the start point of the slider and the end

point of the slider. This will be slower as

NinjaTrader must process more data, but is

useful when you are back testing a strategy in

playback.

NinjaTrader 81338

© 2023 NinjaTrader, LLC

Tip: Should you be using the Playback for testing a NinjaScript strategy,
please be sure the chart you apply the strategy onto has bars populating it prior
to the start time of your replay.

Understanding how the Playback works

Playback supports running on Market Replay data or Historical data. Market Replay

data is the most accurate and holds both level I and level II (market depth) data. If

you do not have market replay data for a time frame, you can choose to playback

historical tick data. However using historical tick is less accurate as there is no

level II data.

Market Replay Data

NinjaTrader stores level I and level II together in a single market replay file to

ensure that level I and level II events are perfectly in sync per instrument.

Market replay files have the ability to record time stamps down the 100

nanosecond level. However please note that we use the time stamp provided by

the market data providers when storing data. This means that you are limited to

the granularity of the provider if the time stamp is natively provided. Please see the

Historical & Real-Time Data section of the help guide for more information.

Note: When using market replay, the NinjaTrader core market data updates

occur at the granularity provided by the market data provider. However, the

NinjaTrader user interface only visually updates in 1-second intervals for

performance optimizations. Even though the NinjaTrader UI's are only visually

updating at 1-second intervals, orders, indicators, and strategies will calculate

just as they were running in real-time.

Historical Data

When using Historical data for playback NinjaTrader will use historical tick data for

playback. If the tick data from your provider is stamped with ask and bid data then

NinjaTrader will use that to simulate the ask and bid price during playback. If your

historical data provider does not support ask/bid stamped tick data then

NinjaTrader will simulate the ask and bid price by setting it either to last price or

last price +/- 1 tick at random.

Operations 1339

© 2023 NinjaTrader, LLC

Note: Ask and Bid Volume during playback with Market Replay or historical

data will be simulated and set to "1" except for Equities and Forex, where "100"

is used for Equities and "100,000" for Forex.

Order Processing Differences in Playback

When submitting orders to the Playback101 account, these orders are processed

immediately and synchronously. This enables reproducible results for strategy

developers that run a strategy on the playback connection. Playback101 and

Sim101 work differently when executing, since simulated internet latency delay

simulation is not present in playback.

10.24.3 Data Files

Playback can use two types of data which is selected by the user via the Playback controller.

Market Replay
Market Replay data is recorded and stored in compressed files located in the

Documents\NinjaTrader 8\db\replay directory. These files can be shared by copying the

contents of this folder to another NinjaTrader installation, or by using the Backup & Restore

utilities to create a backup file of the replay data and restoring this to another PC.

Historical
For Historical playback NinjaTrader uses historical Tick data. You can export and import

Tick data via the Historical Data Window. Please see the exporting and importing market data

sections of the help guide for more information.

10.25 Risk

Risk Overview

The Risk window allows you to define margin control and limits to be used on simulation

accounts.

› Using the Risk window

10.25.1 Using the Risk window

Within the Risk window, Risk Templates hold the risk definitions for local simulation

accounts. A risk definition holds the amount of margin needed per contract, it also limits

NinjaTrader 81340

© 2023 NinjaTrader, LLC

the amount of contracts allowed to trade. To define your Live or Simulation NinjaTrader

risk, you can go to the Client Dashboard under Tools.

Understanding Risk Templates

Risk Templates
A Risk Template is a collection of risk definitions that can be used by Simulation

accounts to track the amount of Margin being used.

Where Risk Templates can be Applied
Risk Templates can be applied via the Control Center or Account Data

Accounts tab.

· Right click on a Simulation Account

· Select "Edit Account"

· Change the selected "Risk" template parameter

Note: Risk definitions are activated as soon as the template is applied.

However, there are some values (i.e., Intraday margin, Initial margin,

Maintenance margin) which are calculated only as the position is updated.

Should you be in a position when the risk template is applied, these values

would NOT calculate until the position is updated. You can force this

calculation by disconnecting and reconnecting to your data account

connection.

How to create and edit a Risk Template

Creating a Risk Template
If your desired session risk settings are not found within the pre-loaded Risk

Templates, you can create a new template.

To create a Risk Template:

1. Left mouse click on "add"

2. Type in the name of the Risk Template

3. Select "add" to add a new risk definition, see "Understanding risk

definitions" below for more information. Repeat for as many risk definitions as

required.

4. Press the Apply button to save the configured session times in the Risk

Template.

Operations 1341

© 2023 NinjaTrader, LLC

Working with Risk Templates

A saved Risk Template can be selected via the Template section to the left of the
Risk window. Selecting the template will allow you to configure individual risk
definitions for that template.

Editing Risk Templates
Risk Templates can be edited in the following ways:

· Left mouse click the "copy" button in the templates section and insert a new

template name to copy the current Risk Template.

· Left mouse click the "remove" button in the templates section to delete the

selected Risk Template.

Understanding risk definitions

Understanding Risk Definitions
Each risk definition applies to an individual instrument. You can only have one

instrument definition per instrument.

NinjaTrader 81342

© 2023 NinjaTrader, LLC

Buy

Intrada

y

Margin

Sets the intraday margin required for buy orders.

Sell

Intrada

y

Margin

Sets the intraday margin required for sell orders.

Initial

Margin

Sets the initial margin required.

Mainten

ance

Margin

Sets the maintenance margin required.

Max

Order

Size

Sets the max allowable order size.

Max

Positio

n Size

Sets the max allowable position size.

Operations 1343

© 2023 NinjaTrader, LLC

10.26 Simulator

Simulator Overview

The Simulator can be accessed by selecting the Sim101 account in any of the

NinjaTrader order entry features.

NinjaTrader provides a state of the art internal simulation engine that can be used to test

trading ideas and hone your skills. The simulation engine is not a simple algorithm that fills

your order once the market trades at your order price. The engine uses a scientific

approach to determine fill probability by including a number of variables including: ask/bid

volume, trade volume, time (to simulate order queue position), and random time delays for

switching between order states.

Simulation Accounts

› The Sim101 Account
› Multiple Simulation Accounts

Paper Trading

› Live/Simulation Environment

› Global Simulation mode

› Trading in Simulation

10.26.1 The Sim101 Account

What is the Sim101 account?
The Sim101 account is a default account that represents your own simulated account

through which you place simulated trades. The Sim101 account behaves identical to a live

account in that it has a cash balance, profit and loss and other financial parameters. For

example, when placing orders to the simulator, the Sim101 account is checked to ensure that

you are not exceeding your buying power.

How to customize the Sim101 account
You can set initial Sim101 account values, reset simulator values, and clear order history. To

access these settings open the Control Center window select the "Accounts" tab. If the

account tab is not visible select the "+" tab button and select 'New accounts'

NinjaTrader 81344

© 2023 NinjaTrader, LLC

Resetting Initial Cash value on the Sim101 account
To reset the initial cash value on your account please edit the account as shown above.

In the Simulation Accounts window:

Operations 1345

© 2023 NinjaTrader, LLC

1. Set the "Initial cash" property to what you want to reset the account to.

2. Click "reset"

Note: Simulation Denomination currently only supports US Dollar.

10.26.2 Multiple Simulation Accounts

You can create an unlimited number of simulation accounts in NinjaTrader.

Steps to Create Multiple Simulation Accounts
1. Open the NinjaTrader Control Center

2. Select the Accounts tab

3. Right click on the accounts tab and select New simulation account...

4. Configure your new account and click the OK

Note: The account will be active the next time you connect to a data provider.

10.26.3 Live/Simulation Environment

NinjaTrader is a true mixed live/simulation platform. You can have multiple entry windows

open and using the account drop down menu, simultaneously route orders to your live broker

in one window while routing orders to the simulator in another. This provides you the flexibility

to trade live while testing different methods or ideas in simulation.

10.26.4 Global Simulation Mode

What is Global Simulation Mode?
When Global Simulation Mode is enabled, all order entry interfaces (SuperDOM, Chart

Trader, etc.) will only allow selection of a simulation account . Enabling this is not

necessary in order to route orders through simulation, because you can still set any

order entry interface to the Sim101 account individually. However, Global Simulation

Mode provides you a method to ensure that you do not accidentally place an order to

your live trading account.

How to enable or disable Global Simulation mode
1. From the NinjaTrader Control Center select the Tools menu.

2. Then select the menu item Global Simulation Mode

3. When the check mark appears next to the menu item Global Simulation Mode it is

active, and when the check mark is not showing Global Simulation Mode is disabled.

 Free license users are not able to disable Global Simulation Mode.

4. In addition, you can set NinjaTrader to always start in simulation mode via the

Simulator Tab in the Options window.

NinjaTrader 81346

© 2023 NinjaTrader, LLC

10.26.5 Trading in Simulation

NinjaTrader routes orders based on the account that you select in any of the order entry

interfaces (SuperDOM, Chart Trader, etc.). Simulation is no different. You can select the

Sim101 account from any of the NinjaTrader order entry interfaces to submit your orders in

simulation. Optionally you can set NinjaTrader to change the background color of the trading

interface when a simulation account is selected, this is set via the "Simulation color" property

in the NinjaTrader Trading Options window. Its default setting is "Transparent" which means

it is disabled.

Notes:

1. Trading in simulation should be done only when you have data within market hours

streaming. Simulation outside of market hours can result in fill prices which are seemingly

far off the last traded price based on the erratic bid/ask prices commonly seen during

these hours.

2. The simulator account(s) shift(s) to the next trading day at 4:15 EST every day, should

NinjaTrader be running at this time it will occur on the next start-up.

3. When the simulator account is reset, the realized PnL is reset back to 0 and the

CashValue has the commissions deducted from it and set back to 0.

4. Commissions for the simulation account(s) are continuously totaled and the Total

commissions Account Statistic will reflect that throughout the session.

5. TimeInForce logic such as order expiration / cancellation at the end of a session, is not

supported for the Sim101 account.

Operations 1347

© 2023 NinjaTrader, LLC

10.27 Strategy Analyzer

Strategy Analyzer Overview

The Strategy Analyzer can be opened by left mouse clicking on the New menu within the

NinjaTrader Control Center, and selecting the menu item Strategy Analyzer.

The Strategy Analyzer allows you to run historical analysis on your NinjaScript based

automated trading strategies

› Understanding the Layout

› Backtest a Strategy

› Optimize a Strategy

› Walk Forward Optimize a Strategy

› Multi-Objective Optimization

› Understanding Historical Fill Processing

› Basket testing multiple instruments

› Understanding Backtest Logs

› Reviewing Performance Results

› Monte Carlo Simulation

› Discrepancies: Real-Time vs Backtest

› Strategy Parameter Templates

› Strategy Analyzer Properties

10.27.1 Understanding the Layout

NinjaTrader 81348

© 2023 NinjaTrader, LLC

Layout
The Strategy Analyzer window contains the following items:

1. The Display Selector sets what performance results to view and the format to view the

results in.

2. The Settings panel sets the parameters to be used for the strategy backtest.

3. Where Performance results are displayed based on the display selection.

Operations 1349

© 2023 NinjaTrader, LLC

Log Grid
You can toggle the log to be displayed, this shows summary details from all previous strategy

backtests.

1. To show the log right click on the Strategy Analyzer and select "Show Log".

2. The Log will be made visible as shown below.

NinjaTrader 81350

© 2023 NinjaTrader, LLC

10.27.2 Backtest a Strategy

A backtest allows you to analyze the historical performance of a strategy. In order to run a

backtest you will need:

· Access to historical data

· Custom NinjaScript *strategy

Tip: There are several pre-defined sample strategies that are installed with NinjaTrader

that you can explore.

Operations 1351

© 2023 NinjaTrader, LLC

Notes:

1. By default, the Strategy Analyzer downloads data from your market data provider

which can slow down backtest progress for larger tests. If you wish to disable this

feature and operate using existing data in your database, right click on the Strategy

Analyzer > select Properties > enable Use Local Data Only

2. The IncludeTradeHistoryInBacktest property is set to false by default when a strategy

is applied in the Strategy Analyzer for backtesting. This provides for leaner memory

usage, but at the expense of not being able to access Trade objects for historical

trades. Thus, fields such as SystemPerformance.AllTrades.Count that rely on

references to Trade objects will not have any such references to work with. If you

would like to save these objects for reference in your code, you can set

IncludeTradeHistoryInBacktest to true in the Configure state. For more

information, see the Working with Historical Trade Data page.

3. A certain level of discrepancy between realtime and backtest results would be

expected, especially on more exotic barstypes like Point & Figure and Renko, please

also review this page for more details.

How to run a backtest

Start a Backtest
To run a Backtest of a strategy:

NinjaTrader 81352

© 2023 NinjaTrader, LLC

1. Select the Backtest type of "Backtest"

2. Select the strategy you would like to backtest

3. Set the strategy and backtest parameters (See the "Understanding backtest

properties" section below for property definitions)

4. Select the instrument and Data Series you would like to backtest

5. Select the "Run" button to start the backtest

Tip: You can optionally configure a sound to be played when the Backtest

completes. To enable this option, right click on the Strategy Analyzer >

Properties > Play sound on complete > Choose the sound file you wish to play

(must be a .WAV)

Understanding backtest properties

Backtest Properties

Operations 1353

© 2023 NinjaTrader, LLC

The following properties are available within the Backtest window:

NinjaTrader 81354

© 2023 NinjaTrader, LLC

Operations 1355

© 2023 NinjaTrader, LLC

General

Backtest

type

Sets the backtest type.

1. Backtest

2. Optimization

3. Walk Forward Optimization

4. Multi-Objective Optimization

Strategy Sets the strategy you would like to test.

Strateg

y

paramet

ers

Paramet

ers (...)

Each strategy parameter is listed dynamically

depending on the strategy selection

Data

Series

Instrume

nt

Sets the instrument or list you wish to test on

Price

based

on

Sets the type of market data used to drive the

Data Series

Type Sets the bar type of the Data Series.

Value Sets the Data Series value.

Time

frame

Start

date

Sets the start date for the test period

NinjaTrader 81356

© 2023 NinjaTrader, LLC

End

date

Sets the end date for the test period

Trading

hours

Sets the trading hour template for the Data Series.

(See the "Trading Hours" section of the Help

Guide for more information)

Break at

EOD

Enables or disables the bars being reset at EOD

(End Of Day). (See the "Break at EOD" section of

the Help Guide for more information)

Set up

Include

commis

sion

Enables or disables commissions in the backtest

performance results (See the "Commission Tab"

section of the Help Guide for more information)

Maximu

m bars

look

back

Max number of bars used for calculating an

indicator's value. The "TwoHundredFiftySix"

setting is the most memory friendly.

Bars

required

to trade

Sets the minimum number of bars required before

orders will be allowed to be submitted

Historic

al fill

process

ing

Order fill

resolutio

n

Sets the order fill resolution to be used for the

backtest. (See the "Understanding Historical Fill

Processing" section of the Help Guide for more

information)

Fill limit

orders

on touch

Enables or disables the filling of limit orders on a

single touch of price action.

Operations 1357

© 2023 NinjaTrader, LLC

Slippage Set the amount of slippage in ticks to apply to

market / stop market / Market-if-touched order

executions (default is 0)

Note: In the Summary the Slippage is displayed in

points.

Order

handlin

g

Entries

per

direction

Sets the maximum number of entries allowed per

direction while a position is active based on the

"Entry handling" property

Entry

handling

Sets the manner in how entry orders are handled.

If set to "AllEntries", the strategy will process all

entry orders until the maximum allowable entries

set by the "Entries per direction" property has

been reached while in an open position. If set to

"UniqueEntries", strategy will process entry orders

until the maximum allowable entries set by the

"Entries per direction" property per each uniquely

named entry.

Exit on

session

close

When enabled, open positions are closed on the

last bar of a session

Order

properti

es

Set

order

quantity

Sets how the order size is determined, options

are:

"by default quantity" - User defined order size

"by strategy" - Takes the order size specified

programmatically within the strategy

Time in

force

Sets the order's time in force

NinjaTrader 81358

© 2023 NinjaTrader, LLC

10.27.3 Optimization

You can fine tune the input parameters of a strategy through optimization. Optimization is the

process of testing a range of values through iterative backtests to determine the optimal input

values over the historical test period based on your optimization fitness. To run an

optimization you will need:

· Access to historical data

· Custom NinjaScript *strategy

· A thorough understanding of the Strategy Analyzer's backtesting capabilities

Tip: There are several pre-defined sample strategies that are installed with NinjaTrader

that you can explore.

How to run an Optimization

Running an Optimization
To run an Optimization select the Backtest type of "Optimization" in the

settings panel of the Strategy Analyzer.

Operations 1359

© 2023 NinjaTrader, LLC

Note: When making the selection additional parameters to configure your

optimization will be made visible.

Setting the Test Range
You can the test range of strategy parameters to be tested by left clicking on the

triangle to expand the strategies sub parameters.

Note: If you don't see the triangle make sure that the Backtest type is set to

"Optimization".

Min. - The starting value you want to test

Max. - The last value to test

Increment - The increment value (step value) used to increment the starting value

by for each subsequent optimization pass

In the image above, the input "Fast" has a starting (initial) value of 10 and an

ending value of 30 with an increment of 1. This means that the first value tested

NinjaTrader 81360

© 2023 NinjaTrader, LLC

will be 10, then 11, then 12 all the way through 30. The input "Slow" has a starting

value of 6, ending value of 16 with an increment of 1. Based on these settings, a

total of 200 (20 unique values for "Fast" multiplied by 10 unique values for "Slow")

backtest iterations will be processed in order to find the optimal combination of

input values based on the best optimization fitness.

Setting the Optimization Fitness
Optimization is based on the best optimization fitness you select. If you set the

property "Optimize on..." to "Max. net profit", the optimizer will seek the optimal

input values that return the maximum profit possible. There are over 10 different

optimization criterion you can select and can be customized via NinjaScript.

Please see the "Understanding Optimization properties" section below for more

information.

Understanding optimization properties

Optimization Properties
Apart from the optimization specific properties described below, the properties are

identical to the ones found in the backtest properties window. Please see the

"Understanding backtest properties" section of the Backtest a Strategy page of the

Help Guide for more information.

The following Optimization specific properties are available:

Tip: You can optionally "Optimize on" multiple objectives by using a Multi-

Objective optimization

Keep

best #

results

Sets the number of best results to display

Operations 1361

© 2023 NinjaTrader, LLC

Optimi

ze data

series

If set to true, the Data Series Value property will be

available for optimization (Not supported for Kagi,

Point and Figure, Line Break and Heiken Ashi period

Types)

Optimi

ze on...

Sets the optimization fitness to base the

optimization results on

Optimi

zer

Sets the optimization algorithm that is used.

NinjaTrader comes with "Default" and "Genetic"

optimizer algorithms. When the "Genetic" option is

selected, the genetic algorithm's optimization

properties fields will appear below the Optimizer

selection You can program your own optimization

algorithm using NinjaScript.

Understanding optimization results

Understanding Optimization Results
Once the optimization process is complete, you will see a the Optimization

Results Grid appear in the Analyzer tab. The results will be grouped per instrument

and shows the parameter combination that achieved the highest performance.

The "Performance" column is dynamic and will always be the Optimization Fitness

that you selected for the "Optimize" parameter when you ran the optimization.

The Top Optimization Results
The Optimizer tab will display the top number of results based on the value you set

for the "Keep best # results" property in the Optimizer dialog window. The column

Parameters displays the optimized input values.

NinjaTrader 81362

© 2023 NinjaTrader, LLC

1. The optimal value for the "Fast" input for the demonstration strategy used for

this optimization

2. The optimal value for the "Slow" input for the demonstration strategy used for

this optimization

Running a basket test

Basket test
Running an optimization across a list of instruments works very much the same

as running a regular basket backtest. For general information, please refer to the

Basket testing multiple instruments page. However, when running an optimization

across multiple instruments, an optional "Aggregated" option will be available.

Operations 1363

© 2023 NinjaTrader, LLC

Aggreg

ated

If set to True, NinjaTrader attempts to find the

optimal results for the whole basket of instruments.

The COMBINED row in the results tab will show an

aggregation of results across the basket of

instruments. (This parameter is only available when

an Instrument List is selected for optimization.)

Understanding factors that affect optimization performance

32 bit vs 64 bit
When you run an optimization in the 32 bit version of NinjaTrader to consume less

memory we do not store any trade data for each backtest that is run. Therefore if

you want to do trade analysis on one of the backtest results returned from an

optimization NinjaTrader must re-run the backtest to get the trade data, this adds a

small delay when switching between tests. The 64 bit version of NinjaTrader will

NinjaTrader 81364

© 2023 NinjaTrader, LLC

take advantage of the extra RAM available to NinjaTrader and will keep the trade

results for each kept backtest, allowing you to quickly change between backtest

result reports.

Keep best # results

If you are finding that you are running low on system memory during your

backtests reduce this number of results to keep will make a significant

improvement to the memory used by NinjaTrader.

Running multiple tests at a time
You will not get more done in a smaller time frame by separating multiple tests out

manually and running them at the same time on the same PC. NinjaTrader will

efficiently use all CPU cores for any optimization for fastest possible testing.

CPU Resources
Please insure that you have as much system resources available to the

optimization as possible, this usually means making sure all other applications are

closed. Furthermore as as the NinjaTrader optimization engine is optimized to take

advantage of as much system resources as possible it is advisible not to trigger

an optimization during a time where you would need to be using the PC. For

example it is not advised to start an optimization while you are managing the exit

of a trade.

Historical Trade Data
The IncludeTradeHistoryInBacktest property is set to false by default when a

strategy is applied in the Strategy Analyzer for optimization. This provides for

leaner memory usage, but at the expense of not being able to access Trade

objects for historical trades. Thus, fields such as

SystemPerformance.AllTrades.Count that rely on references to Trade objects will

not have any such references to work with. If you would like to save these objects

for reference in your code, you can set IncludeTradeHistoryInBacktest to true

in the Configure state, but this can result in greater memory usage. For more

information, see the Working with Historical Trade Data page.

Running Efficient Optimizations
Strategy optimizations are expected to consume a good deal of CPU resources,

simply due to the nature of the iterative data processing they perform. Strategies

with a relatively large number of parameters for optimization can multiply this

impact. When working with strategies with a large number of parameters, avoid

using "1" as the increment value for the optimizer, to avoid forcing the optimizer

algorithm to run the maximum number of permutations. Changing the increment

Operations 1365

© 2023 NinjaTrader, LLC

value to as little as "2" can cut the number of permutations in half, and increasing

this value can have progressively less of an impact.

The Genetic Algorithm can offer an alternative solution to increasing parameter

increment values. Rather than running brute-force tests by iterating over all

permutations, the Genetic Algorithm intentionally ignores parameter combinations

which are likely to produce sub-optimal results.

Especially on larger parameter sets with finer increment values, the upper limits of

potential permutations / parameter combinations could be reached for both

approaches to optimization - the error message "The strategy needs at least one

parameter to optimize" would be then an indication to rework the # of parameters

or increase the increment values to reach a more meaningful permutation count.

Using a virtual / cloud server
If you are using a virtual or cloud server as basis for your setup when running

optimization testing in the Strategy Analyzer, please keep in mind that such

environments can typically allocate available resources on demand. NinjaTrader

will still take advantage of all available threads for it's processing, however those

resources available would be determined at the start-up of the NinjaTrader

platform. So if your virtual resources would have changed while you were in a

working session, then please restart fresh to ensure performance will be optimal.

10.27.3.1 Genetic Algorithm

Very simply put the Genetic Algorithm attempts to find the most optimal set of parameters

for a strategy. It does this not by brute force testing each individual combination as the default

optimization method does, but instead using the concept of evolutionary theory borrowed from

biology where only the fittest parents (combined with mutation and crossover) produce

children for the next generation. Through testing of multiple generations you should have

narrowed down on the most optimal parameters and therefore saving you time from having to

test every single parameter combination.

NinjaTrader 81366

© 2023 NinjaTrader, LLC

Understanding the Genetic Algorithm

Overview
The general idea of how the GA solves an optimization problem is analogous to

the concept of how evolution via natural selection adapts a species to the

environment. In biology, only the strongest individuals will be able to reproduce and

pass on their superior genes to the next generation. Assuming each generation

can only pass on the strongest genes, after several iterations we would be left with

the optimal attributes for the environment. Through this same mechanism, the GA

will test a random preset of your parameters. Through multiple generations of

testing, the parameters will zero in on an optimum solution.

Note: It is important to understand that GA will find approximate optimum

solutions. Since it does not test every combination possible there is no

guarantee its solutions are absolute optimums.

How the GA calculates
The GA determines its solution through the following steps:

1. Begin with an initial population size consisting of randomly selected individuals
(parameter setting combinations)

Operations 1367

© 2023 NinjaTrader, LLC

2. Compute the fitness (Optimize on...) for each individual in the population and
assign probabilities to the population based on the fitness results. More fit
results have more probability in being selected for breeding of the next
generation.

3. Generate a new population for the next generation by selecting individuals from
the prior generation to produce offspring via crossover and mutation (see
below)

4. Repeat from step 2 till you reach the number of generations in your test

Crossover and Mutation
Crossover is the process in generating offspring that are not 100% identical to
their parents. It is done by taking half of the parameter settings from parent A and
mixing it with the other half from parent B. Crossover allows GA to test different
combinations of parameters and hone in on the optimal solution. Crossover alone
however will eventually yield identical offsprings in the population through several
generations and so through mutation, some random parameter settings will be
interjected in a few of the offsprings to allow for an adaptive quality to the
algorithm.

Understanding Genetic Algorithm parameters

Please see the "Optimize a Strategy" article for how to run an optimization.

When you select the Genetic optimizer you will see the following optimization

properties after you left click the triangle to the left of "GO Properties" to expand

the properties.

NinjaTrader 81368

© 2023 NinjaTrader, LLC

Converge

nce

threshold

Setting this will terminate the Genetic

Optimization if there is more than a certain

number of duplicate children in a single

generation, defined by the Convergence

Threshold value. This allows the optimization to

terminate if no new work is getting done because

it has already converged in on the most optimal

solution. Example: In the screenshot above

Generation size is set to 25, therefore each

generation will contain 25 children, if 20 of these

children are duplicates that have already been

tested then the optimization will be terminated.

Crossove

r rate (%)

Each new generation is created from a

combination of randomly generated offspring and

offspring created from combining (crossing over)

parent parameters. Crossover Rate determines

the percentage of the new generation that is

generated from the crossover process.

Operations 1369

© 2023 NinjaTrader, LLC

Generatio

n size

Sets the number of combinations to test in each

generation (children). The higher the size, the

more variety of combinations that will be tested

in each generation. You want to make sure to set

this high enough to test enough parameter

combinations to get good coverage of the

problem domain but not so high that each

possible parameter combination is being tested

in a single generation.

Generatio

ns

Sets the number of generations to test. Each

generation will hold the number of children set in

"Generation Size". The number of total

parameter combinations tested is equal to the

Generation Size * Generations.

Minimum

performa

nce

If this performance value is reached before all

generations are evaluated the optimizer will end

and present results immediately, where the type

of this value is directly tied to your used

optimization fitness metric (i.e. Profit Factor). A

Value of 0 means no minimum performance is in

use.

Mutation

rate (%)

Sets the probability that a crossover offspring will

contain some mutated parameters (applies to all

parameter types)

Mutation

strength

(%)

Sets the maximum offset from crossover values

that an offspring marked for mutation can have

its parameters changed (applies only to input

parameters of type double)

Reset

size (%)

When each new generation is created, all

individuals from previous generations are

possible parents for the new offsprings. If the top

performing x% (stability size %) of children from

the newly created generation is the same as the

top performing x% of parents, reset all parents

and repopulate a new generation randomly while

leaving only the top performing y% of parents

NinjaTrader 81370

© 2023 NinjaTrader, LLC

(reset size %) for future generations. Note: This

occurs before convergence threashold is tested.

Stability

size (%)

See "Reset Size %"

10.27.3.2 Optimization Fitness Metrics

Optimization fitness metrics are used as the targets of optimization tests to determine the

optimal mix of strategy parameter values. Below is a list of all pre-loaded optimization fitness

metrics and their definitions. Custom optimization fitness metrics can be developed via

NinjaScript, as well.

Understanding Max % Profitable

Max % Profitable
This metric represents the percentage of profitable trades compared to the total

number of trades placed in an iteration.

Number of winning trades / Total number of trades

Understanding Max Avg. Favorable Excursion

Max Average Favorable Excursion
This metric represents the average maximum run-up in profit during an iteration.

See the "Percent" formula for Average MFE on the Performance Statistics

page.

Understanding Max Avg. Profit

Max Avg. Profit
This metric represents the average profit of all trades in an iteration.

See the "Percent" formula for Average Trade on the Performance Statistics

page.

Operations 1371

© 2023 NinjaTrader, LLC

Understanding Max Net Profit

Max Net Profit
This metric represents the net profit achieved for all trades of an iteration.

Total gross profit / Total gross loss

Understanding Max Profit Factor

Max Profit Factor
This metric provides a ratio of total earnings to total loss in an iteration.

See the Profit Factor formula on the Statistics Definitions page.

Understanding Max R Squared (R^2)

R Squared (R^2)
Sometimes called the Coefficient of Determination, this metric measures how

closely an iteration's results come to a fitted regression line.

((Total Trades * (Summation of Trades * Summation of Profit)) - (Summation

of Trades * Summation of Profit) / SQRT((Total Trades * Total Summation of

Trades ^ 2 - Summation of Trades ^ 2) * (Total Trades * Total Summation of

Profit ^ 2 - Total Profit ^ 2))) ^ 2

Understanding Max Sharpe Ratio

Max Sharpe Ratio
This metric calculates risk-adjusted return.

(% Profit per month - risk free return) / monthly std. deviation

* if the monthly standard deviation is approximately 0, then set to 1

Understanding Max Sortino Ratio

Max Sortino Ratio

NinjaTrader 81372

© 2023 NinjaTrader, LLC

This metric modifies the Sharpe ratio by taking the standard deviation of negative

returns into account to differentiate harmful volatility from general volatility.

(% Profit per month - risk free return) / monthly Ulcer Index

* if the monthly Ulcer index is approximately 0, then set to 1

Understanding Max Ulcer Ratio

Max Ulcer Ratio
This metric measures downside risk, with values increasing as the market price

moves farther from a recent high.

See the Ulcer Index formula on the Statistics Definitions page.

Understanding Max Win/Loss Ratio

Max Win/Loss Ratio
This metric presents a ratio of the profit of winning trades to the loss of losing

trades.

% average profit of winning trades / absolute value of % percentage average

loss

Understanding Minimum Avg. Adverse Excursion

Minimum Avg. Adverse Excursion
This metric represents the average run-down of trades in an iteration.

See the "Percent" formula for Maximum Adverse Excursion on the Statistics

Definitions page

Min Avg. Adverse Excursion finds the lowest value from the Maximum Adverse

Excursion statistic

Understanding Min Drawdown

Minimum Drawdown

Operations 1373

© 2023 NinjaTrader, LLC

This fitness metric represents the smallest decrease (draw-down) in account size

experienced from the highest high seen in each trade, and is used to find the

iteration with the lowest draw-down.

See the Maximum Drawdown formula on the Statistics Definitions page

Min Drawdown = the smallest single drawdown

Understanding Max Strength

Max Strength (Work in progress, implementation could possibly
change in the future)
This fitness metric finds the 'steadiest' strategy represented by the highest linear

regression slope of the equity curve. It favors strategies with as many profitable

trades as possible while keeping draw-downs as small as possible.

10.27.4 Walk Forward Optimization

Walk Forward optimization is the process by which you optimize strategy input parameters

on a historical segment of market data, then test the strategy forward in time on data following

the optimization segment using the optimized input values. The central idea is that you

evaluate strategy performance data on the test data, not the data used in the optimization.

This process is then repeated by moving the optimization and test segments forward in time.

To run a walk forward optimization you will need:

· Access to historical data

· Custom NinjaScript *strategy

· A thorough understanding of the Strategy Analyzer's backtesting and optimization

capabilities

Tip: There are several pre-defined sample strategies that are installed with NinjaTrader

that you can explore.

NinjaTrader 81374

© 2023 NinjaTrader, LLC

Note: The IncludeTradeHistoryInBacktest property is set to false by default when a

strategy is applied in the Strategy Analyzer for optimization. This provides for leaner

memory usage, but at the expense of not being able to access Trade objects for historical

trades. Thus, fields such as SystemPerformance.AllTrades.Count that rely on references

to Trade objects will not have any such references to work with. If you would like to save

these objects for reference in your code, you can set IncludeTradeHistoryInBacktest to

true in the Configure state. For more information, see the Working with Historical Trade

Data page.

How to run a Walk Forward Optimization

Start a Walk Forward Optimization
To run a Walk Forward Optimization select the Backtest type of "Walk Forward

Optimization" in the settings panel of the Strategy Analyzer.

Operations 1375

© 2023 NinjaTrader, LLC

i

Note: When making the selection additional parameters to configure your

optimization will be made visible.

Setting the Test Range
You can the test range of strategy parameters to be tested by left clicking on the

triangle to expand the strategies sub parameters.

Note: If you don't see the triangle make sure that the Backtest type is set to "Walk

Forward Optimization".

Min. - The starting value you want to test

Max. - The last value to test

Increment - The increment value (step value) used to increment the starting value

by for each subsequent optimization pass

In the image above, the input "Fast" has a starting (initial) value of 10 and an

ending value of 30 with an increment of 1. This means that the first value tested

NinjaTrader 81376

© 2023 NinjaTrader, LLC

will be 10, then 11, then 12 all the way through 30. The input "Slow" has a starting

value of 6, ending value of 16 with an increment of 1. Based on these settings, a

total of 200 (20 unique values for "Fast" multiplied by 10 unique values for "Slow")

backtest iterations will be processed in order to find the optimal combination of

input values based on the best optimization fitness.

Setting the Optimization Fitness
Optimization is based on the best optimization fitness you select. If you set the

property "Optimize on..." to "Max. net profit", the optimizer will seek the optimal

input values that return the maximum profit possible. There are over 10 different

optimization criterion you can select and can be customized via NinjaScript.

Please see the "Understanding Walk Forward properties" section below for more

information.

Understanding Walk Forward properties

Walk Forward Properties
Apart from the walk forward optimization specific properties described below, the

properties are identical to the ones found in the Optimization properties window.

Please see the "Understanding optimization properties" section of the Optimize a

Strategy page of the Help Guide for more information.

Tip: You can optionally "Optimize on" multiple objectives by using a Multi-

Objective optimization

Keep

best #

results

Sets the number of best results to display

Operations 1377

© 2023 NinjaTrader, LLC

Optimize

data

series

If set to true, the Data Series Value property will

be available for optimization (Not supported for

Kagi, PointAndFigure, and Line Break period

Types)

Optimize

on...

Sets the optimization fitness to base the

optimization results on

Optimize

r

Sets the optimization algorithm that is used.

NinjaTrader comes with "Default" and "Genetic"

optimizer algorithms. When the "Genetic" option

is selected, the genetic algorithm's optimization

properties fields will appear below the Optimizer

selection You can program your own

optimization algorithm using NinjaScript.

Optimiza

tion

period

(days)

Sets the number of days used for the "in sample"

optimization data set

Test

period

(days)

Sets the number of days used for the "out of

sample" real backtest using the optimized input

values generated from the "in sample" period

Understanding Walk Forward results

Understanding Walk Forward Test Results
From the Start date to the End date the walk forward optimization will do a

standard optimization on the number of days set for parameter "Optimization

period (days)". This is known as the "In Sample" test period. After the optimization

period NinjaTrader will use the best parameter combination found and test that

forward on non-optimized data that has not been seen yet for the number of days

set for parameter "Test period (days)". This is known as the "Out of sample" test

period. Please see the graph below for a better understanding of how the walk

forward results are found.

NinjaTrader 81378

© 2023 NinjaTrader, LLC

The results for each "Test period" are returned and shown in the Optimization

Results Grid along with the Start date, End date, and the best combination found

by the optimization period.

Note: NinjaTrader does save the "Keep best # results" for each Optimization

period, if you want to see each individual optimization results you can right click

on the walk forward result and select "Open Optimization Results".

10.27.5 Multi-Objective Optimization

Multi-Objective optimization takes standard optimization a step further by allowing you to

choose multiple objectives to test for. When results are returned instead of a singlular list of

best results ranked from best to least best instead you will be presented a graph. With

multiple objective there is no single best result, instead its up to the trader to choose what is

the best tradeoff between two objectives. To run a Multi-objective optimization you will need:

· Access to historical data

· Custom NinjaScript *strategy

· A thorough understanding of the Strategy Analyzer's backtesting and optimization

capabilities

Operations 1379

© 2023 NinjaTrader, LLC

Tip: There are several pre-defined sample strategies that are installed with NinjaTrader

that you can explore.

Note: The IncludeTradeHistoryInBacktest property is set to false by default when a

strategy is applied in the Strategy Analyzer for optimization. This provides for leaner

memory usage, but at the expense of not being able to access Trade objects for historical

trades. Thus, fields such as SystemPerformance.AllTrades.Count that rely on references

to Trade objects will not have any such references to work with. If you would like to save

these objects for reference in your code, you can set IncludeTradeHistoryInBacktest to

true in the Configure state. For more information, see the Working with Historical Trade

Data page.

How to run a Multi-Objective Optimization

Start a Multi-Objective Optimization
To run a Multi-Objective Optimization select the Backtest type of "Multi-

Objective Optimization" in the settings panel of the Strategy Analyzer.

NinjaTrader 81380

© 2023 NinjaTrader, LLC

Note: When making the selection additional parameters to configure your

optimization will be made visible.

Setting the Test Range
You can set the test range of strategy parameters to be tested by left clicking on

the triangle to expand the strategies sub parameters.

Note: If you don't see the triangle make sure that the Backtest type is set to

"Multi-Objective Optimization".

Min. - The starting value you want to test

Max. - The last value to test

Increment - The increment value (step value) used to increment the starting value

by for each subsequent optimization pass

Operations 1381

© 2023 NinjaTrader, LLC

In the image above, the input "Fast" has a starting (initial) value of 10 and an

ending value of 30 with an increment of 1. This means that the first value tested

will be 10, then 11, then 12 all the way through 30. The input "Slow" has a starting

value of 6, ending value of 16 with an increment of 1. Based on these settings, a

total of 200 (20 unique values for "Fast" multiplied by 10 unique values for "Slow")

backtest iterations will be processed in order to find the optimal combination of

input values based on the best optimization fitness.

Understanding Multi-Objective properties

Setting Multiple Optimization Fitness
Apart from the "Optimize on" property described below, the properties are identical

to the ones found in the Optimization properties window. Please see the

"Understanding optimization properties" section of the Optimize a Strategy page of

the Help Guide for more information.

Multi-Objective Optimization is based on the best optimization fitness you select. If

you set the property "Optimize on" to "Max. net profit", "Max profit factor", and "Min.

draw down" the optimizer will seek the optimal input values based on those three

optimization fitness objectives. There are over 10 different optimization criterion

you can select and can be customized via NinjaScript.

Optimize

on...

Sets the optimization fitness to base the

optimization results on, left clicking on the field

will open the "Edit Optimization Fitness" window

where you can enable what optimization fitnesses

you want to be tested and to be available for

multi-objective analysis.

Note: For running Multi-Objective Optimizations the Default optimizer will be

used.

NinjaTrader 81382

© 2023 NinjaTrader, LLC

Understanding Multi-Objective results

Understanding Multi-Objective Results
Multi-objective results are displayed on a graph instead of a grid. The reason we

use a graph is with a multi-objective problem there is no one best solution and

instead you must compare individual tradeoff between two often competing

objectives. Please see the image below to the left with some sample data, each

optimization has been performed and the results of each test plotted on the graph.

We can narrow down our solution further by only showing results that have the

best tradeoff between both objectives known as a Pareto optimal result. In the

graph to the right the line drawn connects the 5 single results that are Pareto

optimal forming the Paretor frontier. Any result that falls behind the Pareto frontier

is discarded leaving us with 5 best tradeoff solutions between the two objectives.

Operations 1383

© 2023 NinjaTrader, LLC

Using the Multi-Objective Graph
There are two combo box selections to choose the optimization fitness will be

graphed. You will be able to choose any optimization fitness that you have enabled

in the optimize on field in the optimization strategies. See the multi-objective

optimization properties section above for more information.

Left clicking on one of the dots will select that optimization run and NinjaTrader will

run a backtest with these strategy parameters to retrieve the detailed trade data for

further analysis.

10.27.6 AI Generate

The AI Generate optimizer is an experimental tool designed to help traders find new strategy

approaches. It can combine up to 73 NinjaTrader default indicators, 25 Candlestick patterns,

and single series custom indicators.

Internally a Genetic Algorithm is used to search through the potential entry and exit

combinations possible to find the best performing ones according to the Max Strength

optimization criterion.

To prevent against potentially over-fitting against historical data, the AI Generate will check its

own results after each generation using a Monte Carlo Simulation, it finds the 95% confidence

interval.

We are excited to bring you this new tool to enhance your NinjaTrader strategy trading and

are looking for feedback to further enhance it.

To run an AI Generate optimization you will need:

· Access to historical data

· A thorough understanding of the Strategy Analyzer's backtesting and optimization

capabilities

NinjaTrader 81384

© 2023 NinjaTrader, LLC

How to run an AI Generate Optimization

Start a AI Generate Optimization
To run a AI Generate Optimization select the Backtest type of "AI Generate

(Experimental)" in the settings panel of the Strategy Analyzer.

i

Note: When making the selection additional parameters to configure your AI

Generate optimization will be made visible.

Setting the AI Generate Properties
You can set the various AI Generate strategy parameters by left clicking on the

triangles to expand the sub parameters (Entry conditions and Exit conditions)

Operations 1385

© 2023 NinjaTrader, LLC

Indicat

ors

Select up to 73 NinjaTrader default indicators which

to include in your AI Generation optimization and/or

custom indicator that are single series

Candle

stick

pattern

Select up to 25 NinjaTrader default Candle stick

patterns which to include in your AI Generation

optimization

Day of

week

If checked, the AI Generate optimization will include

or exclude certain days of the week as part of the

generated entry conditions for the strategies

Sessio

n time

If checked, the AI Generate optimization will include

or exclude certain parts of the trading session via

time filters as part of the generated entry conditions

for the strategies or would include them in its exit

conditions to allow for time exits

NinjaTrader 81386

© 2023 NinjaTrader, LLC

· for entries between 0 and 60 minutes after

session opening, for a duration of max. 120

minutes in 15 minutes steps

· for exits between 0 and 60 minutes before

session close, going back max. 120 minutes in

15 minutes steps

Parabo

lic stop

If checked, the SetParablicStop from NinjaScript

could be used as an exit for the strategies

Stops /

Target

s

If checked, would allow for SetStopLoss,

SetTrailStop, SetProfitTarget from NinjaScript could

be used as exit for the strategies

Sessio

n close

If checked, would allow the scripts to exit any open

positions by the session end time

Genera

tions

Sets the number of generations to test. Each

generation will hold the number of children set in

"Generation Size". The number of total parameter

combinations tested is equal to the Generation Size

* Generations.

Genera

tion

size

Sets the number of combinations to test in each

generation (children). The higher the size, the more

variety of combinations that will be tested in each

generation. You want to make sure to set this high

enough to test enough parameter combinations to

get good coverage of the problem domain but not

so high that each possible parameter combination

is being tested in a single generation.

Thresh

old of

genera

tions

Determines if the optimization process can be

aborted if for the property number of consecutive

generations the average of the performance values

of the 'stable individuals' (the best 1/5 of the

population is not touched on next generation =

'stable individuals') results did not improve. This

allows for 'infinite' runs which would be terminated if

Operations 1387

© 2023 NinjaTrader, LLC

no improvement is found. This logic is disabled if

this property is set to 0.

Keep

best #

results

Sets the number of best results to display

Notes:

1. You can press 'Abort' to abort the AI Generate optimization, however you

would have to wait until the 'generation size' iterations have passed to see the

best found solutions so far.

2. In its current experimental state, the AI Generate sits on top the existing

optimization framework inside NinjaTrader, as part of that you could see

Strategy added indicators as well as the name from the last selected strategy

(prior to switching over to the AI Generate optimization) still to appear on the

Strategy Analyzer charts.

Viewing and saving results of the AI Generate optimization

Pressing the 'View' button in the optimization results section would let you open

the individual generated strategy code in the NinjaScript editor. From there you

could then review and also save and further customize.

10.27.7 Understanding Historical Fill Processing

NinjaTrader uses advanced historical fill processing methods and techniques to get the most

realistic results possible on historical backtests.

Our Historical Fill Algorithm will run on existing data that you are backtesting and simulate

historical orders using the method descibed below in "Understanding the Historical Fill

Algorithm". You can optionally choose to bring in a secondary data series to be used to get

NinjaTrader 81388

© 2023 NinjaTrader, LLC

more granular fill on orders and is explained in the section "Understanding Order Fill

Resolution

Understanding the Historical Fill Algorithm

Historical Fill Algorithm
NinjaTrader provides two options to control the granularity of historical order fill

processing: Standard and High. The Standard order fill resolution uses an

algorithm to break each historical bar into three virtual bars to mimic the

movement of price within each bar's timeframe. The virtual bars are created

based on the proximity of the Open price to the High and Low prices. This provides

more realistic intra-bar fills compared to traditional backtesting algorithms which

only use static OHLC values.

The Standard setting creates virtual bars according to the following logic:

When the Open price of the bar is closer to the High price than the Low price:

1. Open price to the High price

2. High price to the Low price

3. Low price to the Close price

Operations 1389

© 2023 NinjaTrader, LLC

When the Open price of the bar is closer to the Low price than the High price:

1. Open price to the Low price

2. Low price to the High price

3. High price to the Close price

Slippage
Slippage can be added to your order fills to help mimic real market conditions. The

value is expressed in "ticks", the minimum value of fluctuation for an instrument,

and is only applied to market, stop-market and Market-if-touched orders.

NinjaTrader will add the slippage to each order however you cannot have more

slippage then the high/low price of the next bar.

Understanding order fill resolution

Order Fill Resolution
NinjaTrader allows you to pull in additional historical data that will be more granular

than what you are using for the strategy backtest to be used to give you more data

points of which to fill orders. Allowing for more accuracy in the order fill simulation.

NinjaTrader 81390

© 2023 NinjaTrader, LLC

Order fill resolution of "Standard (Fastest)" is the default setting and will use

the existing bar type and interval that you are running the backtest on to fill your

orders. This means that the historical fill algorithm will use the same Open, High,

Low, Close, Time values that are available to the strategy for running the order fill

simulation.

Selecting order fill resolution of "High" will allow you to set a secondary bar

series to be used as the price data to fill your orders, this allows you to bring in

more granular data then you are currently running the strategy on. For example

you may have a strategy that you run on "Daily" bars but then want to bring in

"Minute" bars for the historical fill algorithm to be based on.

The secondary bar series will mimic the 'price based on' setting in your Strategy

Analyzer settings, should you wish to mix different prices types, for example

generate signals of last based data and execute those to a bid / ask series, this

could be achieved with further custom programming.

Notes:

· You could choose to always use the most granular order fill resolution

such as a 1 Tick Data Series. However this forces NinjaTrader to process

this additional data for use in the historical fill algorithm. This results in

longer backtest times due to the additional data that needs to be processed.

NinjaTrader will only start the backtest after we have loaded historical data for

both the strategy and the order fill resolution.

· Order fill resolution cannot be used with Multi Time Frame/Multi Instrument

strategies, or when Tick Replay is used. For those cases, a strategy should

be written to submit orders to a single tick data series.

10.27.8 Basket testing multiple instruments

You can Backtest, Optimize or Walk Forward optimize a basket of instruments by selecting

an instrument list using the instrument selector in the settings panel.

Operations 1391

© 2023 NinjaTrader, LLC

Once the test is complete, a listing of all the results will be displayed.

1. Each instrument's backtest results are displayed individually

2. The combined backtest results of ALL instruments are shown at the bottom of the results

Selecting an individual row from the results grid will display the results in the Performance

tabs individual performance results.

Reviewing Combined Results
When reviewing the following combined results, some values will be the total summation

across all instruments, while others will be weighted to the total number number of trades.

NinjaTrader 81392

© 2023 NinjaTrader, LLC

The following results will be a summation across all instruments:

· Total net profit

· Gross profit

· Gross loss

· Commission

· Total # of trades

· # of winning trades

· # of losing trades

· # of even trades

For all other statistics, the combined results will be a weighted average (exception here is the

RSquared statistic).

Calculating Weighted Combined Results
In order to understand how weighted combined results are calculated, lets use a simplified

example which focuses on the Max. Drawdown across 4 different instruments:

Instrument Max. Drawdown Total # of trades

AUDUSD ($250.00) 200

EURJPY ($150.00) 105

EURUSD ($200.00) 20

GBPUSD ($50.00) 90

Combined Results (178.92) 415

As you can see, the Max.Drawdown column is NOT equal to the sum of the individual

Max.Drawdown values for the that column. This is because the total # of trades for the

individual instrument and the total # of trades taken across all instruments is used to help

provide more accurate statistics. Working from the table above, the formula used to calculate

these weighted averages can be expressed as follows:

Combined Max.Drawdown = SUM((AUDUSD Drawdown * AUDUSD Trade Count) + (EURJPY Drawdown

* EURJPY Trade Count) + (EURUSD Drawdown * EURUSD Trade Count) + (GBPUSD Drawdown *

GBPUSD Trade Count)) / Total Trade Count of All Instruments

Operations 1393

© 2023 NinjaTrader, LLC

10.27.9 Understanding Backtest Logs

The Strategy analyzer saves a log on each backtest. The logs can be seen by right clicking

on the Strategy Analyzer and selecting "Show Logs". Logs offer a convenient way to keep a

history of backtest results. They can be used as you work to develop a strategy and fine tune

parameters and code to compare previous backtests to current backtests easily.

The log also contains a saved snapshot version of the code used for the backtest, making it

possible to look at or revert to previous code used.

Note: Code save functionality only works on open and unlocked NinjaScript Strategies.

Strategies which are protected by the vendor cannot be used to save code.

Understanding what is saved in the logs

NinjaTrader 81394

© 2023 NinjaTrader, LLC

Understanding Logs
NinjaTrader saves a log each time you perform a backtest in the strategyt

analyzer. It saves several key information in the log which makes it easier to iterate

on a strategy over time.

The log saves the following information per test:

Instrument The instrument the test was performed on.

Backtest The type of backtest that was performed

Date The date the backtest was performed

Strategy The strategy used for the backtest

Data Series The data series used for the backtest

Start date The start date used for the backtest

End date The end date used for the backtest

Parameters The parameters used for the backtest

Total net

profit

The total net profit for the backtest

Notes An optional field to add user defined notes to

more accurately recall the test. Double click

the field to begin editing and when complete

press enter on the keyboard to set the note.

Pinned An optional field to Pin a result to the top.

Pinned results are useful for saving a specific

backtest of note for reference later.

Using Logs

Using Logs

Operations 1395

© 2023 NinjaTrader, LLC

Logs are integrated with the Strategy Analyzer and can be double clicked to quickly
restore the parameters and backtest information for that backtest. Giving you
freedom to experiment with different configurations while maintaining the ability to
compare previous backtests and restore a previous backtest at any time.

Right clicking on a backtest log yields the following context menu:

Open In

Strategy

Analyzer

Tab

Opens the backtest in a new tab in the current

Strategy Analyzer window

Open in New

Strategy

Analyzer

Opens the backtest in a new Strategy

Analyzer

Open in

NinjaScript

Editor

Opens the saves revision of the code as used

when the backtest was run. You can restore

any set of backtest

NinjaTrader 81396

© 2023 NinjaTrader, LLC

Remove Removes the selected backtest log

Remove All

Non-Pinned

Removes all backtest logs that are not

pinned.

Filter By

Strategy

Only view backtest logs for a specific strategy

Filter By

Instrument

Only view backtest logs for a specific

instrument

Filter By

Date

Only view backtest logs for a specific date

range

10.27.10Reviewing Performance Results

Strategy Analyzer generates performance data that can be viewed in Performance Displays.

When working with Optimizations or basket tests you can choose open an individual tab or

new Strategy Analyzer window to analyze each individual backtest. Selecting an individual

row from the results grid will display the results in the Performance tabs individual

performance results.

Notes:

· When viewing combined backtest or optimization results, many of the values shown are

a weighted average based on the total number of trades. This is used to provide a more

accurate representation of combined trade performance. Please see the page on

Basket testing multiple instruments for more information.

· Strategy performance statistics can be found under the Trade Performance Statistics

Definition Page

Operations 1397

© 2023 NinjaTrader, LLC

NinjaTrader 81398

© 2023 NinjaTrader, LLC

10.27.11Monte Carlo Simulation

Monte Carlo Simulation Overview

Monte Carlo Simulation is a mathematical technique used to study data that is highly

random in nature. When used for trading, it is a method of randomizing trade results and

running those results in a series of simulations to analyze the probability of multiple

outcomes. This type of analysis will help you recognize if your strategy runs the risk of

wiping out your account before it can turn a profit or not. Monte Carlo Simulation can be

selected in the display drop down after a backtest has been run.

› Running a Monte Carlo Simulation

10.27.11.1Running a Monte Carlo Simulation

The following page covers how to set up and run NinjaTrader's Monte Carlo Simulation

Understanding Monte Carlo simulation

What is Monte Carlo Simulation?
Monte Carlo Simulation is a mathematical technique that uses repeated random

sampling ("sampling with replacement") to compute a range of possible results

with their respective probability. NinjaTrader runs Monte Carlo Simulation by

randomly combining the trade results in a defined series of simulations. A graph of

the results are plotted with the statistic values or Profit/Loss on the Y - axis and the

probability on the X - axis as a percentage.

Why use Monte Carlo Simulation?
Although a backtest of a NinjaScript strategy may produce profitable results, those

results may have just been due to good luck. In real life, you may have a string of

bad trades that can wipe out the account before the good trades appear, therefore

it would be helpful to understand the probability of such a string of bad trades.

Monte Carlo Simulation will randomize your trade results over and over again in

multiple simulations to provide you with a normal distribution of simulation

performance. The trader can use this information to see the top or bottom percent

of trades (outliers) that will cause the most variability in the strategy as well as the

most statistically probable results.

How to run a Monte Carlo simulation

Monte Carlo Simulation window

Operations 1399

© 2023 NinjaTrader, LLC

To open the Monte Carlo Simulation window:

1. Run a Backtest, Optimization, or Walk-Forward Optimization.

2. Left mouse click on the Trades tab within any of the reports

3. Right mouse click in the data grid and select the item Monte Carlo

Simulation...

Running a Monte Carlo Simulation
To run a Monte Carlo Simulation:

1. Open the Monte Carlo Simulation display (see sub-section above for how to

open)

2. Set desired simulation parameters and press the Generate button.

NinjaTrader 81400

© 2023 NinjaTrader, LLC

Monte Carlo Simulation Parameters
The following parameters are adjustable when running a Monte Carlo Simulation:

Graph Sets the statistic to generate the report on

W/L Sets the results to show only winners, only loser,

or both

Long/Sho

rt

Sets the results to show only long trades, only

short trades, or both

Remove

winning

outliers

(%)

Removes the top % outliers from the results

Remove

losing

outliers

(%)

Removes the bottom % outliers from the results

of

simulatio

ns

Sets the # of simulations to run

of

trades

per

Sets the # of trades in each simulation (will

default to the # of trades in the Trades tab)

Operations 1401

© 2023 NinjaTrader, LLC

simulatio

n

Understanding the Monte Carlo Simulation report

Monte Carlo Simulation Report
The results of the Monte Carlo Simulation are displayed in a graph below the

parameters.

X-Axis
The horizontal axis of the Monte Carlo Simulation graph shows the percentage of

simulations that have fallen below the Y - axis value. For example, if you run a

Monte Carlo Simulation setting the # of Simulations to "100" and using the

Cumulative Profit graph, the intersection of the 50% X - value and the associated Y

value means that 50 of your simulations will be below that cumulative profit/loss

value, and oppositely the remaining 50 simulations will have a greater cumulative

profit/loss. This type of report allows you to analyze if the risk/reward ratio between

worst and best case scenarios is acceptable or not.

Y-Axis

NinjaTrader 81402

© 2023 NinjaTrader, LLC

The vertical axis of the Monte Carlo Simulation graph displays the measured unit

for the Graph item selected such as Profit/Loss, statistical information, or time

and changes based on the Graph selection.

10.27.122D & 3D Optimization Graphs

The Optimization Graph can only be selected in the Display selector only after an

optimization has been run. The optimization graph can be displayed in a 2D or 3D graph. A

2D graph is used when only graphing a single parameter. If you graph 2 parameters then a

3D graph is displayed.

Understanding the 2D optimization graph

Understanding the 2D Optimization Graph
The 2D optimization graph displays each and every test run for the optimization.

This allows you to see the entire range of results produced from an optimization

run. Allowing you to take a look over the entire solution domain to determine if your

top results are stable. Instead of choosing the absolute best parameter set that

might be an outlier you may instead desire to choose a parameter that has a

gradual build up which may indicate stability in the result set.

Operations 1403

© 2023 NinjaTrader, LLC

The 2D Optimization graph will be displayed when you have only selected a single

parameter and is the default graph view.

Note: Selecting a 2nd Parameter will switch to the 3d graph.

Using the 2D Optimization Graph
Each dot signifies a backtest result, graphed by the X-Axis and the Y-Axis. The X-

Axis can be changed by selecting the Graph parameter.

Understanding the 3D optimization graph

Understanding the 3D Optimization Graph
The 3D optimization graph expands upon the 2D optimization graph by allowing an

additional axis to place an additional parameter. You must have at least 2

parameters being optimized and with the 'Parameter 2' combo box select the

secondary parameter. This will trigger the display of the 3D optimization graph.

Select 'None' to return to the 2D optimization graph.

Using the 3D Optimization Graph

NinjaTrader 81404

© 2023 NinjaTrader, LLC

Using the following mouse controls you can interact with the 3D optimization

graph.

Pan Press the Middle Mouse

Button to pan the graph

Orbit Pres the Left Mouse Button to

rotate / orbit the graph

Zoom Use the Scroll Wheel to

zoom in / out

10.27.13Discrepancies: Real-Time vs Backtest

You should expect that a strategy running real-time (live brokerage account, live market

simulation, Playback connection etc...) will produce different results than the performance

results generated during a backtest. This difference may be more easily seen on certain Bars

types (e.g. Point and Figure or Renko) than others due to their inherent nature in bar

formation.

Getting Filled on an Order
· Fills are determined based on 4 data points, OHLC of a bar since that is the only

information that is known during a backtest.

· During simulation using real-time live market data or Playback, the fill algorithm is dynamic

in that it uses incoming market data (both price and volume) to determine if an order should

be filled or not.

· During real-time live brokerage trading, orders are filled according to market dynamics.

As you can see, there are three distinctly different models for how and when an order may be

filled. This is why you may see orders NOT fill in real-time that you may otherwise expect to

see filled based on your backtesting results.

The Fill Price of Orders
· During a backtest assumptions are made on the fill price of an order is based on the OHLC

of a bar and the price of the order itself. You can also have differences depending on which

fill algorithm you choose.

· During simulation using real-time market data or Playback, the fill price is based on

incoming market data and volume, you may receive better or worse fill prices dependant on

where the bid or ask price is and what volume is available at this market prices.

· During real-time brokerage trading, orders are filled according to market dynamics.

Operations 1405

© 2023 NinjaTrader, LLC

As you can see, there are three different models on what price an order can be filled at.

Running a Strategy at the Close of a Bar or Tick by Tick
· During backtest, strategies can ONLY be processed at the close of each bar.

· During real-time operation, you have a choice to run a strategy tick by tick (Calculate set to

'On Each Tick') which can produce different results. This is because you can have a signal

that executes an order at the close of a bar but when running tick by tick, while in a bar a

signal condition can be true although its false at the close of the same bar.

Differences in chart data
· If you run a strategy in real-time on DAY1 and then DAY2, you are now backtesting your

strategy on DAY1 data instead of processing like it did in real-time so there could be

differences. You should understand how chart bars are built.

· If using tick based charts, all it takes is a single tick difference between real-time and

historical data to generate completely different looking charts. This in turn would impact the

calculations of your strategy should the data sets be different.

Backtesting Renko bars and HeikenAshi bars
· Standard Renko bars can be challenging for backtesting as the barstypes use functionality

to remove the last bar in the data series and replace the bar with a new Open price.This is

done with reversals and cannot be simulated historically, because the bars are already built.

Testing may be done with the Playback Connection to fully simulate standard Renko bars

with accurate reversals and order fills.

· Some custom Renko bars aim to work around this limitation and often substitute a "fake"

open price in the bar. This will result in Standard Order Fill Resolution estimating fill prices

using OHLC values that are not 100% reflective of actual price action which can create

discrepancies with results. High Order Fill Resolution should be used in cases like this, or

the strategy should be written to submit orders to a single tick data series.

· Similarly to custom Renko bars which use a "fake" open price, HeikenAshi bars alter the

OHLC values of the data series to use the HeikenAshi moving average values. Since these

are not real prices, it would be best to consider the same workarounds as noted above, or

to use a HeikenAshi indicator. Please inquire with platformsupport@ninjatrader.com for

more information on how to find a HeikenAshi indicator.

10.27.14Strategy Parameter Templates

NinjaTrader allows a convenient way to save strategy parameters to easily transition to a live

running strategy.

Saving a Template
Using the 'template' button on the bottom of the settings button shows 'Save' and 'Load'.

Selecting 'Save' allows you to save the selected settings for this strategy. If you have

performed an optimization the selected optimization result set will be saved. This is signified

by the "(" + ")" number directly to the right of the strategy parameter control.

mailto:platformsupport@ninjatrader.com

NinjaTrader 81406

© 2023 NinjaTrader, LLC

If you save as 'Default' the template will be automatically loaded as you load the strategy.

Loading a Template
Using the 'template' button on the bottom of the settings button shows 'Save' and 'Load'.

Selecting 'Load' opens the loading dialog box where any templates specific to this strategy

can be loaded. This allows you to have multiple configurations customized per instrument.

10.27.15Strategy Analyzer Properties

Many of the Strategy Analyzer visual display settings can be customized using the Strategy

Analyzer Properties window.

How to access the Strategy Analyzer Properties

You can access the Strategy Analyzer Properties dialog window by clicking on

your right mouse button and selecting the menu Properties.

Available properties and definitions

The following properties are available for configuration within the Strategy

Analyzer Properties window:

Operations 1407

© 2023 NinjaTrader, LLC

Property Definitions

General

Use local data only When enabled the strategy

analyzer will not make a

request for historical data

from the provider and used

stored data in the repository

only.

Play sound on complete Once a back-test or

optimization is complete, the

NinjaTrader 81408

© 2023 NinjaTrader, LLC

chosen alert sound will be

triggered.

Grid font Sets the font options

Tab name Sets the name of the tab,

please see Using Tabs for

more information.

Columns - Analysis

Columns - Executions

Columns - Log

Columns - Orders

Columns - Results

Columns - Summary

Columns - Trades

Window

Show Tabs Sets if the tabs are visible or

not.

Show Log Set if the log feature is

enabled or disabled.

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click on

the "template" text located in the bottom right of the properties dialog. Selecting the

option "save" and naming it "Default" will save these settings as the default settings

used every time you open a new window/tab. Saving the template with other

names will allow you to save additional configuration that you could load.

Operations 1409

© 2023 NinjaTrader, LLC

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "template" text and select the option to "reset" to return

to the original settings.

10.27.16Working with Historical Trade Data

The Trade class allows you to directly access information about historical trades. However,

Trade objects are not always accessible from a NinjaScript strategy by default. The

IncludeTradeHistoryInBacktest property determines whether references are made in memory

to Trade objects, allowing you access them programmatically after a trade has completed, or

whether no references are made, freeing up memory for other uses.

IncludeTradeHistoryInBacktest = True
When the IncludeTradeHistoryInBacktest property is set to true, Trade objects will be

saved for later reference. This provides a reference to the object in memory, allowing you to

access them in your script. For example, this setting would allow you to evaluate the Max

Adverse Excursion statistic of an individual trade placed by the strategy in the past. While this

can be convenient to address specific needs, it uses more memory than the alternative

option. To maximize performance in cases in which you know you will not need to access

historical Trade objects, it is recommended to set IncludeTradeHistoryInBacktest to false

in the Configure state in your script (or in SetDefaults state when adding the strategy from

the strategy tab).

IncludeTradeHistoryInBacktest = False
When the IncludeTradeHistoryInBacktest property is set to false, Trade objects will not

include a reference in memory. Once a trade is completed, no Trade object will be

accessible to the script. This setting allows for leaner memory management by avoiding the

storage of a potentially large number of objects that may never be used. That being said, if

you know that you will need to access these objects after trades have completed, you can set

IncludeTradeHistoryInBacktest to true in the Configure state in your script (or in

SetDefaults state when adding the strategy from the strategy tab).

Notes:

· Since trade information is not stored you will only see entry/exit executions plotted on the

chart with no connecting PnL trade lines.

· IncludeTradeHistoryInBacktest is always defaulted to true, except when the strategy

is running on the strategy tab.

NinjaTrader 81410

© 2023 NinjaTrader, LLC

10.28 Strategy Builder

Strategy Builder Overview

The Strategy Builder is used to generate NinjaScript based strategies for automated

systems trading. The Strategy Builder can be opened by left mouse clicking on the New

menu within the NinjaTrader Control Center, and selecting the menu item Strategy Builder.

In conjunction with understanding how to build strategies using the Strategy Builder, it is

imperative that you:

· Understand the overall concepts of developing strategies and how they work

· Understand the backtesting options available in the Strategy Analyzer

Once you have developed a NinjaScript strategy you can run it live in full automation.

This Strategy Builder help guide section is divided into the following categories:

› Builder Screens
› Condition Builder
› Strategy Actions

10.28.1 Builder Screens

The Builder point and click interface is a powerful entrypoint into NinjaScript strategy

development for non programmers. Even if you target more deeper custom coding later on in

the development cycle, the Builder can provide a great foundation to start with. To get started

directly into full fledged programming a strategy object in the NinjaScript editor, please check

into NinjaScript Wizard.

Operations 1411

© 2023 NinjaTrader, LLC

Understanding the Welcome screen

Welcome Screen Layout
This is the first screen and starting point in the Strategy Builder.

NinjaTrader 81412

© 2023 NinjaTrader, LLC

1. In the Strategy drop-down select New Strategy to create a new strategy script

- all other Builder made scripts will be listed as well, so should you wish to

modify a script - please select the desired one and proceed through the

screens.

2. Press the View Code button at any time to view the Builder generated

NinjaScript code.

3. Press the Unlock Code button at any time to open the NinjaScript editor and

edit your strategy code.

 Once the code is unlocked, you can no longer use the Builder for

subsequent strategy editing

4. Press the Compile button at any time to compile your strategy code.

5. Press the <Back or Next> buttons to move back or forth between Builder

screens - you can also directly jump to a specific screen by using the left side

navigation menu.

6. Press the Cancel button to leave the Strategy Builder

Note: Should you want to make a copy of your strategy, you can select your saved

script in the Strategy drop-down and select 'save as' - this opens a file dialog,

where you can enter a new name to save the script copy under.

Operations 1413

© 2023 NinjaTrader, LLC

Understanding the General screen

General Screen Layout
The General screen is where you enter the name and description of your

strategy.

1. Sets the name of the strategy

2. Sets the description of the strategy

Understanding the Default properties screen

Default properties screen Layout

NinjaTrader 81414

© 2023 NinjaTrader, LLC

The Default properties screen is where you can set the default values for your

custom strategy properties.

1. Per default only the Calculate section is visible, click the More properties to

expand the selection to include all strategy default properties as well to set for your

Builder script.

Calculate Sets the Calculation Mode for the strategy.

Possible values are "On Each Tick," "On Price

Change," or "On Bar Close"

Entries per

direction

Sets the maximum number of entries allowed

per direction while a position is active based on

the "Entry handling" property

Entry

handling

Sets the manner in which entry orders are

handled. If set to "AllEntries", the strategy will

process all entry orders until the maximum

allowable entries set by the "Entries per

direction" property have been reached while in

an open position. If set to "UniqueEntries", the

Operations 1415

© 2023 NinjaTrader, LLC

strategy will process entry orders until the

maximum allowable entries set by the "Entries

per direction" property per each uniquely

named entry have been reached.

Exit on

close

When enabled, open positions will be closed

on the last bar of a session

Exit on

session

close

seconds

Sets the number of seconds prior to the end of

a session at to close any open positions held

by the strategy

Fill Limit

Orders on

Touch

Enables the filling of limit orders when touched

for the historical portion of the chart

Maximum

Bars Look

Back

Sets the maximum number of historical bars to

use for strategy calculations. The

TwoHundredFiftySix setting is the most

memory friendly

Minimum

Bars

Required

Sets the minimum number of historical bars

required to start taking trades

Order Fill

Resolution

Sets the way that simulated historical orders

will be processed by the strategy. See the

Understanding Historical Fill Processing page

for more information.

Real-time

error

handling

Defines the behavior of a strategy when a

strategy generated order is returning in a

"Rejected" state. See the Real-time Error

Handling page for more information.

Slippage Sets the slippage amount in ticks for the

historical portion of the chart

NinjaTrader 81416

© 2023 NinjaTrader, LLC

Start

Behavior

Sets the starting behavior of the strategy,

based upon the account position. See the

Syncing Account Positions page for more

information.

Stops and

Targets

Sets how stop and target orders are submitted

Time in

force

Sets the order's time in force. Possible values

are DAY and GTC

Trace

orders

Enables sending more detailed order debug

info to the NinjaScript output window

Understanding the Additional data screen

Additional data screen Layout
The Additional data screen is where you can optionally select additional instrument

data or custom series for your strategy.

Critical: You will want to make sure to add any additional series in this section

that a hosted / called MultiSeries indicator in your Builder script would use,

such as for example the Pivots, Camarilla Pivots or Fibonacci Pivots

indicators.

Operations 1417

© 2023 NinjaTrader, LLC

1. Press the add button to be able to configure a new series to add

2. Press the edit button to be able to configure an existing series

3. Press the remove button to be able to remove an existing series

Data Series Selector Layout
Select your instrument data series to add here

Use

primary

instrument

Checking this will use the primary instrument

the strategy is applied to

NinjaTrader 81418

© 2023 NinjaTrader, LLC

Instrument Select your instrument from the favorite or list

selector or by using the search feature (press

the magnifying glass)

Price based

on

Selects the price type the data series is based

on, possible values are Last, Bid, Ask

Type Selects the bars type your series will use,

possible values for the Builder interface are -

· Tick

· Minute

· Day

· Week

· Month

· Year

· Volume

· Range

· Second

Value Sets the bars period type value for your series

Custom Series Selector Layout
Select your custom series to add here

Name Set the name for your custom series

Type Selects the data type of the custom series,

possible values for the Builder interface are -

Operations 1419

© 2023 NinjaTrader, LLC

· Bool

· Double

· DateTime

· Int

· String

Understanding the Inputs and Variables screen

Inputs and Variables screen Layout
The Inputs and Variables screen allows you to define the user inputs of your

strategy. User inputs are important if you require input values that may vary the

performance of your strategy. If for example you have a simple moving average

cross over system, you may want to create an input for the fast moving average

and another for the slow moving average. This then allows you to change the

values of the moving averages at run time from the UI. Inputs are also required if

you plan to use the NinjaTrader Strategy Analyzer's optimization capabilities.

1. Press the add button to add a new user input.

NinjaTrader 81420

© 2023 NinjaTrader, LLC

2. Press the edit button to edit an existing, selected user input.

3. Press the remove button to remove the selected user input.

Name Set the name for your user input

Type Selects the data type of the user input,

possible values for the Builder interface are -

· Bool

· Double

· String

· Int

· Time

Default Set the default value your user input will have

Min Set the minimum value your user input will

have

Description Enter an optional description for your user input

here

Operations 1421

© 2023 NinjaTrader, LLC

1. Press the add button to add a new user variable.

2. Press the edit button to edit an existing, selected user variable.

3. Press the remove button to remove the selected user variable.

Name Set the name for your user variable

Type Selects the data type of the user variable,

possible values for the Builder interface are -

· Bool

· Double

· String

· Int

· Time

Default Set the default value your user variable will

have

Note: If an input is named the same as the generated code for an indicator, the

NinjaTrader 81422

© 2023 NinjaTrader, LLC

strategy will not be able to successfully compile.

Understanding the Conditions and Actions screen

Conditions and Actions screen Layout
The Conditions and Actions screen allows you to set conditions and subsequent

actions that control the flow of your strategy.

Conditions - Take the specified action when true

Actions - Execute an action (submit orders, draw objects on the chart etc ...)

based on its parent condition evaluating to true

Via the Builder, you can have an unlimited set of conditions with related actions

and you also group conditions into a condition group (for example for a certain set

of filter rules like time)

Conditions and condition groups are created using the Condition Builder. Actions

are specified by the Strategy Actions window.

Operations 1423

© 2023 NinjaTrader, LLC

1. Selects if all of the individual conditions have to be met in order to trigger an

action, or if any will be sufficient.

2. Displays the conditions associated with the currently selected condition set

3. Adds, opens condition grouping(*), edits or removes a condition (a double click

on selected item will also allow editing)

4. Displays the actions associated with the currently selected condition set

5. Adds, edits or removes an action (a double click on selected item will also allow

editing)

6. Selects the condition set you wish to edit

* For an example on working condition groups, please see "How to create a Time

Filter' in the Condition Builder section

You can copy and paste conditions from one set to another and you can even

save a condition set as a template and load for future use via the right mouse

button click context menu as show in the image below. To save a condition set as

a template, select the Save As... menu item and then to re-use it in another

strategy or condition set at a later time, select the Load... menu item.

Understanding the Stops and Targets screen

Stops and Targets screen Layout
The Stops and Targets allows you to set stop loss, trail stop, parabolic stop (R15

and higher) and profit target orders that are automatically submitted and managed

once your strategy opens a position.

NinjaTrader 81424

© 2023 NinjaTrader, LLC

1. Displays stops and targets associated with your strategy

2. Adds a stop or target to your strategy

3. Edits the selected stop or target in your strategy (a double click on the selected

item will also allow editing)

4. Removes the selected stop or target from your strategy

Understanding the Finish screen

Finish screen Layout
Once you reach this screen you are finished with developing your strategy. Press

the Finish button to compile your strategy which will then be ready for backtesting

or live execution.

Operations 1425

© 2023 NinjaTrader, LLC

10.28.2 Condition Builder

The Condition Builder is a very powerful feature that allows you to define complex

conditions for your automated trading systems without having to know how to program.

Understanding the Condition Builder

Condition Builder
Most if not all automated trading system code wizards are limited in scope in that

they provide canned predefined expressions and only allow you to change a few

parameters on those expressions. The NinjaTrader Condition Builder is

advanced in that you can develop powerful expressions without limitations. Due to

its power and flexibility, it is extremely important that you read through and

understand its capabilities.

The Condition Builder is also a very powerful aid for those of you learning

NinjaScript or learning how to program. You can build your conditions within the

Condition Builder and instantly see NinjaScript code generated by having the

NinjaScript Editor open (by pressing the View Code... button in the Builder

screen).

NinjaTrader 81426

© 2023 NinjaTrader, LLC

The Condition Builder can be accessed via the Conditions and Actions screen in

the NinjaTrader Strategy Builder.

Basic Operation
The general concept of the Condition Builder is to generate a Boolean

expression also known as comparison expressions or conditional expressions.

What does that mean? It is simply an expression that results in a value of either

TRUE or FALSE. For example, the expression

2 < 7 (2 is less than 7)

is a Boolean expression because the result is TRUE. All expressions that contain

relational operators are Boolean. Boolean expressions or "Conditions" as they are

known in NinjaTrader is used to determine when to take a specified action such as

submitting an order or drawing on the chart.

Looking at the image below, you can instantly see that the Condition Builder is

set up like a Boolean expression. Select an item from the left window (1), compare

it to a selected item in the right window (1) and then select the relational operator

(2).

1. Available items such as indicators, price data, etc. to use for the comparison

2. List of relational operators

Relational operator invalid comparisons
Since the relational operator will let you select any items from the left to compare

to the right in the Condition Builder, you need to be mindful what you attempt

comparing. For example comparing a price based value like the DEMA indicator

Operations 1427

© 2023 NinjaTrader, LLC

value to the Misc category Falling would not be possible, and prompt the

Condition Builder to issue an error like shown below -

"Type of left expression and right expression do not match, please select

similar expressions"

To work around, you would need to select expressions with a similar return value

that would allow for a programmatic comparison. In the example used above, the

DEMA indicator provides a double value in return that is attempted to be compared

to a boolean (true / false) value, which Falling would return.

The correct approach is shown below, the DEMA indicator would be passed into

Falling as input series and then the return value could be compared to True from

the Misc category to create a successful condition.

How to make price data comparisons

NinjaTrader 81428

© 2023 NinjaTrader, LLC

Price Data Comparisons
You can compare a bar's price data such as checking for a higher close. The

following is an example and represents one of many possible combinations.

1. Expand the Price category on the left side and select the Close.

2. Expand the Price category on the right side and select the Close.

3. Select the greater relational operator

4. Set the Bars ago parameter to a value of "1"

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current closing price is greater than the closing price of 1 bar ago"

How to offset an item value

Offsetting an Item Value
You can offset the value of most items available in the Condition Builder. An

offset is a value that is added, subtracted, multiplied or divided from / into the

actual item's value. When an item is selected such as an indicator or price data,

Operations 1429

© 2023 NinjaTrader, LLC

the Offset and Offset type parameters become visible in the window directly

below the item selected. This is shown as numbers 5 and 6 in the image below.

Offset type can be set to:

Arithmetic Offsets by an arithmetic equation you can

setup by the absolute value and the arithmetic

offset operator to the left (+ - * /)

Pips Offsets by the specified amount of pips

Percent Offsets a percentage value of the item's value.

A value of 1 is equal to 100% where a value of

0.1 is equal to 10%.

Ticks Offsets by the specified amount of ticks

Once the Offset type is selected, you must set the value Offset. In addition to the

example below, you can see the "Checking for Volume Expansion" section below

for another example that uses the Percent Offset type.

The following is an example and represents one of many possible combinations:

1. Expand the Price category and select the Close

2. Expand the Price category and select the High

3. Select the greater relational operator

4. Set the Bars ago parameter to a value of "1"

5. Set the Offset type parameter to Ticks

6. Set the Offset parameter to a value of "1"

NinjaTrader 81430

© 2023 NinjaTrader, LLC

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current closing price is greater than the high price of 1 bar ago + 1 tick"

How to make indicator to value comparisons

Indicator to Value comparisons
You can compare an indicator's value to a numeric value. This can come in handy

if you wanted to check if ADX is over a value of 30 (trending) or if Stochastics is

under a value of 20 (oversold) or any other conditions you can think of.

The following is an example and represents one of many possible combinations:

1. Expand the Indicator category and select the ADX indicator

2. Set the parameters of the indicator, for our example with the default values no

changes are needed

3. Expand the Misc category and select Numeric value

4. Select the greater relational operator

Operations 1431

© 2023 NinjaTrader, LLC

5. Enter the numeric value you want to compare the indicator to (30 in our

example)

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current value of a 14 period ADX is greater than 30"

How to compare plot values of multi-plot indicators

Comparing Plot Values of Multi-Plot indicators
You can compare plots in the same indicator or select any individual plot within an

indicator to create a condition.

The following is an example and represents one of many possible combinations:

1. Expand the Indicator category and select the Stochastics indicator

2. Set the indicator input parameters and select the K plot (green arrow)

3. Expand the Indicator category and select the Stochastics indicator

4. Select the greater relational operator

5. Set the indicator input parameters and select the D plot (green arrow)

NinjaTrader 81432

© 2023 NinjaTrader, LLC

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current K plot value of a Stochastics indicator is greater than the current

D plot value of the same Stochastics indicator"

How to use user inputs & variables

User Inputs & Variables
User inputs are simply variables that can be used in place of absolute values.

They increase the flexibility of your strategy since you can substitute a variable for

the period parameter of a simple moving average instead of provide an absolute

value.

SMA(9) is how you express a 9 period simple moving average in NinjaScript. If you

run a strategy, you would always be using a 9 period simple moving average. At

run time, you might want to change this value to 10. User defined inputs

accomplish this. If you created an input named "MyInput", you could express the

simple moving average as SMA(MyInput). At run time, you can then configure your

Operations 1433

© 2023 NinjaTrader, LLC

strategy by setting the value of "MyInput" to whatever value you like. In addition,

user inputs are required when optimizing a strategy.

User variables (not to be confused with inputs) behave in the same manner with

the exception that they can not be configured when starting a strategy but can only

be set programmatically during run time.

· User inputs are created from the Builder screen

· User variables can be set in the strategy logic through the Condition Builder
(see the sections above)

The following is an example and represents one of many possible combinations,

the example demonstrates the use of a user input however the sample approach

applies to user variables.

1. Expand the Price category and select the Close.

2. Expand the Indicator category and select the SMA indicator

3. Select the greater relational operator

4. Set the Period parameter to a user defined input by pressing the "Set" button

(green arrow) to open the Value window

NinjaTrader 81434

© 2023 NinjaTrader, LLC

5. Expand the User input category and select the value MAPeriod and press the

OK button

6. The Condition Builder will now look as per the image below with the user input

"MAPeriod" assigned to the parameter Period. When you apply this strategy to a

chart, you will be able to set the value for the user input directly from the UI which

will then be used to drive the SMA indicator.

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current closing price is greater than the user defined Period simple

moving average"

How to create a cross over condition

Operations 1435

© 2023 NinjaTrader, LLC

Cross Over Conditions
You can check for either a CrossAbove or CrossBelow condition with a user

defined look back period. The look back period sets the number of bars to look

back to check for the cross over condition.

The following is an example and represents one of many possible combinations.

1. Expand the Indicator category and select the EMA indicator

2. Set the Period parameter to the desired value ("9" is used in this example)

3. Expand the Indicator category and select the EMA indicator

4. Set the Period parameter to the desired value ("20" is used in this example)

5. Select CrossAbove relational operator

6. Set the Look back period

Once the OK button is pressed, a condition is created that would translate to the

following:

"9 period exponential moving average crosses above the 20 period

exponential moving average in the last bar"

NinjaTrader 81436

© 2023 NinjaTrader, LLC

How to use indicator inputs in other indicators

Indicator on Indicator
You can use indicators as input for other indicators ... actually, you can nest

indicators within indicators infinitely if you really wanted to!

The following example is an example of applying a simple moving average (SMA)

to a 14 period ADX indicator and is one of many possible combinations.

1. Expand the Indicator category and select the SMA indicator

2. Set Input series to the ADX indicator by pressing the "Edit Input" button to open

the Value window

3. Select the ADX indicator and set any properties in the Parameters window

3. Select the ADX indicator and set any properties in the Properties window

4. Press the OK button

Operations 1437

© 2023 NinjaTrader, LLC

5. Once you have pressed the OK button, you will notice on the left lower window,

the "Input series" parameters has now been set to the ADX(14) which is the 14

period ADX indicator.

How to check for volume expansion

Checking for Volume Expansion

NinjaTrader 81438

© 2023 NinjaTrader, LLC

You can compare if the current bar's volume is greater than the prior bar's volume

plus an offset amount.

The following is an example and represents one of many possible combinations.

1. Expand the Indicator category and select the VOL indicator

2. Expand the Indicator category and select the VOL indicator

3. Select the greater than or equal relational operator

4. Set the Bars ago parameter to a value of "1"

5. Set Offset type parameter to Percent

6. Set the Offset parameter to a value of "3" - 3 equals 300% percent here, i.e.

10% would be 0.1

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current value of Volume is greater than or equal to the value of Volume of

1 bar ago + 300%"

How to create market position comparisons

Operations 1439

© 2023 NinjaTrader, LLC

Creating Market Position Comparisons
You can compare strategy state information such as but not limited to current

market position or current position size.

The following is an example and represents one of many possible combinations.

1. Expand the Strategy category and select Current market position.

2. Expand the Strategy category and select Market position

3. Select the equals to relational operator

4. Select Flat from the Market position drop-down under Misc

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current market position equals flat"

How to create time comparisons

Creating Time Comparisons
You can compare a bar's time data to a user defined time or date value.

NinjaTrader 81440

© 2023 NinjaTrader, LLC

The following is an example and represents one of many possible combinations.

Note: Time series represents a collection of bar Date / Time values of a bar series

1. Expand the Time category and select Time series

2. Expand the Time category and select Time series

3. Select the greater than or equal relational operator

4. Set the Time parameter to a user defined value of "10:00"

Once the OK button is pressed, a condition is created that would translate to the

following:

"Current bar's time is greater or equal to 10:00 AM"

How to negate a condition

Negating a Condition
You can also negate a condition, so allowing for example to have a certain filter or

technical indicator setup being the opposite and evaluate to false.

Operations 1441

© 2023 NinjaTrader, LLC

The following is an example and represents one of many possible combinations.

1. Expand the Misc category and select the Cross above

2. Click the Series 1 input field and select the DEMA indicator as series for the

cross comparison to use

3. Expand the Misc category and select the False

4. Select the equals relational operator

NinjaTrader 81442

© 2023 NinjaTrader, LLC

Once the OK button is pressed, a condition is created that would translate to the

following:

"The DEMA(14) indicator has not been crossed by the Close price within

the last 10 bars"

How to create time filters

Creating a Time Filter
Time filters can be a useful tool of your custom strategy to help make its trades

more efficient and devise a way to test for various parts of the trading session. The

Condition Group Editor is ideally suited to set those up for your Strategy Builder

scripts.

The following is an example and represents one of many possible combinations

(as well as the actual time filter times below) :

1. Press the group icon on the Conditions and Actions screen to open the

Condition Group Editor

Operations 1443

© 2023 NinjaTrader, LLC

2. Optionally set a custom name for your Condition Group, i.e. Time Filter.

3. Selects if all of the individual conditions in the group have to be met in order to

allow for a 'true' result evaluation, or if any will be sufficient.

4. Press add, edit or remove to add new condition into the group or manage

existing ones.

5. Add a new condition in and expand the Time category and select Time series

6. Expand the Time category and select Time value

NinjaTrader 81444

© 2023 NinjaTrader, LLC

7. Enter your desired Time under Misc for the start of the time filter, i.e. 9:31

8. Select the greater equal relational operator

9. Press the OK button then to return to the Condition Group Editor with your first

filter condition created.

Having setup the second, opposing condition as well the Condition Group for the

time filter could look like :

Operations 1445

© 2023 NinjaTrader, LLC

Press OK now in the Condition Group Editor to exit out of it and return to the

Conditions and Actions screen to setup other criteria, such as your trade entry as

well as the resulting actions to take.

The time filter created would translate to :

"Allow this condition group to be true only if the Time of day is greater or

equal to 9:31 AM and less or equal to 11:30 AM"

10.28.3 Actions

The Actions window allows you to select actions to execute for your script's conditions, for

example executing an order or visualizing outcomes via draw objects.

Understanding the Actions window

Strategy Action Window
The Actions window allows you to select actions to execute. Actions are executed

when a strategy condition is true. The Actions window can be accessed via the

Conditions and Actions Builder screen.

Within a NinjaScript strategy you can invoke miscellaneous actions, submit

various order types for entering and exiting market positions, and have access to

various drawing methods as shown in the images below.

NinjaTrader 81446

© 2023 NinjaTrader, LLC

Operations 1447

© 2023 NinjaTrader, LLC

How to enter a market position

Entering a Market Position
Using the various Order management actions, you can enter a position using

market, limit, market-if-touched, stop limit and stop market orders.

Following is an example and represents one of many possible combinations.

1. Expand the Order management category and select Enter a long position by

a limit order

2. You can optionally set the number of contracts / shares for the order or leave

the DefaultQuantity value which allows you set the quantity when starting a

strategy

3. Set the *Signal name property to any user defined value to identify the entry

(you can also leave this name blank) - here we used LongEntry

4. We can set the limit price dynamically by setting it to another item's value, press

the "Set" button to open the Value window

NinjaTrader 81448

© 2023 NinjaTrader, LLC

*Signal names are important in that they are used as unique identifiers if you have

more than one unique entry in a strategy. By providing unique entry signal names

for each entry on a strategy, you can then identify which position you want closed

via the exit position methods. Signals names are also used to identify executions

on a chart visually.

5. Expand the Price category and select Bid

6. Set the Offset type to Ticks and enter a value of "-1" for Offset (see "How to

offset an item value" section of the Condition Builder page of the Help Guide for

more information)

Operations 1449

© 2023 NinjaTrader, LLC

Once the OK button is pressed, an action is created that would translate to the

following:

"Enter a buy limit order at a price 1 tick below the current bid price to enter

a long position"

How to exit a market position

Exiting a Market Position
Using the various Order management actions, you can exit a position using

market, limit, stop market and stop limit orders.

Following is an example and represents one of many possible combinations.

NinjaTrader 81450

© 2023 NinjaTrader, LLC

1. Expand the Order management category and select Exit long position (exits

via market order)

2. Set the From entry signal property to a named entry signal within the strategy

(tied to our prior example, LongEntry is used). Providing a value will exit only the

quantity associated to the position created by the named signal. Leaving it blank

will exit the total net position.

3. Set the Signal name property to any user defined value to identify the entry (we

use LongExit here, but you can also leave this name blank)

Once the OK button is pressed, an action is created that would translate to the

following:

"Enter a sell market order to exit from entry signal 'Long Entry'."

Operations 1451

© 2023 NinjaTrader, LLC

How to draw on a chart

Drawing on a Chart
Using the various Drawing methods, you can draw lines, text, squares and more

on a chart. You can review detailed information on supported drawing methods in

the NinjaScript Language Reference section of this Help Guide.

Following is an example and represents one of many possible combinations.

1. Expand the Drawing category and select Diamond

2. Set the Bars ago parameter to "0" which will draw the diamond on the current

bar x location

3. Set the Color parameter to any desired color

4. Set the Tag parameter with a user defined name that identifies this drawing

object. Providing a tag is of value if you are going to draw more than one of the

same draw type object (Diamond in this case) on the same bar. Per default the

builder will set this to the script name plus the draw object type, pressing the "set"

button will display the String Builder window that would let you customize this

further.

5. Set the Y parameter to the "High" of the current bar plus one tick by pressing the

"set" button (not seen below, but same concept as in step 4) to display the Value

window

NinjaTrader 81452

© 2023 NinjaTrader, LLC

Once the OK button is pressed, an action is created that would translate to the

following:

"Draw a red diamond above the high of the current bar plus one tick"

If you want to further customize the drawing object tag's used, then the String

Builder will offer the following :

Operations 1453

© 2023 NinjaTrader, LLC

1. Select your string separator here, possible values are - ; : or blank (which is the

default)

2. Enter custom text, or items from the Value window in the String fields

3. Press the "add" or "remove" buttons to add new string fields in or remove any

of the currently added ones, the last filed will stay in any case, as a tag is needed

for the object created.

For example if we added a 3rd string field in and added the Current bar from the

Value window misc category, our drawing object would plot on each occurrence of

the condition, so also for any historical triggers.

NinjaTrader 81454

© 2023 NinjaTrader, LLC

10.29 Time & Sales

Time & Sales Overview

You can access the Time & Sales window from within the NinjaTrader Control Center

window by left mouse clicking on the menu New, and then selecting the menu item T & S

The Time & Sales window displays the current Bid/Ask price and volume as well as color

coded last traded time, price and size. You can optionally filter for large trades blocks (B)

by setting the block size in the Time & Sales Properties dialog window.

› Using the Time & Sales Window

› Time and Sales Properties

› Window Linking

10.29.1 Using the Time & Sales Window

Operations 1455

© 2023 NinjaTrader, LLC

Selecting an Instrument

There are multiple ways to select an Instrument in the Time & Sales window.

· Right clicking on the Time & Sales window and selecting the menu Instruments.

· With the Time & Sales window selected begin typing the instrument symbol

directly on the keyboard. Typing will trigger the Overlay Instrument Selector.

For more Information on instrument selection and management please see

Instruments section of the Help Guide.

Understanding the layout of the Time & Sales window

NinjaTrader 81456

© 2023 NinjaTrader, LLC

 Quotes
The Quotes section displays the current bid and ask price.

Bid The current bid price followed by the

number of contracts at the current bid.

Ask The current ask price followed by the

number of contracts at the current ask

You can disable the Quotes section by clicking on your right mouse button and

deselecting the menu item Show Quotes.

Operations 1457

© 2023 NinjaTrader, LLC

 Time & Sales Grid
The Time & Sales Grid displays Bid, Ask, and Last data.

Daily High/Low Displays an 'H' if the trade occurred at or

above the current session high price

Displays an 'L' if the trade occurred at or

below the current session low price

Time Displays the time stamp of the trade, The

time stamp format can be configured via

the Time & Sales properties dialog window

Price Displays the price of the trade

Size Displays the volume of the trade

Block Displays a 'B' if the last trade size was

greater then the "Block alert trade size"

configured via the Time & Sales properties

dialog window

You can enable or disable the columns by right mouse clicking within the Time &

Sales window and then selecting the menu item Properties...

Note: Selecting an instrument outside of market hours will display snapshot

data from the data provider. This can result in the first price information being

from the previous close.

Right Click Menu
Right mouse click on the Time & Sales window to access the right click menu.

NinjaTrader 81458

© 2023 NinjaTrader, LLC

Instruments Selects the instrument

Prices Selects what level 1 data to display, you

can choose to display bid, ask, and last

data in the Time & Sales window.

Show Quotes Sets if the quotes section is displayed

Always On Top Sets if the window should be always on

top of other windows

Print Displays Print options

Share Displays Share options

Properties... Sets the Time & Sales properties

Using tabs

Using Tabs
Please see the "Using Tabs" section of the help guide for more information.

10.29.2 Time & Sales Properties

Many of the Time & Sales visual display settings can be customized using the Time & Sales

Properties window.

Operations 1459

© 2023 NinjaTrader, LLC

How to access the Time & Sales Properties window

You can access the Time & Sales Properties menu by right clicking in the Time &

Sales window and selecting the menu name Properties.

Available properties and definitions

Property Definitions

General

NinjaTrader 81460

© 2023 NinjaTrader, LLC

Block

alert

trade

size

Sets a value indicating the minimum last trade

size required to register a block trade alert

Block

alert

sound

Select a sound file to play when the block alert is

triggered

Grid font Sets the font options

Maximu

m items

to

display

Sets the number of display rows

Price -

ask

Sets if the level 1 ask data will be displayed

Price -

bid

Sets if the level 1 bid data will be displayed

Price -

last

Sets if the level 1 last data will be displayed

Show

quotes

Sets if the quotes section is displayed

Size filter Sets a value indicating the minimum trade size

(trades less than this size are filtered out)

Tab

name

Sets the tab name

Time

display

format

Sets the display format for the time column,

format can be customized using the symbols

below:

d The day of the month, from 1

Operations 1461

© 2023 NinjaTrader, LLC

through 31.

dd The day of the month, from 01

through 31.

f The tenths of a second in a date

and time value.

ff The hundredths of a second in a

date and time value.

fff The milliseconds in a date and time

value.

hh The hour, using a 12-hour clock

from 01 to 12.

HH The hour, using a 24-hour clock

from 00 to 23.

mm The minute, from 00 through 59.

s The second, from 0 through 59.

ss The second, from 00 through 59.

tt The AM/PM designator.

Color

Above

ask

backgrou

nd

Sets the back color for trades above the ask price

Above

ask

foregrou

nd

Sets the text color for trades above the ask price

NinjaTrader 81462

© 2023 NinjaTrader, LLC

Ask

backgrou

nd

Sets the back color for ask data

Ask

foregrou

nd

Sets the text color for ask data

At ask

backgrou

nd

Sets the back color for trades at the ask price

At ask

foregrou

nd

Sets the text color for trades at the ask price

At bid

backgrou

nd

Sets the back color for trades at the bid price

At bid

foregrou

nd

Sets the text color for trades at the bid price

Below

bid

backgrou

nd

Sets the back color for trades below the bid price

Below

bid

foregrou

nd

Sets the text color for trades below the bid price

Between

backgrou

nd

Sets the back color for trades between the bid

and ask price

Between

foregrou

Sets the text color for trades between the bid and

ask price

Operations 1463

© 2023 NinjaTrader, LLC

nd

Bid

backgrou

nd

Sets the back color for bid data

Bid

foregrou

nd

Sets the text color for bid data

Block

alert

Sets the block icon color.

Daily

high

Sets the high icon color

Daily low Sets the back color for trades at the daily low

Display

Backgro

und

Sets the back color of the display rows

Column

s

Block Sets if the block column is displayed

Daily

High/Low

Sets if the daily high/how column is displayed

Price Sets if the price column is displayed

Time Sets if the time column is displayed

Volume Sets if the volume column is displayed

Window

Always

on top

Sets if the window will be always on top of other

windows.

NinjaTrader 81464

© 2023 NinjaTrader, LLC

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click

on the "preset" text located in the bottom right of the properties dialog. Selecting

the option "save" will save these settings as the default settings used every

time you open a new window/tab.

If you change your settings and later wish to go back to the original settings,

you can left mouse click on the "preset" text and select the option to "restore" to

return to the original settings.

Using Tab Name Variables

Tab Name Variables
A number of pre-defined variables can be used in the "Tab Name" field of the TIme

& Sales Properties window. For more information, see the "Tab Name

Variables" section of the Using Tabs page.

10.29.3 Window Linking

Please see the Window Linking section of the Help Guide for more information on linking the

Time & Sales window.

10.30 Trade Performance

Trade Performance Overview

The Trade Performance window can be opened by left mouse clicking on the New menu

within the NinjaTrader Control Center and selecting the menu item Trade Performance.

The Trade Performance window allows you to generate customized performance data

against your trade history for your accounts.

› Using Trade Performance

› Performance Displays

› Statistics Definitions

› Trade Performance Properties

Operations 1465

© 2023 NinjaTrader, LLC

10.30.1 Using Trade Performance

You can access the Trade Performance window from within the NinjaTrader Control Center

window by left mouse clicking on the menu New, and then selecting the menu item Trade

Performance.

Understanding the performance report

Performance Report
To generate a performance report:

1. Select the From date

2. Select the To date

3. Press the Generate button

Performance data is generated and displayed in the various Performance

Displays.

NinjaTrader 81466

© 2023 NinjaTrader, LLC

The Generate button only needs to be pressed when adjusting the From and To

dates or if since generating the report new trades have been placed within the

From and To dates.

Note:

It is possible to have before the From date being listed in your report.

NinjaTrader generates reports from the last time you were flat. If a particular

instrument was already in the middle of a position at the beginning of the From

date, NinjaTrader will report all trades prior to this date up to the point where the

position was flat. This will ensure you have a complete picture in terms of your

performance on any specific date instead of "jumping" into the middle of a

position which may cause inaccurate overall performance.

Display Options
Use the Display selector to select both what to display and how to display it.

Available Display Views

· Summary

· Analysis

· Executions

· Trades

· Orders

· Journal

Operations 1467

© 2023 NinjaTrader, LLC

Available Display Units

· Currency

· Percent

· Points

· Pips

· Ticks

Note: As Forex trade quantities are typically in multiples of 1,000, 10K, and

100K a NinjaTrader feature is to divide (normalize) your Forex trades by your

account lot size. Account lot size is recorded per execution and is set by the

connection. A micro Forex account is 1,000, a mini Forex account is 10K, a

standard Forex account is 100K (FX lot size is set automatically if your broker

supports it and if not set manually via the property "FX Lot Size" in the

connection setup)

Example: Account is a mini Forex account (10K). A trade is made with quantify

of 10k and gain a 1 pip. Instead of recording that profit as 10,000 pips it is

recorded as 1 pip of profit.

Understanding Filter Options

Filter Options

Pressing the Filter icon will expand the Performance tab to include parameters

that you can use to filter your performance reports. This filtering is done on an

executions basis and not a trades basis.

Notes:

Adjustments to the filters will automatically update within the Trade

Performance window. The Generate button does not need to be selected.

If the From and To dates are adjusted and then Generate is pressed

unchecked filter items will become rechecked since the Generate button

created a new scan to see what item are applicable for the time window.

NinjaTrader 81468

© 2023 NinjaTrader, LLC

1.

Account

s

Sets the account(s) to be included in the

performance report

2.

Instrum

ents

Sets the instruments name or type to be included

in the performance report

3.

Templat

es

Sets the ATM strategies to be included in the

performance report

Tip: The checkbox inline with the filter label will toggle the check mark for all

items in that list. Allowing you to quickly select or deselect the entire list.

10.30.2 Performance Displays

The Account Performance window displays performance data in a variety of ways.

Understanding the Summary display

Summary Display

Operations 1469

© 2023 NinjaTrader, LLC

Displays all performance statistics and metrics.

Please see the Statistic Definition section of the help guide for details on how each

statistic is calculated.

Tip: You can add your own Custom Performance Metrics through

NinjaScript programming, or install other performance metrics developed by

3rd parties. Please see this section of the help guide for more information on

how to develop and add a custom performance metric

Understanding the Analysis display

Analysis Display
Displays data based on various time periods for analysis.

NinjaTrader 81470

© 2023 NinjaTrader, LLC

Analysis view displays both a grid of data in the selected period format and a graph

that you choose to display based on the period data. It allows an easy way to see

trends in the data set and make correlations.

Period Grid
The period grid has options that let you select what data to display, note that the

data in the grid drives the data shown in the selected graph type below.

Peri

od

Sets the periodicity you want the trade data displayed

in, this also drives the graph below.

Available Period Selections

· Daily

· Weekly

· Monthly

Operations 1471

© 2023 NinjaTrader, LLC

· Yearly

· Trades

· Half-hour of day

· Hour of day

· Day of week

Note: Half-hour of day, Hour of day, and Day of week

are distribution period selections, meaning that the

trades that make up the collection will not be in

synchronous order, therefore cumulative statistics

such as Cumulative Net Profit are disabled.

Long

/Sho

rt

Sets if you just want long trades displayed or short

trades displayed.

W/L Sets if you want only trades that have a Net Profit

greater than 0 displayed or less than or equal to 0.

Time

base

Sets if you want to include the the trade in the period

based on the entry time or the exit time of the trade.

Tip: Selecting a graph row will highlight the row and also highlight the data

point that is associated to this data on the graph below.

Graph
The graph displays data from the period grid above.

NinjaTrader 81472

© 2023 NinjaTrader, LLC

You can select what data you would like to view from the Graph selection combo

box. As you move your mouse over the Graph a dot will be displayed indicating

that it is a data point. Left clicking on the data point will select it and also select the

same data in the Period Grid above the Graph.

Available Graph Types

· Cumulative Net Profit

· Net Profit

· Cumulative Max. Drawdown

· Avg. MAE

· Avg. MFE

· Avg. Entry Efficiency

· Avg. Exit Efficiency

· Avg. Total Efficiency

Please see the Statistic Definition section of the help guide for details on how each

graph type is calculated.

Note: Some graph types are not available for some period types, in this case

the graph type will be disabled.

Understanding the Executions display

Executions Display

Operations 1473

© 2023 NinjaTrader, LLC

The Executions display shows all historical executions in a data grid. The

columns listed in the data grid use the same layout you would see from the

Executions Tab of the Control Center. For definitions of each column, please

see the Understanding the executions tab section.

Charting Executions
You can go to the exact chart location of an execution by doing the following:

1. Select the execution

2. Right mouse click and select the menu item Chart.

NinjaTrader will open a temporary chart to the location of the execution

Notes:

· The trade performance Chart is a non-configurable 1-minute interval and

does not have all the standard features of a regular chart

· Charting Executions only work if you have access to historical data for that

date range via a connection or in your local database

Adding Executions
There may be situations where you will want to manually add or remove an

historical execution. Historical executions are used to generate performance data

in the Account Performance window. If an execution is missing, the performance

data will be incorrect. This could happen since not all brokers provide historical

execution. Let's say you placed a good till cancelled (GTC) order on Monday, did

not connect on Tuesday at which time your order filled, then connected

NinjaTrader on Wednesday, NinjaTrader would never receive the execution report

for Tuesday's order fill. You would then have to add this historical execution to the

database if you want your performance reporting to be accurate.

To add an execution to the database:

1. Right mouse click in the Executions display and select the Add... menu item.

The Add Execution window appears.

2. Input your desired execution parameter values in the image below

3. Press the OK button

The execution is now added to the database and will be used in performance

reporting.

NinjaTrader 81474

© 2023 NinjaTrader, LLC

Removing Executions
You can also remove an execution by right mouse clicking the execution you wish

to delete and selecting "Remove".

Understanding the Trades display

Trades Display
The Trades display shows all historical executions in a data grid. A Trade defined

is a completed buy/sell or sell/buy transaction sorted by time and matched by the

market position and quantity of the execution. Positions which have been scaled

in or scaled out will be considered as separate trades.

Note: If you are trading multiple NinjaScript strategies simultaneously on the

same account, the logic used to pair trades is agnostic of executions which

belong to a particular strategy, and will match trades based on the overall

account position. This may cause the trade performance to calculate some

statistics (such as Entry/Exit Pairing, Bars) differently than you are expecting.

You can view a strategies individual performance from the Strategies tab

Trade

number

The trade numbered by the sequence it occurred

in the trade collection

Instrum

ent

The Instrument on which the trade took place

Operations 1475

© 2023 NinjaTrader, LLC

Account The Account the trade took place

Strategy The NinjaScript or ATM strategy which generated

the trade

Notes: 1. ATM Strategies which have not been

saved as a template will not be reflected (i.e.,

"Custom")

 2. The strategy needs to be active for its

name to be shown

Market

position

Indicates the position of the trade (long or short)

Quantity The quantity of the execution

Entry

price

The entry execution price of the trade

Exit

price

The exit execution price of the trade

Entry

time

The execution time of the entry of the trade

Exit

time

The execution time of the exit of the trade

Entry

name

A name for the entry execution of the trade (if

specified by the strategy or action)

Exit

name

A name for the exit execution of the trade (if

specified by the strategy or action)

Profit The profit of the individual trade

Cumula

tive net

profit

Summation of all the profit earned by all your

trades

NinjaTrader 81476

© 2023 NinjaTrader, LLC

Commi

ssion

Summation of commission applied to the entry and

exit executions

MAE Maximum adverse excursion (i.e., worst price

trade reached – entry price)

MFE Maximum favorable excursion (i.e., best price

trade reached – entry price)

ETD End Trade Drawdown (i.e., MFE - profit)

Bars The number of bars between the entry and exit

executions

Note: Only applicable to NinjaScript strategy

executions

Tip: Please see the Statistic Definition section of the help guide for additional

details regrading trade value calculations

Charting Trades
You can go to the exact chart location of an trade by doing the following:

1. Select the trade

2. Right mouse click and select the menu item Chart.

NinjaTrader will open a temporary chart to the location of the trade.

Notes:

· The temporary Chart is a non-configurable 1-minute interval and does not

have all the standard features of a regular chart

· Charting Executions only work if you have access to historical data for that

date range via a connection or in your local database

Understanding the Orders display

Orders Display

Operations 1477

© 2023 NinjaTrader, LLC

The Orders display shows all historical orders in a data grid.

Understanding the Journal display

Journal Display
The Journal tab is only visible in the Account Performance window. The Journal

tab allows you to keep journal entries on your trading activities. Enter your

comments in the text area and press "add". The data grid will display your journal

entries by date.

Tip: You can also add Journal entries based on a Execution or Trade via the

Executions Display and Trades Display. Right click on an execution and select

"Add Journal Entry".

10.30.3 Statistics Definitions

The following are definitions and formulas used for Trade Performance statistics.

Notes:

· Quantity is defined as the number of contracts traded

· Point value is defined as the monetary conversion of each point (e.g. 100 for currency

pairs)

· FX lot size is the default Forex Lot Size for the account

· Please also review the information on Profit and Loss Calculation Modes where noted

as applicable

Understanding Profit

Profit
The difference in price between the entry and exit execution. This value may be

positive or negative and is used to determine winning vs losing trades

· (exit price – entry price) for long trades

· (entry price – exit price) for short trades

NinjaTrader 81478

© 2023 NinjaTrader, LLC

Note: This statistic may also display in selected Display Units (percent,

points, pips or ticks). To see the base calculation behind each execution, view

the Profit and Loss Calculation Modes page.

Understanding Total Net Profit

Total net profit
This statistic returns a monetary value representing a final cumulative profit of the

all profitable trades and all unprofitable trades.

Currency, Pips, Points, Ticks SUM(gross profit and gross

loss) of all trades

Percentage SUM((1 + gross profit in

percent) * (1 + gross loss

in percent) - 1) of all

trades

Notes:

· See also Understanding Gross Profit and Understanding Gross Loss on this

page

· This statistic may also display in selected Display Units (percent, points,

pips or ticks). To see the base calculation behind each execution, view the

Profit and Loss Calculation Modes page.

Understanding Gross Profit

Gross Profit
This statistic returns a monetary value representing a summation of all the money

earned across all your trades.

Currency, Pips, Points, Ticks SUM(profit * quantity) of

all winning trades

Percentage SUM((1 + Current gross

profit in percent) * (1 +

Operations 1479

© 2023 NinjaTrader, LLC

gross profit in percent) -

1) of all winning trades

Note: This statistic may also display in selected Display Units (percent,

points, pips or ticks). To see the base calculation behind each execution, view

the Profit and Loss Calculation Modes page.

Understanding Gross Loss

Gross Loss
This statistic returns a monetary value representing a summation of all the money

lost across all your trades.

Currency, Pips, Points, Ticks SUM(profit * quantity) of

all losing trades

Percentage SUM((1 + Current gross loss

in percent) * (1 + gross

loss in percent) - 1) of

all losing trades

Note: This statistic may also display in selected Display Units (percent,

points, pips or ticks). To see the base calculation behind each execution, view

the Profit and Loss Calculation Modes page.

Understanding Commission

Commission
This statistic returns a monetary value that is the summation of all the commission

fees associated with the trades executed.

SUM(commission of all traded executions)

Note: Commissions must be setup on the account using a Commission

template

NinjaTrader 81480

© 2023 NinjaTrader, LLC

Understanding Profit Factor

Profit Factor
This statistic returns a ratio that can be used as a performance measure for your

strategy. It gives you an idea of how much more money your strategy earns then it

loses. A higher ratio can be considered characteristic of a high performing

strategy. A ratio less than one indicates your strategy loses more money than it

earns.

Gross Profit / Gross Loss

Understanding Max. Drawdown

Max. Drawdown
The maximum drawdown statistic provides you with information regarding the

biggest decrease (drawdown) in account size experienced from the highest high

seen. Drawdown is often used as an indicator of risk.

Drawdown = local maximum realized profit – local minimum realized loss

Max Drawdown = single largest Drawdown

As an example, your account rises from $25,000 to $50,000. It then subsequently

drops to $40,000 but rises again to $60,000. The drawdown in this case would be

$10,000 or -20%. Take note that drawdown does not necessarily have to

correspond with a loss in your original account principal.

Note: This statistic may also display in selected Display Units (percent,

points, pips or ticks). To see the base calculation behind each execution, view

the Profit and Loss Calculation Modes page.

Understanding Sharpe Ratio

Sharpe Ratio
This statistic returns a ratio that measures the risk premium per unit of risk of your

strategy. It can help you make decisions based on the excess risk of your

strategies. You may have a high-return strategy, but the high returns may come at

a cost of excess risk. The Sharpe ratio will help you determine if it is an

appropriate increase in risk for the higher return or not. Generally, a ratio of 1 or

greater is good, 2 or greater is very good, and 3 and up is great.

Operations 1481

© 2023 NinjaTrader, LLC

(Profit per Month – risk free Rate of Return) / standard deviation of

monthly profits

Notes:

· See also Understanding Profit Per Month on this page

· NinjaTrader hard sets "risk-free Rate of Return" to a value of zero

· The Sharpe Ratio is set to a value of "1" if there is insufficient data to

calculate the monthly standard deviation of profits (i.e., there is only 1 month

of trade history or less)

· A month is defined as 30.5 days which is the (number of days) / (number of

months in a year considering leap year)

Understanding Sortino Ratio

Sortino Ratio
This statistic is used the same as Sharpe Ratio, the only difference being that

Sortino only takes into account the downside deviation. You would want to use this

statistic if you wanted to differentiate between harmful volatility from volatility in

general (Sharpe Ratio).

(Profit per Month – risk free Rate of Return) / standard deviation of

monthly drawdown

See also Understanding Profit Per Month on this page.

Notes:

· NinjaTrader hard sets "risk-free Rate of Return" to a value of zero

· The Sortino Ratio is set to a value of "1" if there is insufficient data to

calculate the monthly standard deviation of profits (i.e., there is only 1 month

of trade history or less)

· A month is defined as 30.5 days which is the (number of days) / (number of

months in a year considering leap year)

Understanding Ulcer Index

Ulcer Index

NinjaTrader 81482

© 2023 NinjaTrader, LLC

This statistic measures downside risk, the Ulcer Index becomes higher as profit

declines from the max realized profit achieved and lower as profit rises. The lower

the value the better as this indicates there is overall less downside risk.

Cur

ren

cy

SQRT(Summation((cumulative currency profit -

maximum realized currency profit) ^2) / Total # of

trades)

Per

cen

t

SQRT(Summation((1 + cumulative percent profit / (1

+ maximum realized percent profit) - 1) ^2) /

Total # of trades)

Poi

nts

SQRT(Summation((cumulative point profit - maximum

realized point profit) ^2) / Total # of trades)

Pip

s

SQRT((Summation((cumulative point profit - maximum

realized point profit) ^2) / PipSize) / Total # of

trades)

Tic

ks

SQRT((Summation((cumulative point profit - maximum

realized point profit) ^2) / TickSize) / Total #

of trades)

Understanding Probability

Probability
This statistic determines how likely a trade is to occur that would return the same

PnL as your Avg. trade. This is based on how many trade's PnL fall within a

standard deviation of the Avg. trade. Student's t-distribution is used to find

probability.

Understanding Winning, Losing, Even, and Total Number of Trades

Trade totals
These are a simple statistics used to gauge the overall performance of the

performance report.

Operations 1483

© 2023 NinjaTrader, LLC

Total # of trades The total number of trades

taken between the start and

end date in the collection

of winning trades The total number of trades

which profit in point is greater

than 0

of losing trades The total number of trades

which is less than 0

of even trades The total number of trades

which profit in point is equal

to 0

Percent profitable The total number of profitable

trades divided by the total

number of trades

Note: The winning and losing trades are factored by their calculated profits

solely in points. It is possible to have trades which are technically profitable in

percent, but are not profitable based on their point value (or vice versa)

Understanding Average Trade

Average Trade
This statistic returns a value representing the average profit you experience from

all of your trades. It is useful for getting an idea of how much you could expect to

earn on future trades.

Cur

ren

cy

SUM(profit * quantity * point value) of all

trades / # of trades

Per

cen

SUM(profit * quantity / entry price) of all

trades / # of traded lots

NinjaTrader 81484

© 2023 NinjaTrader, LLC

t

Poi

nts

SUM(profit * quantity) of all trades / # of trades

Pip

s

SUM(profit * quantity / FX lot size) of all

trades / # of trades

Tic

ks

SUM(profit * quantity / tick size) of all trades /

of trades

Understanding Average Winning Trade

Average Winning Trade
This statistic returns a value representing the average profit you experience from

all of your winning trades. It is useful for getting an idea of how much you could

expect to earn on winning trades.

Cur

ren

cy

SUM(profit * quantity * point value) of all winning

 trades / # of winning trades

Per

cen

t

SUM(profit * quantity / entry price) of all winning

 trades / # of winning traded lots

Poi

nts

SUM(profit * quantity) of all winning trades / # of

winning trades

Pip

s

SUM(profit * quantity / FX lot size) of all winning

 trades / # of winning trades

Tic

ks

SUM(profit * quantity / tick size) of all winning

trades / # of winning trades

Understanding Average Losing Trade

Average Losing Trade

Operations 1485

© 2023 NinjaTrader, LLC

This statistic returns a value representing the average loss you experience from all

of your losing trades. It is useful for getting an idea of how much you could expect

to lose on losing trades.

Currency SUM(loss * quantity * point value) of all

losing trades / # of losing trades

Percent SUM(profit * quantity / entry price) of

all losing trades / # of losing traded

lots

Points SUM(profit * quantity) of all losing

trades / # of losing trades

Pips SUM(profit * quantity / FX lot size) of

all losing trades / # of losing trades

Ticks SUM(profit * quantity / tick size) of all

losing trades / # of losing trades

Understanding Ratio Avg Win / Avg Loss

Ratio Avg Win / Avg Loss
This statistic returns a ratio that can be used as a performance measure for your

strategy. A value greater than 1 signifies you win more than you lose. A value less

than 1 signifies you lose more than you win.

Average Winning Trade / Average Losing Trade

Understanding Maximum Consecutive Winners

Max. consec. winners
This statistic returns the largest number of winning trades which followed a

previous winning trade. Once a losing trade is detected, the consecutive winner

count is reset until another winning trade is found

Understanding Maximum Consecutive Losers

Max. consec. losers

NinjaTrader 81486

© 2023 NinjaTrader, LLC

This statistic returns the largest number of losing trades which followed a previous

losing trade. Once a winning trade is detected, the consecutive loser count is

reset until another losing trade is found

Understanding Largest Winning Trade

Largest winning trade
This statistic returns the the most profitable trade value from the collection of
trades

Note: This statistic may also display in selected Display Units (percent,

points, pips or ticks). To see the base calculation behind each execution, view

the Profit and Loss Calculation Modes page.

Understanding Largest Losing Trade

Largest losing trade
This statistic returns the the least profitable trade value from the collection of
trades

Note: This statistic may also display in selected Display Units (percent,

points, pips or ticks). To see the base calculation behind each execution, view

the Profit and Loss Calculation Modes page.

Understanding Average # of trades per day

Average # of Trades per Day
This statistic returns a value that represents the average # of trades you take per

day. This is useful so you can determine if you are overtrading. This statistic

excludes weekends and holidays by using a 252 trading days in a year constant.

SUM(of all trades) / (# of days between the date of the first trade and the

date of the last trade) * 252 / 365

Understanding Average Time in Market

Operations 1487

© 2023 NinjaTrader, LLC

Average Time in Market
This statistic returns a value that gives you an idea of how long you can expect

your positions to be open. You can use this by manually closing out a position if

you feel it has been in the market for too long.

SUM(exit date/time – entry date/time) of all trades / # of trades

Understanding Profit Per Month

Profit Per Month
This statistic returns a value that can be used as a performance measure for your

strategy. It gives you an idea of how much profit you can expect to make per

month. A month is defined as 30.5 days which found by the following: (number of

days) / (number of months in a year considering leap year)

Cur

ren

cy

cumulative profit * (30.5 / # days)

Per

cen

t

(1 + cumulative profit)(1 * (30.5 / # days)) - 1

Poi

nts

cumulative profit * (30.5 / # days)

Pip

s

cumulative profit * (30.5 / # days)

Tic

ks

cumulative profit * (30.5 / # days)

Note: See the cumulative profit statistic below for its definition

Understanding Max. Time to Recover

Max. Time to Recover

NinjaTrader 81488

© 2023 NinjaTrader, LLC

The maximum time to recover statistic returns the largest time it took to recover

back to the highest profit experienced. This indicates how long you waited before

becoming profitable again.

Understanding Longest Flat Period

Longest Flat Period
This statistic returns the longest time duration that occurred between trades. This

may be reflected in total minutes, or total days.

current trade entry time - last trade exit time

Understanding Average MAE

Average MAE (Maximum Adverse Excursion)
This statistic returns a value representing the average maximum run-down your

trades experience. This information helps you gauge how poorly your entry

conditions predict upcoming price movement directions. A low percentage here is

desirable since it would imply that the price movement after you enter a position

follows the direction of your intended trade.

Cur

ren

cy

SUM(MAE * quantity * point value) of all trades / #

of trades

Per

cen

t

SUM(MAE * quantity / entry price) of all trades / #

of traded lots

Poi

nts

SUM(MAE * quantity) of all trades / # of trades

Pip

s

SUM(MAE * quantity / FX lot size) of all trades / #

of trades

Tic

ks

SUM(MAE * quantity / tick size) of all trades / #

of trades

Operations 1489

© 2023 NinjaTrader, LLC

Note:

· MAE (max. adverse excursion) is defined as worst price trade reached –

entry price

· For real-time trades, the maximum and minimum price seen is recorded live

during the duration of the trade and stored per entry/exit execution. This

value includes bid/ask prices which may not be reflected on the chart. If

there are time periods where you are not receiving real-time price updates,

those prices within that period cannot be used.

· When backtesting, the high and low of the bar series is used

Understanding Average MFE

Average MFE (Maximum Favorable Excursion)
This statistic returns a value representing the average maximum run-up your

strategy experiences. This information helps you gauge how well your strategy’s

entry conditions predict upcoming price movements. A high percentage here is

desirable since it would imply high profitability opportunities.

Cur

ren

cy

SUM(MFE * quantity * point value) of all trades / #

of trades

Per

cen

t

SUM(MFE * quantity / entry price) of all trades / #

of traded lots

Poi

nts

SUM(MFE * quantity) of all trades / # of trades

Pip

s

SUM(MFE * quantity / FX lot size) of all trades / #

of trades

Tic

ks

SUM(MFE * quantity / tick size) of all torades / #

of trades

Note:

NinjaTrader 81490

© 2023 NinjaTrader, LLC

· MFE (max. favorable excursion) is defined as (best price trade reached –

entry price)

· For real-time trades, the maximum and minimum price seen is recorded live

during the duration of the trade and stored per entry/exit execution. This

value includes bid/ask prices which may not be reflected on the chart. If

there are time periods where you are not receiving real-time price updates,

those prices within that period cannot be used.

· When backtesting, the high and low of the bar series is used

Understanding Average ETD

Average ETD (End Trade Drawdown)
This statistic returns a value that is useful in giving you a measure of how effective

your exit conditions capture the price movements after your strategy enters a

position. It shows you how much you give back from the best price reached before

you exit the trade. A small number here is generally desirable since it would imply

highly optimized exit conditions that capture most of the price movement you were

after.

Average MFE – Average Trade

Understanding Cumulative Profit

Cumulative profit
This statistic returns a value representing a summation of all the profit earned by

all your trades. It can be interpreted as a performance measure.

Cur

ren

cy

SUM(Profit in Currency) of all trades

Per

cen

t

SUM((1 + Current Profit in Percent) * (1 + Profit

in Percent) - 1) for all trades

Poi

nts

SUM(Profit in Points) of all trades

Operations 1491

© 2023 NinjaTrader, LLC

Pip

s

SUM(Profit in Points / Pip Size) for all trades

Tic

ks

SUM(Profit in Points / Pip Size) for all trades

Tip: Cumulative profit in % mode will reinvest your profits - as an example let's

say you take 3 trades on a starting value of 10K - on these trades you made

$500, $1000, and $750. The starting percentages for these trades are 5%,

10%, and 7.5%, respectively. On Trade 1, we made 5% of $10k, which is $500.

Rolling that into Trade 2, we made 7.5 % of ($10k + $500), or $1050. Rolling

that into trade 3, we made 7.5% of ($10k + $500 + $1050) or $866.25 . This

means that after the 3rd trade, we made an extra $866.25 by cumulating

profits. This means our cumulative net profit will show ($500 + $1000 + $750 +

$866.25) / $10k or 31% of our investment, and not ($500 + $1000 + $750) /

$10k = 22.5% of our investment.

Note: To see the base calculation behind each calculation mode, view the

Profit and Loss Calculation Modes page.

Understanding Entry, Exit, and Total Efficiency

Following are the formulas for the calculation of the entry, exit, and total efficiency.

Assume the following:

- Enter long at price of 100

- Market moves down to a price of 90

- Market moves up to a price of 130

- Exit at a price of 110

Entry Efficiency is Calculated as:

(maximum price seen - entry price) / (maximum price seen - minimum price

seen)

= (130 - 100) / (130 - 90)

= 75%

= The entry took 75% of the trade range

NinjaTrader 81492

© 2023 NinjaTrader, LLC

Exit Efficiency is Calculated as:

(exit price - minimum price seen) / (maximum price seen - minimum price

seen)

= (110 - 90) / (130 - 90)

= 50%

= The exit took 50% of the available trade range

Total Efficiency is Calculated as:

(exit price - entry price) / (maximum price seen - minimum price seen)

= (110 - 100) / (130 - 90)

= 25%

= The trade represented only 25% of the trade range

Note:

· The formulas are reversed for short

· The blue line on any efficiency graph represents the average

· For real-time trades, the maximum and minimum price seen is recorded live

during the duration of the trade and stored per entry/exit execution. This

value includes bid/ask prices which may NOT be reflected on the chart. If

there are time periods where you are receiving real-time price updates, those

prices within that period are not used.

· When backtesting, the high and low of the bar series is used

· These statistics may also display in selected Display Units (percent, points,

pips or ticks). To see the base calculation behind each execution, view the

Profit and Loss Calculation Modes page

10.30.4 Profit and Loss Calculation Modes

Trade Performance statistics are based on core PnL calculations, which differ for each

selected Display Units (currency, percent, points, pips or ticks) calculation mode. Below is a

list of the formulas used for each calculation mode.

Calculation Modes

Currenc

y

Rate of Exit * Profit in Points * Lot Size of Exit * Point Value

of Exit

Percent (Profit in Points * Lot Size of Entry) / (Quantity * Higher of

.01 or Absolute Value of Entry Price)

Operations 1493

© 2023 NinjaTrader, LLC

Points (1 for Long position, or -1 for short position) * Quantity *

(Exit Price - Entry Price - Entry Commission - Exit

Commission) / (Exit Rate * Point Value) / Lot Size

Pips Forex Instruments: Profit in Ticks * Tick Size

Other Instruments: Profit in Ticks

Ticks Profit in Points / Tick Size

Note:

· Since execution quantity is factored into the PnL calculation in Points, and since other

calculations rely on Profit in Points, each calculation mode takes execution quantity into

account by extension.

· It is possible to have trades which are technically profitable in percent, but are not

profitable based on their point value (or vice versa)

Terms used

Entry The last Entry execution

Exit The last Exit execution

Rate The currency conversation rate used back to the account

demonstration (E.g., A rate of 1 means no conversion took

place)

Lot Size Default Forex Lot Size for the account. 1 for non-forex

accounts.

Point

Value

Instrument value per point define in the Instruments

window

10.30.5 Trade Performance Properties

Many of the Trade Performance visual display settings can be customized using the Trade

Performance Properties window.

How to access the Trade Performance Properties window

You can access the Trade Performance properties dialog window by clicking on

your right mouse button and selecting the menu Properties.

NinjaTrader 81494

© 2023 NinjaTrader, LLC

Available properties and definitions

The following properties are available for configuration within the Trade

Performance Properties window:

Property Definitions

General

Display Sets the currency display

Grid font Sets the font options

Tab name Sets the name of the tab,

please see Managing Tabs

for more information.

Operations 1495

© 2023 NinjaTrader, LLC

Columns - Analysis

Columns - Executions

Columns - Journal

Columns - Orders

Columns - Summary

Columns - Trades

Window

Always on top Sets if the window will be

always on top of other

windows.

How to preset property defaults

Once you have your properties set to your preference, you can left mouse click on

the "preset" text located in the bottom right of the properties dialog. Selecting the

option "save" will save these settings as the default settings used every time you

open a new window/tab.

If you change your settings and later wish to go back to the original settings, you

can left mouse click on the "preset" text and select the option to "restore" to return to

the original settings.

NinjaTrader 81496

© 2023 NinjaTrader, LLC

10.31 Trading Hours

Trading Hours Overview

You can access the Trading Hours window from within the NinjaTrader Control Center

window by left mouse clicking on the menu Tools, and then selecting the menu item
Trading Hours

The Trading Hours window is used to create and configure Trading Hour Templates.

Trading Hour Templates are set up to contain the session start and end times of a

specific market or instrument. NinjaTrader maintains trading hour definitions on the data

server and comes predefined with common Trading Hour Templates for the most

common instruments.

› Using the Trading Hours window

10.31.1 Using the Trading Hours window

Within the Trading Hours window, Trading Hour Templates hold the session definitions

for each day of the week can be created and edited based on any time zone.

Understanding Trading Hour Templates

Trading Hour Templates
A Trading Hour Template is a collection of session definitions that can be used

anywhere NinjaTrader utilizes data. When a template is applied, any data outside

of the times in the session definitions will be ignored. NinjaTrader comes pre-

loaded with the most common Trading Hour Templates and will also update

these automatically from the NinjaTrader data server. You may also create your

own custom Trading Hour Templates can also be created to suit your needs.

Where Trading Hour Templates can be Applied
Trading Hour Templates can be applied in the following NinjaTrader dialogue

windows under the property "Trading Hours":

· Chart panel via the Data Series window

· Market Analyzer via customizing columns

· Strategy Analyzer window when configuring backtesting

· Strategies tab of the Control Center when starting a strategy

Operations 1497

© 2023 NinjaTrader, LLC

How to create and edit a Trading Hour Template

Creating a Trading Hour Template
If your desired session settings are not found within the pre-loaded Trading Hour

Templates, you can create a new template.

To create a Trading Hour Template:

1. Left mouse click on "add"

2. Type in the name of the Trading Hours Template

3. Left mouse click on the time zone drop down menu and select the time zone

that represents the time inputted in the session definitions

4. Select "add" to add a new session definition, see "Understanding session

definitions" below for more information. Repeat for as many sessions as

required

Note: You can right mouse click on the first session added and select the

menu item Add Monday through Friday to have NinjaTrader automatically add

sessions for Monday through Friday with session definitions based on the

selected row.

5. Optionally add any Trading Holidays, see "Understanding trading holidays"

below for more information. Repeat for as many Trading Holidays as required.

Note: You can right mouse click on the Holidays grid and select Load Holidays

from Trading Hours. You will be prompted to select another Trading Hours

Template, once selected NinjaTrader will import the Holiday session

definitions from the selected template.

6. Press the Apply button to save the configured session times in the Trading

Hour Template.

NinjaTrader 81498

© 2023 NinjaTrader, LLC

Working with Trading Hour Templates

A saved Trading Hour Template can be selected via the Template section to the
left of the Trading Hours window. Selecting the template will allow you to
configure individual session definitions and trading holiday definitions for that
template.

Editing Trading Hour Templates
Trading Hour Templates can be edited in the following ways:

· Left mouse click the "copy" button in the templates section and insert a new

template name to copy the current Trading Hours Template.

· Left mouse click the "remove" button in the templates section to delete the

selected Trading Hours Template.

Editing Session Definitions
Individual session definitions can be edited in the following ways:

Operations 1499

© 2023 NinjaTrader, LLC

· Left mouse click on a session definition and press the "edit" button in the

sessions section to edit the session.

· Left mouse click on the "remove" button in the sessions section to delete the

selected session definition.

Editing Holiday Definitions
Individual holiday definitions can be edited in the following ways:

· Left mouse click on a trading holiday and press the "edit" button in the holidays

section to edit the holiday.

· Left mouse click on the "remove" button in the holidays section to delete the

selected session definition.

Understanding session definitions

Understanding Session Definitions
Each session is defined with a start day and time and end day and time. You can

have multiple sessions per day, however on the last session of the day you would

check mark "EOD(End of Day)". This tells NinjaTrader that this session signifies

the ending session for the current trading day and the next session will be counted

as the next trading dates session.

Start

day

Sets the Start day of the session definition.

Start

time

Sets the start time of the session definition.

End

day

Sets the end day of the session definition.

NinjaTrader 81500

© 2023 NinjaTrader, LLC

End

time

Sets the end time of the session definition.

EOD Sets if the session is the last session for the

trading day.

Understanding trading holidays

Understanding Trading Holidays
NinjaTrader will exclude trading holidays that are defined in the Trading Hour

Template.

Each Holiday has a Trading Date, Type, Start date, Start Time, End date, End

time, and Description. The Holidays type will determine what fields are available.

Holiday Types

Full

Day

Any sessions between the EOD session of the

Holidays Trading Date and the prior EOD marker

are excluded.

Operations 1501

© 2023 NinjaTrader, LLC

Repla

ce

Replace all session definitions for the Holidays

Trading Date with the start and end time/date

specified.

Early

Close

Replace the end time/date for the Holidays Trading

Date EOD session. (Note: If the end time is before

the start time of the EOD session then the EOD

session is no longer used and the previous sessions

end time/date will be used as EOD and its end time

adjusted accordingly.

Late

Open

Replace the start time/date for the first session after

the Holidays Trading Date prior days EOD

session.

Modify Modifies the starting sessions start time and ending

sessions end time for the Holidays Trading Date.

Note: In contracts to "replace" this keeps all existing

sessions defined in between the start and end

session.

Note: Trade Holidays are automatically updated from the NinjaTrader data

server, to report an issue with a trade holiday or a missing holiday please

contact platformsupport@ninjatrader.com

10.32 Windows

Windows Overview

NinjaTrader uses shared window controls and interfaces for a wide array of functionality.

Details on this shared controls can be found in this section.

› Linking Windows

› Using the overlay instrument selector

› Using Tabs

mailto:platformsupport@ninjatrader.com

NinjaTrader 81502

© 2023 NinjaTrader, LLC

10.32.1 Using Window Linking

Instrument Link
Charts, Order entry, Alerts, Time and Sales, News, FX Board and Market Analyzer windows

all have link buttons in the top right hand corner. Any window that is linked by color (each link

button is set to the same color) will receive the same change of instrument request. That

means that if you change, or select, an instrument in one window, all other linked windows will

also change to that instrument.

Operations 1503

© 2023 NinjaTrader, LLC

Interval Link
Charts has additional link functionality where you can link chart intervals. Meaning that any

time you change an interval selection on a chart all linked windows would also change their

interval.

Link All
Selecting Link All will result in the specified window receiving transmission from windows with

any link color selected.

10.32.2 Using the Instrument Selector

Instrument Selector
All order-entry and market-data windows feature an Instrument Selector, which can be used
to quickly select the desired instrument.
This can be accessed either from the Instrument Selector directly on the window or in the
right-click menu.

Using the Quick Search
To access the Quick Search,start typing directly into the Instrument Selector.

NinjaTrader 81504

© 2023 NinjaTrader, LLC

The Quick Search will appear and can be used to filter results by instrument type if desired.

Last used filter settings are retained. Typing @, ,̂ or $ will automatically set the filter to the

associated instrument type.

Double clicking the instrument from the results will load that instrument. When selecting a

futures instrument, it will load the current expiry. Typing in the desired instrument and

pressing Enter will load the entered instrument (including the desired expiry for futures).

Note: When entering a desired expiry or exchange, no quick search results will appear

since it no longer matches the search items. Pressing Enter will still load the desired

instrument.

Accessing the Instruments Menu
To access the Instruments menu, click the down arrow on the Instrument Selector or right

mouse click in the window in which you wish to apply a new instrument then hover your

mouse cursor over the Instruments menu item.

Operations 1505

© 2023 NinjaTrader, LLC

The Instruments menu is separated into three sections:

1) Pinned or recently viewed instruments

2) Instrument Lists

3) Search feature

To access any instrument in the top section, simply left mouse click the instrument name,

and it will be applied in the specific window in which you are working. To access an

instrument in an instrument list, first hover your mouse cursor over one of the lists displayed

(all instrument lists will be displayed), and a list of instruments contained within will appear.

You can then left mouse click on any instrument in the list to apply it in the window.

If you do not see your desired instrument listed, click the Search menu item to access the

Instruments window, in which you can search your entire database of instruments. Use the

"Search" dropdown menu near the top of the window to filter results by instrument type, such

as stocks or futures, then enter search terms in the text field directly beside it, and the search

results will appear as you type. Once you have located your desired instrument, select it in

the list of search results, then click OK to close the window and apply the instrument. Once

you have applied an instrument this way, it will then be saved in the list of recently viewed

instruments, and can be pinned from there.

Pinning and Removing Instruments to the Instruments Menu

NinjaTrader 81506

© 2023 NinjaTrader, LLC

To pin an instrument in the Instruments menu, first view that instrument in any window, in

order to add it to the list of recently viewed instruments. Once it is in the list, open the

Instruments menu in any window, hover your mouse cursor over the instrument you wish to

pin, then left mouse click the small icon resembling a push-pin laying horizontally that appears

next the instrument name. Pinned instruments will display a vertically standing push-pin icon

next to their names.

To remove any item from the list of pinned and recently viewed instruments, first hover your

mouse cursor over the instrument you wish to remove, then click the Delete key on your

keyboard.

10.32.3 Using the Overlay Instrument Selector

Charts, Level II, Order entry windows, Time and Sales, Instrument Lists, and Market Analyzer

windows all have the ability to begin typing in the window to display the Instrument Overlay

Selector.

Using the overlay instrument selector
The overlay instrument selector is a quick way to change or select an instrument.

· To access the Overlay Instrument Selector with the window selected and in focus begin

typing on the keyboard the symbol of the instrument you wish to select. In the below image

you can see the Overlay Instrument Selector over the top of the superDOM window.

Operations 1507

© 2023 NinjaTrader, LLC

· Once the symbol is typed in press "Enter" to complete the instrument selection or you can

select the instrument from the Quick Search results. See the Using the Instrument

Selector section for more information on the Quick Search.

· Press the "Esc" key on your keyboard to cancel.

Shortcuts available in the Overlay Instrument Selector
Using these shortcuts you can quickly add an additional instrument or switch instruments.

· Typing in a "+" at the start of the Instrument Symbol or Time Frame will tell NinjaTrader to

add an additional instrument to the current tab if the window supports that.

· Typing in a "++" on any tab will open a new tab with that instrument selected.

NinjaTrader 81508

© 2023 NinjaTrader, LLC

10.32.4 Using Tabs

Various windows in NinjaTrader are now a tabbed interface, this gives you the ability to have

multiple tabs in the same window.

Adding tabs

Adding Tabs
Pressing the + tab will create a new Time & Sales tab in this window.

Note: With the Time & Sales window selected you may also start typing "++"

followed by the instrument symbol into the Overlay Instrument Selector to

quickly create a new tab with that instrument preselected. Example: "++MSFT"

Removing tabs

Removing Tabs
Moving your mouse over the tab handle and selecting the x icon to remove that

specific tab.

Note: You cannot remove the last remaining tab as you must have at least one

tab per window.

Reordering tabs

Reordering Tabs

Operations 1509

© 2023 NinjaTrader, LLC

Click and hold to drag the tab into the desired position in the tab area.

Tabs actions

Right Click Menu
Right mouse click on the tab to access the right click menu to perform a tab

action.

Close Tab Removed the selected tab

Rename Opens the properties window with the tab

name property selected for direct editing

Close Other

Tabs

Removed all tabs except for the selected

tab

Duplicate In

New Tab

Duplicates the selected tab into a new tab

in the same window

Duplicate In

New Window

Duplicates the selected tab into a new tab

in a new window

Move To New

Window

Moves the selected tab into a new window

Duplicating a window and it's tabs

NinjaTrader 81510

© 2023 NinjaTrader, LLC

Duplicate Window
Right mouse click on the title bar of a window and selecting Duplicate Window will

duplicate the window, including it's tabs.

Tab Name Variables

Using Tab Name Variables
Tabs throughout NinjaTrader allow for the use of pre-defined variables which will

dynamically populate tab names with relevant labels, such as the instrument

name, period, or account selected in the tab. To use one of the variables listed in

the table below, first open the window's Properties dialogue, then enter your

chosen variable in the "Tab Name" field.

Operations 1511

© 2023 NinjaTrader, LLC

1) The variable "@DATASERIES" has been entered in the "Tab Name" field of the

Chart Properties window.

2) The "@DATASERIES" variable populates the instrument full name and period in

the selected tab.

Notes:

· These variables are case sensitive, meaning that "@instrument" is not the

same as "@INSTRUMENT."

· More than one variable can be used together in a single tab name. For

example, using "@FUNCTION @ACCOUNT" would list the tab's function and

selected account together.

Varia

ble

Value Applicable To

NinjaTrader 81512

© 2023 NinjaTrader, LLC

@INS

TRUM

ENT

Displays the name of

the primary instrument

displayed in the tab

Level II, Time & Sales,

Basic Entry, FX Board,

FX Pro, SuperDOM,

Order Ticket, Charts

@INS

TRUM

ENT_

FULL

Displays the full name

of the primary

instrument displayed in

the tab (adds the expiry

for futures contracts)

Level II, Time & Sales,

Basic Entry, FX Board,

FX Pro, SuperDOM,

Order Ticket, Charts

@INS

TRUM

ENT_

ALL

Displays the names of

all instruments

displayed in the tab

FX Board, Charts

@INS

TRUM

ENT_

FULL_

ALL

Displays the full name

of all the instruments

displayed in the tab

(adds the expiry for

futures contracts)

FX Board, Charts

@PE

RIOD

Displays the period

configured on the

primary instrument in

the tab

Charts

@PE

RIOD

_ALL

Displays the periods

configured for all

instruments in the tab

Charts

@AC

COUN

T

Displays the account

selected in the tab

Control Center (Account,

Executions, Orders,

Positions, Strategies

Grids), Basic Entry, FX

Board, FX Pro,

SuperDOM, Order

Ticket, Charts

@FU

NCTI

Displays the function of

the tab (examples:

All Tabs

Operations 1513

© 2023 NinjaTrader, LLC

ON "Chart" or "Log")

@AT

M

Displays the selected

ATM Strategy in the tab

Charts

@DA

TASE

RIES

Equivalent to

"@INSTRUMENT_FULL

@PERIOD" for the

primary instrument in

the tab

Charts

@DA

TASE

RIES_

ALL

Equivalent to

"@INSTRUMENT_FULL

@PERIOD" for all

instruments in the tab

Charts

Switching tabs

Switching Tabs
You can switch between tabs by clicking on the desired tab or by pressing

CTRL+Tab on your keyboard.

10.32.5 Sharing Content

NinjaTrader support sharing messages and images via Email or Text message via email.

NinjaTrader 81514

© 2023 NinjaTrader, LLC

Setting up Sharing Services
You must first setup your sharing services before you are able to share content.

In the NinjaTrader Control Center under the "Tools" menu select "Options", here in the General

category you can click to configure "Sharing Connections".

Operations 1515

© 2023 NinjaTrader, LLC

Select an available sharing service and double click or select "add" to configure that

connection.

Once you have completed setup of the sharing service. You can now use this sharing service

in NinjaTrader.

Note: The default check box can only be checked for a single account for each Sharing

Services. This is the account that is used when any automated process attempts to share

something, such as an strategy tweeting a new position is just got into. For more

information on the NinjaScript method to share please see the following section of the help

guide.

Sharing from a NinjaTrader Window

NinjaTrader 81516

© 2023 NinjaTrader, LLC

Right clicking on a NinjaTrader window that has sharing enabled you will see the the "Share"

menu. On mouse over the "Share" all items that you can share will be available for selection.

In the screenshot you have the following actions available, however please note that these will

change depending on the window context you have right clicked in.

Position... Opens the share window with the current instrument

position pre populated for message.

Price... Opens the share window with the current instrument

price pre populated for message.

Tab

Contents...

Opens the share window with a screenshot of the tab

attached to the message.

Window... Opens the share window with a screenshot of the

window attached to the message.

Once you make a selection the Share dialog will be launched where you can customize the

message and select what service you would like to share too.

Operations 1517

© 2023 NinjaTrader, LLC

Note: Depending on what the window supports for sharing will change depending on what

options you have for sharing for that window.

Saving Chart Images
In addition to sharing directly through NinjaTrader, you can also save images of chart

windows to your PC locally, which you can store or share in other ways.

To save a chart image, first right click within the chart canvas area, then click "Save As

Image," as seen in the screenshot below:

NinjaTrader 81518

© 2023 NinjaTrader, LLC

10.32.6 Printing Content

How to print content in NinjaTrader
NinjaTrader has a generic approach to printing which can be accessed via the right mouse

click menu on any print enabled window.

The print options available to you will vary depending on the window you choose to print from,

in the screenshot above there are two options:

Tab

Conten

ts...

Opens the print dialog to configure print options for printing a

screenshot of the Tab

Windo

w...

Opens the print dialog to configure print options for printing a

screenshot of the window.

10.32.7 Using Color Pickers

Color Picker
NinjaTrader features a standard Color Picker which can be used to quickly apply a set of

predefined colors to any feature that allows for configuration of personalized colors (chart

bars, indicator plots, Time & Sales rows -- anything which allows a color to be set). You can

also use this tool to add custom color by defining either the underlying Hexadecimal Value,

or by using a comma separated Red, Green, Blue (RGB) values.

Operations 1519

© 2023 NinjaTrader, LLC

Accessing a Color Picker
You will find the Color Picker in various areas of the product, such as a Properties window,

or when setting up a new chart. Color pickers function identically to standard drop-down

menus, showing a collection of .NET Brushes, or colors, which can be applied to the feature

to which a particular Color Picker relates. Brushes are organized by Hue, and display both

the name and a small sample of the Brush color.

NinjaTrader 81520

© 2023 NinjaTrader, LLC

Using Custom Colors
NinjaTrader's Color Pickers allow you to enter custom color values not defined in by default

by clicking and typing directly into the field, rather than pulling down the menu. Values can be

entered in one of 5 formats:

Method Brush

Type

Description

Operations 1521

© 2023 NinjaTrader, LLC

Name Solid

Brush

The name of your desired color (e.g., Red,

LimeGreen, Khaki) if it already exists in the

Color Picker

RGB

(Red,

Green,

Blue)

Value

Solid

Brush

A comma-separated RGB value (eg. "255,

192, 203" for Pink)

ARGB

(Alpha,

Red,

Green,

Blue)

Value

Transpare

nt Brush

A comma-separated ARGB value (eg. "50,

255, 192, 203" for Pink with 50% Opacity)

Hexadeci

mal Value

(#RRGGB

B)

Solid

Brush

 A hexadecimal value representing a color

(eg. #6A5ACD for Slate Blue)

Hexadeci

mal Value

(#AARRG

GBB)

Transpare

nt Brush

Hexadecimal values can optionally include

an Alpha component where 00 is fully

transparent and FF is fully opaque (eg.,

#806A5ACD)

Alpha component Opacity

FF 100%

E6 90%

CC 80%

B3 70%

99 60%

80 50%

NinjaTrader 81522

© 2023 NinjaTrader, LLC

66 40%

4D 30%

33 20%

1A 10%

00 0%

The image above shows an RGB value typed in to produce a White color.

Note: Custom colors typed in manually will only apply to the specific Color Picker in

which they are typed, and will not be available after the next startup. However, colors can

be added to all Color Pickers permanently by creating your own skin.

NinjaScript 1523

© 2023 NinjaTrader, LLC

11 NinjaScript

NinjaScript Overview

NinjaScript is a C# based language that allows unlimited extensibility to NinjaTrader.

› Distribution

› Editor

› Educational Resources

› Language Reference

11.1 Code Breaking Changes

The following document is intended as a high level overview of the NinjaScript changes you

can expect between NinjaTrader 7 and NinjaTrader 8. For specific information on a particular

method or property, you can refer to the dynamically formatted Code Breaking table at the

bottom of this page. We recommend using the Filter and Sorting features built into the

table, as well checking the Summary column and expanding the Details section of each entry

for general information. Referring to the conveniently linked NinjaTrader 8 and NinjaTrader 7

documentation will provide specific information on syntax, usage, and examples of any new

implementation or element names.

Note: Information on this page focuses on supported (documented) NinjaTrader

methods and properties shared between versions. NinjaTrader 8 has seen a significant

increase in supported NinjaTrader code, however if you were using previously

undocumented NinjaTrader 7 methods or properties, they will NOT be covered in this

topic. You may be able to find more information on previously undocumented methods

and properties in the NinjaTrader 8 Help Guide, or our support staff will also be happy to

personally point you in the right direction.

Critical: If your product uses unsupported (undocumented) elements we strongly

urge you to put your scripts through thorough testing to ensure they still behave as

expected. There is NO guarantee that previously undocumented method or property

behavior has not changed in the new version of NinjaTrader 8.

For questions or comments, please contact us at platformsupport@ninjatrader.com

Implementation Changes Overview

Initialize(), OnStartUp(), OnTermination()

NinjaTrader 81524

© 2023 NinjaTrader, LLC

NinjaTrader 8 has simplified the methods used to set or release various resources

during the lifetime of a NinjaTrader object to a single OnStateChange() method.

This single method is guaranteed to be called for every change in State of the

object. It is from this method you can monitor the progression of the object

throughout its lifetime in order to setup various resources, set properties, or take

action the moment State has changed. This method also exposes a State

variable which can be used in various other methods, such as OnBarUpdate(), in

order to tell your indicator or strategy to process data depending on the actual

State of the object.

For example, pushing settings to the UI, or setting initial values for public

properties can now be done use OnStateChange() when the state has reached

State.SetDefaults:

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // set the default properties

 Name = "My Indicator";

 Fast = 10;

 Slow = 25;

 IsOverlay = true;

 IsAutoScale = true;

 }

}

If you have custom resources that need to be setup before the NinjaTrader object

is active and processing data, instead of using the Initialize() method, you can

now set this up once the OnStateChange() method has reached

State.Configure state:

NinjaScript 1525

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Add a 5 minute Bars object to the strategy

 AddDataSeries(Data.BarsPeriodType.Minute, 5);

 // setup a custom data series

 spread = new Series<double>(this);

 // setup a 20-period EMA indicator

 ema = EMA(20);

 // add indicator to strategy for visual purposes

 AddChartIndicator(ema);

 }

}

NinjaTrader 7 had no concept to detect when your NinjaTrader object was

transitioning from processing Historical data to processing Real-time data. Now

with NinjaTrader 8, the OnStateChange() method provides a State.Transition

state which will notify you when this change is about to occur. If your NinjaTrader

7 indicators or strategies were using custom methods to try to detect this

transition, your custom methods may be refactored under this new state:

protected override void OnStateChange()

{

 if (State == State.Transition)

 {

 Print("We're going to real-time data...");

 // setup your real-time data resources here

 }

}

When your NinjaTrader object is shutting down, and you need clean up any

custom device resources, instead of using OnTermination(), you should now

clean up these resources once the OnStateChange() method has reached the

State.Terminated state:

NinjaTrader 81526

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Terminated)

 {

 // release any device resources

 if(myTimer != null)

 myTimer = null;

 }

}

NinjaTrader previously used a Historical bool property to notify when an indicator

or strategy bar was being processed historically or real-time. The NinjaTrader 8

OnStateChange() approach has now introduced a class level variable State

where you can check for State.Historical or State.Realtime in any of the other

event methods which will allow you to take action depending on the desired state:

protected override void OnBarUpdate()

{

 // only process on real-time data

 if (State == State.Historical)

 return;

 else if (State >= State.Realtime)

 // rest of logic

}

Strategies, Orders, and Accounts
Low level access has been provided to allow more flexibility with the information

pertaining to trade data.

· IOrders, IExecution, and IPosition interfaces have all been replaced directly with

the corresponding object

· The signatures of the related NinjaScript events have changed to match the

NinjaTrader internal Update events

· Methods now return and update with the object instance generated, instead of

the previously used interface

Tip: Since NinjaTrader 8 now exposes the direct Order object, rather than an

NinjaScript 1527

© 2023 NinjaTrader, LLC

IOrder interface, it is possible to receive null object reference errors if you

attempt to access an order object before the entry or exit order method has

returned. To prevent these situations, it is recommended to assign your

strategies Order variables in the OnOrderUpdate() method and match them

by their signal name (order.Name). Please see the example beginning on line

#22 below for demonstration of assigning order objects to private variables.

Order myOrder = null;

protected override void OnBarUpdate()

{

 if (Position.MarketPosition == MarketPosition.Flat &&

myOrder == null)

 EnterLongLimit(Low[0], "Entry");

 if (myOrder != null)

 {

 Print(myOrder.OrderState);

 if (myOrder.OrderState == OrderState.Cancelled ||

myOrder.OrderState == OrderState.Filled)

 myOrder = null;

 }

}

protected override void OnOrderUpdate(Cbi.Order order,

double limitPrice, double stopPrice,

 int quantity, int filled, double averageFillPrice,

 Cbi.OrderState orderState, DateTime time, Cbi.ErrorCode

error, string comment)

{

 // compare the order object created via EnterLongLimit

by the signal name

 if (myOrder == null && order.Name == "Entry")

 {

 // assign myOrder to matching order update

 myOrder = order;

 }

}

Data Series

NinjaTrader 81528

© 2023 NinjaTrader, LLC

Previously there had been type specific Data Series implementations (e.g.,

IntSeries, TimeSeries, BoolSeries, etc). Now there just is a template Series<T>

class which could be used generically and even allows support for additional

types:

Series<double> mySeries = new Series<double>(this);

Series<DateTime> myTimeSeries = new Series<DateTime>(this);

The DataSeries.Set() method used to assign Data Series or Plot values has

been removed and values can now be stored using a single assignment operator:

protected override void OnBarUpdate()

{

 // set public plotting data series close value of

current bar

 MyPlot[0] = Close[0];

 // set custom Series<DateTime> to time value of current

bar

 myTimeSeries[0] = Time[0];

}

Drawing
The DrawObjects used in NinjaTrader have received a number of changes:

· All DrawObjects have been moved to a separate NinjaScript.DrawingTools

namespace and are properly known as DrawingTools

· Drawing Methods called from indicators or strategies have been moved to a new

static partial Draw class

· Drawing Methods have all received a signature change which requires you

specify the owner (object) which drew the DrawingTool object

· Drawing Methods no longer returns an interface but rather an instance of the

DrawingTool object itself

· Drawing Methods now use the System.Windows.Media.Brushes class instead

of the System.Drawing.Color structure

Tip: DrawingTools are now completely unprotected and you can review their

source code from the DrawingTools folder of the NinjaScript Editor's explorer

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.drawing.color(v=vs.110).aspx

NinjaScript 1529

© 2023 NinjaTrader, LLC

menu

// example syntax

Draw.Line(NinjaScriptBase owner, string tag, int

startBarsAgo, double startY, int endBarsAgo, double endY,

Brush brush)

// example usage

Draw.Line(this, "tag1", true, 10, Low[0], 0, Brushes.Red);

Casting a member of the DrawObjects[] collection must be done safely using the

"as" keyword, otherwise you may receive exceptions at run time should another

instance of the object (e.g., matching tag) exist from another owner:

NinjaScript.DrawingTools.Line myLine = DrawObjects["tag1"]

as DrawingTools.Line;

DrawingTools anchor fields such as "Time" or "Price", etc have been moved to a

ChartAnchor object owned by the drawing tool, rather than a direct field on the

drawing object interface. Please refer to the NinjaTrader 8 documentation for

specific changes for each drawing tool:

double linePrice = myLine.StartAnchor.Price;

Objects which previously used System.Drawing.Font now uses new

NinjaTrader.Gui.Tools.SimpleFont class:

Gui.Tools.SimpleFont myFont = new

Gui.Tools.SimpleFont("Arial", 12);

Properties and other methods/objects which previously System.Drawing.Color

structure now use the System.Windows.Media.Brushes class:

https://msdn.microsoft.com/en-us/library/system.drawing.color(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 81530

© 2023 NinjaTrader, LLC

BackBrush = Brushes.Blue;

Note: For custom Brush objects, it is important to .Freeze() the Brush due

to the multi-threaded architecture of NinjaTrader 8. Please be sure to review

the new information on using Brushes

Namespaces
The NinjaTrader 7 namespaces NinjaTrader.Indicator and

NinjaTrader.Strategy have been renamed and moved to single

NinjaTrader.NinjaScript namespace

//This namespace holds indicators in this folder and is

required. Do not change it.

namespace NinjaTrader.NinjaScript.Indicators

{

 public class MyCustomIndicator : Indicator

 {

 }

}

//This namespace holds Strategies in this folder and is

required. Do not change it.

namespace NinjaTrader.NinjaScript.Strategies

{

 public class MyCustomStrategy : Strategy

 {

 }

}

Partial Classes (Porting methods and properties from
UserDefinedMethods.cs)
NinjaTrader 7 used a "UserDefinedMethods" class to define methods to be used

across multiple NinjaScript indicators or strategies. In NinjaTrader 8, these pre-

built partial classes have been removed to reduce a number of issues which could

result from users sharing their UserDefinedMethods.cs files, or overwriting their

existing files with copies from a new vendor. Partial classes are now best built

manually and saved in the C:\Users\<user>\Documents\NinjaTrader

8\bin\Custom\AddOns folder.

NinjaScript 1531

© 2023 NinjaTrader, LLC

Warning: If a partial class is saved in one of the folders used for specific

NinjaScript objects other than AddOns (e.g., Indicators folder), auto-generated

NinjaScript code may be appended to the end of the class by the NinjaScript

Editor when compiled, which will cause a compilation error. Saving these files

in the AddOns folder will ensure they are still accessible and will not generate

code which may be cause conflicts.

You can use the template below as a starting point to create your partial class. If

your partial class needs to inherit from a parent class, you can append the name

of your desired parent class after the " : " to change the inheritance.

Note: Methods within your partial classes should be using the "public" modifier.

 Partial Class Example Template

namespace NinjaTrader.NinjaScript.Indicators

{

 public partial class MyMethods // : parent class to

inherit from

 {

 //Sample method which calculates the delta of two

prices

 public double calculateDelta(double firstPrice,

double secondPrice)

 {

 return Math.Abs(firstPrice - secondPrice);

 }

 //Sample method which prints Position information

 public void printPositionInfo(Position position)

 {

 Print(String.Format("{0}: {1} {2} at {3}",

position.Instrument, position.Quantity,

position.MarketPosition, position.AveragePrice));

 }

 }

}

NinjaTrader 81532

© 2023 NinjaTrader, LLC

Below is an example of using one of the methods in this partial class from within

an Indicator:

 Partial Class Usage

protected override void OnBarUpdate()

{

 if (CurrentBar < 1) return;

 // Use the static calculateDelta method to calculate

the difference between the close of each bar

 double delta = MyMethods.calculateDelta(Close[0],

Close[1]);

 Print(delta);

}

Tip: At the time of the Beta implementation, the NinjaScript Editor does NOT

include a partial class generator wizard, as it does for core NinjaScript Types

such as Drawing Tools, Market Analyzer Columns, or Strategies. However, we

are currently tracking a suggestion to implement a wizard for partial classes,

under ID # SFT-341. Please feel free to contact

platformsupport@ninjatrader.com if you would like to add your vote for this

enhancement.

Prevention of Redundant Data Loading
In NinjaTrader 7, multiple Data Series could be added within a script, such as an

indicator, and that script could then be hosted by another script, such as a

strategy. While this is still possible in NinjaTrader 8, there is a new safeguard in

place to prevent redundant data loading in both the hosting script and the hosted

indicator.

When hosting an indicator which adds Data Series programmatically, the hosting

script must include the same calls to the AddDataSeries() method as the hosted

script. Without this, an error will result, which reads "A hosted indicator tried to

load additional data. All data must first be loaded by the hosting NinjaScript in its

Configure state." Without this safegaurd in place, it would be possible for

unnecessarily large amounts of data to be loaded concurrently, as would be the

case in a direct call to an indicator method on each OnBarUpdate(). By adding the

calls to AddDataSeries() to the hosting script, you can ensure that the data is

loaded when needed. Also, when this is done in the hosting script, all identical

NinjaScript 1533

© 2023 NinjaTrader, LLC

calls to AddDataSeries() in the hosted script will be ignored, as the data is already

available.

The examples below show this in action:

 Hosted Indicator Loads Additional Data

public class MyCustomIndicator : Indicator

{

 protected override void OnStateChange()

 {

 if (State == State.Configure)

 {

 AddDataSeries("AAPL", BarsPeriodType.Day, 1);

 AddDataSeries("EURUSD", BarsPeriodType.Minute,

15);

 }

 }

}

 Hosting Strategy Mirrors AddDataSeries() calls

public class MyCustomStrategy : Strategy

{

 // Define a MyCustomIndicator

 MyCustomIndicator myIndicator;

 protected override void OnStateChange()

 {

 if (State == State.Configure)

 {

 // Instantiate the MyCustomIndicator and add it to

the chart

 myIndicator = MyCustomIndicator();

 AddChartIndicator(myIndicator);

 // These calls to AddDataSeries() mirror the calls

in the hosted indicator

 AddDataSeries("AAPL", BarsPeriodType.Day, 1);

 AddDataSeries("EURUSD", BarsPeriodType.Minute,

15);

 }

 }

}

NinjaTrader 81534

© 2023 NinjaTrader, LLC

Bars with 0 Volume
In previous versions, the NinjaTrader core was designed to replace a tick with a

volume of 0 with a volume of 1. This resulted in all ticks having a volume value of

at least 1. NinjaTrader 8 has removed that design policy and will now allow ticks

with a volume of 0 to be processed. This policy change may require logic

changes to any custom bar types, indicators, or strategies which may have

previously assumed volume would always be greater than 0.

Multi-Series default "Trading Hours" templates
The default behavior in NinjaTrader 8 will ensure that a bars series added to a

script using AddDataSeries() will use the same "TradingHours" template as the

primary series configured by the user. In contrast, the NinjaTrader 7 behavior was

highly dependent on a number of variables. We have updated this behavior to help

with consistences and synchronization issues between multiple series; however if

you your script relies on two times frames using different trading hours templates,

you may consider using one of the new tradingHours string overloaded used in

AddDataSeries():

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // adds a 1 minute AAPL bars with a default 24/7

session tempalte.

 AddDataSeries("AAPL", new BarsPeriod { BarsPeriodType

 = BarsPeriodType.Minute, Value = 1 }, "Default 24 x 7");

 }

}

Miscellaneous
All of the NinjaTrader 7 reference samples posted in our support forum have been

updated to demonstrate NinjaTrader 8 functionality. Please be sure to check the

reference sample section to see other undocumented features and concepts

which may not have been covered in the help guide:

Official NinjaScript reference code samples

There are several other changes to implementation which are not covered in detail

on this overview, please see the code breaking changes table at the bottom of this

page which will compare the implementation changes between both versions.

http://www.ninjatrader.com/support/forum/forumdisplay.php?f=30

NinjaScript 1535

© 2023 NinjaTrader, LLC

Signature Changes Overview

Signature
A large number of the NinjaTrader methods which were available in NinjaTrader 7

have remained largely the same and should not generate any errors on

compilation. However there are a handful of existing methods signatures which

have been updated in NinjaTrader 8 in order to fit within new framework which you

would need to be aware of in order to transfer these functions from NinjaTrader 7

to NinjaTrader 8. In most cases, the fundamental argument type has been

restructured, which may result in compile errors depending on the type of object

that is being used within the methods signature.

Tip: Methods may now have additional signatures which add functionality

which was not previously available. Be sure to check the NinjaTrader 8

documentation which will cover all the available signatures available.

Name Changes Overview

Renamed
During the NinjaTrader 8 development process, one of our goals to make sure that

our core framework matched various coding standards which have been set out in

the industry. As a result of meeting these coding standards, many NinjaTrader

methods and properties needed to been renamed. While the functionality of

these methods and properties remains the same, we chose to rename these

variables to follow a semantically context specific naming convention which is

generally agreed upon to favor readability. We feel that the renaming of these

properties and methods more explicitly describes the intended function to the

developer who may be reviewing code. The largest number of changes is in

response to the name convention of bools, where they now follow a more strict

verb-adjective or verb-noun structure.

For an example:

· The property FirstTickOfBar may have been hard to distinguish precisely what

it represented without having to look up documentation. In NinjaTrader 8, this

property has been renamed to IsFirstTickOfBar, which now gives this property

a more readable identifier name when you read this line of code as "is the first

tick of bar true?"

NinjaTrader 81536

© 2023 NinjaTrader, LLC

· Another example is the case of BarsSinceEntry() which was renamed to

BarsSinceEntryExecution(), which now specifies that this method is looking

for an entry execution.

· NinjaTrader 7 sometimes had methods or properties which shared names, but

references different data or actions. For example Add() could have been used

in reference to adding DataSeries to a script, adding a Plot, or adding a Line.

To be more specific, NinjaTrader 8 has renamed these to AddDataSeries(),

AddPlot(), and AddLine() respectively.

· There may be cases where the property or method name has changed simply

because the type of data it interacted with has changed. (e.g., BarColor vs.

BarBrush)

· There are other cases where properties may have used unnecessary brevity

and was renamed to favor readability (e.g., AvgPrice vs AveragePrice)

These are just a few examples of the many name changes found in NinjaTrader 8

and some of the rational behind the number of these changes. For simplicity, you

will find a list of all the renamed properties in the table at the bottom of this

document by filtering by the "Renamed" keyword.

Code Breaking Table
Below you will find a reference table which lists all of the supported NinjaScript changes

between NinjaTrader 7 and NinjaTrader 8.

11.2 NinjaScript Best Practices

There are some best practices to be aware of when developing NinjaScript classes. The

following tables present a non-exhaustive list of considerations to keep in mind when

designing and implementing your code.

Note: NinjaTrader is multi-threaded and event driven. Always assume that any of the

methods you implement in NinjaScript could be called from another thread.

State management practices

Managing Resources

NinjaScript 1537

© 2023 NinjaTrader, LLC

The OnStateChange() method is called anytime there has been a change of State

and can be used to help you setup, manage, and destroy several types of

resources. Where these values are setup is highly dependent on the kind of

resource you are using. The section below will cover how to manage various

resources throughout different states.

Setting Default UI Property Grid values
Reserve State.SetDefaults for defaulting any public properties you wish to have

exposed on the UI property grid. You should also use this State for setting default

desired NinjaScript property behavior which can be overridden from the property

grid (e.g. Calculate, IsOverlay, etc.). For Plots and Lines you wish to configure,

AddPlot(), AddLine() should also have their default values set during this State

Why: Public values of the NinjaScript object in SetDefaults are pushed to the

UI property grid for an opportunity to change settings of your object.

 Best practice

protected override void OnStateChange()

{

 // these are the values that show up as default on the

UI

 if (State == State.SetDefaults)

 {

 Calculate = Calculate.OnPriceChange;

 IsOverlay = false;

 Period = 50;

 AddPlot(Brushes.Blue, "Plot Value");

 AddLine(Brushes.Gray, 100, "Threshold");

 }

}

For public properties you do NOT wish exposed to the UI property grid, set the

Browsable attribute to false:

 Best practice

[Browsable(false)] // prevents from showing up on the UI

property grid

public int Communicator { get; set; }

NinjaTrader 81538

© 2023 NinjaTrader, LLC

On indicators, properties you wish to set from other objects, set the

NinjaScriptPropertyAttribute:

 Best practice

[NinjaScriptProperty] // can now call MyIndicator(20) from

another object

public int Period { get; set; }

The default behavior is to serialize any public properties and fields to a Workspace

or Template file when saving. However, not all objects can be serialized - or you

may wish to exclude a property from being saved and restored. For these

scenarios, set the XMLIgnore attribute to the property:

 Best practice

[XmlIgnore] // removes from serialization

public Brush DownBrush

{ get; set; }

As a best practice as well, your NinjaScript should not have any public fields, since

those would get serialized as well - which means their state would be persisted,

which in turn could lead to unexpected outcomes.

Tip: See the Working with Brushes section of the Help Guide for information

on properly serializing brushes

Calculating run-time object values
Do not attempt to do advanced calculations or try to access object references in

State.SetDefaults. This State should be kept as lean as possible, and any

calculation logic should be delayed until at least State.Configure

Why: Your object will be called in situations you may not be expecting. You can

read more about this subject on Understanding the life cycle of your NinjaScript

objects

NinjaScript 1539

© 2023 NinjaTrader, LLC

 Practice to avoid

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // logic could take longer than desired as the list

of indicator names is populated

 for (int i = 0; i <= array.length; i ++)

 DoWork(i);

 // possible null reference exception since TickSize

is not set yet

 Period = 5 * TickSize;

 }

}

 Best practice

protected override void OnStateChange()

{

 // Complex operations should be delayed to >=

State.Configure

 if (State == State.Configure)

 {

 for (int i = 0; i < = array.length; i ++)

 DoWork(i);

 }

 // information related to market data is not available

until at least State.DataLoaded

 else if (State == State.DataLoaded)

 {

 Period = 5 * TickSize;

 }

}

Setting class level variables
Do not set variables at the class level unless they are constant. You should delay

setting or resetting variables until the State has reached State.Configure. You

can use const keyword to differentiate values which do not change from variables

which do change.

NinjaTrader 81540

© 2023 NinjaTrader, LLC

Why: Waiting to set up and define resources until the object has been

configured ensures that values not set up and declared prematurely.

 Best practice

// value is always 5, it can be made constant and declared

at the class level

private const int multiplier = 5;

// these values can change, may be better to delay setting

until State.Configure

private int counter;

private List<int> myList;

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 counter = 0;

 myList = new List<int>();

 }

}

Resetting class level variables for Strategy Analyzer Optimization

To take advantage of performance optimizations, developers may need to reset
class level variables in the strategy otherwise unexpected results can occur.

Why: When optimizing a strategy, instances may or may not be recycled

depending on the strategy IsInstantiatedOnEachOptimizationIteration setting.

NinjaScript 1541

© 2023 NinjaTrader, LLC

 Best practice

// examples of fields which need to be reset

private double myDouble;

private bool myBool;

private DateTime myDateTime;

private Order myOrderObject;

private Brush myBrushObject;

private Array myIntArray;

private List<object> myList;

private SMA mySMAIndicator;

private Series<double> mySeries;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // disabled to take advantage of performance gains

 // However any strategy state that would be mutable

after State.SetDefaults needed to be reset for the next

run.

 IsInstantiatedOnEachOptimizationIteration = false;

 }

 else if (State == State.Configure)

 {

 // Since these values are not dependent on bars, they

can be reset as early as State.Configure

 myDouble = double.MinValue;

 myBool = false;

 myDateTime = DateTime.MinValue;

 myOrderObject = null;

 myBrushObject = null;

 if (myIntArray != null)

 Array.Clear(myIntArray, 0, myIntArray.Length);

 else

 myIntArray = new int[20];

 if (myList != null)

 myList.Clear();

 else

 myList = new List<object>();

 }

 else if (State == State.DataLoaded)

 {

 // Since these values do are dependent on bars, they

should only reset during State.DataLoaded

 mySMAIndicator = SMA(14);

 mySeries = new Series<double>(this);

 }

}

NinjaTrader 81542

© 2023 NinjaTrader, LLC

Accessing properties related to market data
Do not attempt to access objects related to instrument market data until the State

has reached State.DataLoaded

Why: Waiting to access objects that depend on market data until DataLoaded

prevents access errors in all scenarios

 Best practice

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 // these objects and their related members are not

available until State.DataLoaded

 Print(Bars.Count);

 Print(Instrument.FullName);

 Print(BarsPeriod.BarsPeriodType);

 Print(TradingHours.TimeZone);

 Print(Input);

 }

}

Note: All additional data series must be added in State.Configure (this

includes series that any hosted script potentially needs as well - more info).

Since objects such as Instrument, BarsPeriod, TradingHours, etc. are NOT

guaranteed to be available until State.DataLoaded, you cannot reliably use the

primary instrument properties as arguments in AddDataSeries(). Attempting to

add a data series dynamically is NOT guaranteed and therefore should be

avoided. In some cases, you may be able to use a BarsRequest() to obtain

market data for other instruments and intervals.

Setting up resources that rely on market data
For objects which depend on market data, delay their construction until the State

has reached State.DataLoaded

Why: Waiting to construct objects that depend on market data until

DataLoaded ensures that their underlying input contains significant values in

all scenarios.

http://ninjatrader.com/support/helpGuides/nt8/en-us/adddataseries.htm

NinjaScript 1543

© 2023 NinjaTrader, LLC

 Best practice

// these resources depend on bars, wait until

State.DataLoaded to instantiated

private EMA myEMA;

private Series<double> mySeries;

private SessionIterator mySessionIterator;

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 myEMA = EMA(20);

 mySeries = new Series<double>(this);

 mySessionIterator = new SessionIterator(Bars);

 }

}

Accessing element on the UI
For objects which exist on the UI (e.g., ChartControl, ChartPanel, ChartBars,

NTWindow, etc.) wait until the State has reached State.Historical. This practice is

correct for both reading properties or should you wish to add custom elements to

the existing UI.

Why: NinjaTrader UI related objects are not guaranteed to be available until

historical data processing has started.

 Best practice

protected override void OnStateChange()

{

 // wait until at least State.Historical

 if (State == State.Historical)

 {

 // and double check UI object is not null before

accessing

 if (ChartControl != null)

 {

 Print(ChartControl.Properties.ChartBackground);

 }

 }

}

NinjaTrader 81544

© 2023 NinjaTrader, LLC

Transitioning order references from historical to real-time
When dealing with strategy based orders which have transitioned from historical to

real-time, you will need to ensure that locally stored order references are also

updated.

Why: As the core order object updates, NinjaTrader has no specific way to

update your locally stored order references. You can read more about this

subject on the Advanced Order Handling topic: Transitioning order references

from historical to live

 Best practice

private Order entryOrder = null;

protected override void OnBarUpdate()

{

 if (entryOrder == null && Close[0] > Open[0])

 entryOrder = EnterLongLimit("myEntryOrder", Low[0]);

}

protected override void OnOrderUpdate(Order order, double
limitPrice, double stopPrice, int quantity, int filled,
double averageFillPrice, OrderState orderState, DateTime
time, ErrorCode error, string nativeError)
{
 // One time only, as we transition from historical
 // Convert any old historical order object references
to the live order submitted to the real-time account
 if (entryOrder != null && entryOrder.IsBacktestOrder &&
State == State.Realtime)
 entryOrder = GetRealtimeOrder(entryOrder);

 // Null entryOrder if filled or cancelled. We do not

use the Order objects after the order is filled, so we can

null it here

 if (entryOrder != null && entryOrder == order)
 {
 if (order.OrderState == OrderState.Cancelled &&
order.Filled == 0)
 entryOrder = null;
 if (order.OrderState == OrderState.Filled)
 entryOrder = null;
 }
}

Terminating custom resources

NinjaScript 1545

© 2023 NinjaTrader, LLC

Use a flag to track when resources have been set up properly before attempting to

destroy them.

Why: Checking that an object has been configured ensures that values not

destroyed prematurely. You can read more about this subject on

Understanding the life cycle of your NinjaScript objects

 Best practice

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 myObject = new object();

 // set a flag to indicator object has been configured

 configured = true;

 }

 else if (State == State.Terminated)

 {

 // only dispose of object if it has been configured

 if (configured)

 {

 myObject.Dispose();

 }

 }

}

Error handling practices

Safely accessing reference objects
Although there are documented States where objects are available, the

implementation could change. If you are accessing a reference object, please do

so by first checking that the object is not null.

NinjaTrader 81546

© 2023 NinjaTrader, LLC

 Best practice

// checking to ensure chart control is available in all

situations

// will help to ensure this logic below does not generate

errors at a later time

if(ChartControl != null)

{

 myBackgroundBrush =

ChartControl.Properties.ChartBackground;

}

Accessing objects which terminate
To protect against race conditions and access errors, you should temporarily

check for reference errors any time you attempt to do something with an object.

Why: OnStateChange() runs asynchronous to other NinjaScript events. You

can run into scenarios where you State.Terminated logic is called in the

middle of OnBarUpdate(), OnRender() etc.

 Best practice

protected override void OnStateChange()

{

 // this logic runs asynchronously to other events

 if (State == State.Terminated)

 {

 myObject = null;

 }

}

protected override void OnRender(ChartControl chartControl,

 ChartScale chartScale)

{

 if (myObject == null)

 return;

 // for safety, always check for null references before

attempting to access an object

 // even if you have once checked for null references

earlier run-time

 if (myObject != null)

 myObject.DoSomething();

}

NinjaScript 1547

© 2023 NinjaTrader, LLC

Proving instructions for non-ninjascript properties
Do not attempt to modify existing UI "Properties" to meet your specific needs.

These features are exposed to allow you to read the environment state and make

decisions to alter how your code executes, but should not be relied on to modify

settings on behalf of the user. While these objects from these classes have

setters for technical reasons, you should not attempt to amend the values through

code. Instead, you should issue warnings or log errors instructing users to modify

settings when required:

Why: NinjaTrader makes no guarantee that the requested changes will take

effect, and user settings always take precedences. This includes the user

defined ChartControl.Properties, ChartBars.Properties, and

ChartPanel.Properties. Furthermore, two different user scripts could be

installed which also attempt to modify properties you are relying which could

introduce conflicts.

 Best practice

if (State == State.Historical)

{

 if (ChartControl.Properties.EquidistantBarSpacing ==

true)

 {

 Draw.TextFixed(this, "error", "This indicator works

best with Equidistant BarSpacing set to false.",

TextPosition.BottomRight);

 }

}

Modifying UI elements and multi-threading
When interacting with UI objects, such as obtaining UI information, or modifying

the existing layout, always use the NinjaScript's Dispatcher asynchronously

Critical: Improper thread handling from a NinjaScript object is a common

cause of application deadlocks. Please be sure to read more information on

Multi-Threading Consideration for NinjaScript

NinjaTrader 81548

© 2023 NinjaTrader, LLC

 Best practice

// using a Dispatcher will ensure that the corresponding

action executes on the associated thread

this.Dispatcher.InvokeAsync(() =>

{

 UserControlCollection.Add(new

System.Windows.Controls.TextBlock

 {

 Text = "\nAdded by the ChartControl Dispatcher."

 });

});

Properly implementing try/catch blocks
Unless you are specifically debugging a method, the use of a try-catch block

should be scoped to a particular area of logic. Do NOT try to handle all of your

execution logic under one giant try-catch block.

Why: Larger try-catch blocks can not only be harder to debug, but can

introduce performance issues at run-time

 Practice to avoid

protected override void OnBarUpdate()

{

 try

 {

 // encapsulates entire OnBarUpdate logic

 }

 catch (Exception ex)

 {

 // attempt to handle all errors in one catch

 }

}

Using WPF brushes
Try to use a static predefined Brush if possible. If you need to customize a new

brush object, make sure to .Freeze() the brush before using it.

Why: The pre-defined brushes are thread safe and do not require any special

NinjaScript 1549

© 2023 NinjaTrader, LLC

handling. Custom defined brushes, on the other hand, are NOT thread-safe

and must be frozen otherwise cross-thread exceptions can occur.

 Best practice

// predefined brush

BackBrush = Brushes.Blue;

// if you are using a custom brush to e.g., modify the

opacity

SolidColorBrush opaqueBlue = new

SolidColorBrush(Colors.Blue) {Opacity = .25f};

// or just using at custom color not available in pre-

defined brushes class

SolidColorBrush coolGreen = new

SolidColorBrush(Color.FromRgb(30, 255, 128));

// you must freeze these brushes after they are

constructed!

opaqueBlue.Freeze();

coolGreen.Freeze();

barsAgo indexer vs. absolute bar Index
As you probably know, you can quickly look up the bar value on the chart by calling

a PriceSeries<T> barsAgo indexer, e.g., Close[0].

However, the internal indexer and pointers about the barsAgo value are only

guaranteed to be correctly synced and updated during a market data event. As a

result, you should favor using the absolute GetValueAt() methods during events

which are not driven by price

Why: Attempting to call the barsAgo indexer in an event method that is not

driven by market data can yield unexpected results.

NinjaTrader 81550

© 2023 NinjaTrader, LLC

 Best practice

// OnRender is not a market data event; barsAgo pointers

are not guaranteed to be in sync

protected override void OnRender(ChartControl chartControl,

 ChartScale chartScale)

{

 Print(mySMA.GetValueAt(CurrentBar));

}

// same is true for you custom events

private void myCustomClickHandler(object sender,

MouseButtonEventArgs e)

{

 Print(Close.GetValueAt(CurrentBar));

}

Tip: If you have programming requirements which rely on a PriceSeries

indexer, you can use the TriggerCustomEvent() delegate which will update the

internal pointers and indexes before executing the logic you specify.

Casting safely
Avoid type casting and type conversion as much as possible. Casting from a

mixed collection of types is also prone to exceptions especially in situations that

may not occur when you originally test your code.

Why: The practice to avoid code below could work in some scenarios but

would generate errors if other types were added to that collection that you were

not anticipating.

 Practice to avoid

// This would run without errors if there were _ONLY_ type

HoriztonalLine on the chart

// But you risk a likely 'System.InvalidCastException' when

other draw types are in that collection

foreach (HorizontalLine hLine in DrawObjects)

{

}

NinjaScript 1551

© 2023 NinjaTrader, LLC

If you must cast, do so safely and avoid implicit casts to types which may not be

guaranteed to succeeded

 Best practice

// Use the base IDrawingTool type and then cast to the

desired type within the for loop

foreach (IDrawingTool hLine in DrawObjects)

{

 // Note: to prevent further errors, your type casting

should be done using the "as" keyword

 // Opposed to a direct cast:

 // HorizontalLine myLine = (HorizontalLine) hLine;

 HorizontalLine myLine = hLine as HorizontalLine;

 // This will allow you to ensure the cast actually

occurred

 if (myLine != null)

 {

 Print(myLine.StartAnchor.Price);

 }

}

Performance practices

Referencing indicator methods
In general, when calling an Indicator return method, there is some internal caching

which occurs by design to help reduce memory consumption.

Why: While the designed indicator caching improves general memory

performance, there is an implied cost of actually looking up the cached

indicator

NinjaTrader 81552

© 2023 NinjaTrader, LLC

 Practice to avoid

// each time you call the SMA() return method there is a

small performance cost

// implied from the time it takes to look up the cached

instance

if (Close[0] > SMA(20)[0])

{

 Print(SMA(20)[0]);

 EnterLongLimit(SMA(20)[0]);

 Draw.Dot(this, Time[0].ToString(), false, 0, SMA(20)[0],

 Brushes.DarkGreen);

}

Note: Indicator caching ONLY occurs when an indicator is recalled with the

same EXACT parameters and input from the SAME calling script. (i.e. when a

previously called indicator is called a second time with new parameters in the

same script, a second instance will be created / cached)

If you are reusing an indicator several times through your code (especially

indicators with many parameters), you can take further steps to refine

performance by storing a reference to the indicator instance yourself (although it is

by no means a requirement, and this suggestion does not need to be followed

strictly)

NinjaScript 1553

© 2023 NinjaTrader, LLC

 Best practice

private SMA mySma;

protected override void OnStateChange()

{

 // when the indicator begins processing

 // save an instance of the SMA indicator with the

desired input

 if (State == State.Historical)

 {

 mySma = SMA(20);

 }

}

protected override void OnBarUpdate()

{

 // use the referenced mySMA throughout the lifetime of

the script

 if (Close[0] > mySma[0])

 {

 Print(mySma[0]);

 EnterLongLimit(mySma[0]);

 Draw.Dot(this, Time[0].ToString(), false, 0,

mySma[0], Brushes.DarkGreen);

 }

}

Marking object references for garbage collection
While it is not always necessary to set objects to null, doing so will mark them for

garbage collection sooner and help prevent unnecessary memory resources from

being utilized.

Why: In general you should be diligent to set stored memory objects to null

when you are done using them, especially in situations where a NinjaScript

object may be running for an extended period.

NinjaTrader 81554

© 2023 NinjaTrader, LLC

 Best practice

protected override void OnBarUpdate()

{

 // saving "myDot" creates an additional reference in

memory

 Dot myDot = Draw.Dot(this, "myDot" + CurrentBar, false,

Time[0], Close[0], Brushes.Blue);

 if (conditionToRemove)

 {

 // remove draw object will remove the object from the

chart

 RemoveDrawObject("myDot");

 // but your local object "myDot" is still stored in

memory.

 // Explicitly setting to null will ensure object is

marked for garbage collection

 myDot = null;

 }

}

Note: The example above demonstrates using a draw object, but the practice

can be extended to any object you store in memory (e.g., orders, brushes,

custom objects, etc)

Disposing of custom resources
Dispose of objects that inherit from IDisposable or put into a Using statement.

Why: NinjaTrader is not guaranteed to dispose of objects for you. To avoid

unnecessary memory consumption, always manage your resources by

creating a variable and dispose of the object.

NinjaScript 1555

© 2023 NinjaTrader, LLC

 Best practice

// example of object instantiated which need to be disposed

StreamWriter writer = new StreamWriter("some_file.txt");

// use the object

writer.WriteLine("Some text");

// implements IDisposbile, make sure to call .Dispose()

when finished

writer.Dispose();

// or put in "using" statement which implicitly calls

.Dispose() when finished

using (StreamWriter writer2 = new

StreamWriter("some_file.txt"))

{

 writer2.WriteLine("Some text");

}

Tip: This is most commonly applicable when using SharpDX resources for

custom rendering. Please be sure to review the information on Best Practices

for SharpDX Resources

Avoiding duplicate calculations
Be mindful where and when your potentially complex calculations would be

recalculated and thus run the risk of being calculated redundantly. For example,

you may have logic which only needs to calculate, e.g., once per instance, once

per session, once per bar, etc.

 Best practice

// get GetPreviousTradingDayEnd() is expensive to look up

// but value only needs to be looked up once a day -> only

calcualte on first bar of session

if (Bars.IsFirstBarOfSession)

{

 TradingHours.GetPreviousTradingDayEnd(Time[0]);

}

The same considerations would apply to variables or function calls that would not

change their output value for the currently processed bar on

NinjaTrader 81556

© 2023 NinjaTrader, LLC

Calculate.OnEachTick or .OnPriceChange, thus there would be no need handling

them outside of IsFirstTickOfBar

 Best practice

// dedicated logic to cache the prior sum on each tick of

bar

// While it is a good practice, this can cause problems for

bar types which may remove last bar (see below)

if (IsFirstTickOfBar)

 priorSum = sum;

sum = priorSum + Input[0] - (CurrentBar >= Period ?

Input[Period] : 0);

Value[0] = sum / (CurrentBar < Period ? CurrentBar + 1 :

Period);

Caching values on bars which remove last bar
Building on the previous example, be careful when caching values on the first tick

of bar if using bars types which are IsRemoveLastBarSupported. To see how to

handle these situations best, take a look at the default SMA indicator which has an

additional logic branch which disables caching on those bar types:

 Best practice

// logic below disables first tick of bar caching only on

bar types which remove last bar

if (BarsArray[0].BarsType.IsRemoveLastBarSupported)

{

 if (CurrentBar == 0)

 Value[0] = Input[0];

 else

 {

 double last = Value[1] * Math.Min(CurrentBar,

Period);

 if (CurrentBar >= Period)

 Value[0] = (last + Input[0] - Input[Period]) /

Math.Min(CurrentBar, Period);

 else

 Value[0] = ((last + Input[0]) /

(Math.Min(CurrentBar, Period) + 1));

 }

}

NinjaScript 1557

© 2023 NinjaTrader, LLC

Precomputing values instead of calculating in OnRender()
To preserve good performance, always err on the side of caution if you are using

OnRender for any calculation logic.

Why: OnRender() is called frequently as you interact with the Chart, which

can cause calculations to occur much more often than the related market data

events and can cause unnecessary spikes in CPU consumption.

 Practice to avoid

protected override void OnRender(ChartControl chartControl,

 ChartScale chartScale)

{

 // continually recalling the same value methods is

unnecessary in this situation

 double myValue = Bars.GetClose(CurrentBar) +

Bars.GetOpen(CurrentBar);

 // render myValue

}

NinjaTrader 81558

© 2023 NinjaTrader, LLC

 Best practice

private double myValue;

protected override void OnBarUpdate()

{

 // myValue only needs to update when OnBarUpdate() is

called

 // and then can be passed to OnRender() for chart

rendering purposes

 myValue = Close[0] + Open[0];

}

protected override void OnRender(ChartControl chartControl,

 ChartScale chartScale)

{

 // if needed, you can always check that myValue has

actually been set

 if (myValue > double.MinValue)

 {

 // render myValue

 }

}

Restricting OnRender() calculations to visible ChartBars
Use the ChartBars.FromIndex and ChartBars.ToIndex to limit calculations to only

what is visible on the chart

Why: Rendering should be reserved for rendering on what is visible on the

Chart. Performing calculations on bar index which are not visible can cause

random spikes in CPU consumption.

NinjaScript 1559

© 2023 NinjaTrader, LLC

 Best practice

protected override void OnRender(ChartControl chartControl,

 ChartScale chartScale)

{

 // restricting this loop to only the

ChartBars.From/ToIndex limits the loop to only what is

visible on the chart

 for (int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 Print(ChartControl.GetSlotIndexByX(barIndex));

 }

}

Using DrawObjects vs custom graphics in OnRender()
When using Draw methods, a new instance of the Draw object is created

including its custom rendering and calculation logic. These methods are

convenient in many situations, but can quickly introduce performance issues if

used too liberally. In some situations, you may see better performance for

rendering via SharpDX in OnRender().

Why: Each draw object instance will see its own OnRender() called to render

values. If you instead implement custom rendering in the your object, you

would only see a single OnRender() call for your custom created graphics.

 Practice to avoid

protected override void OnBarUpdate()

{

 // this would draw a dot on every bar on the chart

 // each instance would need to call its own OnRender()

method

 // not a very efficient use a draw method

 Draw.Dot(this, "everyDot" + CurrentBar, false, 0,

Close[0], Brushes.Blue);

}

With just a little extra code (much less than what is in the Draw methods) custom

SharpDX rendering greatly reduces CPU and Memory consumption

NinjaTrader 81560

© 2023 NinjaTrader, LLC

Please ensure a Direct2D1 factory would only be instantiated from OnRender()

or OnRenderTargetChanged() (which run in the UI thread), as access from other

threads outside those methods could cause a degradation in performance.

 Best practice

protected override void OnRender(ChartControl chartControl,

 ChartScale chartScale)

{

 // achieves the same effect of drawing a dot on every

bar

 // but only needs to call your object's OnRender()

 for (int index = ChartBars.FromIndex; index <=

ChartBars.ToIndex; index++)

 {

 float price =

chartScale.GetYByValue(Close.GetValueAt(index));

 float bar = chartControl.GetXByBarIndex(ChartBars,

index);

 float radius = (float) chartControl.BarWidth;

 SharpDX.Direct2D1.Ellipse dot = new

SharpDX.Direct2D1.Ellipse(new SharpDX.Vector2(bar, price),

radius, radius);

 using (SharpDX.Direct2D1.SolidColorBrush brush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.Blue))

 {

 RenderTarget.FillEllipse(dot, brush);

 }

 }

}

Tip: One of the advantages of using a Draw.Method is the returned Draw

Objects contains metadata which could be used later (such as for obtain the

bar index or price value of the dot later on). If you would use this metadata later

on, using a Draw method would be in your best interests. However, if you are

solely looking to render figures on a chart, favoring your custom SharpDX

methods can drastically improve performance.

Responding to user events
Do NOT use OnRender() for purposes other than rendering. If you need events to

hook into user interactions, consider adding your own event handler. The example

NinjaScript 1561

© 2023 NinjaTrader, LLC

below shows registering the ChartPanel MouseDown event and registering a

custom WPF control

Why: OnRender() may call more or less frequently than you anticipated.

Using your own custom event handlers allows you control and isolate user

event logic you are looking to capture

 Best practice

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 // subscribe to chart panel mouse down event

 if (ChartPanel != null) ChartPanel.MouseDown +=

DoUserClickedChartPanelEvent;

 // subscribe to a custom UI element mouse down event

 if (myWPFControl != null) myWPFControl.MouseDown +=

DoCustomWPFControlClickEvent;

 }

 else if (State == State.Terminated)

 {

 // remember to unsubscribe when finished

 if (ChartPanel != null) ChartPanel.MouseDown -=

DoUserClickedChartPanelEvent;

 if (myWPFControl != null) myWPFControl.MouseDown -=

DoCustomWPFControlClickEvent;

 }

}

private void DoUserClickedChartPanelEvent(object sender,

MouseButtonEventArgs e)

{

 Print("User clicked on the ChartPanel, executing custom

mouse down logic...");

}

private void DoCustomWPFControlClickEvent(object sender,

MouseButtonEventArgs e)

{

 Print("User clicked on my button, executing button

logic...");

}

NinjaTrader 81562

© 2023 NinjaTrader, LLC

Delaying logic for a particular time interval
Do NOT call Thread.Sleep() as it will lock the Instrument thread executing your

NinjaScript object.

Why: Market data events exposed to NinjaScript run on the underlying

Instrument thread pool shared by all Instruments. Sleeping the underlying

thread of your object will cause the entire Instrument thread to sleep, adversely

affecting other features using that same Instrument.

 Practice to avoid

protected override void OnBarUpdate()

{

 if (IsFirstTickOfBar && State == State.Realtime)

 {

 Print("Run some logic before:: " + DateTime.Now);

 Thread.Sleep(5000); // sleeping the Instrument thread

will have adverse effects on elements outside of your

script!

 Print("Run some logic after: " + DateTime.Now);

 }

}

 Instead, try using a Timer object if you need to delay logic execution.

NinjaScript 1563

© 2023 NinjaTrader, LLC

 Best practice

protected override void OnBarUpdate()

{

 if (IsFirstTickOfBar && State == State.Realtime)

 {

 // Instead of Thread.Sleep for, create a timer that

runs at the desired interval

 System.Windows.Forms.Timer timer = new

System.Windows.Forms.Timer {Interval = 5000};

 // queue the "after" logic to run when the timer

elapses

 timer.Tick += delegate

 {

 timer.Stop(); // make sure to stop the timer to

only fire ones (if desired)

 Print("Run some logic after: " + DateTime.Now);

 timer.Dispose(); // make sure to dispose of the

timer

 };

 Print("Run some logic before: " + DateTime.Now);

 timer.Start(); // start the timer immediately

following the "before" logic

 }

}

Miscellaneous practices

Floating-point comparison
Be aware of floating-point precision problems. It can sometimes be more reliable

to check within a certain degree of tolerance, such as the TickSize.

Why: You can read more about Floating-Point Arithmetic as it applies to

NinjaTrader on our support forum

http://ninjatrader.com/support/forum/showthread.php?t=3929

NinjaTrader 81564

© 2023 NinjaTrader, LLC

 Practice to avoid

// depending on how Value[0] was calculated, it could be

off by a degree of floating points

// where this logic below would never be true

// e.g., 2050.2499999 vs 2050.50

if (Value[0] == Close[0])

{

 // do something

}

 Best practice

// you can avoid these precision issues by rewriting the

comparison to evaluate within a certain tolerance.

if (Math.Abs(Value[0] - Close[0]) < TickSize)

{

 // do something

}

// You will also see NinjaTrader developed objects use a

custom Extension Method

// double.ApproxCompare() which Returns an int based on a

Epsilon value:

if (Close[0].ApproxCompare(Value[0]) == 0)

{

 // do something

}

Creating user defined parameter types / enums
When creating enums for your NinjaScript objects, it is strongly suggested to

define those outside the class and in a custom namespace. A reference sample

providing all details could be found here.

Efficiently debugging
Extremely liberal use of Log() and Print() methods can represent a performance

hit on your PC as it takes memory and time to process each one of those method

calls. When running custom NinjaScript, especially when using Calculate =

Calculate.OnEachTick, please be mindful of how often Log() and Print() methods

are processed as it can quickly consume PC resources.

· Log() method should not be used except for critical messages as each log entry

makes it to the Control Center log which stays active till the end of the day.

Excessive logging can result in huge amounts of memory being allocated just to

NinjaScript 1565

© 2023 NinjaTrader, LLC

display all the log messages which would mean less memory for NinjaTrader to

do other tasks.

· Print() method can be used more liberally than the Log() method, but can still

represent a performance hit if used with extremely high frequency. Consider

decreasing the printing from your script if you experience slowdowns when

running the script.

Debug Mode
The debug mode should only be used if you are actively debugging a script and

attached to a debugger.

Why: Debug Mode will compile all of the files in the custom project as a

"Debug" build, which omits certain optimizations which occur in the C#

compilation process. It is more efficient to use your custom objects in the

default "Release" build if you are using your scripts during production.

To disable Debug Mode:

· Right mouse click in any NinjaScript Editor

· Ensure the "Debug Mode" menu item is unchecked

· Press F5 to recompile your scripts

· Your scripts will be re-built using "Release" mode

Known NinjaScript Wrappers limitations

· The NinjaScript editor detects code changes in external editors, and will compile

on code changes, however code will only be automatically generated by the

NinjaScript editor if it's edited within the NinjaScript editor itself (or Visual Studio)

· Wrappers cannot be generated automatically for partial and abstract classes

· Code in the Properties region of the NinjaScript object cannot be commented out

with the /* */ style commenting, as it will cause issues with the wrapper

generation. Code must be commented out with the // style.

· Subclassing would not allow for wrappers to be generated

NinjaTrader 81566

© 2023 NinjaTrader, LLC

11.3 Distribution

Distribution

You can distribute custom indicators and strategies to any user of NinjaTrader. The

following section discusses how you can create and share your scripts. If you are a 3rd

party developer, please see the Commercial Distribution section.

› Import

› Export

› Export Problems

› Protection/DLL Security

› Commercial Distribution

11.3.1 Considerations For Compiled Assemblies

Using Compiled Assemblies
Compiled assemblies (DLL's) allow you to bundle your scripts into a format that hides your

proprietary code along with any supporting resources. Compiled assemblies provide distinct

benefits, especially for commercially distributed code, but there are a few considerations to

keep in mind. Typecasting and building resource files (sounds, images, etc.) into your

assemblies must be approached differently to ensure cleanly packaged, error-free DLL's.

Using Custom enum Properties
When creating custom enum properties, it is advised to create the enum outside of your

NinjaScript class, and designating it in its own fully qualified namespace. For an example,

please see here. When using the enum in code, please use the fully qualified namespace as

opposed to using a using directive to shorthand the expression.

Casting Types in a DLL (Using dynamic Types)
Sometimes, you may need to cast your objects to NinjaScript types, such as when iterating

through the DrawObjects collection to obtain a reference to a particular Drawing Object on a

chart. When running C# code which has not been compiled into an assembly, typecasting

can be done normally, as in the example below:

NinjaScript 1567

© 2023 NinjaTrader, LLC

 Typecasting in code outside of a compiled assembly

protected override void OnBarUpdate()

{

 foreach(HorizontalLine line in DrawObjects)

 {

 // Print the tag of each Horizontal Line on the chart

 Print(String.Format("Horizontal Line {0} found.",

line.Tag));

 }

}

An obstacle arises with traditional typecasting in a compiled assembly, since the NinjaScript

type you attempt to cast will be present in both your DLL and NinjaTrader's Custom.dll

assembly. If you plan to compile your code into a DLL, you will need to use the dynamic type

to avoid this conflict by dynamically assigning the type at runtime, using the guidelines below:

1. Loop through your collection using the interface type

2. Use ToString() to check the fully qualified namespace of the object in the loop

3. Cast the object to dynamic, and reference properties of that object assuming it is the

expected type

 Dynamic variables as an alternative to typecasting inside of a

compiled assembly

foreach (IDrawingTool line in DrawObjects.ToList())

{

 // Use ToString().Equals() to detect the object's Type

 if

(line.ToString().Equals("NinjaTrader.NinjaScript.DrawingTools.Horiz

ontalLine"))

 {

 // Cast line as dynamic and access the object by assuming

that it is the Type we expect

 Print(String.Format("Horizontal Line {0} detected!", (line

as dynamic).Tag));

 }

}

The above dynamic approach will work for primitive types. For instantiating more complex

types / classes though, such as adding a new PriceLevel programmatically to an existing

drawing tool, Reflection would need to used.

https://msdn.microsoft.com/en-us/library/dd264741.aspx
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection

NinjaTrader 81568

© 2023 NinjaTrader, LLC

 Instantiating more complex types such as the PriceLevels class

 inside of a compiled assembly

foreach (dynamic dt in DrawObjects.ToList())

{

 if(dt.ToString().Equals("NinjaTrader.NinjaScript.DrawingTools.Fi

bonacciRetracements"))

 {

 Type type =

dt.PriceLevels.GetType().GetGenericArguments()[0];

 Assembly assembly = type.Assembly;

 var pl = assembly.CreateInstance(type.FullName,

false, BindingFlags.CreateInstance, null, new object[] { 55.5,

Brushes.Red, 2 }, new System.Globalization.CultureInfo("en-

US"), new object[] {});

 dt.PriceLevels.GetType().GetMethod("Add").Invoke(dt.PriceLeve

ls, new object[] { pl });

 this.ForceRefresh();

 }

}

Working with the dynamic type
Using dynamic variables in the technique above requires careful attention to accessing

members appropriately, and thus should be avoided if you do not intend to use or distribute

compiled assemblies.

· No Intelliprompt: Since the compiler cannot know which type you assume a dynamic

variable to be, no Intelliprompt will be displayed to help search through type members. The

same applies to Visual Studio's Intellisense or similar utilities.

· No Compile Errors: For the same reason, the compiler cannot know if you are using the

variable in a way not supported by its expected type, trying to access members not present

in that type, or other related errors. Thus, any such errors which would be caught by the

compiler when typecasting will be missed, and will result in runtime errors instead. If a

runtime error were to be triggered, the error may be more difficult to interpret.

o Example: If you tried to access "line.tag" (improper capitalization) in the examples above,

you would receive the following errors:

§ Typecasting / Compile Error: "'NinjaTrader.NinjaScript.DrawingTools.HorizontalLine'

does not contain a definition for 'tag' and no extension method accepting a first

argument of type 'NinjaTrader.NinjaScript.DrawingTools.HorizontalLine' can be found

(are you missing a using directive or an assembly reference?)"

§ dynamic / Runtime Error: "Error on calling 'OnBarUpdate' method on bar 0:

'NinjaTrader.NinjaScript.DrawingTools.DrawingTool.tag' is inaccessible due to its

protection level"

NinjaScript 1569

© 2023 NinjaTrader, LLC

Adding XAML and Other Files Into a DLL
When exporting a compiled assembly through NinjaTrader, no additional resource files can be

added. There are two ways around this. The first is to export the DLL from NinjaTrader, then

open the exported .zip file, add any additional files, and re-zip the archive, but this will result in

your resource files being fully accessible to end users. The second and recommended

approach is to use a fully featured IDE such as Visual Studio to build your DLL's.

For more information on how to accomplish this with Visual Studio, see the "AddOn

Development Environment" section of the AddOn Development Overview page. Although the

page focuses on AddOn development, the sample project it provides can be used to develop

other NinjaScript types, as well.

Exporting custom drawing tools as assembly / DLL
When planning to distribute your custom drawing tools via assemblies, please understand it's

paramount that you implement your own Draw. method to allow the drawing tool getting called

programmatically by other NinjaScript objects.

The NinjaTrader default drawing tools would implement this via a partial class, for example

you would see -

 Default NinjaTrader drawing tool Draw. method handling

public static partial class Draw

{

}

However since partial classes could not span across two assemblies, therefore a custom

non partial Draw. method for your NinjaScript drawing tool would be needed.

 Custom drawing tool Draw. method handling

public static class MyDrawCustom

{

}

Exports might not be backwards compatible
NinjaScript exports might not be backwards compatible with previous versions of NinjaTrader.

This is known to happen every time a new type (e.g. Enum) was introduced, since the newly

introduced types are not known to prior releases of NinjaTrader

Typically an error message like the following would be seen:

NinjaTrader 81570

© 2023 NinjaTrader, LLC

"Error on calling 'SetState' method: Could not load type

'NinjaTrader.NinjaScript.Indicators.CumulativeDeltaType' from assembly

'NinjaTrader.Vendor, Version=8.0.12.0, Culture=neutral, PublicKeyToken=null'."

11.3.2 Import

You should only import NinjaScript Archive files (.zip) that you have obtained from a trusted

source.

To import:

 1. From the Control Center window select the menu Tools > Import> NinjaScript... to open

the "Import" dialog window

 2. Select the file you want to import

 3. Press the "Import" button

11.3.3 Export

You can export NinjaScript for others to import in several formats:

· Source files - NinjaScript source files that can be imported and edited by others

· Assemblies - A compiled assembly (DLL) of NinjaScript that "hides" your source code.

This can be further protected by SecureTeam's Agile.NET to prevent theft of your

intellectual property.

Exporting NinjaScript as Source Files

You may want to provide other NinjaTrader users with source files of

your NinjaScript in a format where they are able to view and edit them.

1. From the Control Center window select the menu Tools > Export >

NinjaScript... to open the "Export NinjaScript" dialog window

2. Press "add"

3. Use the "Type" drop down to filter available NinjaScript types

4. Select all of the files that you want to export and press the "OK"

button

5. A list of all files that will be exported will be shown

6. Press the "Export" button to export the selected files

NinjaScript 1571

© 2023 NinjaTrader, LLC

7. A file dialog will open where you can choose the location your zip

export file will be created in. Per default the NinjaScript Archive File

(.zip) file will be created in My Documents\<NinjaTrader

Folder>\bin\Custom\ExportNinjaScript.

8. The file can be imported by another NinjaTrader application on a

different PC

Exporting NinjaScript as Assembly

You may want

to provide

other

NinjaTrader

users with

access to

your

proprietary

indicators or

strategies in a

secure format

preventing

them from

being able to

see your

proprietary

source code.

You can do

this by

exporting your

NinjaScript

indicators as

a compiled

Microsoft

.NET

NinjaTrader 81572

© 2023 NinjaTrader, LLC

assembly

(DLL) file.

· This is a

great

distribution

option if

your

proprietary

indicator or

strategy

files do not

reference

external

DLL's

· If your

proprietary

indicator or

strategy

references

external

DLL's then

its advised

to create

your own

custom

installer

1. From the

Control

Center

window

select the

menu

Tools >

Export >

NinjaScript.

.. to open

the "Export

NinjaScript

" dialog

window

NinjaScript 1573

© 2023 NinjaTrader, LLC

2. Select the

option

"Export as

compiled

assembly".

3. You can

optionally

select

"Protect

compiled

assembly"

(For

information

on

protection

see the

"Protection

/DLL

Security

page)

4. Press

"add"

5. Use the

"Type"

drop down

to filter

available

NinjaScript

types

6. Select all

of the files

that you

want to

export and

press the

"OK"

button

7. A list of all

files that

will be

exported

NinjaTrader 81574

© 2023 NinjaTrader, LLC

will be

shown

8. Optionally

enter

information

that

describes

the

assembly

in the

"Product"

and

"Version"

fields

9. Press the

"Export"

button to

export the

selected

files

10.A file dialog

will open

where you

can

choose the

location

your zip

export file

will be

created in.

Per default

the

NinjaScript

Archive

File (.zip)

file will be

created in

My

Document

s\<NinjaTr

ader

Folder>\bin

NinjaScript 1575

© 2023 NinjaTrader, LLC

\Custom\E

xportNinjaS

cript.

11.The file

can be

imported

by another

NinjaTrade

r

application

on a

different

PC

11.3.4 Remove NinjaScript Assembly

This will allow you to remove installed NinjaScript assembly files.

To remove a NinjaScript assembly:

 1. From the Control Center window select the menu Tools > Remove NinjaScript Assembly

 2. Select the file(s) you want to remove (MultiSelect would be possible via holding Shift

pressed while selecting the desired files for removal)

 3. Press the "Remove NinjaScript assembly" button

Note: Remove NinjaScript Assembly will not unload existing assemblies until restart, this

means you should not import the same assemblies again until you have restarted

NinjaTrader.

11.3.5 Export Problems

If you are having difficulties exporting NinjaScript it could be due to one of the following

reasons:

NinjaScript Compile Error

NinjaTrader 81576

© 2023 NinjaTrader, LLC

If you receive the above error, you will need to compile your NinjaScript error-free

before you can export. To see if your NinjaScript file is error free, open the

NinjaScript Editor (Tool > Edit NinjaScript) and press F5 to compile. If you are

trying to check a NinjaScript Strategy created from the Strategy Wizard you can do

the same by finishing the wizard and seeing if you receive the “Strategy

successfully generated” message.

If you receive any errors when compiling you will need to address them before

exporting.

.NET Referencing

If you are able to compile without errors and still experience exporting difficulties

like the one above, check to see if you receive an error similar to this in the Control

Center logs:

"3/6/2014 9:25:30 AM|2|4|Error compiling export assembly: C:

\Users\NinjaTrader\Documents\NinjaTrader

8\bin\Custom\Indicator\MyCustomIndicator.cs(42,18) : error CS0118:

NinjaTrader.Indicator.SMA is a type but is used like a variable"

NinjaScript 1577

© 2023 NinjaTrader, LLC

Note: This error may have a different error code and message depending on

which variant of .NET you have installed. An error message indicative of this issue

would include an indicator name without quotation marks.

If you experience this error, please follow this procedure:

1. Take note of which indicator is referenced by the error. In the above example, it

is the SMA

2. Go to your NinjaScript Export utility. (Tools > Export > NinjaScript...)

3. After press "add" select “System indicators” from the "Type" drop down

4. Add the indicator that was referenced in the error to the export list along with

your custom NinjaScript by pressing the > button

NinjaTrader 81578

© 2023 NinjaTrader, LLC

5. Press the “Export” button to create your NinjaScript Archive File. If you receive

the same error again, repeat this procedure until you add all the referenced

system indicators and are able to successfully export your custom NinjaScript.

Note: If the indicator referenced in the error is another custom indicator you

will need to follow the same procedure to add the custom indicator.

11.3.6 Protection/DLL Security

Although .NET DLL files are compiled which prevents users from being able to see your

proprietary source code, they are still subject to decompilation and reverse engineering

attempts. If you want a higher level of security, you can select the "Protect compiled

assemblies" option which adds an additional layer of protection. This additional protection

layer is provided by SecureTeam's Agile.NET product which has been licensed by

NinjaTrader and available at a reduced price to protect NinjaTrader assemblies. This product

http://www.secureteam.net/
http://www.secureteam.net/ninja-pricing

NinjaScript 1579

© 2023 NinjaTrader, LLC

claims to completely stop MSIL disassembly and decompilation. We use it ourselves and are

extremely happy with it.

Should you wish to use Agile.NET for protecting your NinjaScript assemblies you will first

need to go here to download and purchase the product. Once installed, please run the

Agile.NET standalone product once to input in the license information you should have

received when you downloaded it. After that, when you use NinjaTrader's Export NinjaScript

utility and select the "Protect compiled assemblies" option for export, it will automatically

protect your NinjaScript assembly with Agile.NET.

Please note that this version of Agile.NET will only work for protecting NinjaScript assemblies

within NinjaTrader. If you would like to protect other files outside of NinjaTrader please

consider purchasing the full version of Agile.NET from SecureTeam directly here 'Agile.NET

6.0 Code Protection'. NinjaScript assemblies protected with the full version of Agile.NET will

also work in NinjaTrader.

At this time we recommend using version 6.9.1.2

For clients on 8.0.28.0 or older you can continue to use 6.6.0.35

http://www.secureteam.net/ninja-pricing
http://www.secureteam.net/ninja-pricing
https://secureteam.net/content/AgileDotNetInstaller6912.exe
https://secureteam.net/content/AgileDotNetInstaller66035.exe

NinjaTrader 81580

© 2023 NinjaTrader, LLC

11.3.7 Commercial Distribution

Commercial Distribution Overview

As a commercial developer, you can distribute your proprietary indicators and and

strategies to the growing universe of NinjaTrader users. This section contains information

you should understand before distributing your work to the public.

› Licensing/User Authentication

› Best Practices

› Distribution Procedure

11.3.7.1 Licensing/User Authentication

NinjaTrader provides a free vendor license management service for user authentication to

qualified 3rd party developers.

The service includes the following features:

· One method call within your NinjaScript indicator or strategy's constructor will enable the

authentication process

· A NinjaScript AddOn dedicated to license management (Manage license, provide free trials)

· Licenses are exclusively tied to a combination of user-defined prefix + PC machine ID

value, ensuring that licenses cannot be shared

· Manage all of your individual products, or group products together for licensing

· Licenses expire based on time/date

· Create free trial periods

For more information please contact sales@ninjatrader.com or your NinjaTrader Business

Development representative. Once approved, you will receive a unique Vendor ID used to

manage your user licenses, a Vendor Licensing Help Guide containing information, samples,

and resources to guide you through the process of managing licensing.

11.3.7.2 Best Practices for Distribution

The following are what we suggest for best practices for distribution.

Do not deploy NinjaScript Source Files
If you are a commercial vendor, you should never distribute the NinjaScript .cs source code

files even if your IP is contained within an assembly or proprietary DLL. Source code files are

editable by users and can result in unnecessary support issues.

Naming Conventions

mailto:sales@ninjatrader.com

NinjaScript 1581

© 2023 NinjaTrader, LLC

Please use consistent naming convention with your indicators and strategies. We suggest

adding a prefix to an indicator name. If your company name is "Hyper" you could name your

indicators "HyperTrend" or "HyperOscillator" for example.

In the event that you provide NinjaScript export archives (zip files) as your means of

distribution, NinjaTrader will automatically block incompatible scripts from importing so there

will be no confusion by the user as to whether they are installing Version 7 or 8 scripts to their

NinjaTrader installation. It is advisable to include the NinjaTrader version number in the export

archive which will reduce potential support burden. For example, you could name your

indicators “MyIndicator_7.zip” and “MyIndicator_8.zip”.

Clean up your resources
Always free up resources such as external windows DLL's or license management related

resources. Resources should be freed within the OnStateChange() method in

State.Terminate. NinjaTrader calls this method at the point at which a script is no longer

used.

User Authentication Trigger
If you use a proprietary user authentication process, ensure that it is triggered within the

OnStateChange() method in State.SetDefaults. This ensures that users are not forced to

endure unnecessary delays on NinjaTrader start up or dialog windows that display available

indicators and strategies as the windows are loaded. NinjaTrader, LLC provides a free

licensing service for qualified 3rd party developers. For more information on this free service,

contact your NinjaTrader Business Development representative.

User Authentication Check State
A license check should only be performed once and maintain its check state.

User Authentication Time Out
A license check should have a time out in case of internet issues, to enhance performance in

this case.

Custom Installer
If you provide a custom installer, the installer should not overwrite any NinjaTrader deployed

files, and you should provide an uninstall option which removes all installed files.

It is also preferred that you provide one installer that provides the user the option to install

either a version 7 or version 8 compatible version of your product(s). Ensure that you only

copy the correct files to the correct NinjaTrader installation folders since if you don’t it is

possible that it could cause compile issues for the customer and it will be extremely difficult

for all involved to isolate the cause.

These are the following folder names:
· Documents\NinjaTrader 7\bin\Custom

· Documents\NinjaTrader 8\bin\Custom

NinjaTrader 81582

© 2023 NinjaTrader, LLC

Test on Legacy Operating Systems
Some NinjaTrader customers run on older Operating Systems (such as Windows 7) and you
should make sure that your indicators, custom installers and external DLLs (if any are used)
properly run on these legacy operating systems.

Expose Indicator States
If your proprietary indicator acts as a trend state (green bars are bullish, red bearish) its good

practice to expose the indicators's state so that consumers of your indicators can use them

within their own custom indicator or strategy.

11.3.7.3 Distribution Procedure

NinjaTrader makes it easy to distribute complete packages for your clients. Not only can you

distribute your indicators and strategies, but you can also seamlessly deploy your own

custom assemblies, native DLLs, chart templates, and Market Analyzer templates to your

clients.

Creating the distribution package
To create a distribution package, please follow the steps shown here for creating a Export file

containing your NinjaScript indicators and/or strategies.

It is strongly recommended that you export your scripts as an assembly and use

SecureTeam's Agile.NET. Only this process will provide you with the highest level of security

possible in order to protect your intellectual property. For more information on using

SecureTeam's Agile.NET please see the Protection/DLL Security section.

After you finish using the Export utility you will find the distribution package as a .zip file

located in My Documents\NinjaTrader 8\bin\Custom\ExportNinjaScript. If you only wanted to

distribute your NinjaScript files then providing your customers with this .zip and having them

go through the Import process would install it on their machines. If you wish to add more

custom files to your distribution package, please see the sections below.

Critical: It is important to let your customers know that NinjaTrader 8 indicators and strategies

are NOT necessarily compatible with NinjaTrader Version 7.

Adding custom assemblies or native DLLs

1. Locate your base .zip distribution package

2. Open the .zip

3. Add to the .zip file your assemblies and/or your DLL files to the root directory of

the .zip. These files cannot be behind any extra directory structures and must be

directly in the root of the .zip

NinjaScript 1583

© 2023 NinjaTrader, LLC

For custom assemblies, you will also need to add to the root of the .zip a .txt file

called AdditionalReferences.txt

1. Bring up the Windows Start Menu

2. Go to the Run field and type "notepad" without the quotes and press Enter

3. In Notepad, type the name of your custom assembly and then save the file as a

text file with the name "AdditionalReferences".

Ex: If your custom assembly's name was MyCustomAssembly.dll and

MyCustomAssembly.cs, in the AdditionalReferences.txt file you would type

"MyCustomAssembly" without the quotes.

Note: If you have multiple custom assemblies to add you can append each of

the assembly's names into the same AdditionalReferences.txt file on new lines

Adding templates

If you are distributing an indicator package, you may also want to distribute a

prebuilt Chart Template that your customers can use to quickly bring up preferred

settings for your chart setup. The same instructions here would work though for all

other templates as well, i.e. MarketAnalyzer, DrawingTools - as long as the relative

folder under templates is correctly set per the template category you're working

with. The below steps run through the process for Chart templates.

1. Locate your base .zip distribution package

2. Open the .zip

3. Create a new directory called "templates" without the quotes

4. Navigate into the "templates" directory and create another new directory called

"Chart"

5. Navigate into the "Chart" directory. Copy the .xml chart templates you wish to

distribute from My Documents\NinjaTrader 8\templates\Chart to this directory in

the .zip

Adding workspaces

If you are distributing an indicator package, you may also want to distribute a

prebuilt Workspace that your customers can use to quickly bring up preferred

NinjaTrader 81584

© 2023 NinjaTrader, LLC

settings for your workspace. The below steps run through the process for

workspaces.

1. Locate your base .zip distribution package

2. Open the .zip

3. Create a new directory called "workspaces" without the quotes

4. Navigate into the "workspaces" directory. Copy the .xml workspace you wish to

distribute from My Documents\NinjaTrader 8\workspaces to this directory in the

.zip

Adding custom resource files

You may run into the need to distribute other custom files such as pictures for

buttons for use with your product as well. This can be achieved via the same

approach as for the templates, as long as the resources folder is under the parent

templates directory.

1. Locate your base .zip distribution package

2. Open the .zip

3. Create a new directory called "templates" without the quotes

4. Navigate into the "templates" directory and create another new directory, for

example "MyResources"

5. Navigate to the directory where your files are stored. Copy the resource files you

wish to distribute from this directory to your custom directory from step 4 in the

.zip

Note: When modifying the .zip archives, if your zip utility application has an option for

storing or recreating relative paths please be sure to turn this off as it will cause problems

when importing the archive to NinjaTrader.

NinjaScript 1585

© 2023 NinjaTrader, LLC

11.4 Editor

NinjaScript Editor Overview

The NinjaScript Editor is a powerful scripting editor that allows you to create custom

indicators and strategies efficiently. The NinjaScript Editor includes powerful coding

assistance and advanced debugging tools to help you custom build your indicator,

strategy or any other supported NinjaScript type.

Display
› Editor Components
› NinjaScript Explorer
› NinjaScript Wizard

Errors/Debugging
› Compile Errors

› Visual Studio Debugging

› Compile Error Codes

Coding Assistance
› Intelliprompt

› Code Snippets

11.4.1 Compile Error Codes

The following error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

NinjaTrader 81586

© 2023 NinjaTrader, LLC

› CS0006

› CS0019

› CS0021

› CS0029

› CS0103

› CS0200

› CS0201

› CS0234

› CS0246

› CS0428

› CS0443

› CS1002

› CS1061

› CS1501

› CS1502

› CS1503

› CS1513

› CS1525

› NoDoc

11.4.1.1 CS0006

See CS0234.

11.4.1.2 CS0019

The following CS0019 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
Strings cannot be compared with relational operators (<, >, <=, >=, ==, !=) to other object

types. Strings can only be compared to other strings and only through the use of equality

operators (==, !=).

Error Description #1
Operator '==' cannot be applied to operands of type 'string' and 'int'

// Erroneous Sample Code – Cannot compare a string to an integer

if ("string" == 5)

// Resolution Sample Code – Compare a string with another string

if ("string" == intValue.ToString());

NinjaScript 1587

© 2023 NinjaTrader, LLC

Error Description #2
Operator ‘<’ cannot be applied to operands of type ‘string’ and ‘double’

// Erroneous Sample Code - Cannot compare a string to a double

if ("string" >= 1.2)

// Resolution Sample Code - Testing to see if the strings are not the same

if ("string" != "string2")

Error Description #3
Operator ‘>’ cannot be applied to operands of type ‘string’ and ‘string’

// Erroneous Sample Code - Cannot quantitatively compare a string to another string

if ("string" > "string2")

// Resolution Sample Code - Testing to see if both strings are the same

if ("string" == "string2")

Additional Error Descriptions
Operator ‘<’ cannot be applied to operands of type ‘string’ and ‘string’
Operator ‘<=’ cannot be applied to operands of type ‘string’ and ‘string’
Operator ‘>=’ cannot be applied to operands of type ‘string’ and ‘string’

11.4.1.3 CS0021

The following CS0021 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This is a common error when calling indicators methods. It occurs when an indicator is called

without its required parameter arguments before accessing an indexed value.

To fix this error you will need to first pass to the indicator method all the necessary parameter

arguments. You can do this with '()' after the indicator name. Please note that you will still

need to pass an empty parameter argument list even if your indicator requires no arguments.

Error Description #1
Cannot apply indexing with [] to an expression of type 'method group'

Example #1
// Erroneous Sample Code - SMA is an indicator and requires parameter arguments

double value = SMA[0];

// Resolution Sample Code - SMA() properly called

double value = SMA(14)[0];

Example #2

NinjaTrader 81588

© 2023 NinjaTrader, LLC

// Erroneous Sample Code - EMA is an indicator and requires parameter arguments

double maDelta = EMA[0] - EMA[1];

// Resolution Sample Code - SMA() properly called with an overload method (one of

several variations)

double maDelta = EMA(High, 14)[0] - EMA(High, 14)[1];

11.4.1.4 CS0029

The following CS0029 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error can occur when you try to convert from one 'type' to another 'type'.

To fix this error, ensure that you are assigning the correct value type.

Error Description #1
Cannot implicitly convert type 'int' to 'bool'

// Erroneous Sample Code - 'CurrentBar' is an integer

if (CurrentBar)

// Resolution Sample Code - Compares an integer with another integer

if (CurrentBar < 1)

Error Description #2
Cannot implicitly convert type 'double' to 'bool'

// Erroneous Sample Code – Close[0] returns a double value

if (Close[0])

// Resolution Sample Code – Compares a double with another double

if (Close[0] > Close[1])

Error Description #3
Cannot implicitly convert type 'NinjaTrader.NinjaScript.Indicators.SMA' to 'double'

// Erroneous Sample Code - Incorrect since assigning an indicator to a variable of

double type

double myValue = SMA(20);

// Resolution Sample Code - Correct expression since we are accessing the current

bar's value of the SMA indicator

double myValue = SMA(20)[0];

NinjaScript 1589

© 2023 NinjaTrader, LLC

11.4.1.5 CS0103

The following CS0103 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
When a variable is used before declaration, the compiler will not know what it is. This error is

also commonly invoked by typos.

Please ensure that you have declared your variables prior to using them. If variables are

declared or properties already exist, please check for typos.

Error Description #1
The name 'identifier' does not exist in the current context

Example #1
// Erroneous Sample Code - 'CurentBar' does not exist since it has been spelled

incorrectly (missing an 'r')

if (CurentBar < 10)

// Resolution Sample Code - 'CurrentBar' exists since it is spelled correctly

if (CurrentBar < 10)

Example #2
// Erroneous Sample Code - 'newVariable' is not declared

newVariable = 10;

// Resolution Sample Code - 'newVariable' is now declared as an integer

int newVariable = 10;

11.4.1.6 CS0200

The following CS0200 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error is most common when you try to assign values to a particular Series<T> index that

is read-only. Instead try making your own Series<T> and assign the value there.

Error Description
Property or indexer 'NinjaTrader.NinjaScript.ISeries<double>.this[int]' cannot be assigned to --
it is read only

Example #1
// Erroneous Sample Code - Cannot assign values to something that is read-only

Close[0] = 25;

NinjaTrader 81590

© 2023 NinjaTrader, LLC

// Resolution Sample Code - Assigns value to a custom Series<double>

myCustomClose[0] = 25;

Example #2
// Erroneous Sample Code - Cannot reassign values to Series<double> indexed value and

cannot have an if statement based // on an assignment operator

if (Close[0] = Open[0])

// Resolution Sample Code - Properly compares two Series<double> values

if (Close[0] == Open[0])

11.4.1.7 CS0201

The following CS0201 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error can occur when you make a statement solely from an indicator or variable call.

You will need to do something with the value you called for the statement to be complete.

Error Description #1
Only assignment, call, increment, decrement, await and new object expressions can be used
as a statement

// Erroneous Sample Code - Statement that does nothing

SMA(5)[0];

// Resolution Sample Code - 'currentSMA' takes on the current bar's SMA(5) value

double currentSMA = SMA(5)[0];

11.4.1.8 CS0234

The following CS0234 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error can occur when an imported DLL (could be a 3rd party indicator) you are

referencing no longer exists / has been removed.

To resolve this the DLL must be re-imported.

To re-import a 3rd party dll:
1. Open the NinjaScript Editor via New > NinjaScript editor.

NinjaScript 1591

© 2023 NinjaTrader, LLC

2. Right mouse click in the NinjaScript Editor main window and select the menu name

"References"

3. In the "References" dialog window press the button "Add"

4. Select the 3rd party DLL

Warning: Please make sure in this step to select only the 'true' DLL file needed for

reference, which would not contain any X86 or X64 suffixes in its file-name, otherwise you

could run into compile issues later.

Error Descriptions
The type or namespace name '<name>' could not be found (are you missing a using directive

or an assembly reference?)

The type or namespace name '<name>' does not exist in the namespace

'NinjaTrader.Indicator' (are you missing an assembly reference?)

11.4.1.9 CS0246

See CS0234.

11.4.1.10 CS0428

The following CS0428 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error can occur when you miscall a method such as indicator methods.

If you are calling an indicator please ensure that you have both the parameters '()' and the

indexing value '[]' set. For other methods please ensure you pass all required parameters

through the parameters set '()'.

Error Description #1
Cannot convert method group 'SMA' to non-delegate type 'double'. Did you intend to invoke
the method?

Example #1
// Erroneous Sample Code - SMA() indicator method is improperly called

double myValue = SMA;

// Resolution Sample Code - SMA() indicator method is properly called

double myValue = SMA(5)[0];

Example #2
// Erroneous Sample Code - ToString is a method and requires round brackets () to be

properly called

NinjaTrader 81592

© 2023 NinjaTrader, LLC

string str = Close[5].ToString;

// Resolution Sample Code - ToString() is properly called

string str = Close[5].ToString();

11.4.1.11 CS0443

The following CS0443 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error is most commonly invoked when no index value is used inside the indexing

brackets.

Please ensure you place a value inside the '[]'.

Error Description #1
Syntax error, value expected

// Erroneous Sample Code - Missing index value

double myValue = SMA(20)[];

// Resolution Sample Code - 'myValue' takes on the current bar's SMA(20) value

double myValue = SMA(20)[0];

11.4.1.12 CS1002

The following CS1002 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error can be invoked when statements are not ended properly.

All statement lines must be closed with a semicolon.

Error Description #1
; expected

// Erroneous Sample Code - Statement is not closed

double myValue = SMA(20)[0]

// Resolution Sample Code - Statement is closed

double myValue = SMA(20)[0];

NinjaScript 1593

© 2023 NinjaTrader, LLC

11.4.1.13 CS1061

The following CS1061 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error's code may reflect.

In any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error can occur when you try to use a method or access an exposed property that does

not exist for your particular object.

Please check the methods and exposed property available for your particular object.

Error Description #1
'NinjaTrader.Indicator.CurrentDayOHL' does not contain a definition for 'CurentOpen'

// Erroneous Sample Code - CurrentDayOHL()’s property is 'CurrentOpen' not

'CurentOpen' (typo)

double value = CurrentDayOHL().CurentOpen[0];

// Resolution Sample Code - 'CurrentOpen' property available

double value = CurrentDayOHL().CurrentOpen[0];

11.4.1.14 CS1501

The following CS1501 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error can occur when you use use an overload (method parameter signature) that does

not exist. This could be because you are passing in 3 arguments when the method only

requires 2.

You can cycle through the available overloads with the use of the up and down arrows on the

Intelliprompt when you call an indicator method or any other method.

Error Description #1
No overload for method 'SMA' takes '0' arguments

Example #1
// Erroneous Sample Code - SMA() does not contain an overload that has 3 arguments

double myValue = SMA(Close, 5, 2)[0];

// Resolution Sample Code - SMA() has an overload consisting of 2 arguments

double myValue = SMA(Close, 5)[0];

NinjaTrader 81594

© 2023 NinjaTrader, LLC

Example #2
// Erroneous Sample Code - EMA() does not contain an overload that has 0 arguments

double myValue = EMA()[0];

// Resolution Sample Code - EMA() has an overload consisting of 1 argument

double myValue = EMA(5)[0];

11.4.1.15 CS1502

The following CS1502 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error can occur when you pass in incorrect parameter object types into a method such

as an indicator.

Please check the overload methods for the proper parameter object types and pass in the

proper object. You can check the overload methods with NinjaScript editor’s Intelliprompt

when you call a method.

Error Description #1
The best overloaded method match for
'NinjaTrader.NinjaScript.StrategyBase.SetStopLoss(CalculationMode, double)' has some
invalid arguments

// Erroneous Sample Code - Close is a Series<double> object type and is not a valid

value to the SetStopLoss() method

SetStopLoss(CalculationMode.Price, Close);

// Resolution Sample Code - The SetStopLoss() method takes a double value so pass in

Close[0]

SetStopLoss(CalculationMode.Price, Close[0]);

Error Description #2
The best overloaded method match for
'NinjaTrader.Indicator.Indicator.SMA(NinjaTrader.NinjaScript.ISeries<double>, int)' has some
invalid arguments

// Erroneous Sample Code - Using an integer when the first parameter should be a

Series<double>

double myValue = SMA(5, 5);

// Resolution Sample Code - 'myValue' will take the value of the current bar's SMA

double myValue = SMA(Close, 5)[0];

NinjaScript 1595

© 2023 NinjaTrader, LLC

11.4.1.16 CS1503

The following CS1503 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error can occur when you try to assign a value to a Series<T> that is not of the correct

value type.

Series<double> objects can only contain double values. Series<bool> objects can only

contain bool values. Etc.

Error Description #1
Cannot implicity convert type from 'string' to 'double'

// Erroneous Sample Code - Cannot pass in a string to a Series<double>

Value[0] = "Close[0]";

// Resolution Sample Code - Sets Series<double> to the current bar's Close value

Value[0] = Close[0];

Error Description #2
Cannot implicitly convert type 'NinjaTrader.NinjaScript.Indicators.SMA' to 'double'

// Erroneous Sample Code - Cannot pass in a Series<double> object to a Series<double>

Set() method

Values[0] = SMA(20);

// Resolution Sample Code - Sets Series<double> to the current bar's SMA(20) value

Values[0] = SMA(20)[0];

11.4.1.17 CS1513

The following CS1513 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
This error is most common with chaining if-else or loop statements.

Please check all code segments and statements are closed. Every opening curly brace '{'

needs a matching closing curly brace '}' .

Error Description #1
} expected

NinjaTrader 81596

© 2023 NinjaTrader, LLC

// Erroneous Sample Code - If statement is not closed

if (CurrentBar < 1)

{

// Do something

<--- Missing closing curly brace

// Resolution Sample Code - If statement is closed

if (CurrentBar < 1)

{

// Do something

}

11.4.1.18 CS1525

The following CS1525 error code information is provided within the context of NinjaScript. The

examples provided are only a subset of potential problems that this error code may reflect. In

any case, the examples below provide a reference of coding flaw possibilities.

Error Code Explanation
The compiler detected an invalid character in an expression.

Error Description #1
{ expected

// Erroneous Sample Code - If statement is not opened

protected override void OnBarUpdate()

{

 if(IsFirstTickOfBar)

}

// Resolution Sample Code - If statement is open and closed

protected override void OnBarUpdate()

{

 if (IsFirstTickOfBar)

 {

 // do something

 }

}

11.4.1.19 NoDoc

Unfortunately we do not have NinjaScript context based Help information on this specific error

code. You can check the Microsoft MSDN site section on error codes for futher information.

11.4.2 NinjaScript Editor Components

Overview
The NinjaScript Editor is a powerful scripting editor that allows you to create custom indicators,

strategies, and any other custom NinjaScript types used to enhance the NinjaTrader platform.

http://msdn.microsoft.com/en-us/library/5feh24w0(VS.71).aspx

NinjaScript 1597

© 2023 NinjaTrader, LLC

 The NinjaScript Editor can be opened by selecting the New menu from the NinjaTrader

Control Center. Then left mouse click on the menu item NinjaScript Editor

1. NinjaScript Explorer - Displays files, folders, and allows for additional file management

2. Tool bar - Moving your mouse over each icon will display the function of the icon button

3. Line numbers

4. Line modification marking - Yellow flags indicate unsaved line modifications where green

flags indicate saved modifications

5. Tabs for creating new scripts via the NinjaScript wizard and working on multiple scripts.

Context Menus
Context menus can be opened by right-clicking in the NinjaScript Editor.

NinjaTrader 81598

© 2023 NinjaTrader, LLC

Context Menu Items

Save Saves pending changes to the

currently open NinjaScript

Save As Creates a copy of the script and

attempts to rename the class

name so the new script is unique

Insert Code Snippet Inserts a code snippet (see Code

Snippets for more information)

Go To Line... Moves the cursor to the line of

code specified.

NinjaScript 1599

© 2023 NinjaTrader, LLC

Undo Undoes the last modification

Redo Applies the modification that was

last Undone

Cut Removes selected text and

copies to clipboard

Copy Copies selected text to clipboard

Paste Pastes the text saved in the

clipboard

Remove Removes the selected text

Select All Selects all text in the Code Editor

Debug Mode Sets if a debug dll should be

generated on compilation (see

Visual Studio Debugging for more

information)

References... Opens the list of dll references

used by NinjaTrader. This

includes dll's used by NinjaTrader

and dll's installed with custom

Add On's.

Show Warnings Enables Warning messages to be

seen alongside compile errors

Always On Top Sets the NinjaScript Editor to

viewed on top of other windows

Print Allows printing the content of this

window (see Printing Content for

more information)

Share Allows sharing the content of this

window (see Sharing Content for

more information)

NinjaTrader 81600

© 2023 NinjaTrader, LLC

Properties Opens the Properties menu (see

below)

Properties and Definitions

General

Auto hide NinjaScript explorer Sets if the NinjaScript explorer

should be collapsed by default

Debug mode Sets if a debug dll should be

generated on compilation (see

Visual Studio Debugging for more

information)

Inline syntax checking Sets if errors and warnings

should be detected as code is

NinjaScript 1601

© 2023 NinjaTrader, LLC

written (without needing to

compile)

Auto bracket completion Sets if opening characters should

automatically bed appended

closing characters. Works for

(parentheses), [brackets],

{braces}, <angled brackets>

Show indentation lines Displays vertical lines for code

formatting

Show Warnings Sets if code warnings should be

show on compilation.

Font Sets the font options

Window

Always on top Sets if the window will be always

on top of other windows.

11.4.3 NinjaScript Explorer

The NinjaScript Explorer provides a Folder view of all the supported NinjaScript categories

that can be developed in NinjaTrader.

Understanding the NinjaScript Explorer display

Folder Displays
The NinjaScript Explorer will organize each script installed on your system by

type of NinjaScript object (Indicator, Strategy, SuperDOM Column, etc). Each

folder will display the following scripts under each category:

1. Locked

scripts

Pre-built system scripts which come installed

with NinjaTrader which can be viewed as

read-only and are required for compilation (of

course you can safe a custom copy of those

to modify)

NinjaTrader 81602

© 2023 NinjaTrader, LLC

2. Custom

scripts

Any script imported, or under development,

which can be modified

3. Ignored

custom

scripts

Custom scripts which have been excluded

from compilation (see the "Excluding a script

from compilation" section below for more

information)

Pinning the NinjaScript Explorer

NinjaScript 1603

© 2023 NinjaTrader, LLC

1. By default the NinjaScript Explorer will be "pinned" to the right side of the

NinjaScript editor, however it can be collapsed out of view by pressing the pin icon

 located at the top right of the explorer window.

2. Once the NinjaScript Explorer is collapsed, you can quickly bring it back in view

simply by selecting the NinjaTrader Explorer tab located on the right side.

Selecting the pin icon again will re-pin the NinjaScript Explorer to the

NinjaScript Editor.

NinjaTrader 81604

© 2023 NinjaTrader, LLC

Right Click Menu
Right clicking on an individual folder or script will give you a number of different

menu items to help with the management of your custom scripts.

New Opens the NinjaScript Wizard for the

relevant object type.

Open Opens the selected script in a new tab

in the current NinjaScript Editor window

NinjaScript 1605

© 2023 NinjaTrader, LLC

Open In New

NinjaScript Editor

Opens the selected script(s) in a new

NinjaScript Editor window

Exclude From

Compilation

Prevents the selected script(s) from

being compiled (see the "Excluding a

script from compilation" section below

for more information)

Remove Removes the current file or folder from

the system

New Folder Creates a new custom folder to

organize your scripts

Rename Renames the current selected file or

folder

Managing scripts and folders

Opening an existing Script
There are two ways to open a script:

1. Double left mouse click on the script you wish to view or edit in the current

window

2. Right mouse click on the script and select open to view or edit the script as a

tab the current window, or select Open in NinjaScript Editor to open the script as a

tab in a new window

Creating new scripts
Right clicking on a NinjaScript category and selecting New... will open the

NinjaScript wizard allowing you to create new custom scripts.

Please see the Help Topic on the NinjaScript Wizard for more information.

Creating custom folders
The NinjaScript Explorer gives you the flexibility to relocate and organize your

custom scripts in a number of custom user defined folders.

NinjaTrader 81606

© 2023 NinjaTrader, LLC

· To create a new folder, simply right click on the NinjaScript folder category you

wish to organize, select New Folder, and use your keyboard to type a user

defined name to identify the folder.

Once you have created your new folder, using your mouse you can drag and drop

any custom scripts of it's category under this folder.

Notes:

1. You cannot relocate a locked system script.

2. You can only relocate a custom script if it is closed from the NinjaScript

Editor.

3. You can only relocate a script to a folder under it's own folder category (i.e.,

custom strategies can only be placed under the strategy folder, it would not

be possible to move it to an indicator folder)

4. If you move a child script that is called by a parent, please be sure to update

the references to the child as well, as the new folder you assigned will

automatically move the child to a new namespace

Renaming scripts and folders
There are two methods for renaming custom scripts:

NinjaScript 1607

© 2023 NinjaTrader, LLC

1. Right mouse click on the script from the NinjaScript explorer and select

Rename.

2. Select the desired script and press the F2 key on your keyboard

Renaming a script will automatically rename all relevant class names and all other

required components.

Notes:

1. You cannot rename a locked system script or folder.

2. You can only rename a custom script when it is closed.

3. You can only rename a folder if all of the scripts contained are closed.

Removing scripts and folders
There are two methods for removing custom scripts from your system

1. Right mouse click on the script from the NinjaScript explorer and select Remove

2. Select the desired script and press the DEL key on your keyboard

Removing a script will completely delete the script from your system. This action

cannot be undone.

Notes:

1. You cannot delete a locked system script or folder.

2. Removing a custom folder will delete all of the scripts contained within

Understanding Folders in the NinjaScript Editor and the File System
When you create a folder in the NinjaScript Editor, it will also be created in the file

system on your PC. For example, if you were to create a sub-folder named

"MyScripts" in the existing "Indicators" folder, a sub-folder would also be created in

the Documents\NinjaTrader 8\bin\Custom\Indicators folder. Once a sub-folder is

created, scripts can be created or moved in that folder using the same processes

outlined above.

Warning: Changes to Sub-folders directly through the file system will NOT be

reflected in the NinjaScript Editor. Creating and editing folders must be

performed within the NinjaScript Editor.

NinjaTrader 81608

© 2023 NinjaTrader, LLC

Excluding a script from compilation

Ignoring a script
There may be situations where you have a custom script installed on your system

that is preventing other scripts from compiling due to errors. The reason for this is

that NinjaTrader will compile ALL custom NinjaScript files into a single DLL for

performance reasons. If you find you have installed a script that is giving you

errors that you cannot resolve, or you're currently in the middle of developing a

script which is unable to compile, you can easily ignore these files from the

compiler from the NinjaScript editor.

· To ignore a script, right click on script name and select Exclude From

Compilation

When a script is ignored, it will be faded from the NinjaScript explorer to indicate

that it will not be compiled.

To include this script for the next compilation, simply right click on the script from

the NinjaScript Explorer and uncheck Exclude From Compilation

Note: You cannot excluded a locked system script or folder

Tip: You will also find an option to exclude scripts from compilation by right

NinjaScript 1609

© 2023 NinjaTrader, LLC

clicking on the listed of errors generated at the bottom of the NinjaScript editor

· Selecting Exclude From Compilation will ignore only the NinjaScript file selected

· Selecting Exclude All From Compilation will exclude all the NinjaScript files

currently with errors

11.4.4 NinjaScript Wizard

The NinjaScript Wizard is used to generate the minimum code to get started programming

any supported NinjaScript type. This wizard will allow you to define any default properties,

add custom input parameters, add additional data series, and add any relevant event

methods. There are a number of different properties and options available in the NinjaScript

Wizard depending on the type of NinjaScript object you are creating.

The information on this page is to be used as a standard overview of the various components

of the NinjaScript Wizard. For more information on NinjaScript methods and properties,

please see the NinjaScript Language Reference section of our Help Guide.

Opening the NinjaScript Wizard

Creating a new NinjaScript file
The NinjaScript Wizard can be opened from the NinjaScript Editor by selecting

the + symbol on the tab row, and then selecting the NinjaScript object type you

wish to develop.

NinjaTrader 81610

© 2023 NinjaTrader, LLC

You can also right click on any of the NinjaScript categories listed in the NinjaScript

Explorer and select "New..."

Understand the NinjaScript Wizard Display

NinjaScript 1611

© 2023 NinjaTrader, LLC

Display Overview

1. Wizard

Navigation

Menu

Used to navigate to various pages of the wizard.

 You can skip ahead or return to any page in the

wizard at any time.

2. Wizard

Screen

Displays relevant information pertaining to the

step of wizard you have navigated to and will

provide instructions to help you define your

script at various stages.

3. Wizard

Controls

Buttons used to perform various actions

pertaining to the script that is being created.

Selecting Generate at any time will exit the

wizard and open your script in the NinjaScript

Code Editor (Note: You cannot return back to

the NinjaScript Wizard once the code is

generated).

Understanding the Wizard Screens

Optional Pages

NinjaTrader 81612

© 2023 NinjaTrader, LLC

The NinjaScript Wizard has a number of different pages available used to define

various steps of your custom script. Please note that the table below describes

ALL of the pages available from the Wizard, but does not imply that these steps

will be available for the script you are currently creating.

Welcome The first step of the Wizard, used to identify

which type of object is being created

General Used to define a name and description to

identify the NinjaScript file

Default

Properties

Sets various properties and start behavior for

the script being created

Additional

Data

Used to optionally add additional data series

such as minute, tick, etc or even custom series

you may plan on calculating programmatically

Additional

Event

Methods

Optionally add additional event methods to your

custom script, such as OnMarketData,

OnMarketDepth, etc

Input

Parameter

s

Used to define any public properties that may be

used in your script

Plots and

Lines

Optionally add visual plots or lines to your script

for charting purposes

Finish Last page of the Wizard, gives you a chance to

go back and review each page if desired before

finishing generating the script.

11.4.5 Code Snippets

Code Snippets can provide you with useful code templates to speed up your coding process.

Understanding Code Snippet shortcuts

You can quickly add commonly used methods and code structures

NinjaScript 1613

© 2023 NinjaTrader, LLC

via
· Short cut characters

· Clicking on your right mouse button and selecting the menu name "Insert Code

Snippet"

· Pressing the F2 key on your keyboard

How to use Code Snippet shortcuts via the keyboard

Using the keyboard
Enter the text in the left column and press the "Tab" key within the NinjaScript

Editor.

Current Bar Values

cb CurrentBar

o Open[0]

h High[0]

l Low[0]

v Volume[0]

i Input[0]

Previous Bar Values

c1 Close[1]

o1 Open[1]

h1 High[1]

l1 Low[1]

v1 Volume[1]

NinjaTrader 81614

© 2023 NinjaTrader, LLC

i1 Input[1]

Indicator Plotting

line AddLine(new Stroke(Brushes.Blue, 1), 0,

"Line");

plot AddPlot(new Stroke(Brushes.Blue, 1),

PlotStyle.Line, "Plot");

Arithmetic

abs Math.Abs(value)

min Math.Min(value1, value2)

max Math.Max(value1, value2)

Event Handler Callback Methods

acc

ount

protected override void

OnAccountItemUpdate(Account account, AccountItem

accountItem, double value)

{

}

trad

e

protected override void OnAddTrade(Cbi.Trade

trade)

{

}

bars

cha

nge

public override void OnBarsChanged()

{

}

NinjaScript 1615

© 2023 NinjaTrader, LLC

min

max

public override void OnCalculateMinMax()

{

 // It is important to set MinValue and MaxValue

to the min/max Y values your drawing tool uses if

you want it to support auto scale

}

calc

perf

protected override void

OnCalculatePerformanceValue(StrategyBase strategy)

{

}

con

nect

ion

protected override void

OnConnectionStatusUpdate(ConnectionStatus

orderStatus, ConnectionStatus priceStatus)

{

}

data

poin

t

protected override void OnDataPoint(Bars bars,

double open, double high,

 double low, double close, DateTime

time,

 long volume, bool isBar, double

bid, double ask)

 {

 }

exe

cuti

on

protected override void

OnExecutionUpdate(Execution execution, string

executionId, double price,

 int quantity, MarketPosition

marketPosition, string orderId, DateTime time)

 {

 }

fund

ame

ntal

protected override void

OnFundamentalData(FundamentalDataEventArgs

fundamentalDataUpdate)

{

}

NinjaTrader 81616

© 2023 NinjaTrader, LLC

data protected override void

OnMarketData(MarketDataEventArgs marketDataUpdate)

{

}

dept

h

protected override void

OnMarketDepth(MarketDepthEventArgs

marketDepthUpdate)

{

}

mer

gep

erf

protected override void

OnMergePerformanceMetric(PerformanceMetricBase

merge)

{

}

mou

sed

public override void OnMouseDown(ChartControl

chartControl, ChartPanel chartPanel, ChartScale

chartScale, ChartAnchor dataPoint)

{

}

mou

sem

public override void OnMouseMove(ChartControl

chartControl, ChartPanel chartPanel, ChartScale

chartScale, ChartAnchor dataPoint)

{

}

mou

seu

public override void OnMouseUp(ChartControl

chartControl, ChartPanel chartPanel, ChartScale

chartScale, ChartAnchor dataPoint)

{

}

opti

miz

e

protected override void OnOptimize()

{

}

NinjaScript 1617

© 2023 NinjaTrader, LLC

orde

rt

protected override void OnOrderTrace(DateTime

timestamp, string message)

{

}

orde

ru

protected override void OnOrderUpdate(Order order,

 double limitPrice, double stopPrice,

 int quantity, int

 filled, double averageFillPrice,

 OrderState

orderState, DateTime time, ErrorCode error,

 string

nativeError)

 {

 }

posi

tion

protected override void OnPositionUpdate(Position

position, double averagePrice, int quantity,

MarketPosition marketPosition)

{

}

rend

er

protected override void OnRender(ChartControl

chartControl, ChartScale chartScale)

{

}

win

dow

c

protected override void OnWindowCreated(Window

window)

{

}

win

dow

d

protected override void OnWindowDestroyed(Window

window)

{

}

Control Statements

NinjaTrader 81618

© 2023 NinjaTrader, LLC

if if (expression)

{

}

else

{

}

for for (int index = 0; index < count; index++)

{

}

switch switch (expression)

{

 case value1:

 break;

 case value2:

 break;

 default:

 break;

}

Drawing

Shor

tcut

Method Signature

dap Draw.AndrewsPitchfork(this, "MyAndrewsPitchfork",

 false, 10, Close[10], 5,

High[5], 0, Low[5], Brushes.Blue,

DashStyleHelper.Solid, 1);

da Draw.Arc(this, "MyDrawArc", false, 10, Close[10],

 0,

Close[0], Brushes.LimeGreen, DashStyleHelper.Dot,

 2);

NinjaScript 1619

© 2023 NinjaTrader, LLC

dd Draw.ArrowDown(this, "MyArrowDown", false, 0,

High[0], Brushes.Red);

du Draw.ArrowUp(this, "MyArrowUp", false, 0, Low[0],

 Brushes.Red);

ddi Draw.Diamond(this, "MyDiamond", false, 0, High[0]

 + 2 * TickSize, Brushes.Blue);

dt Draw.Dot(this, "MyDot", false, 0, High[0] + 2 *

TickSize, Brushes.Blue);

de Draw.Ellipse(this, "MyEllipse", 10, Low[10], 0,

High[0], Brushes.Blue);

di Draw.ExtendedLine(this, "MyExtendedLine", 10,

Close[10], 0, Close[0], Brushes.Blue);

dfc Draw.FibonacciCircle(this, "MyFibonacciCircle",

true, 10, Close[10], 0, Close[0]);

dfe Draw.FibonacciExtensions(this,

"MyFibonacciExtensions", true, 15, Close[15],

 10, Close[10], 5, Close[5]);

dfr Draw.FibonacciRetracements(this,

"MyFibonacciRetracements", false, 10, Close[10],

0, Close[0]);

dft Draw.FibonacciTimeExtensions(this,

"MyFibonacciTimeExtensions", false, 10,

Close[10], 0, Close[0]);

dg Draw.GannFan(this, "MyGannFan", true, 10,

Close[10]);

dh Draw.HorizontalLine(this, "MyHorizontalLine",

Close[0], Brushes.Blue);

dl Draw.Line(this, "MyLine", 10, Close[10], 0,

Close[0], Brushes.Blue);

NinjaTrader 81620

© 2023 NinjaTrader, LLC

dy Draw.Ray(this, "MyRay", 10, Close[10], 0,

Close[0], Brushes.Blue);

dr Draw.Rectangle(this, "MyRectangle", 10, Low[10],

0, High[0], Brushes.Blue);

dre Draw.Region(this, "MyRegion", CurrentBar, 0,

Bollinger(2, 14).Upper,

Bollinger(2, 14).Lower, Brushes.Green,

Brushes.Blue, 50);

drx Draw.RegionHighlightX(this, "MyRegionHighlightX",

 10, 0, Brushes.Blue);

dry Draw.RegionHighlightY(this, "MyRegionHighlightY",

 High[0], Low[0], Brushes.Blue, Brushes.Green,

20);

drr Draw.RiskReward(this, "MyRiskReward", false, 0,

High[0], 10, Low[0], 2, true);

dru Draw.Ruler(this, "tag1", true, 4, Low[4], 3,

High[3], 1, Low[1]);

ds Draw.Square(this, "MySquare", false, 0, High[0] +

 2 * TickSize, Brushes.Blue);

dx Draw.Text(this, "MyText", "Sample text ", 0,

High[0] + 2 * TickSize, Brushes.Blue);

dxf Draw.TextFixed(this, "MyTextFixed", "Text to

draw", TextPosition.TopRight);

dtc Draw.TrendChannel(this, "TrendChannel", true, 10,

 Low[10], 0, High[0], 10, High[10] + 5 *

TickSize);

dtd Draw.TriangleDown(this, "MyTriangleDown", false,

0, High[0] + 2 * TickSize, Brushes.Red);

dtu Draw.TriangleUp(this, "MyTriangleUp", false, 0,

Low[0] - 2 * TickSize, Brushes.Blue);

NinjaScript 1621

© 2023 NinjaTrader, LLC

dv Draw.VerticalLine(this, "MyVerticalLine", 0,

Brushes.Blue);

How to insert Code Snippets via the mouse or F2 key

Via mouse or pressing the F2 key
1. Right mouse click in the NinjaScript Editor and select the menu name "Insert

Code Snippet"

2. A menu will display all available code snippets.

NinjaTrader 81622

© 2023 NinjaTrader, LLC

11.4.6 Compile Errors

When compiling a custom indicator or strategy it is possible and likely that you
will generate compile errors.
· NinjaTrader will compile ALL NinjaScript files NOT only the file you are working on

· A list of compile errors for all files will be displayed in the lower portion of the NinjaScript

Editor

· Double click on an error to load the problem file and highlight the problem area

· Click on the error code to bring up Help Documentation on a specific error

· Right click on the error to exclude the problem file from compilation (see the section on

Excluding a script from compilation for more information)

The image below illustrates a compile error
1. Section where compile errors are displayed. Errors in the current loaded file are color

coded a light color while errors in other files have a darker color code.

2. The file that contains the error

3. A description of the error

4. A error code link that will open the Help Guide with any relevant error code information

5. Line number and column number of the error

6. Error is underlined with a red wavy line

The error highlighted by icon (6) below shows that the expression is not closed with a

semicolon. The expression should be:

double myValue = SMA(20)[0];

NinjaScript 1623

© 2023 NinjaTrader, LLC

11.4.7 Intelliprompt

What is Intelliprompt?
Intelliprompt is a form of automated autocompletion popularized by the Microsoft Visual Studio

Integrated Development Environment. It also serves as documentation and disambiguation for

variable names, functions and methods. Intelliprompt is built into the NinjaScript Editor resulting

in an efficient environment to code your custom indicators and strategies.

How to access the Intelliprompt list box

Within the NinjaScript Editor you can type "this." to bring up the Intelliprompt list box.

The list box contains all methods (functions) and properties available for use. You

can select a method or property by simply selecting it via your mouse, or scrolling

with your up or down arrow key. Pressing either the "Tab" or "Enter" key will

automatically insert the code into the NinjaScript Editor. While in the list box, you

can press any letter key to rapidly scroll down to the next property or method

beginning with the letter of the key you pressed.

In the image below:
1. A property

2. A method

If you know that you want to access the Simple Moving Average indicator method

which is SMA(), and you think it starts with "SM" enter "SM" and press CTRL-

Space Bar which would display the Intelliprompt list box below.

NinjaTrader 81624

© 2023 NinjaTrader, LLC

Pressing CTRL + space bar after any text will always either
· Bring up the Intelliprompt list box with related methods and properties

· Automatically insert code if the text can uniquely identify a method or property

· More keyboard shortcuts could be reviewed under this link.

Understanding Method Description and Signatures

When selecting a method
1. Type in "(" to display the method description and signature

2. A light yellow colored frame will appear with the method description and

available signatures

3. In the image below you will see "1 of 3" which means that we are looking at the

first of three available method signatures. You can scroll through all available

signatures by pressing on the arrow up and down keys.

What is a method signature?
A method signature is a common term used in object-orientated programming to

uniquely identify a method. This usually includes the method name, the number

and type of its parameters and its return type.

From the image above, the DMI() method represents the Dynamic Momentum

Index indicator has two method signatures:

NinjaScript 1625

© 2023 NinjaTrader, LLC

DMI(int period)

DMI(IDataSeries inputData, int period)

11.4.8 Output

The NinjaScript Output is a powerful debugging tool which can be used to further analyze

valuable information generated by your NinjaScript files. The Output window will only display

data when other debugging methods such as the Print() or TraceOrders (for strategies) have

been configured in a custom script.

You can open the NinjaScript Output window by going to the New menu, and selecting
NinjaScript Output

Understanding the Output window display

Display Overview

1. Output

table

The main component of the Output window, will

display any Print or Information message sent

from a script

2.

Scrollbar

Used to navigate up/down on the output window

3. Output

tabs

Two tabs available allowing you to separate the

Print information for separate scripts.

4. Line

highlight

Left clicking on a line will highlight a particular

point of interest and will remain highlighted as the

Output window updates or is scrolled up and

down

NinjaTrader 81626

© 2023 NinjaTrader, LLC

Right click menu

Clear Clears the current content of

the select Output window tab

Find... Searches for a term in the

Output window

Save As... Saves the current content of

the Output window in a text

file

Always On Top Sets the window to always be

on top of other windows

Dual View Enables/Disables the splitting

of the Output tabs between

NinjaScript 1627

© 2023 NinjaTrader, LLC

the window allowing you to

view both tabs at

simultaneously

Synchronize Vertical

Scrolling

When enabled, both tabs will

scroll up/down at the same

time and pace

NinjaScript Utilization Monitor Opens the NinjaScript

Utilization Monitor window

Print Displays options for printing

the current window content to

your printer

Share Displays the Share options

Properties Sets the Output window

properties

Understanding the dual tab view

Dual view
You can optionally split the Output window tab's into a dual view which will allow
you to view both outputs windows at the same time. To enable this feature, simply
right click on the Output window and select Dual view

NinjaTrader 81628

© 2023 NinjaTrader, LLC

In the image above, we have enabled the dual view mode where we can see the
output from two separate indicators. MyCustomIndicator is programmed to print
to the Output 1 tab, while MyCustomIndicator1 is programmed to print to the
Output 2 tab. (Please see the Help Guide article on the PrintTo() method for
more information on programming a custom script to print to a second output tab)

Synchronized Scrolling
While the Output window is in Dual view mode, each output window will have an

independent scroll bar which allows you to navigate each output tab separately.

However if desired, you can synchronize the vertical scrolling between these two

windows which will allow you to easily compare the output from two difference

scripts where both tabs will scroll up/down equally at the same time.

To enable this feature, right click on the Output window and select the

Synchronized Vertical Scrolling menu item.

Searching and highlighting

NinjaScript 1629

© 2023 NinjaTrader, LLC

Using the Find Tool
If you would like to search for a specific value or text displayed in your Output

window, you can use the Find tool to both highlight and navigate any terms that

match your search.

To bring up the Find menu, right click on the Output window and select Find (or

use CTRL + F as a keyboard shortcut).

To search for a specific term:

1. Enter the text/value you wish to search for

2. Specify which Output tab you would like to search

3. Optionally check Match case to only look for terms which contain the exact text

case of your term (i.e., Close would not be the same as close)

4. Select the Find button which will navigate to and highlight the next matching

term (indicated by the green arrow in the image below)

5. The search will also highlight any other matches in the output window that

match the search

Selecting the Find button again will continue to search through the Output window

and will highlight the next match.

NinjaTrader 81630

© 2023 NinjaTrader, LLC

Tip: Without the Find tool, you can also highlight terms simply by double clicking

on the text in the output window. Doing so will automatically search the highlighted

term and highlight all results.

Clearing and saving output information

Clearing Output Information
After some time, you may feel the need to erase all the current information in the

current output tab. To do so, simply right click on the current output tab and select

"Clear".

Tip: You can also use the ClearOutputWindow() method in directly your script to

automatically clear the output content at a specific event or interval

Saving Output Information

NinjaScript 1631

© 2023 NinjaTrader, LLC

If you would like to save the current results of your output, you can right mouse

click on the desired output tab and select "Save As". Doing so will provide you with

a Save As dialog window which will allow you to save your output in a Text (.txt)

file at any location on your computer.

Output window properties

The following properties are available for configuration within the NinjaScript

Output properties window:

Window

Always on top Sets the Output window to be

on top of other windows

Dual view Enables/Disables the splitting

of the Output tabs between

NinjaTrader 81632

© 2023 NinjaTrader, LLC

the window allowing you to

view both tabs at

simultaneously

Font - Output 1 Sets the font display for the

Output 1 tab

Font - Output 2 Sets the font display for the

Output 2 tab

Synchronize vertical scrolling Enables/Disables where both

tabs will scroll up/down at the

same time and pace

NinjaScript Utilization Monitor

The NinjaScript Utilization monitor is opened via a right click in the NinjaScript

Output window and will be mainly used as a diagnostic tool for performance

issues.

It will track any NinjaScript objects total resource time from the moment the

window was opened:

· NinjaScript Utilization monitor window will not be saved in any workspace file

· NinjaScript Utilization monitor window works across all workspaces using a

single window instance

· NinjaScript Utilization monitor window will work even if hidden / non-visible

When using it as debugging aid, it's recommended to focus on the top resource

using NinjaScript's, while absolute total time is negligible.

Also it's important to understand that a resource heavy NinjaScript could be

meaning:

a) the NinjaScript may not be coded as efficiently as possible and would be

worthwhile to review if everything has been done to achieve optimal performance

b) it could be doing intense / steady calculations by design and a higher than

average resource use therefore could likely not be avoided.

NinjaScript 1633

© 2023 NinjaTrader, LLC

It should be thought of a gauge to see where likely performance / code

optimization time is likely most wisely spend if the overall performance footprint is

to be reduced.

Our support team is trained with this process and is available to assist.

11.4.9 Visual Studio Debugging

You can debug your NinjaScript objects using Microsoft Visual Studio. NinjaScript objects are

compiled into a single DLL, named "NinjaTrader.Custom.dll." When debugging, a special

debug DLL is created for temporary use, with the same name as the release version.

Notes:

· Using the debug DLL can incur a runtime performance impact, so it is recommended to

disable Visual Studio debugging and re-compile your scripts when finished. This will

replace the debug DLL with the release version.

NinjaTrader 81634

© 2023 NinjaTrader, LLC

· The Visual Studio button will work with Visual Studio 2019 or 2022 - if multiple versions

are installed, it will start the highest one.

Using Visual Studio Debugging
1. In the NinjaScript Editor, enable "Debug Mode" via the right-click menu, as seen in the image

below. After this, compile your scripts to create the debug DLL.

2. From the NinjaScript Editor, click on the Visual Studio icon from the tool bar, which will

automatically load the NinjaTrader.Custom project with your installed version of Visual Studio.

3. In Visual Studio, select Debug, then select Attach to Process

NinjaScript 1635

© 2023 NinjaTrader, LLC

4. Select NinjaTrader from the list of processes, then select Attach. Be sure the "Attach to"

field is set to "Automatic: Managed code" or "Managed code".

NinjaTrader 81636

© 2023 NinjaTrader, LLC

4. Open the NinjaScript source file within Microsoft Visual Studio and set your break point(s)

NinjaScript 1637

© 2023 NinjaTrader, LLC

5. Run your NinjaScript object in NinjaTrader and it should stop at your break points and all the

debugging tools and information should be available to inspect the current state of the code.

Tip: You can also use Visual Studio as editor for your NinjaScript files - for that open the

project as in step 2 above and then use Visual Studio for editing and once done save the

file (don't run or build the solution then in Visual Studio), preferably with the NinjaScript

editor opened still at the same time, so changes would be auto compiled in then.

11.4.10 Editor Keyboard Shortcuts

The NinjaScript Editor includes a range of keyboard shortcuts not available in other areas of

the platform. Below is a list of available shortcuts and the actions they perform:

Ctrl + C,

Ctrl + Insert

Copy to Clipboard

Ctrl + X,

Shift +

Delete

Cut to Clipboard

Ctrl + L Cut line to Clipboard

Ctrl + V,

Shift +

Insert

Paste from Clipboard

Ctrl + Y,

Ctrl + Shift

+ Z

Redo action

Ctrl + Z Undo action

Ctrl +

Backspace

Backspace to previous word

Ctrl + Shift

+ L

Delete line

Ctrl +

Delete

Delete to next word

Ctrl + Enter Open line above

NinjaTrader 81638

© 2023 NinjaTrader, LLC

Ctrl + Shift

+ Enter

Open line below

Ctrl +

Space

Intelliprompt auto-complete

Ctrl + Shift

+ Space

Intelliprompt show parameters

Ctrl + T Transpose characters

Ctrl + Shift

+ T

Transpose words

Shift + Alt +

T

Transpose lines

Ctrl + Shift

+ U

Make uppercase

Shift + Tab Remove tab indent

Alt + Up Move selected lines up

Alt + Down Move selected lines down

Ctrl + Left Move to previous word

Ctrl + Right Move to next word

Ctrl +

Home

Move to document start

Ctrl + End Move to document end

Ctrl +

PageUp

Move to visible top of document

Ctrl +

PageDown

Move to visible bottom of document

Ctrl +] Move to matching bracket

NinjaScript 1639

© 2023 NinjaTrader, LLC

Ctrl +

Down

Scroll down

Ctrl + Up Scroll up

Shift +

PageUp

Select all above

Shift +

PageDown

Select all below

Ctrl + Shift

+ PageUp

Select visible area above

Ctrl + Shift

+

PageDown

Select visible area below

Ctrl + Shift

+ W

Select word

Ctrl + Shift

+]

Select up to matching bracket

Shift + Alt +

Arrow Keys

Expand/contract selection region

NinjaTrader 81640

© 2023 NinjaTrader, LLC

11.5 Educational Resources

Education Resources

The following pages contain valuable resources for developing your custom NinjaScript

objects within NinjaTrader. Continuing education and resources can be found on the

NinjaTrader Support Forum.

Development
› AddOn Development Overview
› Considerations For Compiled Assemblies

› Developing for Tick Replay
› Historical Order Backfill Logic
› Multi-Threading Consideration for NinjaScript

› Multi-Time Frame & Instruments

› Understanding the lifecycle of your NinjaScript objects

› Using 3rd Party Indicators

› Using ATM Strategies

› Using BitmapImage Objects with Buttons

› Using Historical Bid/Ask Series

› Using Images and Geometry with Custom Icons

› Working with Brushes

› Working with Pixel Coordinates

› Working with Price Series

Reference
› Reference Samples

› Tips

› C# Method (Functions) Reference

Tutorials
> Basic Programming Concepts

> Developing Indicators

> Developing Strategies

11.5.1 AddOn Development Overview

AddOn Development Basics
The NinjaScript AddOn framework provides functionality reaching across the NinjaTrader

platform while granting access to certain core methods and properties not contained within

the NinjaScript namespace. In addition to creating your own independent window or modifying

https://forum.ninjatrader.com/

NinjaScript 1641

© 2023 NinjaTrader, LLC

the user interface and functionality of existing NinjaTrader windows (charts, etc.), AddOns

can also subscribe to live market data, access account information, and more.

Note: Most of the topics covered on this page and its sub-pages can be seen in a fully

functional example of the AddOn Framework accessible on this page. There are two

versions deployed when you can access depending on your desired development

environment. The pros and cons of each approach are described in the following section.

 In either version, the heavily commented code in the example can supplement the

information on these pages to provide deeper insight.

NinjaScript Editor Development Environment (NinjaScript Basic)
The NinjaScript Editor can be used to create and write custom AddOns in C#

Pros

· Use the familiar NinjaScript editor (if you are uncomfortable with Visual Studio)

· Changes to the AddOn are reflected immediately upon NS Editor Compile and does not

require restart

Cons

· If you wish to design a custom NTWindow, XAML files cannot be edited in the NinjaScript

editor.

· NinjaScript editor lacks support of common development and debugging tools available in

an IDE's like Visual Studio

Below is a NinjaScript Editor compatible zip file (which also contains a XAML file)

· Download AddOn Framework NinjaScript Basic file to your desktop

· From the Control Center window select the menu Tools > Import > NinjaScript

· Select the downloaded file

Once imported, the AddOn can be launched via the New menu in the Control Center

AddOn Development Environment (Visual Studio Advanced)
Since AddOns can include multiple classes, unique user interfaces, and various file types

(XAML, sounds, etc.), the recommended development environment for AddOns differs from

other NinjaScript Types. Following the guidelines below to set up an AddOn development

environment can help to streamline the process.

Pros

· Use Visual Studio or a comparable IDE to create a solution linking all project files together

· Use your IDE to build a DLL, rather than exporting through NinjaTrader

· This will allow you to bundle XAML and other files into the DLL

https://ninjatrader.com/support/helpGuides/nt8/samples/Addon_Framework_NinjaScript_Basic.zip

NinjaTrader 81642

© 2023 NinjaTrader, LLC

· Set a post-build event to place the DLL into the appropriate folder (NinjaTrader

8/bin/Custom)

· Set a Debug Start Action to launch NinjaTrader

Cons

· NinjaTrader needs to be restarted in order to re-load the compiled DLL after changes

If you use this setup and build a DLL with your IDE, the IDE will automatically place it where it

needs to be and immediately launch the platform for testing any changes.

Below is a complete Visual Studio project with this setup in place. Simply unzip the

contents of this archive to your desired location, then open the "NinjaTraderAddOnProject.sln"

solution in Visual Studio.

Download Visual Studio Solution for AddOn Development

Notes:

· This Visual Studio solution cannot be imported into NinjaTrader. It must be opened in

Visual Studio.

· The default behavior of the project file uses the following path in the Start Action: C:

\Program Files\NinjaTrader 8\bin\NinjaTrader.exe. If you have installed NinjaTrader in a

different directory, you will need to adjust the file path accordingly.

· The solution targets .NET 4.8 with NinjaTrader Release R23 or higher, if you open it in a

lesser .NET version Visual Studio will prompt you to download the required higher

version SDK.

Creating Your Own AddOn Window
NinjaScript developers can utilize the AddOn framework to create free-standing, independent

windows to provide custom functionality. Helper classes are available in the framework to

instantiate windows styled the same as pre-built NinjaTrader windows, including familiar

functionality such as window linking, the tabbed interface, and the ability to save the window

and its state in workspaces. In addition, general WPF user interface elements and XAML can

be used to style and modify windows using the .NET framework.

For a detailed walkthrough of creating your own window using NinjaScript helper classes, see

the Creating Your Own AddOn Window page.

https://ninjatrader.com/support/helpGuides/nt8/samples/NinjaTraderAddOnProject.zip

NinjaScript 1643

© 2023 NinjaTrader, LLC

The image above shows a completely new window created by a custom AddOn.

Other Uses for an AddOn
An AddOn does not require its own window to function. It can instead be used to accomplish

non-UI-driven functionality across the platform, such as monitoring market data or accessing

account, position, and order information. AddOns can also be used to add functionality or

interface elements to other NinjaTrader windows, such as charts.

For detailed information on other common uses of an AddOn, see the Other Uses for an

AddOn page.

NinjaTrader 81644

© 2023 NinjaTrader, LLC

In the image above, the custom "Sample button" button has been drawn on a chart window

using an AddOn.

NinjaScript 1645

© 2023 NinjaTrader, LLC

11.5.1.1 Developing Add Ons

Add Ons Overview
Add Ons are incredibly powerful NinjaScript objects that let you create unprecedented tools

which are seamlessly integrated (visually and functionally) into NinjaTrader. Experienced

programmers can leverage the information available through the framework to create exciting

new windows and utilities that can give users an incredible edge over the markets.

How to make Add Ons
The process to make an Add On is fairly simple once the structure is understood. A few

questions should be answered to determine how to build your Add On:

1. Where should the entry point for the Add On be? E.g. Should it be launched from the

Control Center menus? Should it be launched from a Chart?

2. Should the Add On leverage the tab functionality available in NinjaTrader?

3. Should the Add On leverage the window linking functionality available in NinjaTrader?

4. Should the Add On be persisted in NinjaTrader workspaces?

Once the functionality of your Add On is determined you can use the following building blocks

to create your Add On:

 AddOnBase This is where you create the entry point for the

Add On.

NTWindow This is where you define the parent window

container for your Add On. Tabs would reside

within this parent window should you choose.

This is also where workspace persistence

would be created.

NTTabPage This is where you define the content of each

tab that resides inside NTWindow. This is also

where you create the window linking

functionality.

Class implementing

the INTTabFactory

interface

This is necessary to ensure proper tab

functionality like adding, removing, moving tabs

around in your NTWindow.

The general flow goes from AddOnBase > NTWindow > INTTabFactory > NTTabPage.

AddOnBase determines the user entry point and then creates the event handler to create the

NTWindow. NTWindow calls the tab factory which then brings in the NTTabPage content in

the form of tabs into NTWindow.

NinjaTrader 81646

© 2023 NinjaTrader, LLC

11.5.1.2 Creating Your Own AddOn Window

The NTWindow Class
The NTWindow class allows you to quickly build windows using the same style and skin as

other windows in NinjaTrader. An NTWindow does not contain user-interface functionality, but

rather serves as a container for instances of NTTabPage, which will contain controls and

functionality for the window.

/* This is where we define our AddOn window. The actual content is

contained inside the tabs of the window defined in a custom class

inheriting from NTTabPage.

 We must create a new window class which inherits from

Tools.NTWindow for styling and implements the IWorkspacePersistence

interface for the ability to save/restore from workspaces.*/

public class AddOnFrameworkWindow : NTWindow, IWorkspacePersistence

{

 public AddOnFrameworkWindow()

 {

 // set Caption property (not Title), since Title is managed

internally to properly combine selected Tab Header and Caption for

display in the windows taskbar

 // This is the name displayed in the top-left of the window

 Caption = "AddOn Framework";

 // Set the initial dimensions of the window

 Width = 1085;

 Height = 900;

 }

}

Using TabControl for Tab Functionality
After declaring an NTWindow, you can enable tab functionality on it (creating new tabs,

copying tabs, etc.). The process for implementing tab functionality must be done within the

constructor for your NTWindow, using the following process:

1. Instantiate a new TabControl object

2. Call helper methods of the TabControlManager class, passing in your TabControl object

as an argument, to enable specific functionality

3. Use the same approach as #2 to set an NTTabFactory for your TabControl (see below for

more information)

4. Set the Content property of your NTWindow to your TabControl

NinjaScript 1647

© 2023 NinjaTrader, LLC

public class AddOnFrameworkWindow : NTWindow, IWorkspacePersistence

{

 public AddOnFrameworkWindow()

 {

 ...

 // TabControl should be created for window content if tab

features are wanted

 TabControl tc = new TabControl();

 // Attached properties defined in TabControlManager class

should be set to achieve tab moving, adding/removing tabs

 TabControlManager.SetIsMovable(tc, true);

 TabControlManager.SetCanAddTabs(tc, true);

 TabControlManager.SetCanRemoveTabs(tc, true);

 // if ability to add new tabs is desired, TabControl has to

have attached property "Factory" set.

 TabControlManager.SetFactory(tc, new

AddOnFrameworkWindowFactory());

 Content = tc;

 }

}

Note the instantiation of a new AddOnFrameworkWindowFactory in the example above. In

this example, AddOnFrameworkWindowFactory is a custom class implementing the

INTTabFactory interface. Within this class, the CreateParentWindow() and CreateTabPage()

methods contained in INTTabFactory are hidden, as seen below:

NinjaTrader 81648

© 2023 NinjaTrader, LLC

/* Class which implements Tools.INTTabFactory must be created and

set as an attached property for TabControl

in order to use tab page add/remove/move/duplicate functionality */

public class AddOnFrameworkWindowFactory : INTTabFactory

{

 // INTTabFactory member. Required to create parent window

 public NTWindow CreateParentWindow()

 {

 return new AddOnFrameworkWindow();

 }

 // INTTabFactory member. Required to create tabs

 public NTTabPage CreateTabPage(string typeName, bool isTrue)

 {

 return new NinjaTraderAddOnProject.AddOnPage();

 }

}

Note: Take note of the instantiation of the AddOnPage class in the example above. In our

example, AddOnPage is a XAML-defined class. Thus, when CreateTabPage() is called on

an instance of AddOnFrameworkWindowFactory, it instantiates our XAML-defined user

interface. See below for more information on defining user interfaces in XAML.

Creating an NTTabPage within an NTWindow
With an NTWindow defined and a TabControl set up, the next step is to instantiate an

NTTabPage and add it to your TabControl. The first step is to define a class inheriting

NTTabPage and implementing the IInstrumentProvider and IIntervalProvider interfaces to set

up window-linking functionality.

NinjaScript 1649

© 2023 NinjaTrader, LLC

/* This is where we define the actual content of the tabs for our

AddOn window.

 Note: Class derived from Tools.NTTabPage has to be created if

instrument link or interval link functionality is desired.

 Tools.IInstrumentProvider and/or Tools.IIntervalProvider

interface(s) should be implemented.

 Also NTTabPage provides additional functionality for properly

naming tab headers using properties and variables such as

@FUNCTION, @INSTRUMENT, etc. */

public class AddOnFrameworkTab : NTTabPage,

NinjaTrader.Gui.Tools.IInstrumentProvider,

NinjaTrader.Gui.Tools.IIntervalProvider

{

 public AddOnFrameworkTab()

 {

 AddOnFrameworkWindowFactory myAddOnFrameworkWindowFactory =

new AddOnFrameworkWindowFactory();

 Content =

myAddOnFrameworkWindowFactory.CreateTabPage("AddOnPage",true);

 }

}

With this class defined, the next step is to add it to your TabControl. You can do this via the

AddNTTabPage() helper method contained in your TabControl object:

public class AddOnFrameworkWindow : NTWindow, IWorkspacePersistence

{

 public AddOnFrameworkWindow()

 {

 ...

 /* In order to have link buttons functionality, tab control

items must be derived from Tools.NTTabPage

 They can be added using extension method

AddNTTabPage(NTTabPage page) */

 tc.AddNTTabPage(new AddOnFrameworkTab());

 }

}

Setting Up Workspace Persistence
The last step in setting up the foundation for your custom window is to configure it to be saved

and restored in NinjaTrader workspaces.

NinjaTrader 81650

© 2023 NinjaTrader, LLC

1. Hide the WorkspaceOptions property of the implemented IWorkspacePersistence

interface

2. Use a delegate to set the WorkspaceOptions property to a new instance of the

WorkspaceOptions class inside the NTWindow's constructor

3. Hide the Restore() method of IWorkspacePersistence to call the static

RestoreFromXElement() method on the MainTabControl property

4. Hide the Save() method of IWorkspacePersistence to call the static SaveToXElement

method in the same way

public class AddOnFrameworkWindow : NTWindow, IWorkspacePersistence

{

 public AddOnFrameworkWindow()

 {

 ...

 // WorkspaceOptions property must be set

 Loaded += (o, e) =>

 {

 if (WorkspaceOptions == null)

 WorkspaceOptions = new

WorkspaceOptions("AddOnFramework-" + Guid.NewGuid().ToString("N"),

this);

 };

 }

 // IWorkspacePersistence member. Required for restoring window

from workspace

 public void Restore(XDocument document, XElement element)

 {

 if (MainTabControl != null)

 MainTabControl.RestoreFromXElement(element);

 }

 // IWorkspacePersistence member. Required for saving window to

workspace

 public void Save(XDocument document, XElement element)

 {

 if (MainTabControl != null)

 MainTabControl.SaveToXElement(element);

 }

 // IWorkspacePersistence member

 public WorkspaceOptions WorkspaceOptions { get; set; }

}

NinjaScript 1651

© 2023 NinjaTrader, LLC

Using XAML to Define Window Layout
There are two options available for laying out the user interface in your NTTabPage. The first

is to use XAML, a markup language commonly used to define graphical interfaces in WPF

applications. The process of pairing a XAML file with your C# classes is straightforward;

simply create your XAML class in it's own file within your project, and it can be packaged

together with your C# code in a DLL.

 Example of creating a two-column grid in XAML

<Grid Background="Transparent">

 <!-- Define our layout with two columns. Rows can then be

assigned to columns -->

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="55*"/>

 <ColumnDefinition Width="45*"/>

 </Grid.ColumnDefinitions>

</Grid>

Using C# to Define Window Layout
You are not required to use XAML for window layout. You can code everything in C# if you

choose. Defining user interface elements in C# is more verbose than XAML, but all of the

same functionality is available. The example below shows the C# equivalent of the XAML

code in the prior section.

 Example of creating a two-column grid in C#

Grid grid = new Grid();

grid.Background = new SolidColorBrush(Colors.Transparent);

ColumnDefinition col1 = new ColumnDefinition();

col1.Width = newGridLength(55);

ColumnDefinition col2 = new ColumnDefinition();

col2.Width = newGridLength(45);

grid.ColumnDefinitions.Add(col1);

grid.ColumnDefinitions.Add(col2);

Launching Your Window From the Control Center
Once your window is set up and laid out, you will need a way to launch it from the Control

Center. This can be done by adding a new item into one of the Control Center's menus (most

commonly the New menu). This can be accomplished in four steps:

1. Obtain a reference to the Control Center menu in question

2. Instantiate an NTMenuItem

NinjaTrader 81652

© 2023 NinjaTrader, LLC

3. Add your NTMenuItem into the menu

4. Attach you NTMenuItem's Click event to a custom event handler

5. Use your custom event handler to launch your NTWindow

// Will be called as a new NTWindow is created. It will be called

in the thread of that window

protected override void OnWindowCreated(Window window)

{

 // We want to place our AddOn in the Control Center's menus

 ControlCenter cc = window as ControlCenter;

 if (cc == null)

 return;

 /* Determine we want to place our AddOn in the Control Center's

"New" menu

 Other menus can be accessed via the control's "Automation ID".

For example: toolsMenuItem, workspacesMenuItem,

connectionsMenuItem, helpMenuItem. */

 existingMenuItemInControlCenter =

cc.FindFirst("ControlCenterMenuItemNew") as NTMenuItem;

 if (existingMenuItemInControlCenter == null)

 return;

 // 'Header' sets the name of our AddOn seen in the menu

structure

 addOnFrameworkMenuItem = new NTMenuItem { Header = "AddOn

Framework", Style =

Application.Current.TryFindResource("MainMenuItem") as Style };

 // Add our AddOn into the "New" menu

 existingMenuItemInControlCenter.Items.Add(addOnFrameworkMenuIte

m);

 // Subscribe to the event for when the user presses our AddOn's

menu item

 addOnFrameworkMenuItem.Click += OnMenuItemClick;

}

// Open our AddOn's window when the menu item is clicked on

private void OnMenuItemClick(object sender, RoutedEventArgs e)

{

 Core.Globals.RandomDispatcher.BeginInvoke(new Action(() => new

AddOnFrameworkWindow().Show()));

}

NinjaScript 1653

© 2023 NinjaTrader, LLC

As always, it is important to unsubscribe from event handlers and dispose of unused

resources when they are no longer needed. The OnWindowDestroyed() method can be used

to clean up our work from the examples above:

// Will be called as a new NTWindow is destroyed. It will be called

in the thread of that window

protected override void OnWindowDestroyed(Window window)

{

 if (addOnFrameworkMenuItem != null && window is ControlCenter)

 {

 if (existingMenuItemInControlCenter != null &&

existingMenuItemInControlCenter.Items.Contains(addOnFrameworkMenuIt

em))

 existingMenuItemInControlCenter.Items.Remove(addOnFrame

workMenuItem);

 addOnFrameworkMenuItem.Click -= OnMenuItemClick;

 addOnFrameworkMenuItem = null;

 }

}

Adding NinjaTrader Custom Controls
User-interface controls, such as buttons, text fields, and dropdown menus can be defined via

XAML (or C#), then behavior and functionality of those controls can be set via C# along with

the core logic of your AddOn. In addition to the standard WPF controls, the NinjaScript AddOn

framework provides access to each of the custom NinjaTrader controls that can be found

throughout the platform. Below is a list of the most commonly used NinjaTrader controls,

along with examples of defining these controls in XAML and adding functionality to them in C#:

1. The Instrument Selector

https://msdn.microsoft.com/en-us/library/bb655881(v=vs.90).aspx

NinjaTrader 81654

© 2023 NinjaTrader, LLC

XAML - Instrument Selector Definition

<t:InstrumentSelector x:Name="instrumentSelector" Grid.Row="6"

Grid.Column="0" LastUsedGroup="AddOnFramework"

InstrumentChanged="OnInstrumentChanged">

 <t:InstrumentSelector.Margin>

 <Thickness Left="{StaticResource MarginBase}"

Top="{StaticResource PaddingColumn}" Bottom="0"/>

 </t:InstrumentSelector.Margin>

</t:InstrumentSelector>

 C# - Using the Instrument Selector

private InstrumentSelector instrumentSelector;

...

// Find instrument selector and attach event handler

instrumentSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

 "instrumentSelector") as InstrumentSelector;

if (instrumentSelector != null)

 instrumentSelector.InstrumentChanged += OnInstrumentChanged;

2. The Interval Selector

NinjaScript 1655

© 2023 NinjaTrader, LLC

XAML - Interval Selector Definition

<t:IntervalSelector x:Name="intervalSelector" Grid.Column="0"

HorizontalAlignment="Left" IntervalChanged="OnIntervalChanged">

 <t:IntervalSelector.Margin>

 <Thickness Left="{StaticResource MarginBase}"

Top="{StaticResource PaddingColumn}" Bottom="0"/>

 </t:IntervalSelector.Margin>

</t:IntervalSelector>

 C# - Using the Interval Selector

private IntervalSelector intervalSelector;

...

// Find interval selector and attach event handler

intervalSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

"intervalSelector") as IntervalSelector;

if (intervalSelector != null)

 intervalSelector.IntervalChanged += OnIntervalChanged;

3. The Quantity Up/Down Selector

NinjaTrader 81656

© 2023 NinjaTrader, LLC

XAML - Quantity Up/Down Selector Definition

<t:QuantityUpDown x:Name="qudSelector" Value="1" Grid.Row="12"

Grid.Column="0">

 <t:QuantityUpDown.Margin>

 <Thickness Left="{StaticResource MarginBase}"

Top="{StaticResource MarginControl}" Bottom="0" />

 </t:QuantityUpDown.Margin>

</t:QuantityUpDown>

 C# - Using the Quantity Up/Down Selector

private QuantityUpDown qudSelector;

...

// Find Quanity selector

qudSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

"qudSelector") as QuantityUpDown;

4. The Time-in-Force Selector

XAML - Time-in-Force Selector Definition

<t:TifSelector x:Name="tifSelector" Grid.Row="12"

Grid.Column="1">

 <t:TifSelector.Margin>

 <Thickness Left="{StaticResource MarginButtonLeft}"

Top="{StaticResource MarginControl}" Right="0" Bottom="0" />

 </t:TifSelector.Margin>

</t:TifSelector>

NinjaScript 1657

© 2023 NinjaTrader, LLC

 C# - Using the Time-in-Force Selector

private TifSelector tifSelector;

...

// Find TIF selector

tifSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

"tifSelector") as TifSelector;

// Be sure to bind our account selector to our TIF selector to

ensure proper functionality

tifSelector.SetBinding(TifSelector.AccountProperty, new Binding

{ Source = accountSelector, Path = new

PropertyPath("SelectedAccount") });

// When our TIF selector's selection changes

tifSelector.SelectionChanged += (o, args) =>

{

 // Change the selected TIF in the ATM strategy too

 if (atmStrategySelector.SelectedAtmStrategy != null)

 {

 atmStrategySelector.SelectedAtmStrategy.TimeInForce =

tifSelector.SelectedTif;

 }

};

5. The ATM Strategy Selector

XAML - ATM Strategy Selector Definition

<AtmStrategy:AtmStrategySelector x:Name="atmStrategySelector"

LinkedQuantity="{Binding ElementName=qudSelector, Path=Value,

Mode=OneWay}" Grid.Row="12" Grid.Column="2">

 <AtmStrategy:AtmStrategySelector.Margin>

 <Thickness Left="{StaticResource MarginButtonLeft}"

Top="{StaticResource MarginControl}" Right="{StaticResource

MarginBase}" Bottom="0" />

 </AtmStrategy:AtmStrategySelector.Margin>

</AtmStrategy:AtmStrategySelector>

NinjaTrader 81658

© 2023 NinjaTrader, LLC

 C# - Using the ATM Strategy Selector

private AtmStrategy.AtmStrategySelector atmStrategySelector;

...

// Find ATM Strategy selector and attach event handler

atmStrategySelector =

LogicalTreeHelper.FindLogicalNode(pageContent,

"atmStrategySelector") as AtmStrategy.AtmStrategySelector;

atmStrategySelector.Id = Guid.NewGuid().ToString("N");

if (atmStrategySelector != null)

 atmStrategySelector.CustomPropertiesChanged +=

OnAtmCustomPropertiesChanged;

// Be sure to bind our account selector to our ATM strategy

selector to ensure proper functionality

atmStrategySelector.SetBinding(AtmStrategy.AtmStrategySelector.Acco

untProperty, new Binding { Source = accountSelector, Path = new

PropertyPath("SelectedAccount") });

// When our ATM selector's selection changes

atmStrategySelector.SelectionChanged += (o, args) =>

{

 if (atmStrategySelector.SelectedItem == null)

 return;

 if (args.AddedItems.Count > 0)

 {

 // Change the selected TIF in our TIF selector too

 NinjaTrader.NinjaScript.AtmStrategy selectedAtmStrategy =

args.AddedItems[0] as NinjaTrader.NinjaScript.AtmStrategy;

 if (selectedAtmStrategy != null)

 {

 tifSelector.SelectedTif =

selectedAtmStrategy.TimeInForce;

 }

 }

};

Linking with Other Windows
If you utilize NinjaTrader controls to allow selection of instruments or intervals, you can add

instrument or interval linking functionality to your window. The PropagateInstrumentChange()

and PropagateIntervalChange() methods can be used to accomplish this. To call

PropagateIntervalChange(), use the process below:

1. Hide the Instrument property of the IInstrumentProvider interface, which your NTTabPage

inheriting class should be implementing

NinjaScript 1659

© 2023 NinjaTrader, LLC

2. Call PropagateInstrumentChange() within the setter for the hidden Instrument property

// IInstrumentProvider member. Required if you want to use the

instrument link mechanism on this window.

public Cbi.Instrument Instrument

{

 get { return instrument; }

 set

 {

 // Send instrument to other windows linked to the same

color

 PropagateInstrumentChange(value);

 }

}

In a real-world scenario, you would most likely use an instrument selector to call the setter for

the Instrument property. Thus, when a user toggled the instrument selector,

PropagateInstrumentChange() would be called in addition to any other logic you put in place.

In the same way, you can use an interval selector to push changes to the Interval Linking

feature. In this case, you can attach a custom event handler to an interval selector's

IntervalChanged event, then call PropagateIntervalChange() within that event handler:

...

// Find an interval selector that we've added to our UI, and attach

a custom event handler

intervalSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

"intervalSelector") as IntervalSelector;

if (intervalSelector != null)

 intervalSelector.IntervalChanged += OnIntervalChanged;

...

// This method is fired when our interval selector changes

intervals

private void OnIntervalChanged(object sender, BarsPeriodEventArgs

args)

{

 if (args.BarsPeriod == null)

 return;

 PropagateIntervalChange(args.BarsPeriod);

}

NinjaTrader 81660

© 2023 NinjaTrader, LLC

11.5.1.3 Other Uses for an Addon

Modifying Existing NinjaTrader Windows
To modify an existing type of NinjaTrader window (for example, to add a button to all charts),

you will first need to obtain a reference to each individual window of that type that is open.

This can be done by overriding the OnWindowCreated() method, then declaring an object of

the Type of the window you are looking for, and finally assigning the object a reference to the

Window passed into the method:

// OnWindowCreated() will be called any time a new NTWindow is

created. It will be called in the thread of that window

protected override void OnWindowCreated(Window window)

{

 // Declare a Chart object and instantiate it to the Window

passed into the method

 Gui.Chart.Chart myChart = window as Gui.Chart.Chart;

 // Use this check to return if the calling Window is not of the

Type you are looking for

 if (myChart == null)

 return;

}

If you are unsure of the Type name for a particular type of window, you can open an instance

of that window then run the code below, which will print the Type to the Output Window:

protected override void OnWindowCreated(Window window)

{

 // Print the Type of any open windows, for future reference

 Print(window.ToString());

}

Once you've obtained a reference to a window, you can then directly manipulate the WPF

grids, controls, and other elements to customize its user interface or functionality. For

example, if your goal was to add a new button to Chart Trader on all charts, you could use

your reference to Chart objects to first locate their attached Chart Trader instances, then

place a custom-defined button directly into the WPF grid used to lay out buttons in Chart

Trader. Since this code would run within OnWindowCreated(), it would be applied to every

Chart Trader instance that is open. You would not be changing the format used to create

Chart Traders in the first place, but would rather be detecting every open instance and adding

the buttons into them. This is an important distinction to make, because this approach

requires that you also remove the elements you've added when each window is destroyed.

NinjaScript 1661

© 2023 NinjaTrader, LLC

NinjaTrader 81662

© 2023 NinjaTrader, LLC

// Declare a Chart, ChartTrader, and UI elements to add to Chart

Trader

Gui.Chart.Chart myChart;

Gui.Chart.ChartTrader chartTrader;

Button sampleButton;

Grid myGrid;

Grid mainGrid;

protected override void OnWindowCreated(Window window)

{

 // Instantiate myChart by assigning a reference to the calling

Window

 myChart = window as Gui.Chart.Chart;

 if (myChart == null)

 {

 return;

 }

 //find chart trader from myChart's Chart Control by its

Automation ID: "ChartWindowChartTrader"

 chartTrader =

Window.GetWindow(myChart.ActiveChartControl.Parent).FindFirst("Char

tWindowChartTraderControl") as Gui.Chart.ChartTrader;

 if (chartTrader == null)

 {

 return;

 }

 // Instantiate sampleButton

 sampleButton = new Button

 {

 Content = "Sample Button",

 Style =

System.Windows.Application.Current.TryFindResource("Button") as

Style

 };

 // Attach a custom event handler to the .Click event

 sampleButton.Click += SampleButton_Click;

 // Set a custom AutomationId for the button, so that it can be

referenced elsewhere the same way we found Chart Trader

 System.Windows.Automation.AutomationProperties.SetAutomationId(

sampleButton, "SampleButton");

 //this is the main chart trader grid where the default buttons

and controls reside

 mainGrid = chartTrader.FindName("grdMain") as Grid;

 // Return if Chart Trader is null

 if (mainGrid == null)

 {

 return;

 }

 // by default, there will be 7 rows in Chart Trader, we need to

add a new row for the new button

 if (mainGrid.RowDefinitions.Count <= 7)

 mainGrid.RowDefinitions.Add(new RowDefinition());

 //define a new grid, and add our button to that grid

 myGrid = new Grid();

 myGrid.Children.Add(sampleButton);

 //set my grid to the new row

 Grid.SetRow(myGrid, 8);

 //finally, add our grid to the main grid

 mainGrid.Children.Add(myGrid);

}

private void SampleButton_Click(object sender, RoutedEventArgs e)

{

 Print("Sample Button Clicked");

}

NinjaScript 1663

© 2023 NinjaTrader, LLC

Since we are dynamically adding elements to open windows, it is important to clean up any

unused resources and detach any event handlers when the affected windows are destroyed.

You can use the same approach as shown above to obtain a reference to each affected

window within the OnWindowDestroyed() method:

protected override void OnWindowDestroyed(Window window)

{

 // Return if there is no button, or if the destroyed window is

not a chart

 if(sampleButton == null || !(window is Gui.Chart.Chart))

 {

 return;

 }

 // Detach the event handler from the .Click event, remove the

grid, and nullify the button

 sampleButton.Click -= SampleButton_Click;

 mainGrid.Children.Remove(myGrid);

 sampleButton = null;

}

Below is another example of adding elements into chart windows. In this example, we add a

new panel to the top of all chart windows, then take all existing chart content and move it into

a row beneath the panel we've just added:

NinjaTrader 81664

© 2023 NinjaTrader, LLC

protected override void OnWindowCreated(Window window)

{

 // Obtain a reference to any chart that triggered

OnWindowCreated

 Chart Window = window as Chart;

 // Instantiate a grid to hold a reference to the content of the

chart window

 Grid mainWindowGrid = Window.Content as Grid;

 // Add existing row definition for existing row if it is not

present

 if (mainWindowGrid.RowDefinitions.Count == 0)

 {

 mainWindowGrid.RowDefinitions.Add(new RowDefinition());

 }

 // Instantiate a RowDefinition and set its height

 RowDefinition row = new RowDefinition();

 row.Height = new GridLength(PanelLength);

 // Insert the new row into the chart's main window grid

 mainWindowGrid.RowDefinitions.Insert(0, row);

 //Move Existing Elements down one row, since our new content

will take the top row

 foreach (UIElement element in mainWindowGrid.Children)

 {

 element.SetValue(Grid.RowProperty, (int)

element.GetValue(Grid.RowProperty) + 1);

 }

 //Create the Top Panel grid and add it to our newly defined row

 Grid Panel = new Grid();

 Panel.SetValue(Grid.RowProperty, 0);

 mainWindowGrid.Children.Add(Panel);

 //Create a sample text block and add it to the Top/Bottom Panel

Grid.

 TextBlock TextBlock = new TextBlock();

 TextBlock.Text = PanelDirection.ToString() + " Panel (" +

PanelLocation.ToString() + ") Sample Text Block";

 TextBlock.Foreground = Brushes.Red;

 TextBlock.SetValue(Grid.RowProperty, 0);

 Panel.Children.Add(TextBlock);

}

NinjaScript 1665

© 2023 NinjaTrader, LLC

Accessing Account Data
From time to time, you may need to access certain global data, such as account values,

order states, position info, etc. In these cases, you can subscribe to an appropriate event

using a custom event handler method. Below is a list of a few such events which can be

captured:

<Account>.A

ccountItemUp

date

Triggers on account item updates

<Account>.E

xecutionUpda

te

Triggers on any execution

<Account>.O

rderUpdate

Triggers on any order state changes

<Account>.P

ositionUpdate

Triggers on any position updates

NinjaTrader 81666

© 2023 NinjaTrader, LLC

// Custom Subscribe() method to refresh subscriptions

private void Subscribe()

{

 if (myAccount != null)

 {

 // Unsubscribe to any prior account subscriptions

 myAccount.AccountItemUpdate -= OnAccountItemUpdate;

 myAccount.ExecutionUpdate -= OnExecutionUpdate;

 myAccount.OrderUpdate -= OnOrderUpdate;

 myAccount.PositionUpdate -= OnPositionUpdate;

 // Subscribe to new account subscriptions

 myAccount.AccountItemUpdate += OnAccountItemUpdate;

 myAccount.ExecutionUpdate += OnExecutionUpdate;

 myAccount.OrderUpdate += OnOrderUpdate;

 myAccount.PositionUpdate += OnPositionUpdate;

 }

}

private void OnAccountItemUpdate(object sender,

AccountItemEventArgs e)

{

 // Handle account item updates

}

private void OnExecutionUpdate(object sender, AccountItemEventArgs

e)

{

 // Handle execution updates

}

private void OnOrderUpdate(object sender, AccountItemEventArgs e)

{

 // Handle order updates

}

private void OnPositionUpdate(object sender, AccountItemEventArgs

e)

{

 // Handle position updates

}

Accessing Market Data
Market data can be accessed via a BarsRequest object, which can provide real-time or

snapshot data for use by your classes. A BarsRequest object can be loaded with a series of

bar data without the need to actually draw bars on a chart. The BarsRequest object can then

NinjaScript 1667

© 2023 NinjaTrader, LLC

be accessed via the BarsUpdateEventArgs object passed into your event handler via the

BarsRequest's Update method. The process for using a BarsRequest is as follows:

1. Instantiate an Instrument object

2. Instantiate and parameterize a BarsRequest object

3. Hook the BarsRequest's Update event to a custom event handler

4. Call the BarsRequest's Request() method

5. Access bars data directly from the BarsRequest object within your event handler method

NinjaTrader 81668

© 2023 NinjaTrader, LLC

// Custom method to perform a BarsRequest

private NinjaTrader.Data.BarsRequest DoBarsRequest(Instrument

instrument, int lookBackPeriod)

{

 // Declare a BarsRequest object

 NinjaTrader.Data.BarsRequest barsRequest;

 // Request x number of days back of data.

 barsRequest = new NinjaTrader.Data.BarsRequest(instrument,

DateTime.Now.AddDays(-lookBackPeriod), DateTime.Now);

 // If you wish to request x number of bars back instead you can

use this signature:

 // barsRequest = new NinjaTrader.Data.BarsRequest(instrument,

lookBackPeriod);

 // Parameterize the request

 barsRequest.BarsPeriod = new NinjaTrader.Data.BarsPeriod

{ BarsPeriodType = BarsPeriodType.Minute, Value = 60 };

 barsRequest.TradingHours =

NinjaTrader.Data.TradingHours.Get("Default 24 x 7");

 // Additional parameters which could be set

 // barsRequest.IsDividendAdjusted = true;

 // barsRequest.IsResetOnNewTradingDay = false;

 // barsRequest.IsSplitAdjusted = true;

 // barsRequest.LookupPolicy =

LookupPolicies.Provider;

 // barsRequest.MergePolicy = MergePolicy.DoNotMerge;

 // Attach event handler for real-time events if you want to

process real-time data

 barsRequest.Update += MyOnBarUpdate;

 // Call the Request method on the BarsRequest object to request

the bars

 barsRequest.Request(new Action<NinjaTrader.Data.BarsRequest,

ErrorCode, string>((bars, errorCode, errorMessage) =>

 {

 Dispatcher.InvokeAsync(new Action(() =>

 {

 if (errorCode != ErrorCode.NoError)

 {

 // Handle any errors in requesting bars here

 outputBox.Text = string.Format("Error on requesting

bars: {0}, {1}", errorCode, errorMessage);

 return;

 }

 }));

 }));

 // Return the Bars Request to any callers of this method

 return barsRequest;

}

// BarsUpdateEventArgs is provided by the BarsRequest's Update

event

private void MyOnBarUpdate(object sender,

NinjaTrader.Data.BarsUpdateEventArgs e)

{

 /* Dispatcher.InvokeAsync() is needed for multi-threading

considerations. When processing events outside of the UI thread,

and we want to

 influence the UI .InvokeAsync() allows us to do so. It can also

help prevent the UI thread from locking up on long operations. */

 Dispatcher.InvokeAsync(() =>

 {

 /* Depending on the BarsPeriod type of your barsRequest you

can have situations where more than one bar is updated by a single

tick

 Be sure to process the full range of updated bars to ensure

you did not miss a bar. */

 // Process updated bars on each tick

 for (int i = e.MinIndex; i <= e.MaxIndex; i++)

 {

 // Processing every single tick

 outputBox.Text = string.Format("REALTIME BARS{0}Time:

{1}{0}Open: {2}{0}High: {3}{0}Low: {4}{0}Close: {5}",

 Environment.NewLine,

 e.BarsSeries.GetTime(i),

 e.BarsSeries.GetOpen(i),

 e.BarsSeries.GetHigh(i),

 e.BarsSeries.GetLow(i),

 e.BarsSeries.GetClose(i));

 }

);

 }

}

NinjaScript 1669

© 2023 NinjaTrader, LLC

11.5.2 C# Method (Functions) Reference

Native Methods
The Microsoft .NET environment has a rich class library that you can access when

developing custom indicators and strategies. There is a plethora of information available

online and in print that details class libraries in great depth. Below are quick links to the

Microsoft Developers Network for some of the basic classes whose functionality you may

harness when developing in NinjaScript.

Complete list of classes in the Microsoft .NET environment.

MSDN (Microsoft Developers Network) C# Language Reference

Keywords

Operators

Arrays

System.Math

Provides constants and static methods for trigonometric, logarithmic, and other common

mathematical functions.

Full list of member of the System.Math class.

// Example of the Max method of the System.Math class

int myInteger = Math.Max(10, 20);

Print("The larger value between 10 and 20 is " +

myInteger.ToString());

System.DateTime

Represents an instant in time, typically expressed as a data and time of day.

Full list of members of the Sytem.DateTime structure.

// Example of the Now property member of the System.DateTime

structure

DateTime startTime = DateTime.Now;

Print("Time elapsed is " +

DateTime.Now.Subtract(startTime).TotalMilliseconds.ToString() + "

milliseconds.");

System.String

Represents text; that is, a series of unicode characters.

Full list of members of the System.String class.

https://msdn.microsoft.com/en-us/library/d11h6832(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/ms228593.aspx
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/index
http://msdn.microsoft.com/en-us/library/9b9dty7d
https://msdn.microsoft.com/en-us/library/xaz41263(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/system.string(v=vs.113).aspx

NinjaTrader 81670

© 2023 NinjaTrader, LLC

// Example of the ToUpper() method of the System.String class

string myString = "ninjatrader";

Print("The following word is in uppercase " +

myString.ToUpper()););

11.5.3 Developing for Tick Replay

Tick Replay is used to playback 1 tick historical data to build the bars as if they had been build

live, this means that tick data will be thrown as Market Data events in historical and

subsequently OnMarketData and OnBarUpdate events will be called as if it was live. This

provides more granular tick related information and can be helpful if you need to know the

most recent last price, last volume, best ask price, or best bid price that occurred on

historical data during the bar. An indicator or strategy running Tick Replay needs to have been

specifically designed to take advantage of Tick Replay. In general, this means adding

additional logic to the OnMarketData() event handler, however, Tick Replay can also be used

to call OnBarUpdate() "OnEachTick" or "OnPriceChange" during historical calculations.

How to Enable Tick Replay
To enable tick replay it must be manually enabled on the primary Data Series and the option
to allow this mode is hidden by default. The option to allow for Tick Replay is located in Tools

> Options > Market Data > "Show Tick Replay". The reason why it is hidden by default is that
the tick replay engine utilizes 1 tick data to build historical bars. TickReplay can generate
thousands of events per bar and may take an excessive amount of time to load. It is
recommended to optimize your indicators that you plan to calculate on such data by only
running them in Calculate On Bar Close mode or reducing the amount of data to load to the
minimum amount of data required. Since bars are built with tick data you will only be able to
build bars back as far as your historical data provider allows download of tick data.

How the Tick Replay Engine Works
Tick Replay guarantees an exact sequence of stored events are played back for both the

OnBarUpdate and OnMarketData events. This mode also ensures the OnMarketData event

is called after every OnBarUpdate event used to build the current bar. Consider the following

examples with Tick Replay enabled on a 5-tick input series, each box is when each event

occurs during Tick Replay simulation.

NinjaScript 1671

© 2023 NinjaTrader, LLC

As you can see from the table above, the Calculate setting will have a varying degree of

impact on how your indicator or strategies OnBarUpdate event is raised. This process

repeats for every historical bar on the chart and would continue as the indicator or strategy

transitions to real-time data.

Accessing the current best bid and ask at the time of a trade
NinjaTrader stores the best bid price and best ask price as the last trade occurs during the

MarketDataType.Last event and provides it per the table below:

marketDataUpdate.Price The current market data price of

the last trade event

marketDataUpdate.Ask The current asking price at the

time of the last trade event

marketDataUpdate.Bid The current bidding price at the

time of the last trade event

marketDataUpdate.Volume The current market data volume

of the last trade event

NinjaTrader 81672

© 2023 NinjaTrader, LLC

marketDataUpdate.Time The current time of the last trade

event

An example below shows how to access historical Bid and Ask prices with Tick Replay

 Accessing the current best bid and ask at the time of a trade

protected override void OnMarketData(MarketDataEventArgs

marketDataUpdate)

{

 // TickReplay events only occur on the "Last" market data type

 if (marketDataUpdate.MarketDataType == MarketDataType.Last)

 {

 if (marketDataUpdate.Price >= marketDataUpdate.Ask)

 {

 Print(marketDataUpdate.Volume + " contracts traded at

asking price " + marketDataUpdate.Ask);

 }

 else if (marketDataUpdate.Price <= marketDataUpdate.Bid)

 {

 Print(marketDataUpdate.Volume + " Contracts Traded at

bidding price " + marketDataUpdate.Bid);

 }

 }

}

Calling a Tick Replay indicator from another Indicator or Strategy
A hosting indicator or strategy must be aware of the requirement to run through another

indicator's historical Tick Replay data before it reaches State.Historical. To achieve desired

results, you either need to store the reference in State.DataLoaded or (for a strategy) you

can call AddChartIndicator(). Either approach ensures that the hosting indicator or strategy is

aware of the requirements to process Tick Replay during its State.Historical mode and

helps to ensure that the hosted indicator calculates as designed up to its current bar using

Tick Replay. Please see the example below.

NinjaScript 1673

© 2023 NinjaTrader, LLC

 Calling a Tick Replay indicator from another Indicator or

Strategy

TickReplayIndicator myTickReplayIndicator = null;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "TestHost";

 }

 else if (State == State.DataLoaded)

 {

 // Store a reference to the Tick Replay indicator before

State.Historical

 // Doing so ensures the hosted indicator will run through

Tick Replay

 myTickReplayIndicator = TickReplayIndicator();

 // For a strategy, you can just call

AddChartIndicator(TickReplayIndicator());

 // However this also adds a copy of the indicator to the

chart, which may or may not be desired

 // For calculation purposes only, storing the reference

should all that needs to be required.

 }

}

protected override void OnBarUpdate()

{

 // Access the stored reference which calculates through

 // historical Tick Replay data and print the value as expected

 Print(myTickReplayIndicator[0]);

}

Notes:

1. Tick Replay was NOT designed to provide accuracy in backtesting concerning order

fills and execution and should NOT be used to expect the exact sequence of

executions as running a strategy on live data. For greater order-fill resolution and

accuracy in strategy backtesting, you can use the High Fill Resolution in the Strategy

Analyzer. Furthermore you cannot combine both Tick Replay and High Order Fill

resolution.

NinjaTrader 81674

© 2023 NinjaTrader, LLC

2. If the data provided has no bid/ask data tied to the last tick data, NinjaTrader substitutes

the bid/ask data for consistent user experience purposes (i.e., Bid = Last price, Ask =

Bid + 1 tick). For a list of providers who support tick replay, please see the table from

Understanding the data provided by your connectivity provider. Only bid and ask price is

made available, bid and ask volume is NOT available.

3. Tick Replay ONLY replays the Last market data event, and only stores the best inside

bid/ask price at the time of the last trade event. You can think of this as the equivalent

of the bid/ask price at the time a trade was reported. As such, historical bid/ask market

data events (i..e, bid/ask volume) DO NOT work with Tick Replay. To obtain those

values, you need to use a historical bid/ask series separately from Tick Replay through

OnBarUpdate()

4. Tick Replay data is accessed via the MarketDataEventArgs object passed into

OnMarketData() events, rather than attempting to access it via GetCurrentAsk() and

GetCurrentBid(), which are methods designed to function on real-time data only

5. Due to the nature of how some unique bars build, Tick Replay is NOT available for all

bar types. For example, the default Renko and LineBreak bars which use

RemoveLastBar() are not compatible with Tick Replay. Other custom bar types which

use similar methods encounter the same limitation

6. Tick Replay is forced for all series loaded, and there is NOT any method to reduce the

number of calculations on a per series basis. In other words, you cannot mix and

match tick replay series with non-tick replay series

7. Tick Replay was only ONLY designed to work with MarketDataType.Last. A

TickReplay indicator or strategy should NOT be mixed with a MarketDataType.Ask or

MarketDataType.Bid series

8. Tick Replay is not compatible with most Multi-Time Frame / Multi Instrument indicators,

as there could be series synchronization issues leading to unexpected results.

11.5.4 Developing Indicators

Indicators are the building blocks of any automated trading system. NinjaScript allows you to

develop custom indicators quickly. A few key points are:

· Custom indicators are compiled and run natively within the NinjaTrader application,

providing the highest performance possible

· Indicator values are calculated at the current bar, which ensures that you do not

accidentally include future data in your calculations

· You can retain calculations between bar updates

NinjaScript 1675

© 2023 NinjaTrader, LLC

· You can retain and share calculation values between bar updates and across indicators

Custom indicator development follows a logical progression.

Wizard
The wizard allows you to define your overall indicator parameters which include name,
properties, inputs, plots and oscillator lines. The wizard will then generate the necessary
NinjaScript code and open up the NinjaScript Editor.

OnStateChange() Method
The OnStateChange() method is called once before any initial calculation triggered by an

update bar event. This method is used to configure the indicators plots, lines and properties.

The wizard will generate the required NinjaScript code for this method for most cases.

OnBarUpdate() Method
The OnBarUpdate() method is called with either with each incoming tick or on the close of

each bar, depending on how you deploy the indicator at run time. Your core indicator

calculation logic is contained within this method.

Debug
The NinjaScript Editor will perform both syntax and semantic checks and list any errors at the

bottom of the window. If there are logic problems with your indicator, they will be listed in the

Log tab of the NinjaScript Control Center during run time. You can use the Print() method

within your script to help debug your code. Output will be sent to the NinjaScript Output

window.

Compilation
Once the coding effort is completed, you must then compile the indicator (several second

process) directly from the NinjaScript Editor.

Usage
The completed indicator is now available through any window that can use an indicator, such

as a Chart.

Tutorial Descriptions
All internal NinjaTrader indicators come with full source code and can be viewed within the

NinjaScript Editor. Please review the tutorials within this section for detailed walk throughs of

custom indicator development.

› Level 1 - Demonstrating the use of price variables

› Level 2 - Demonstrating the use of indicator on indicator

NinjaTrader 81676

© 2023 NinjaTrader, LLC

› Level 3 - Demonstrating the use of a "for" loop to build a simple moving average

indicator

› Level 4 - Demonstrating the use of Indicator Series objects to retain historical custom

calculations data series

› Level 5 - Demonstrating the use of custom plot coloring based on threshold values

› Level 6 - Demonstrating the use of custom of drawing using bar color, back color and

line colors

11.5.4.1 Advanced - Custom Drawing

Custom Drawing Overview

In this advanced tutorial, we are going to build a custom indicator which is a variation on

the CCI, to show different drawing options for bar color, line color, and background color.

› Set Up

› Entering Calculation Logic

› Compiling

› Using

11.5.4.1.1 Set Up

The first step in creating a custom indicator is to use the custom indicator wizard. The wizard

will generate the required NinjaScript code that will serve as the foundation for your custom

indicator.

1. Within the NinjaTrader Control Center, select the New menu, then select the NinjaScript

Editor menu item.

2. Right mouse click the "Indicators" folder in the NinjaScript Explorer section, then select

the New Indicator menu item to open the New Indicator Wizard.

Defining Indicator Properties and Name
First you will define your indicator's name and several indicator properties. Begin by clicking

the Next > button on the first page of the wizard to view the page shown below.

NinjaScript 1677

© 2023 NinjaTrader, LLC

3. Enter the information as shown above

4. Click the Next > button

Setting Default Properties
The next page will allow you to set defaults for basic properties related to your indicator,

including it's Calculate and Overlay settings. Click the More Properties button to expose

additional properties. For this tutorial, we will not change any basic properties' defaults, and

instead will leave them all set to the values shown below:

NinjaTrader 81678

© 2023 NinjaTrader, LLC

Adding Additional Data
The next page will allow you to configure one or more additional Bars objects for use by the

indicator. For our purposes, we will leave this page blank and move forward by clicking the

Next > button.

NinjaScript 1679

© 2023 NinjaTrader, LLC

Adding Event Methods
The next page will allow you to pre-populate certain event methods into the NinjaScript code

generated by the wizard. For our purposes, we will leave all of the checkboxes corresponding

to different event methods unchecked, and will move on by clicking the Next > button.

NinjaTrader 81680

© 2023 NinjaTrader, LLC

Defining Input Parameters
The next page will allow us to configure user input parameters for the indicator. For our

custom CCI indicator, we will create a single input parameter which can be changed by users

in the Indicators window when applying or editing the indicator. This input parameter will

determine the CCI's period. We will select int as the Type, since integers are the most

efficient native data types to be used for positive whole numbers, like those used to specify a

number of bars to look back (a period). We will enter a "Default" value of "14" for the period,

and a "Min" value of 1, to ensure that users do not enter zero or lower.

NinjaScript 1681

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Input Parameters" page brings up the Input Parameters

dialogue

2. The Input Parameters dialogue can be used to define user inputs

Defining Plots and lines
The next page will allow us to define plots and static lines for the indicator. For the CCI, we

will define a single plot, called "CCI," and define five lines to draw in the indicator panel. For

each item, first click the add button, then use the Plots and Lines dialogue to configure each

item as seen below.

NinjaTrader 81682

© 2023 NinjaTrader, LLC

1. The add button will allow you to configure plots and lines for the indicator.

After this, click the Finish button, and the Indicator Wizard will generate a basic code

structure implementing the parameters that you have set. You are now ready to move on to

entering calculation logic in your code.

11.5.4.1.2 Entering Calculation Logic

The OnBarUpdate() method is called for each incoming tick, or on the close of a bar (if

enabled) when performing real-time calculations, and is called on each bar of a Bars object

when re-calculating the indicator (For example, an indicator would be re-calculated when

adding it to an existing chart that has existing price data displayed). This is the main method

called for indicator calculation, and we will calculate the CCI value and set the conditions used

to draw the CCI plot within this method.

The OnStateChange() method is called once before any bar data is loaded, and is used to

configure the indicator (among other things).

Initializing the Indicator
The code below is automatically generated by the wizard and added to the OnStateChange()

NinjaScript 1683

© 2023 NinjaTrader, LLC

method, within State.SetDefaults. It configures the indicator for one plot and five lines, and

sets the parameters entered in the wizard:

AddPlot(Brushes.Orange, "MyPlot");

AddLine(Brushes.DimGray, 200, "Level 2");

AddLine(Brushes.DimGray, 100, "Level 1");

AddLine(Brushes.DimGray, 0, "Zero Line");

AddLine(Brushes.DimGray, -100, "Level -1");

AddLine(Brushes.DimGray, -200, "Level -2");

To change the visual properties of the Zero Line, replace the fourth line in the code above with

the line below. This will change the color to black and the line style to "dash:"

AddLine(new Stroke(Brushes.Black, DashStyleHelper.Dash, 2), 0,

"Zero Line");

The code above uses an alternative method overload (an alternative set of arguments passed

in to the AddLine() method), in order to pass in a Stroke object rather than a Brush. With a

Stroke, not only can we still specify a Brush, but we have additional options to change the

dash style (via DashStyleHelper) and the line width. After this change, your configured lines

and plots should look like this:

AddPlot(Brushes.Orange, "MyCCI_Plot");

AddLine(Brushes.DimGray, 200, "Level 2");

AddLine(Brushes.DimGray, 100, "Level 1");

AddLine(new Stroke(Brushes.Black, DashStyleHelper.Dash, 2), 0,

"Zero Line");

AddLine(Brushes.DimGray, -100, "Level -1");

AddLine(Brushes.DimGray, -200, "Level -2");

Adding Core Indicator Logic
Since this tutorial is meant to cover custom drawing and manually changing properties within

an indicator, we will not go too in-depth into the core calculation logic for this custom CCI.

Instead, we will copy and paste the core calculation logic from the @CCI indicator already

built-in to NinjaTrader.

The @CCI indicator uses an SMA object in its calculations. To add this, copy the line below

from @CCI into your custom CCI, directly below the class declaration:

http://sharpdx.org/documentation/api/t-sharpdx-direct2d1-brush

NinjaTrader 81684

© 2023 NinjaTrader, LLC

private SMA sma;

Next, copy the following initialization for the SMA object into the OnStateChange() method,

within State.DataLoaded:

sma = SMA(Typical, Period);

Next, copy the core calculation logic from @CCI into the OnBarUpdate() method of your

custom indicator:

if (CurrentBar == 0)

 Value[0] = 0;

else

{

 double mean = 0;

 double sma0 = sma[0];

 for (int idx = Math.Min(CurrentBar, Period - 1); idx >= 0;

idx--)

 mean += Math.Abs(Typical[idx] - sma0);

 Value[0] = (Typical[0] - sma0) / (mean.ApproxCompare(0) == 0 ?

1 : (0.015 * (mean / Math.Min(Period, CurrentBar + 1))));

}

The code for your MyCCI class should now look as follows (in addition to the using

statements and class declaration) :

NinjaScript 1685

© 2023 NinjaTrader, LLC

public class MyCCI : Indicator

{

 private SMA sma;

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Description = @"NinjaScript Custom

Drawing Indicator Tutorial";

 Name = "MyCCI";

 Calculate = Calculate.OnBarClose;

 IsOverlay = false;

 DisplayInDataBox = true;

 DrawOnPricePanel = true;

 DrawHorizontalGridLines = true;

 DrawVerticalGridLines = true;

 PaintPriceMarkers = true;

 ScaleJustification =

NinjaTrader.Gui.Chart.ScaleJustification.Right;

 //Disable this property if your indicator requires

custom values that cumulate with each new market data event.

 //See Help Guide for additional information.

 IsSuspendedWhileInactive = true;

 Period = 14;

 AddPlot(Brushes.Orange, "MyPlot");

 AddLine(Brushes.DimGray, 200, "Level 2");

 AddLine(Brushes.DimGray, 100, "Level 1");

 AddLine(new Stroke(Brushes.Black,

DashStyleHelper.Dash,2), 0, "Zero Line");

 AddLine(Brushes.DimGray, -100, "Level -1");

 AddLine(Brushes.DimGray, -200, "Level -2");

 }

 else if (State == State.DataLoaded)

 {

 sma = SMA(Typical, Period);

 }

 }

 protected override void OnBarUpdate()

 {

 if (CurrentBar == 0)

 Value[0] = 0;

 else

 {

 double mean = 0;

 double sma0 = sma[0];

 for (int idx = Math.Min(CurrentBar, Period - 1); idx >=

 0; idx--)

 mean += Math.Abs(Typical[idx] - sma0);

 Value[0] = (Typical[0] - sma0) / (mean.ApproxCompare(0)

 == 0 ? 1 : (0.015 * (mean / Math.Min(Period, CurrentBar + 1))));

 }

 }

NinjaTrader 81686

© 2023 NinjaTrader, LLC

Custom Drawing
Add the following code into the OnBarUpdate() method, directly beneath the core calculation

logic:

// if the plot value is greater than 100, paint the plot green at

that bar index

if (Value[0] > 100)

 PlotBrushes[0][0] = Brushes.Green;

// if the plot value is less than -100, paint the plot red at that

bar index

if (Value[0] < -100)

 PlotBrushes[0][0] = Brushes.Red;

// if the plot value is between 100 and -100, paint the plot orange

at that bar index

if (Value[0] >= -100 && Value[0] <= 100)

 PlotBrushes[0][0] = Brushes.Orange;

This will conditionally change the color of the CCI plot (referenced by Values[0]) based on its

value. By using PlotBrushes[0][0], we are specifying that we wish to change the color of the

first plot in the collection at a specific bar index (the current bar index each time the condition

is triggered), and we wish for the plot the remain that color at that index, even if the plot value

changes in the future. If instead we wished to change the entire plot color, we could use

Plots[0].Brush.

PlotBrushes holds a collection of brushes used for the various plots in the indicator. In addition

to this, there are several other collections that serve similar purposes, which can be used in

the same way. Some examples of these collections are below:

BackBrus

hes

A collection of Brushes used for chart background color at

specific bar indexes

BarBrush

es

A collection of Brushes used to paint bars at specific

indexes

CandleOu

tlineBrush

es

A collection of Brushes used to paint candle outlines at

specific indexes

Now that everything is in place, your class code should look as below. You are now ready to

compile the indicator and configure it on a chart.

NinjaScript 1687

© 2023 NinjaTrader, LLC

NinjaTrader 81688

© 2023 NinjaTrader, LLC

public class MyCCI : Indicator

{

 private SMA sma;

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Description = @"NinjaScript

Custom Drawing Indicator Tutorial";

 Name = "MyCCI";

 Calculate =

Calculate.OnBarClose;

 IsOverlay = false;

 DisplayInDataBox = true;

 DrawOnPricePanel = true;

 DrawHorizontalGridLines = true;

 DrawVerticalGridLines = true;

 PaintPriceMarkers = true;

 ScaleJustification =

NinjaTrader.Gui.Chart.ScaleJustification.Right;

 //Disable this property if your indicator requires custom

values that cumulate with each new market data event.

 //See Help Guide for additional information.

 IsSuspendedWhileInactive = true;

 Period = 14;

 AddPlot(Brushes.Orange, "MyPlot");

 AddLine(Brushes.DimGray, 200, "Level 2");

 AddLine(Brushes.DimGray, 100, "Level 1");

 AddLine(new Stroke(Brushes.Black, DashStyleHelper.Dash,

2), 0, "Zero Line");

 AddLine(Brushes.DimGray, -100, "Level -1");

 AddLine(Brushes.DimGray, -200, "Level -2");

 }

 else if (State == State.DataLoaded)

 {

 sma = SMA(Typical, Period);

 }

 }

 protected override void OnBarUpdate()

 {

 if (CurrentBar == 0)

 Value[0] = 0;

 else

 {

 double mean = 0;

 double sma0 = sma[0];

 for (int idx = Math.Min(CurrentBar, Period - 1); idx >=

0; idx--)

 mean += Math.Abs(Typical[idx] - sma0);

 Value[0] = (Typical[0] - sma0) / (mean.ApproxCompare(0)

== 0 ? 1 : (0.015 * (mean / Math.Min(Period, CurrentBar + 1))));

 }

 if (Value[0] > 100)

 PlotBrushes[0][0] = Brushes.Green;

 if (Value[0] < -100)

 PlotBrushes[0][0] = Brushes.Red;

 if (Value[0] >= -100 && Value[0] <= 100)

 PlotBrushes[0][0] = Brushes.Orange;

 }

 #region Properties

 [NinjaScriptProperty]

 [Range(1, int.MaxValue)]

 [Display(Name="Period", Description="The CCI Period", Order=1,

GroupName="Parameters")]

 public int Period

 { get; set; }

 [Browsable(false)]

 [XmlIgnore]

 public Series<double> MyPlot

 {

 get { return Values[0]; }

 }

 #endregion

}

NinjaScript 1689

© 2023 NinjaTrader, LLC

11.5.4.1.3 Compiling

The indicator code is now complete and needs to be compiled. You can compile this indicator

by selecting the Compile menu item from within the NinjaScript Editor Right Click, by clicking

the Compile icon on the toolbar at the top of the window, or by pressing the F5 key on your

keyboard. It is important to understand that this process makes the indicator ready for real-

time use natively within NinjaTrader. It does not run as interpreted code, as many other

applications do, but rather as a C# assembly. This provides you with the highest performance

possible. If there are any errors reported during compiling, the error messages will be

displayed at the bottom of the NinjaScript Editor.

11.5.4.1.4 Using

Your indicator is now ready for use and will be listed in the Indicator Dialog window.

1) The indicator can now be found in the "Available" section of the Indicators window

2) Once added to the "Configured" section, our user-defined inputs can be entered along with

standard indicator properties.

Once applied to a chart, the indicator should look something like the image below.

NinjaTrader 81690

© 2023 NinjaTrader, LLC

11.5.4.2 Advanced - Custom Plot Colors via Thresholds

Custom Plot Colors via Thresholds Overview

In this advanced level tutorial we are going to build a custom indicator which is a ROC

variation and paints one color above the zero band and another below. This indicator will

show you how to use the concept of plot thresholds.

› Set Up

› Entering Calculation Logic

› Compiling

› Using

11.5.4.2.1 Set Up

The first step in creating a custom indicator is to use the custom indicator wizard. The wizard

will generate the required NinjaScript code that will serve as the foundation for your custom

indicator.

NinjaScript 1691

© 2023 NinjaTrader, LLC

1. Within the NinjaTrader Control Center, select the New menu, then select the NinjaScript

Editor menu item.

2. Right mouse click the "Indicators" folder in the NinjaScript Explorer section, then select

the New Indicator menu item to open the New Indicator Wizard.

Defining Indicator Properties and Name
First you will define your indicator's name and several indicator properties. Begin by clicking

the Next > button on the first page of the wizard to view the page shown below.

3. Enter the information as shown above

4. Click the Next > button

Setting Default Properties
The next page will allow you to set defaults for basic properties related to your indicator,

including it's Calculate and Overlay settings. Click the More Properties button to expose

NinjaTrader 81692

© 2023 NinjaTrader, LLC

additional properties. For this tutorial, we will not change any basic properties' defaults, and

instead will leave them all set to the values shown below and move forward by clicking the

Next > button.:

Adding Additional Data
The next page will allow you to configure one or more additional Bars objects for use by the

indicator. For our purposes, we will leave this page blank and move forward by clicking the

Next > button.

NinjaScript 1693

© 2023 NinjaTrader, LLC

Adding Event Methods
The next page will allow you to pre-populate certain event methods into the NinjaScript code

generated by the wizard. For our purposes, we will leave all of the checkboxes corresponding

to different event methods unchecked, and will move on by clicking the Next > button.

NinjaTrader 81694

© 2023 NinjaTrader, LLC

Defining Input Parameters
The next page will allow us to configure user input parameters for the indicator. For our

custom indicator, our eventual goal will be to create a simple plot that follows either above or

below the bars based upon the Close price of a specified bar compared to the preceding bar.

To allow for the variable selection of a number of bars ago, we will create one input parameter

and call it "Periods." This variable will then be used to determine the number of bars used in

the plot calculation.

NinjaScript 1695

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Input Parameters" page brings up the Input Parameters

dialogue

2. The Input Parameters dialogue can be used to define user inputs

3. Click the add button again on the "Input Parameters" page and enter the information

detailed in the Input Parameters dialogue marked 3

We specify a default value of 10, which will refer to 10 bars in the calculation. We also specify

a minimum value of 1 to ensure that we cannot enter a 0 or negative number for Periods.

Defining Plots and lines
The next page will allow us to define plots and static lines for the indicator. For this indicator,

we will define 1 line and 2 plots and a line, called "Zero."

NinjaTrader 81696

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Plots and Lines" page brings up the Plots and Lines

dialogue

2. The Plots and Lines dialogue can be used to define the ZeroLine

3. Click the add button again on the "Plots and Lines" page and enter the information detailed

in the Plots and Lines window marked 3 to add the AboveZero plot

4. Click the add button once more on the "Plots and Lines" page and enter the information

detailed in the Plots and Lines window marked 4 to add the BelowZero plot

After this, click the Finish button, and the Indicator Wizard will generate a basic code

structure implementing the parameters that you have set. You are now ready to move on to

entering calculation logic in your code.

11.5.4.2.2 Entering Calculation Logic

The OnBarUpdate() method is called for each incoming tick or on the close of a bar (user

defined) when performing real-time calculations and is called on each bar of a data series

when re-calculating the indicator. For example, an indicator would be re-calculated when

adding it to an existing chart that has existing price data displayed. Therefore, this is the main

method called for indicator calculation and we will use this method to enter the script that will

calculate the ROC value.

NinjaScript 1697

© 2023 NinjaTrader, LLC

Setting Plot Thresholds
The OnStateChange() method is called once before any bar data is loaded and is used to

configure the indicator. The code below is automatically generated by the wizard and added to

the OnStateChange() method. It configures the indicator for two plots and one line and sets

the parameters.

AddLine(Brushes.Black, 0, "ZeroLine");

AddPlot(Brushes.Green, "AboveZero");

AddPlot(Brushes.OrangeRed, "BelowZero");

Enter the following code in the OnStateChange() method and below the wizard generated

code:

// Set the threshold values for each plot

Plots[0].Min = 0;

Plots[1].Max = 0;

The concept of setting threshold values is to set when and when not to paint a plot on the

chart. In this indicator, we have an "AboveZero" plot with a default color of green which we

only want to see when the value of ROC is above zero and a "BelowZero" plot with a default

color of OrangeRed which we only want to see when the value of ROC is below zero. In order

to make that happen we have to set the threshold values of each plot.

Plots[0].Min = 0;

This statement says, in the collection of Plot objects, take the first one (Plots[0]) and set its

minimum value to zero. This means any value below zero will not display.

Plots[1].Max = 0;

This statement says, in the collection of Plot objects, take the second one (Plots[1]) and set

its maximum value to zero. This means any value above zero will not display.

We now have a simple plot switching mechanism that displays the correct colored line

depending on if the value of ROC is above or below zero. In fact, you can take this concept a

little bit farther. You can even set different plots style (bar, dot etc..) depending on threshold

values.

A quick word about collections. Collections are objects that store a collection of objects, kind

of like a container. In this case we are working with a collection of plots. In the above wizard

generated code you will notice that we are adding new plots to the "Plots" collection.

NinjaTrader 81698

© 2023 NinjaTrader, LLC

"AboveZero" was added first and then "BelowZero". This means that we can reference the

"AboveZero" plot object through Plots[0]. The reason we don't pass in a value of 1 is because

collections are zero based indexes. This means the first item has an index of 0, the second

time an index of 1 and so forth.

Completing the Indicator
This indicator is actually quite simple in its implementation. The last thing we need to do is

add the calculation code and set the value of ROC to both our plot lines.

Replace the wizard generated code with the following code into the OnBarUpdate() method in

the NinjaScript Editor:

// Are there enough bars

if (CurrentBar < Period) return;

// Set the plot values

AboveZero[0] = SMA(ROC(Period), Smooth)[0];

BelowZero[0] = SMA(ROC(Period), Smooth)[0];

The calculation first checks to ensure there are enough bars to complete the calculation and

then sets both plot lines to the ROC value.

The class code in your editor should look identical to the image below. You are now ready to

compile the indicator and configure it on a chart.

NinjaScript 1699

© 2023 NinjaTrader, LLC

public class CustomROC : Indicator

{

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Description = @"ROC with custom

line color options";

 Name = "CustomROC";

 Calculate =

Calculate.OnBarClose;

 IsOverlay = false;

 DisplayInDataBox = true;

 DrawOnPricePanel = true;

 DrawHorizontalGridLines = true;

 DrawVerticalGridLines = true;

 PaintPriceMarkers = true;

 ScaleJustification =

NinjaTrader.Gui.Chart.ScaleJustification.Right;

 //Disable this property if your indicator requires custom

values that cumulate with each new market data event.

 //See Help Guide for additional information.

 IsSuspendedWhileInactive = true;

 Period = 14;

 Smooth = 3;

 AddLine(Brushes.Black, 0, "ZeroLine");

 AddPlot(Brushes.Green, "AboveZero");

 AddPlot(Brushes.OrangeRed, "BelowZero");

 Plots[0].Min = 0;

 Plots[1].Max = 0;

 }

 else if (State == State.Configure)

 {

 }

 }

 protected override void OnBarUpdate()

 {

 // Are there enough bars

 if (CurrentBar < Period) return;

 // Set the plot values

 AboveZero[0] = SMA(ROC(Period), Smooth)[0];

 BelowZero[0] = SMA(ROC(Period), Smooth)[0];

 }

 #region Properties

 [NinjaScriptProperty]

 [Range(1, int.MaxValue)]

 [Display(Name="Period", Description="Number of periods",

Order=1, GroupName="Parameters")]

 public int Period

 { get; set; }

 [NinjaScriptProperty]

 [Range(1, int.MaxValue)]

 [Display(Name="Smooth", Description="Smoothing rate", Order=2,

GroupName="Parameters")]

 public int Smooth

 { get; set; }

 [Browsable(false)]

 [XmlIgnore]

 public Series<double> AboveZero

 {

 get { return Values[0]; }

 }

 [Browsable(false)]

 [XmlIgnore]

 public Series<double> BelowZero

 {

 get { return Values[1]; }

 }

 #endregion

}

NinjaTrader 81700

© 2023 NinjaTrader, LLC

11.5.4.2.3 Compiling

The indicator code is now complete and needs to be compiled. You can compile this indicator

from within the NinjaScript Editor right mouse button menu "Compile" menu or simply press

the F5 key. It is important to understand that this process makes the indicator ready for real-

time use and will run natively within NinjaTrader directly. It does not run interpreted as many

other applications do. This provides you with the highest performance possible. If there are

any errors reported during compiling, the error messages will be displayed at the bottom of

the NinjaScript Editor.

11.5.4.2.4 Using

Your indicator is now ready for use and will be listed in the Indicator Dialog window.

1) The indicator can now be found in the "Available" section of the Indicators window

2) Once added to the "Configured" section, our user-defined inputs can be entered along with

standard indicator properties.

Once applied to a chart, the indicator should look something like the image below.

NinjaScript 1701

© 2023 NinjaTrader, LLC

11.5.4.3 Intermediate - Historical Custom Data Series

Historical Custom Series<T> Overview

In this intermediate level tutorial we are going to build a custom indicator that stores

intermediary calculations without the use of plots. This indicator will show you how to use

a Series<T> object.

› Set Up

› Entering Calculation Logic

› Compiling

› Using

11.5.4.3.1 Set Up

The first step in creating a custom indicator is to use the custom indicator wizard. The wizard

will generate the required NinjaScript code that will serve as the foundation for your custom

indicator.

NinjaTrader 81702

© 2023 NinjaTrader, LLC

1. Within the NinjaTrader Control Center, select the New menu, then select the NinjaScript

Editor menu item.

2. Right mouse click the "Indicators" folder in the NinjaScript Explorer section, then select

the New Indicator menu item to open the New Indicator Wizard.

Defining Indicator Properties and Name
First you will define your indicator's name and several indicator properties. Begin by clicking

the Next > button on the first page of the wizard to view the page shown below.

3. Enter the information as shown above

4. Click the Next > button

Setting Default Properties
The next page will allow you to set defaults for basic properties related to your indicator,

including it's Calculate and Overlay settings. Click the More Properties button to expose

NinjaScript 1703

© 2023 NinjaTrader, LLC

additional properties. For this tutorial, we will not change any basic properties' defaults, and

instead will leave them all set to the values shown below and move forward by clicking the

Next > button.:

Adding Additional Data
The next page will allow you to configure one or more additional Bars objects for use by the

indicator. For our purposes, we will leave this page blank and move forward by clicking the

Next > button.

NinjaTrader 81704

© 2023 NinjaTrader, LLC

1. Here we will click the arrow or the bold Custom Series text to be able to use the wizard to

add our custom Series<T> object

2. Once the menu is expanded, we can click the add button to add a Series<T>

3. We will then enter the information above, and select Double as the variable type for the

Series<T>

Adding Event Methods
The next page will allow you to pre-populate certain event methods into the NinjaScript code

generated by the wizard. For our purposes, we will leave all of the checkboxes corresponding

to different event methods unchecked, and will move on by clicking the Next > button.

NinjaScript 1705

© 2023 NinjaTrader, LLC

Defining Input Parameters
The next page will allow us to configure user input parameters for the indicator. For our

custom indicator, our eventual goal will be to create a simple plot that follows either above or

below the bars based upon the Close price of a specified bar compared to the preceding bar.

To allow for the variable selection of a number of bars ago, we will create one input parameter

and call it "Periods." This variable will then be used to determine the number of bars used in

the plot calculation.

NinjaTrader 81706

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Input Parameters" page brings up the Input Parameters

dialogue

2. The Input Parameters dialogue can be used to define user inputs

We specify a default value of 10, which will refer to 10 bars in the calculation. We also specify

a minimum value of 1 to ensure that we cannot enter a 0 or negative number for Periods.

Defining Plots and lines
The next page will allow us to define plots and static lines for the indicator. For this indicator,

we will define a single plot, called "MyPlot."

NinjaScript 1707

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Plots and Lines" page brings up the Plots and Lines

dialogue

2. The Plots and Lines dialogue can be used to define the plot

After this, click the Finish button, and the Indicator Wizard will generate a basic code

structure implementing the parameters that you have set. You are now ready to move on to

entering calculation logic in your code.

11.5.4.3.2 Entering Calculation Logic

The OnBarUpdate() method is called for each incoming tick or on the close of a bar (user

defined) when performing real-time calculations and is called on each bar of a data series

when re-calculating the indicator. For example, an indicator would be re-calculated when

adding it to an existing chart that has existing price data displayed. Therefore, this is the main

method called for indicator calculation and we will use this method to enter the script that will

do our calculations.

Creating the Series<double> Object
This has already been added by the New Indicator wizard, but let's take note of the code

added that creates our Series<double>

NinjaTrader 81708

© 2023 NinjaTrader, LLC

1. Declare a variable ("MySeries" used in this example) of type Series<double> that will hold a

Series<double> object within the region "Variables"

2. Create a new Series<double> object and assigning it to the MySeries variable within the

OnStateChange() method

private Series<double> MySeries;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 ...

 }

 else if (State == State.DataLoaded)

 {

 MySeries = new Series<double>(this);

 }

}

Storing calculations in the DataSeries object
Now that we have our Series<double> object we can store double values into it. For this

example we will store a simple Close minus Open calculation.

Enter the following code into the OnBarUpdate() method:

// Calculate the range of the current bar and set the value

MySeries[0] = Close[0] - Open[0];

The value of a Series<T> object will be aligned with the current bar. This means that all

Series<T> objects will be synced with the CurrentBar index. It allows you to store a double

value that corresponds with every bar.

Using Series<T> values
With our new Series<double> object we can continue with further calculations easily. We can

now use our Series<double> object as input to an indicator method such as SMA or instead of

always writing Close[0] - Open[0] we can substitute our Series<double> object instead as per

the example below.

To plot our final calculation we will store the calculation in our plot called 'MyPlot.' In the

OnBarUpdate() method add the following code snippet:

NinjaScript 1709

© 2023 NinjaTrader, LLC

// Add the bar's range to the SMA value

MyPlot[0] = SMA(SMAPeriod)[0] + MySeries[0];

Here we assign the SMA + Series<double> value to the property that represents the plot data

using the "=" assignment operator. We have just finished coding our CustomSeries example.

The class code in your editor should look identical to the below. You are now ready to compile

the indicator and configure it on a chart.

NinjaTrader 81710

© 2023 NinjaTrader, LLC

public class CustomSeries : Indicator

{

 private Series<double> MySeries;

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Description = @"Stores

intermediary calculations without the use of plots";

 Name = "CustomSeries";

 Calculate =

Calculate.OnBarClose;

 IsOverlay = false;

 DisplayInDataBox = true;

 DrawOnPricePanel = true;

 DrawHorizontalGridLines = true;

 DrawVerticalGridLines = true;

 PaintPriceMarkers = true;

 ScaleJustification =

NinjaTrader.Gui.Chart.ScaleJustification.Right;

 //Disable this property if your indicator requires custom

values that cumulate with each new market data event.

 //See Help Guide for additional information.

 IsSuspendedWhileInactive = true;

 SMAPeriod = 5;

 AddPlot(Brushes.Orange, "MyPlot");

 }

 else if (State == State.Configure)

 {

 }

 else if (State == State.DataLoaded)

 {

 MySeries = new Series<double>(this);

 }

 }

 protected override void OnBarUpdate()

 {

 // Calculate the range of the current bar and set the value

 MySeries[0] = Close[0] - Open[0];

 // Add the bar's range to the SMA value

 MyPlot[0] = SMA(SMAPeriod)[0] + MySeries[0];

 }

 #region Properties

 [NinjaScriptProperty]

 [Range(1, int.MaxValue)]

 [Display(Name="SMAPeriod", Description="Simple Moving Average

Period", Order=1, GroupName="Parameters")]

 public int SMAPeriod

 { get; set; }

 [Browsable(false)]

 [XmlIgnore]

 public Series<double> MyPlot

 {

 get { return Values[0]; }

 }

 #endregion

}

NinjaScript 1711

© 2023 NinjaTrader, LLC

11.5.4.3.3 Compiling

The indicator code is now complete and needs to be compiled. You can compile this indicator

from within the NinjaScript Editor right mouse button menu "Compile" menu or simply press

the F5 key. It is important to understand that this process makes the indicator ready for real-

time use and will run natively within NinjaTrader directly. It does not run interpreted as many

other applications do. This provides you with the highest performance possible. If there are

any errors reported during compiling, the error messages will be displayed at the bottom of

the NinjaScript Editor.

11.5.4.3.4 Using

Your indicator is now ready for use and will be listed in the Indicator Dialog window.

1) The indicator can now be found in the "Available" section of the Indicators window

2) Once added to the "Configured" section, our user-defined inputs can be entered along with

standard indicator properties.

Once applied to a chart, the indicator should look something like the image below.

NinjaTrader 81712

© 2023 NinjaTrader, LLC

11.5.4.4 Intermediate - Your own SMA

Your Own SMA Overview

In this intermediate level tutorial we are going to build a simple moving average indicator.

This indicator will show you how to use the "for" loop and a single case "if" statement.

› Set Up

› Entering Calculation Logic

› Compiling

› Using

11.5.4.4.1 Set Up

The first step in creating a custom indicator is to use the custom indicator wizard. The wizard

will generate the required NinjaScript code that will serve as the foundation for your custom

indicator.

NinjaScript 1713

© 2023 NinjaTrader, LLC

1. Within the NinjaTrader Control Center, select the New menu, then select the NinjaScript

Editor menu item.

2. Right mouse click the "Indicators" folder in the NinjaScript Explorer section, then select

the New Indicator menu item to open the New Indicator Wizard.

Defining Indicator Properties and Name
First you will define your indicator's name and several indicator properties. Begin by clicking

the Next > button on the first page of the wizard to view the page shown below.

3. Enter the information as shown above

4. Click the Next > button

Setting Default Properties
The next page will allow you to set defaults for basic properties related to your indicator,

including it's Calculate and Overlay settings. Click the More Properties button to expose

NinjaTrader 81714

© 2023 NinjaTrader, LLC

additional properties. For this tutorial, we will not change any basic properties' defaults, and

instead will leave them all set to the values shown below and move forward by clicking the

Next > button.:

Adding Additional Data
The next page will allow you to configure one or more additional Bars objects for use by the

indicator. For our purposes, we will leave this page blank and move forward by clicking the

Next > button.

NinjaScript 1715

© 2023 NinjaTrader, LLC

Adding Event Methods
The next page will allow you to pre-populate certain event methods into the NinjaScript code

generated by the wizard. For our purposes, we will leave all of the checkboxes corresponding

to different event methods unchecked, and will move on by clicking the Next > button.

NinjaTrader 81716

© 2023 NinjaTrader, LLC

Defining Input Parameters
The next page will allow us to configure user input parameters for the indicator. For our

custom indicator, our eventual goal will be to create a simple plot that follows either above or

below the bars based upon the Close price of a specified bar compared to the preceding bar.

To allow for the variable selection of a number of bars ago, we will create one input parameter

and call it "Periods." This variable will then be used to determine the number of bars used in

the plot calculation.

NinjaScript 1717

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Input Parameters" page brings up the Input Parameters

dialogue

2. The Input Parameters dialogue can be used to define user inputs

We specify a default value of 10, which will refer to 10 bars in the calculation. We also specify

a minimum value of 1 to ensure that we cannot enter a 0 or negative number for Periods.

Defining Plots and lines
The next page will allow us to define plots and static lines for the indicator. For this indicator,

we will define a single plot, called "MyPlot."

NinjaTrader 81718

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Plots and Lines" page brings up the Plots and Lines

dialogue

2. The Plots and Lines dialogue can be used to define the plot

After this, click the Finish button, and the Indicator Wizard will generate a basic code

structure implementing the parameters that you have set. You are now ready to move on to

entering calculation logic in your code.

11.5.4.4.2 Entering Calculation Logic

The OnBarUpdate() method is called for each incoming tick, or on the close of a bar (if

enabled) when performing real-time calculations, and is called on each bar of a Bars object

when re-calculating the indicator (For example, an indicator would be re-calculated when

adding it to an existing chart that has existing price data displayed).. Therefore, this is the

main method called for indicator calculation and we will use this method to enter the script

that will calculate a simple moving average.

Are there enough bars?
Enter the following code into the OnBarUpdate() method in the NinjaScript Editor:

NinjaScript 1719

© 2023 NinjaTrader, LLC

// Do not calculate if we don't have enough bars

if (CurrentBar < Period) return;

To calculate a 20 period moving average you will need a minimum of 20 bars of data. The first

statement in our OnBarUpdate() method checks to see if there are enough bars of data to

perform the moving average calculation. "CurrentBar" returns the index number of the current

bar and this is checked against the user defined parameter "Period". If the current bar number

is less than the user defined period we "return" which skips calculating the moving average.

Getting a sum of closing prices
Enter the following code into the OnBarUpdate() method and below the code snippet you

entered above:

// Get a sum of prices over the specified period

double sum = 0;

for (int barsAgo = 0; barsAgo < Period; barsAgo++)

{

 sum = sum + Input[barsAgo];

}

First we must declare a variable that will store our sum total.

double sum = 0;

The variable "sum" whose value is of type "double" will serve as temporary storage.

for (int barsAgo = 0; barsAgo < Period; barsAgo++)

{

 sum = sum + Input[barsAgo];

}

Next we must calculate the sum. We use a standard "for" loop to skip through prices and add

them to the "sum" variable. Although the command that represents the loop may look

intimidating, its really quite simple. Let's look at it in English....

What the loop is saying is:

NinjaTrader 81720

© 2023 NinjaTrader, LLC

1. the number of bars ago is now zero

2. as long as the number of bars ago is less than the moving average period, then go to line 3

otherwise this loop is finished

3. get the price Input[number of bars ago] and add it to the running sum total

4. add one to the number of bars ago (if number of bars ago was zero it will now be one)

5. go to to line 2

You can find more information on how loops work here. Once the loop has finished, it will

have calculated the total sum of closing prices for the period of our moving average.

* We use the value of Input[barsAgo] to get a price to use for our calculation. We could have

substituted Close[barsAgo] to use closing prices or High[barsAgo] to use high prices. The

reason we use Input[barsAgo] is since this allows flexibility for what the indicator is

calculated based off of. Remember users have the option to select a price type (High, Open,

Close etc...) from the Indicator Dialog window.

The final calculation
Enter the following code into the OnBarUpdate() method and below the code snippet you

entered above:

// Calculate and set the average value to the 'MyPlot' property

MyPlot[0] = sum / Period;

We can now calculate the final moving average value and assign it's value to the property that

represents the plot data. We have just finished coding our simple moving average. The class

code in your editor should look identical to the image below. You are now ready to compile the

indicator and configure it on a chart.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/statements/iteration-statements

NinjaScript 1721

© 2023 NinjaTrader, LLC

public class MySMA : Indicator

{

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Description = @"Simple Moving

Average";

 Name = "MySMA";

 Calculate =

Calculate.OnBarClose;

 IsOverlay = true;

 DisplayInDataBox = true;

 DrawOnPricePanel = true;

 DrawHorizontalGridLines = true;

 DrawVerticalGridLines = true;

 PaintPriceMarkers = true;

 ScaleJustification =

NinjaTrader.Gui.Chart.ScaleJustification.Right;

 //Disable this property if your indicator requires custom

values that cumulate with each new market data event.

 //See Help Guide for additional information.

 IsSuspendedWhileInactive = true;

 Period = 20;

 AddPlot(Brushes.Orange, "MyPlot");

 }

 else if (State == State.Configure)

 {

 }

 }

 protected override void OnBarUpdate()

 {

 // Do not calculate if we don't have enough bars

 if (CurrentBar < Period) return;

 // Get a sum of prices over the specified period

 double sum = 0;

 for (int barsAgo = 0; barsAgo < Period; barsAgo++)

 {

 sum = sum + Input[barsAgo];

 }

 // Calculate and set the average value to the 'MyPlot'

property

 MyPlot[0] = sum / Period;

 }

 #region Properties

 [NinjaScriptProperty]

 [Range(1, int.MaxValue)]

 [Display(Name="Period", Description="Number of Periods",

Order=1, GroupName="Parameters")]

 public int Period

 { get; set; }

 [Browsable(false)]

 [XmlIgnore]

 public Series<double> MyPlot

 {

 get { return Values[0]; }

 }

 #endregion

}

NinjaTrader 81722

© 2023 NinjaTrader, LLC

Alternate Implementation
In this tutorial we are using a "for" loop to iterate through a collection of prices and accumulate

a sum value. We chose this approach to demonstrate the use of a loop. A simple moving

average can actually be expressed in a more efficient manner using the built in SUM indicator

as show below.

// Do not calculate if we don't have enough bars

if (CurrentBar < Period) return;

// Calculate and set the 'average' value to the 'MyPlot' property

MyPlot[0] = SUM(Input, Period)[0] / Period;

11.5.4.4.3 Compiling

The indicator code is now complete and needs to be compiled. You can compile this indicator

from within the NinjaScript Editor right mouse button menu "Compile" menu or simply press

the F5 key. It is important to understand that this process makes the indicator ready for real-

time use and will run natively within NinjaTrader directly. It does not run interpreted as many

other applications do. This provides you with the highest performance possible. If there are

any errors reported during compiling, the error messages will be displayed at the bottom of

the NinjaScript Editor.

11.5.4.4.4 Using

Your indicator is now ready for use and will be listed in the Indicator Dialog window.

NinjaScript 1723

© 2023 NinjaTrader, LLC

1) The indicator can now be found in the "Available" section of the Indicators window

2) Once added to the "Configured" section, our user-defined inputs can be entered along with

standard indicator properties.

Once applied to a chart, the indicator should look something like the image below.

NinjaTrader 81724

© 2023 NinjaTrader, LLC

11.5.4.5 Beginner - Indicator on Indicator

Indicator on Indicator Overview

In this beginner level tutorial we are going to build a custom indicator that calculates a

moving average of volume. This indicator will show you how to use the built in indicators of

Moving Average (SMA) and Volume.

› Set Up

› Entering Calculation Logic

› Compiling

› Using

11.5.4.5.1 Set Up

The first step in creating a custom indicator is to use the custom indicator wizard. The wizard

will generate the required NinjaScript code that will serve as the foundation for your custom

indicator.

NinjaScript 1725

© 2023 NinjaTrader, LLC

1. Within the NinjaTrader Control Center, select the New menu, then select the NinjaScript

Editor menu item.

2. Right mouse click the "Indicators" folder in the NinjaScript Explorer section, then select

the New Indicator menu item to open the New Indicator Wizard.

Defining Indicator Properties and Name
First you will define your indicator's name and several indicator properties. Begin by clicking

the Next > button on the first page of the wizard to view the page shown below.

3. Enter the information as shown above

4. Click the Next > button

Setting Default Properties
The next page will allow you to set defaults for basic properties related to your indicator,

including it's Calculate and Overlay settings. Click the More Properties button to expose

NinjaTrader 81726

© 2023 NinjaTrader, LLC

additional properties. For this tutorial, we will not change any basic properties' defaults, and

instead will leave them all set to the values shown below and move forward by clicking the

Next > button.:

Adding Additional Data
The next page will allow you to configure one or more additional Bars objects for use by the

indicator. For our purposes, we will leave this page blank and move forward by clicking the

Next > button.

NinjaScript 1727

© 2023 NinjaTrader, LLC

Adding Event Methods
The next page will allow you to pre-populate certain event methods into the NinjaScript code

generated by the wizard. For our purposes, we will leave all of the checkboxes corresponding

to different event methods unchecked, and will move on by clicking the Next > button.

NinjaTrader 81728

© 2023 NinjaTrader, LLC

Defining Input Parameters
The next page will allow us to configure user input parameters for the indicator. For our

custom indicator, our eventual goal will be to create a simple plot that follows either above or

below the bars based upon the Close price of a specified bar compared to the preceding bar.

To allow for the variable selection of a number of bars ago, we will create one input parameter

and call it "Periods." This variable will then be used to determine the number of bars used in

the plot calculation.

NinjaScript 1729

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Input Parameters" page brings up the Input Parameters

dialogue

2. The Input Parameters dialogue can be used to define user inputs

We specify a default value of 10, which will refer to 10 bars in the calculation. We also specify

a minimum value of 1 to ensure that we cannot enter a 0 or negative number for Periods.

Defining Plots and lines
The next page will allow us to define plots and static lines for the indicator. For this indicator,

we will define a single plot, called "MyPlot."

NinjaTrader 81730

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Plots and Lines" page brings up the Plots and Lines

dialogue

2. The Plots and Lines dialogue can be used to define the plot

After this, click the Finish button, and the Indicator Wizard will generate a basic code

structure implementing the parameters that you have set. You are now ready to move on to

entering calculation logic in your code.

11.5.4.5.2 Entering Calculation Logic

The OnBarUpdate() method is called for each incoming tick, or on the close of a bar (if

enabled) when performing real-time calculations, and is called on each bar of a Bars object

when re-calculating the indicator (For example, an indicator would be re-calculated when

adding it to an existing chart that has existing price data displayed). This is the main method

used for indicator calculations, and we will calculate our core indicator logic (calculating an

average of volume) within this method.

Calculating the Average
NinjaTrader has built in indicators that you can reference in your calculations. Since we are

calculating a simple moving average of volume it would make sense for us to use the built in

SMA indicator and Volume indicators.

NinjaScript 1731

© 2023 NinjaTrader, LLC

Enter the following code into the OnBarUpdate() method in the NinjaScript Editor:

// Calculate the volume average

double average = SMA(VOL(), Periods)[0];

Here we declared the variable "average" which is of type double. This serves as the

temporary storage for the current value of the simple moving average of volume. We then use

the simple moving average indicator and pass in the volume indicator as its input, pass in our

indicator "Periods" property (a parameter we defined in the wizard) and access the current

value "[0]" that we will assign to our variable "average". If we wanted to assign the value one

bar ago, we could have used "[1]".

Final Assignment
Enter the following code into the OnBarUpdate() method and below the code snippet you

entered above:

// Set the calculated value to the plot

MyPlot[0] = average;

Here we assign the "average" value to the property that represents the plot data using the '='

assignment operator. We have just finished coding our simple moving average of volume.

Your class code should look identical to the code below. You are now ready to compile the

indicator and configure it on a chart.

NinjaTrader 81732

© 2023 NinjaTrader, LLC

public class VolSMA : Indicator

{

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Description = @"Moving average

of volume";

 Name = "VolSMA";

 Calculate =

Calculate.OnBarClose;

 IsOverlay = false;

 DisplayInDataBox = true;

 DrawOnPricePanel = true;

 DrawHorizontalGridLines = true;

 DrawVerticalGridLines = true;

 PaintPriceMarkers = true;

 ScaleJustification =

NinjaTrader.Gui.Chart.ScaleJustification.Right;

 //Disable this property if your indicator requires custom

values that cumulate with each new market data event.

 //See Help Guide for additional information.

 IsSuspendedWhileInactive = true;

 Periods = 10;

 AddPlot(Brushes.Orange, "MyPlot");

 }

 else if (State == State.Configure)

 {

 }

 }

 protected override void OnBarUpdate()

 {

 // Calculate the volume average

 double average = SMA(VOL(), Periods)[0];

 // Set the calculated value to the plot

 MyPlot[0] = average;

 }

 #region Properties

 [NinjaScriptProperty]

 [Range(1, int.MaxValue)]

 [Display(Name="Periods", Description="Number of periods",

Order=1, GroupName="Parameters")]

 public int Periods

 { get; set; }

 [Browsable(false)]

 [XmlIgnore]

 public Series<double> MyPlot

 {

 get { return Values[0]; }

 }

 #endregion

}

NinjaScript 1733

© 2023 NinjaTrader, LLC

11.5.4.5.3 Compiling

The indicator code is now complete and needs to be compiled. You can compile this indicator

from within the NinjaScript Editor right mouse button menu "Compile" menu or simply press

the F5 key. It is important to understand that this process makes the indicator ready for real-

time use and will run natively within NinjaTrader directly. It does not run interpreted as many

other applications do. This provides you with the highest performance possible. If there are

any errors reported during compiling, the error messages will be displayed at the bottom of

the NinjaScript Editor.

11.5.4.5.4 Using

Your indicator is now ready for use and will be listed in the Indicator Dialog window.

1) The indicator can now be found in the "Available" section of the Indicators window

2) Once added to the "Configured" section, our user-defined inputs can be entered along with

standard indicator properties.

Once applied to a chart, the indicator should look something like the image below.

NinjaTrader 81734

© 2023 NinjaTrader, LLC

11.5.4.6 Beginner - Using price variables

Using Price Variables Overview

In this beginner level tutorial we are going to build a custom indicator that searches for a

candlestick formation in which the closing price of a specified bar is greater than the

closing price of the bar before it. This indicator will show you how to access price

variables and use a conditional operator.

› Set Up

› Entering Calculation Logic

› Compiling

› Using

NinjaScript 1735

© 2023 NinjaTrader, LLC

11.5.4.6.1 Set Up

The first step in creating a custom indicator is to use the custom indicator wizard. The wizard

will generate the required NinjaScript code that will serve as the foundation for your custom

indicator.

1. Within the NinjaTrader Control Center, select the New menu, then select the NinjaScript

Editor menu item.

2. Right mouse click the "Indicators" folder in the NinjaScript Explorer section, then select

the New Indicator menu item to open the New Indicator Wizard.

Defining Indicator Properties and Name
First you will define your indicator's name and several indicator properties. Begin by clicking

the Next > button on the first page of the wizard to view the page shown below.

NinjaTrader 81736

© 2023 NinjaTrader, LLC

3. Enter the information as shown above

4. Click the Next > button

Setting Default Properties
The next page will allow you to set defaults for basic properties related to your indicator,

including it's Calculate and Overlay settings. Click the More Properties button to expose

additional properties. For this tutorial, we will not change any basic properties' defaults, and

instead will leave them all set to the values shown below and move forward by clicking the

Next > button.:

Adding Additional Data
The next page will allow you to configure one or more additional Bars objects for use by the

indicator. For our purposes, we will leave this page blank and move forward by clicking the

Next > button.

NinjaScript 1737

© 2023 NinjaTrader, LLC

Adding Event Methods
The next page will allow you to pre-populate certain event methods into the NinjaScript code

generated by the wizard. For our purposes, we will leave all of the checkboxes corresponding

to different event methods unchecked, and will move on by clicking the Next > button.

NinjaTrader 81738

© 2023 NinjaTrader, LLC

Defining Input Parameters
The next page will allow us to configure user input parameters for the indicator. For our

custom indicator, our eventual goal will be to create a simple plot that follows either above or

below the bars based upon the Close price of a specified bar compared to the preceding bar.

To allow for the variable selection of a number of bars ago, we will create one input parameter

and call it "BarsAgo." This variable will then be used in place of a number when specifying

which bar's Close price to use for the indicator's condition.

NinjaScript 1739

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Input Parameters" page brings up the Input Parameters

dialogue

2. The Input Parameters dialogue can be used to define user inputs

We specify a default value of 0, which will refer to "zero bars ago," or the current bar. We also

specify a minimum value of 0 to ensure that we cannot enter a negative number for BarsAgo.

Defining Plots and lines
The next page will allow us to define plots and static lines for the indicator. For this indicator,

we will define a single plot, called "MyPlot."

NinjaTrader 81740

© 2023 NinjaTrader, LLC

1. Clicking the add button on the "Plots and Lines" page brings up the Plots and Lines

dialogue

2. The Plots and Lines dialogue can be used to define the plot

After this, click the Finish button, and the Indicator Wizard will generate a basic code

structure implementing the parameters that you have set. You are now ready to move on to

entering calculation logic in your code.

11.5.4.6.2 Entering Calculation Logic

The OnBarUpdate() method is called for each incoming tick, or on the close of a bar (if

enabled) when performing real-time calculations, and is called on each bar of a Bars object

when re-calculating the indicator (For example, an indicator would be re-calculated when

adding it to an existing chart that has existing price data displayed). This is the main method

used for indicator calculations, and we will calculate our core indicator logic (testing to see if a

Close price on a specified bar was greater than the previous Close price) within this method.

Adding the Condition and Assigning the Plot Value
Enter the following code in the OnBarUpdate() method in the NinjaScript Editor:

NinjaScript 1741

© 2023 NinjaTrader, LLC

Values[0][BarsAgo] = (Close[BarsAgo] > Close[(BarsAgo + 1)]) ?

(High[BarsAgo] + (5 * TickSize)) : (Low[BarsAgo] - (5 * TickSize));

Although the code above fits on a single line, it is doing several things. Firstly, it is important to

understand the structure that we are using in this statement. We are using a Ternary

Operator, which provides a way to assign one of two values to a variable based on a

condition. We begin by stating that we wish to assign a value to the indicator plot at a bar

index corresponding to BarsAgo. We do this by using Values, which is a collection holding

values for all plots configured in the indicator:

Values[0][BarsAgo] =

Next, we add a condition to test. In this case, we are testing to see whether Close at a bar

index corresponding to the value of BarsAgo was greater than Close at a value of BarsAgo + 1.

If BarsAgo was set to 5, for example, this would compare Close[5] to Close[6]:

Values[0][BarsAgo] = (Close[BarsAgo] > Close[(BarsAgo + 1)]) ?

If the condition evaluates to true, then the first expression will be run (the expression on the

left side of the colon ":"), which will assign the value of the indicator plot to the High price of

the specified bar, plus five ticks. We obtain the tick size value for the configured instrument

via the TickSize property:

Values[0][BarsAgo] = (Close[BarsAgo] > Close[(BarsAgo + 1)]) ?

(High[BarsAgo] + (5 * TickSize)) :

if the condition evaluates to false, then the second expression will be run (the expression on

the right side of the colon ":", which will assign the value of the indicator plot to the Low price

of the specified bar, less five ticks:

https://msdn.microsoft.com/en-us/library/ty67wk28.aspx
https://msdn.microsoft.com/en-us/library/ty67wk28.aspx

NinjaTrader 81742

© 2023 NinjaTrader, LLC

Values[0][BarsAgo] = (Close[BarsAgo] > Close[(BarsAgo + 1)]) ?

(High[BarsAgo] + (5 * TickSize)) : (Low[BarsAgo] - (5 * TickSize));

The core indicator logic is now in place, but running this code as it is can result in an "Index

out of range" exception. Since we are looking a certain number of bars back in time, we need

to make sure that there are always enough bars on the chart for us to look back. For example,

if BarsAgo were set to 5, then we would be comparing the value of five bars ago to the value

of six bars ago, but on Bars # 1, 2, 3, 4, or 5, at which point we do not have five or six bars to

look back, the indicator will cause an error. To resolve this, we will add a condition which will

prevent the core calculations from running unless we know there are enough bars on the

chart. Add the following line just above the line you have been working on throughout this

page:

if(CurrentBar < BarsAgo + 1)

 return;

This line says, "if there is not a number of bars equal to one number greater than the value of

BarsAgo, then exit OnBarUpdate()."

Now that everything is in place, your class code should look as below. You are now ready to

compile the indicator and configure it on a chart.

NinjaScript 1743

© 2023 NinjaTrader, LLC

public class PriceVariableTutorial : Indicator

{

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Description = @"NinjaScript Price

Variables Tutorial";

 Name = "PriceVariableTutorial";

 Calculate = Calculate.OnBarClose;

 IsOverlay = false;

 DisplayInDataBox = true;

 DrawOnPricePanel = true;

 DrawHorizontalGridLines = true;

 DrawVerticalGridLines = true;

 PaintPriceMarkers = true;

 ScaleJustification =

NinjaTrader.Gui.Chart.ScaleJustification.Right;

 //Disable this property if your indicator requires

custom values that cumulate with each new market data event.

 //See Help Guide for additional information.

 IsSuspendedWhileInactive = true;

 BarsAgo = 0;

 AddPlot(Brushes.Orange, "MyPlot");

 }

 else if (State == State.Configure)

 {

 }

 }

 protected override void OnBarUpdate()

 {

 if(CurrentBar < BarsAgo + 1)

 return;

 Values[0][BarsAgo] = (Close[BarsAgo] > Close[(BarsAgo +

1)]) ? (High[BarsAgo] + (5 * TickSize)) : (Low[BarsAgo] - (5 *

TickSize));

 }

 #region Properties

 [Range(0, int.MaxValue)]

 [NinjaScriptProperty]

 [Display(Name="BarsAgo", Description="How many bars ago to use

for the plot value", Order=1)]

 public int BarsAgo

 { get; set; }

 [Browsable(false)]

 [XmlIgnore]

 public Series<double> MyPlot

 {

 get { return Values[0]; }

 }

 #endregion

}

NinjaTrader 81744

© 2023 NinjaTrader, LLC

11.5.4.6.3 Compiling

The indicator code is now complete and needs to be compiled. You can compile this indicator

by selecting the Compile menu item from within the NinjaScript Editor Right Click, by clicking

the Compile icon on the toolbar at the top of the window, or by pressing the F5 key on your

keyboard. It is important to understand that this process makes the indicator ready for real-

time use natively within NinjaTrader. It does not run as interpreted code, as many other

applications do, but rather as a C# assembly. This provides you with the highest performance

possible. If there are any errors reported during compiling, the error messages will be

displayed at the bottom of the NinjaScript Editor.

11.5.4.6.4 Using

Your indicator is now ready for use and will be listed in the Indicator Dialog window.

1) The indicator can now be found in the "Available" section of the Indicators window

2) Once added to the "Configured" section, our user-defined inputs can be entered along with

standard indicator properties.

Once applied to a chart, the indicator should look something like the image below.

NinjaScript 1745

© 2023 NinjaTrader, LLC

11.5.4.7 Developing Outside of the NinjaScript Editor

The NinjaScript Editor automatically generates required program code on saving and/or

compiling a custom indicator. If you choose to develop custom indicators outside of the

NinjaScript Editor environment, please ensure that you use the NinjaScript Editor to compile.

Please see the additional information on this subject.

11.5.5 Developing Strategies

NinjaScript allows you to develop custom strategies in rapid time by using over 100 built-in

system indicators, 3rd party indicators or custom indicators. NinjaScript strategies are

compiled and run natively within the NinjaScript application providing the highest performance

possible.

Please take the time to review this section including the Strategy Development Process.

Prior to running strategies live, please be sure to review the sections about Strategy Position

vs. Account Position and Syncing Account Positions.

Tutorial Descriptions

NinjaTrader 81746

© 2023 NinjaTrader, LLC

All internal NinjaScript indicators and sample strategies come with full source code and can

be viewed within the NinjaScript Editor. Please review the tutorials within this section for

detailed walk throughs of custom strategy development.

› Level 1 - Simple MA Cross Over (Demonstrates strategy construction by wizard and

scripting)

› Level 2 - RSI with Stop Loss & Profit Target (scripting only)

11.5.5.1 Intermediate - RSI with Stop Loss & Profit Target

RSI with Stop Loss & Profit Target Overview

In this intermediate level tutorial we are going to build a custom automated strategy that

goes long when RSI crosses above 20 and exits at a predefined stop loss or profit target,

whichever is hit first. This tutorial is demonstrates the use of the NinjaScript Editor.

› Set Up

› Entering Strategy Logic

› Compiling

11.5.5.1.1 Set Up

Our first tutorial covered using the Strategy Builder to create simple NinjaScript strategies or

to build the framework needed for a more complex strategy.

This tutorial will cover another approach, using the NinjaScript Editor and New Strategy

Wizard.

1. Within the NinjaTrader Control Center window select the New NinjaScript Editor... menu

item

NinjaScript 1747

© 2023 NinjaTrader, LLC

2. Click the "+" tab in the lower left, and select New Strategy to open a New Strategy Wizard

3. Enter the information as shown below

4. Press the "Next >" button until we are at the Inputs and Parameters page

NinjaTrader 81748

© 2023 NinjaTrader, LLC

Defining Input Parameters
Below you will define your strategy's input parameters. These are any input parameters that

can be changed by the user when running or backtesting a strategy. If your strategy does not

require any parameters leave the "Name" fields blank.

5. Click the add button to create a User Input Parameter (See item 1 in the screenshot below)

6. Fill out the Input Parameters window and click OK to create the input parameter (See item

2 in the screenshot below)

NinjaScript 1749

© 2023 NinjaTrader, LLC

7. Add the inputs as per the image below

NinjaTrader 81750

© 2023 NinjaTrader, LLC

8. Press the "Generate" button to generate the code in the NinjaScript Editor.

You are now ready to continue to the Entering Strategy Logic page of this tutorial.

11.5.5.1.2 Entering Strategy Logic

Using the OnStateChange() Method to Configure the Strategy
The OnStateChange() method is called once prior to running a strategy and can be used to

set properties or call methods in preparation for running a strategy.

Enter the code contained within the OnStateChange() method in the image below into the

OnStateChange() method when we are in the State.DataLoaded state in the NinjaScript Editor.

NinjaScript 1751

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Description = @"RSI with a Stop

Loss and Profit Target";

 Name =

"RSIwithStopAndTarget";

 Calculate =

Calculate.OnBarClose;

 EntriesPerDirection = 1;

 EntryHandling =

EntryHandling.AllEntries;

 IsExitOnSessionCloseStrategy = true;

 ExitOnSessionCloseSeconds = 30;

 IsFillLimitOnTouch = false;

 MaximumBarsLookBack =

MaximumBarsLookBack.TwoHundredFiftySix;

 OrderFillResolution =

OrderFillResolution.Standard;

 Slippage = 0;

 StartBehavior =

StartBehavior.WaitUntilFlat;

 TimeInForce = TimeInForce.Gtc;

 TraceOrders = false;

 RealtimeErrorHandling =

RealtimeErrorHandling.StopCancelClose;

 StopTargetHandling =

StopTargetHandling.PerEntryExecution;

 BarsRequiredToTrade = 20;

 // Disable this property for performance gains in Strategy

Analyzer optimizations

 // See the Help Guide for additional information

 IsInstantiatedOnEachOptimizationIteration = true;

 RSIPeriod = 14;

 RSISmooth = 3;

 ProfitTarget = 12;

 StopLoss = 6;

 }

 else if (State == State.DataLoaded)

 {

 AddChartIndicator(RSI(RSIPeriod, RSISmooth));

 SetStopLoss(CalculationMode.Ticks, StopLoss);

 SetProfitTarget(CalculationMode.Ticks, ProfitTarget);

 }

}

NinjaTrader 81752

© 2023 NinjaTrader, LLC

For more information on the strategy properties added in State.SetDefaults, please see our

complete Strategy documentation.

The AddChartIndicator() method is called and the RSI() indicator method is passed in which

will automatically plot this indicator on a chart when the strategy runs.

The method signature for the RSI() indicator is:

RSI(int period, int smooth);

It is valid to have used the Add() method in the following manner:

AddChartIndicator(RSI(14, 3));

However, instead of hard coding the period value to 14 and the smooth value to 3, we

substituted the values for the user defined inputs we defined in the wizard. Calling the Add()

method in the following manner:

AddChartIndicator(RSI(RSIPeriod, RSISmooth));

Allows us to change the period and smooth parameters of the embedded RSI indicator in the

strategy at run time. This gives us a higher level of flexibility when working with our strategy.

SetStopLoss() and SetProfitTarget() are called with CalculationMode.Ticks. This means that

when a position is opened, the strategy will immediately submit a stop and target order with a

price that is calculated based on the StopLoss and ProfitTarget parameters passed in offset

from the positions average entry price.

Using the OnBarUpdate() Method for the Core Strategy Logic
The OnBarUpdate() method is called for each incoming tick or on the close of a bar (user

defined) when performing real-time calculations. Therefore, this is the main method called for

strategy calculation and we will use this method to enter the script that check for entry and

exit conditions.

Enter the code contained within the OnBarUpdate() method in the image below into the

OnBarUpdate() method in the NinjaScript Editor:

NinjaScript 1753

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < RSIPeriod)

 return;

 if(CrossAbove(RSI(RSIPeriod, RSISmooth), 20, 1))

 EnterLong();

}

Since our strategy exit logic has already been set up in the OnStateChange() method above,

we only need to focus on expressing our entry logic. The strategy entry logic is very straight

forward and can be translated to English:

if we have not seen the number of bars specified by the user defined input "RSIPeriod" then

do not go any further

if RSI crosses above a value of 20 within the last bar, go long

To accomplish this we used the following methods and properties:

CurrentBar - A value representing the current bar being processed (think of a chart where the

left most bar would be equal to one)

CrossAbove() - Checks for a cross above condition and returns true or false

RSI() - Returns the value of the RSI indicator

EnterLong() - Enters a market order long

11.5.5.1.3 Compiling

The strategy code is now complete and needs to be compiled.

· If you completed this tutorial via the Strategy Wizard, simply follow the wizard instructions

to the end, at which point the strategy will compile.

· If you self coded this tutorial, you can compile this strategy from within the NinjaScript Editor

right click menu by selecting the Compile menu item, or by pressing the F5 key.

It is important to understand that this process makes the strategy ready for real-time use and

will run natively within NinjaTrader directly. It does not run interpreted as many other

applications do. This provides you with the highest performance possible. If there are any

errors reported during compiling, the error messages will be displayed at the bottom of the

NinjaScript Editor.

NinjaTrader 81754

© 2023 NinjaTrader, LLC

11.5.5.2 Beginner - Simple MA Cross Over

Simple MA Crossover Overview

In this beginner level tutorial we are going to build a custom automated strategy that goes

long when the fast moving average crosses above the slow moving average and goes

short when the fast moving average crosses below the slow moving average.

› Set Up

› Creating the Strategy via the Wizard

› Creating the Strategy via Self Programming

› Compiling

11.5.5.2.1 Set Up

The first step in creating a custom strategy is to use the custom Strategy Builder. The builder

provides two options:

· Allow you to create a functional strategy without any programming

· Generate the required NinjaScript code that will serve as the foundation for your custom

strategy for further coding

1. Within the NinjaTrader Control Center window select the New Strategy Builder... menu

2. Press the "Next >" button

NinjaScript 1755

© 2023 NinjaTrader, LLC

3. Enter the information as shown above

4. Press the "Next >" button

Setting Default Properties
The next page will allow you to set defaults for basic properties related to your strategy,

including it's Calculate and EntryHandling settings. Click the More Properties button to

expose additional properties. For this tutorial, we will not change any basic properties'

defaults, and instead will leave them all set to the values shown below:

NinjaTrader 81756

© 2023 NinjaTrader, LLC

Adding Additional Data
The next page will allow you to configure one or more additional Bars objects for use by the

strategy. For our purposes, we will leave this page blank and move forward by clicking the

Next > button.

NinjaScript 1757

© 2023 NinjaTrader, LLC

Defining Input Parameters
Below you will define your strategy's input parameters. These are any input parameters that

can be changed by the user when running or backtesting a strategy. If your strategy does not

require any parameters leave the "Name" fields blank.

NinjaTrader 81758

© 2023 NinjaTrader, LLC

1. Click the add button to add a property

2. Add input parameters into the newly created Input Parameters window and click Ok once

the input parameter is set up

NinjaScript 1759

© 2023 NinjaTrader, LLC

5. Add the inputs as per the image above

6. Press the "Next >" button

Defining Conditions and Actions
Below you can define conditions that trigger user defined actions such as placing orders,

drawing on a chart or creating an alert.

Notice how there are two buttons on the screen below:

View Code... - Pressing this button loads the strategy code in the NinjaScript Editor for

viewing purposes only. This is a great approach if you are new to programming or you want to

see how the strategy wizard dynamically generates the correct script code on the fly.

Unlock Code - Pressing this button loads the strategy code in the NinjaScript editor for further

manual editing. Once this button is pressed, you can NOT go back to the Wizard for strategy

construction and editing.

NinjaTrader 81760

© 2023 NinjaTrader, LLC

If you want to proceed with this tutorial through self programming continue here after pressing

the "Unlock Code" button.

If you want to proceed with this tutorial through using the Strategy Builder please click here.

11.5.5.2.2 Creating the Strategy via the Wizard

1. Press the "Add" button to display the "Condition Builder" window as per the image below

NinjaScript 1761

© 2023 NinjaTrader, LLC

2. Expand the "Indicator" section to be able to select an indicator plot for your condition

NinjaTrader 81762

© 2023 NinjaTrader, LLC

3. Scroll down and select the SMA indicator

4. Click the set menu item when your mouse is over the Period input field to select our User

Defined Input parameter

NinjaScript 1763

© 2023 NinjaTrader, LLC

5. Select User Input > Fast to select the Fast Period user input we created, then click OK

NinjaTrader 81764

© 2023 NinjaTrader, LLC

6. Enable this indicator to be plotted on a chart

7. Select "CrossAbove" and set the look back period to a value of "1"

8. Select "SMA" indicator in the right window

9. Set the "Slow" period (just like you did for Fast in step 4)

10. Enable this indicator to be plotted on a chart, then click OK to close the Condition Builder

NinjaScript 1765

© 2023 NinjaTrader, LLC

If you look at the image above, you just created an initial condition. The condition is "if the fast

simple moving average crosses above the slow simple moving average".

11. Click the add button under actions to add an action for this condition

NinjaTrader 81766

© 2023 NinjaTrader, LLC

12. Select Order Management > Enter long position to have this condition fire a Buy Market

Order

13. Select the OK button to add the action to the condition

NinjaScript 1767

© 2023 NinjaTrader, LLC

14. Right click on the "Set 1" tab and select Duplicate in New Tab to make a copy of this

condition and action set

NinjaTrader 81768

© 2023 NinjaTrader, LLC

15. We will automatically be moved to the "Set 2" tab. From here, select the condition and

click edit

NinjaScript 1769

© 2023 NinjaTrader, LLC

16. Change this Condition to use "Cross Below" so we can create a condition that triggers

when the moving averages switch sides, then click OK

NinjaTrader 81770

© 2023 NinjaTrader, LLC

17. Click the action in the Condition Builder, and then select edit to edit the action. We will

want to change this action so we sell instead of by for the reversed condition

NinjaScript 1771

© 2023 NinjaTrader, LLC

18. Under Order Management, select Enter short position to have the strategy submit a Sell

Market order, then click OK.

NinjaTrader 81772

© 2023 NinjaTrader, LLC

Once finished, we will have condition sets that look like the following:

NinjaScript 1773

© 2023 NinjaTrader, LLC

NinjaTrader 81774

© 2023 NinjaTrader, LLC

11.5.5.2.3 Creating the Strategy via Self Programming

If you have not done so already, press the "Unlock Code" button within the wizard to launch

the NinjaScript Editor.

The OnBarUpdate() method is called for each incoming tick or on the close of a bar (user

defined) when performing real-time calculations. Therefore, this is the main method called for

strategy calculation and we will use this method to enter the script that check for entry and

exit conditions.

The Entry and Exit Condition
Enter the code contained within the OnBarUpdate() method in the image below into the

OnBarUpdate() method in the NinjaScript Editor:

protected override void OnBarUpdate()

{

 if (CrossAbove(SMA(Fast), SMA(Slow), 1))

 EnterLong();

 if (CrossBelow(SMA(Fast), SMA(Slow), 1))

 EnterShort();

}

Translated into English, the code contained within the OnBarUpdate() method above reads:

if the fast simple moving average crosses above the slow simple moving average within the

last bar, go long

if the fast simple moving average crosses below the slow simple moving average within the

last bar, go short

To accomplish this we used the following methods:

CrossAbove() - Checks for a cross above condition and returns true or false

CrossBelow() - Checks for a cross below condition and returns true or false

SMA() - Returns the value of a simple moving average

EnterLong() - Enters a market order long

EnterShort() - Enters a market order short

11.5.5.2.4 Compiling

The strategy code is now complete and needs to be compiled.

· If you completed this tutorial via the Strategy Wizard, simply follow the wizard instructions to

the end at which time the strategy will compile.

NinjaScript 1775

© 2023 NinjaTrader, LLC

· If you self coded this tutorial you can compile this strategy from within the NinjaScript Editor

right mouse button menu "Compile" menu or simply press the F5 key.

It is important to understand that this process makes the strategy ready for real-time use and

will run natively within NinjaTrader directly. It does not run interpreted as many other

applications do. This provides you with the highest performance possible. If there are any

errors reported during compiling, the error messages will be displayed at the bottom of the

NinjaScript Editor.

11.5.5.3 The Strategy Development Process

Describe your Strategy
Describing your strategy means creating a set of objective rules that define the conditions

used to enter and exit a market. Describing your strategy always starts with the wizard and

then provides the following choices:

· Strategy Wizard with Condition Builder - This is a point and click approach for strategy

description which is ideal for everyone from the non-programmer, novice programmer and

advanced programmer.

· NinjaScript Editor - This is a modern scripting editor with full inline syntax checking and

Intelliprompt. This is a great approach for those who want to manually code their strategy

logic. If you are going to self code your strategy, please be familiar with the

OnStateChange() and OnBarUpdate() methods.

Backtest and Optimize your Strategy
Once you have completed describing your strategy you can then test it against historical data
to objectively determine how the strategy performed on a specific market(s) in the past.

· Strategy Analyzer - You can backtest, optimize, and analyze your historical results

At this point in the process you will likely go through an iterative cycle by where you change

your strategy description, backtest, change description and backtest until you have a strategy

that meets your requirements.

Real-Time Test your Strategy
It is critical that before you deploy your strategy against your live trading account, that you test
it in real-time operation to ensure that the mechanics (operation) of your strategy behaves as
you would expect it to. In addition, you can also forward test your strategy using real-time
market data against the NinjaTrader trade simulation engine. NinjaTrader provides several
options for real-time testing:

· Simulated Data Feed Connection - This is an random internally generated market with user

controlled trend and is great for force testing operation of a strategy

· Playback Connection - Record, replay at user defined speeds multiple markets

simultaneously and run your strategies

NinjaTrader 81776

© 2023 NinjaTrader, LLC

· Real-time Simulation - Connect to your broker or market data vendor in real-time and run

your strategies through our state of the art simulation engine

You can run your strategy from either a chart or the Strategies tab of the Control Center

window. You can generate real-time strategy performance data from the Strategies tab.

Running on your Live Trading Account
Now that you have described, backtested and real-time tested your strategy, you are ready to
automate your strategy against your live trading account. A few tips you should know:

· Please make sure you fully understand the live run-time options

· Live strategy performance will vary from your backtested results

· Please make sure you fully understand Strategy Position vs Account Position... your

strategy position is not a one-to-one relationship with your brokerage account position... you

may need to synchronize if they are not synchronized.

· Strategies are automatically terminated (stop running) on NinjaTrader shut down

· Automated trading does not mean go fishing while your computer trades for you. We highly

recommend that you are within close proximity to your computer while it is running an

automated trading strategy; you never know what can go wrong

· You can run multiple trading strategies at the same time in the same market

11.5.5.4 Working with Accounts

There are a couple of fundamental concepts that should be understood in terms of how

NinjaScript strategies behave in a live-trading environment. More information can be found on

the Strategy Position vs Account Position, and Syncing Account Positions pages.

11.5.6 Historical Order Backfill Logic

Understanding How Orders are backfilled for NinjaScript strategies
NinjaScript strategies use an algorithm to process order fills on historical data in two

scenarios: when processing fills in the Strategy Analyzer, or when processing historical

orders for a live running strategy. The algorithm fills historical orders using the same set of

logic in both scenarios. Below is an outline of the logic used to determine the appropriate fill

price for each historical order. When more than one order needs to be filled at once, the logic

below will be ran for each individual order in succession.

General Outline
The steps involved in determining the appropriate fill price for an order are documented in

their own sections below. The general, top-level outline of the logic can be broken into three

steps:

1. Prepare to calculate fill prices

2. Take three passes to calculate the appropriate fill price for each order which needs filled

3. Fill the orders using the calculated fill price

NinjaScript 1777

© 2023 NinjaTrader, LLC

Step 1 - Prepare to Calculate Fill Prices
1. Determine all orders that need filled

2. Determine the current bar being formed at the time

3. Determine whether the current bar's first move was upward or downward

4. Determine the strategy being run

5. Determine the Bars In Progress the strategy is currently processing

Step 2 - Take Three Passes To Determine Fill Price
The bulk of the backfill logic takes place in this step. Here orders are tested for their order

types and prices, and are compared against current bar data to determine the appropriate fill

prices per order type in different scenarios.

Note: Throughout these three passes, prices are temporarily stored in two variables: a

"next high price" and a "next low price." These are used to approximate the price that

would be hit on the next tick, for the purpose of setting the fill price.

1. First Pass

a. If the current bar moved up first, save the current bar high price as the "next high price,"

then save the current bar Open price as the "next low price."

i. If it moved down first, save the current bar Open price as the "next high price," then

save the current bar Low price as the "next low price."

b. if it's a Market Buy order, set the fill price to the lesser of the "next high price" or the bar

Open

i. If it's a Market Sell order, set the fill price to the greater of the "next high price" or the

bar Open

c. Ensure the strategy is currently processing the bar series on which the order resides,

then:

i. if the current order is Long, set the fill price to the lesser of the "next high price" or

the current bar Open, taking slippage into account

1. if it is Short, set the fill price to the greater of the saved "next low price" or the

current bar Open, taking slippage into account

d. Handle the special case of Limit orders with "Fill Limit Orders on Touch" enabled

i. If the limit price has been touched, set the fill price to current bar Open

e. Ensure the order would be filled without errors by comparing its stop and/or limit prices

against each other and the current bar, then:

i. For Limit orders, set the fill price to the current order's Limit price (however this is

'clamped' to happen inside the bar though)

ii. For Stop Limit orders:

1. if the order is Long, set the fill price to the greater of the existing fill price value or

the current order's Limit price

NinjaTrader 81778

© 2023 NinjaTrader, LLC

2. if it is Short, set the fill price to the lesser of the existing fill price value or the

current order's Limit price

2. Second Pass

a. If the current bar moved up first, save the current bar High price as the "next high price,"

then save the current bar Low price as the "next low price."

i. If it moved down first, save the current bar Low price as the "next high price," then

save the current bar Low price as the "next low price."

b. if it's a Market Buy order and the bar moved up first, set the fill price to the lesser of the

"next high price" or the bar High

i. If the bar moved down first, set the fill price to the lesser of the "next high price" or

the bar Low

c. If it's a Market Sell order and the bar moved up first, set the fill price to the greater of the

"next high price" or the bar High

i. If the bar moved down first, set the fill price to the greater of the "next high price" or

the bar Low

d. Ensure the strategy is currently processing the bar series on which the order resides,

then:

i. if the current order is Long, set fill price to the lesser of the "next high price" or the

current bar Open, taking slippage into account

1. if it is Short, set the fill price to the greater of the "next low price" or the current

bar Open, taking slippage into account

e. Handle the special case of Limit orders with "Fill Limit on Touch" enabled

i. If the limit price has been touched, set the fill price to current bar Open

f. Ensure the order would be filled without errors by comparing its stop and/or limit prices

against each other and the current bar, then:

i. For Limit orders, set the fill price to the current order's Limit price (however this is

'clamped' to happen inside the bar though)

ii. For Stop Limit orders:

1. if the order is Long, set the fill price to the greater of the existing fill price value or

the current order's Limit price

2. if it is Short, set the fill price to the lesser of the existing fill price or the current

order's Limit price

3. Third Pass

a. If the current bar moved up first, save the current bar Close price as the "next high

price," then save the current bar Low price as the "next low price."

i. If it moved down first, save the current bar High price as the "next high price," then

save the current bar Close price as the "next low price."

NinjaScript 1779

© 2023 NinjaTrader, LLC

b. If it's a Market Buy order and the bar moved up first, set the fill price to the lesser of the

"next high price" or the bar Low

i. If the bar moved down first, set the fill price to the lesser of the "next high price" or

the bar High

c. If it's a Market Sell order and the bar moved up first, set the fill price to the greater of the

"next high price" or the bar Low

i. If the bar moved down first, set the fill price to the greater of the "next high price" or

the bar High

d. Ensure the strategy is currently processing the bar series on which the order resides,

then:

i. if the current order is Long, set the fill price to the lesser of the "next high price" or

the current bar Open, taking slippage into account

1. if it is Short, set the fill price to the greater of the "next low price" or the current

bar Open, taking slippage into account

e. Handle the special case of Limit orders with "Fill Limit on Touch" enabled

i. If the limit price has been touched, set the fill price to current bar Open

f. Ensure the order would be filled without errors by comparing its stop and/or limit prices

against each other and the current bar, then:

i. For Limit orders, set the fill price to the current order's Limit price (however this is

'clamped' to happen inside the bar though)

ii. For Stop Limit orders:

1. if the order is Long, set the fill price to the greater of the existing fill price or the

current order's Limit price

2. if the order is Short, set the fill price to the lesser of the existing fill price or the

current order's Limit price

Step 3 - Fill the Order
Each order is filled using the final fill price calculated for that particular order. If an order
cannot be filled at this step, no further attempts will be made. Possible scenarios which would
cause an order not to be filled at this stage include switching from State.Historical to
State.Realtime when the strategy is currently waiting for a flat position before submitting
orders, or a connectivity issue.

1. If the order is an entry, first temporarily clear all Entry Signals and pending orders from
internally held collections of pending Entry Signals and orders

2. If its an exit, first determine the quantity that needs to be filled
a. If the position being closed has not been partially closed already, use the full order

quantity
b. If the position has already been partially closed by other orders, set the order quantity to

the remaining position quantity

NinjaTrader 81780

© 2023 NinjaTrader, LLC

3. Determine whether the strategy needs to wait until flat before filling the order
a. This would apply if an exit order is being processed in real time, attempting to exit a

position that was simulated on historical data

4. Create and parameterize a new Execution object (set Account, Commission, Instrument,
Name, etc.)

5. Set properties of the Order object being analyzed
a. AvgFillPrice, Filled (quantity), OrderState (set to OrderState.Filled)

6. Add the new Execution to the Executions collection

7. Add the order to the Orders collection

8. Fill the order

11.5.7 Multi-Threading Consideration for NinjaScript

Multi-Threading Overview
With the introduction of multi-threading in NinjaTrader special considerations should be made

when programming your NinjaScript objects. Multi-threading basically allows NinjaTrader to

take advantage of multi-core CPUs commonplace in modern computing to do multiple tasks

at the same time. While this has many advantages for multi-tasking, it can cause new types

of issues you may have not needed to consider before. This page was designed to serve as

a high-level overview of some of the most common scenarios that can arise due to multi-

threading, but should not be considered an exhaustive list.

Using A Dispatcher
Depending on your CPU configuration, the NinjaTrader application will usually consist of

multiple main UI threads, where various features like Charts or NinjaScript objects run, along

with a number of background worker threads where events such as market data updates will

be distributed throughout the product. In principle, an object can only access information

related to objects that exist on the same thread. It is possible (and quite likely), that the thread

which a NinjaScript object is running will not be the same thread as the event which is calling

the object. In cases where you need to access objects on the UI from a NinjaScript objects

calling event thread, a dispatcher can be used.

Note: As a best practice, you should always make sure to use Dispatcher.InvokeAsync()

to ensure your action is done asynchronously to any internal NinjaTrader actions. Calling

the synchronous Dispatcher.Invoke() method can potentially result in a deadlock

scenarios as your script is loaded.

https://msdn.microsoft.com/en-us/library/system.windows.threading.dispatcher(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.threading.dispatcher.invokeasync(v=vs.110).aspx

NinjaScript 1781

© 2023 NinjaTrader, LLC

if (State == State.Historical)

{

 if (ChartControl != null)

 {

 // add some text to the UserControlCollection through the

ChartControls dispatcher

 ChartControl.Dispatcher.InvokeAsync(new Action(() => {

 UserControlCollection.Add(new

System.Windows.Controls.TextBlock {

 Text = "\nAdded by the ChartControl Dispatcher."

 });

 }));

 }

}

Thread Access
Since market data is distributed across the entire application by a randomly assigned UI

thread, there is no guarantee that your object will be running on the same event thread that is

calling the object. Therefore it is recommend that you call Dispatcher.CheckAccess() in order

to test if you truly need to dispatch the requested action.

// check if the current object is already on the calling thread

if (Dispatcher.CheckAccess())

{

 // execute action directly

 action(args);

}

// otherwise run the action from the thread that created the object

else

{

 // dispatch action to calling thread

 Dispatcher.InvokeAsync(action, args);

}

Cross Thread Exceptions
When accessing objects included on the UI, you may receive the following error if you attempt

to access a certain property/method from the wrong thread:

https://msdn.microsoft.com/en-us/library/system.windows.threading.dispatcher.checkaccess(v=vs.110).aspx

NinjaTrader 81782

© 2023 NinjaTrader, LLC

"Error on calling 'OnBarUpdate' method on bar 0: You are accessing an object which

resides on another thread. I.E. creating your own Brush without calling .Freeze(), or

trying to access a UI control from the wrong thread without using a Dispatcher"

This error can be avoided by invoking the Dispatcher used on the appropriate UI thread.

Access Violation Exception
Should you be using custom resources like text files, static members, etc. it is important to

protect your resources from concurrent access. If NinjaTrader tried to use the resource at the

same time you would run into errors similar to this one:

8/20/2010 12:14:29 PM|3|128|Error on calling 'OnBarUpdate' method for strategy

'SampleStrategy/1740b50bfe5d4bd896b0533725622400': The process cannot access

the file 'c:\sample.txt' because it is being used by another process.

private object lockObj = new object();

private void WriteFile()

{

 // lock a generic object to ensure only one thread is accessing

the following code block at a time

 lock (lockObj)

 {

 string filePath = @"C:\sample.txt";

 using (System.IO.FileStream file = new

System.IO.FileStream(filePath, FileMode.Append, FileAccess.Write,

FileShare.None))

 {

 // write something to the file...

 // be sure to flush the buffer so everything is written

to the file.

 file.Flush();

 // The "using" block implicitly closes the FileStream

object,

 // giving other threads access to the file

 }

 }

}

Multi-threaded consideration for Order, Execution and Position objects

NinjaScript 1783

© 2023 NinjaTrader, LLC

These considerations apply to the OnOrderUpdate(), OnExecutionUpdate() and

OnPositionUpdate() handlers, where both the actual 'core' objects are passed by reference

and updating method value parameters are provided. Examplary the OnOrderUpdate() is

discussed in below.

· OnOrderUpdate() method guarantees that you will see each order state change in

sequence

· The "order" method parameter represents the core order object updated by NinjaTrader

· The supplementary method parameters provide an updating value representing each order

change in sequence. Think of this as the relevant information on the order at the time the

state changed.

· Since the "order" method parameter represents the current order object state, it is possible

for the updating values of that object to be out of sync with the correspond method

parameters during a particular order update event.

As an example, the NinjaTrader core may have received "Working" and then "PartFilled" order

state change events back from the broker API on thread "B". At some point in time

(milliseconds later) the NinjaTrader core will take these events and trigger the

OnOrderUpdate() method in the strategy on thread "A". Thus, when the strategy receives the

first "Working" state for an order, the orderState method parameter will reflect the "Working"

state although the actual order.OrderState is really in a state of "Part Filled". You would see

that current value truly reflected in the core Order object method parameter or any order

objects returned in any of the order methods such as EnterLong(). Of course, the

OnOrderUpdate() method parameters will eventually receive the event for "PartFilled" state in

the sequence the events were received.

Considering the concept above, if you are unsure if you should be using the core order object

value vs the updating method parameter value value, ask your self if you are truly looking for

the most current order state, or the sequence of order states:

· For the most current order state, use the core "order" object property (e.g.,

order.OrderState, order.LimitPrice, order.StopPrice, etc)

· For the sequence of order states, use the updating method parameter value (e.g.,

orderState, limitPrice, stopPrice, etc)

11.5.8 Multi-Time Frame & Instruments

Multi-Series Scripting Overview
NinjaScript supports multiple time frames and instruments in a single script. This is possible

because you can add additional Bars objects to indicators or strategies, in addition to the

primary Bars object to which they are applied. A Bars object represents all of the bars of data

on a chart. For example, if you had a MSFT 1 minute chart with 200 bars on it, the 200 bars

represent one Bars object. In addition to adding Bars objects for reference or for use with

indicator methods, you can execute trades across all the different instruments in a script.

There is extreme flexibility in the NinjaScript model that NinjaTrader uses for multiple-bars

NinjaTrader 81784

© 2023 NinjaTrader, LLC

scripts, so it is very important that you understand how it all works before you incorporate

additional Bars objects in a script. An important fact to understand is that NinjaScript is truly

event driven; every Bars object in a script will call the OnBarUpdate() method. The

significance of this will become evident throughout this page.

Note: If using OnMarketData(), a subscription will be created on all bars series added in

your indicator or strategy strategy (even if the instrument is the same). The market data

subscription behavior occurs both in real-time and during TickReplay historical

It is also important that you understand the following method and properties:

· AddDataSeries()

· BarsArray

· BarsInProgress

· CurrentBars

Note: As we move through this section, the term "Primary Bars" will be used and for the

purpose of clarification, this will always refer to the first Bars object loaded into a script.

For example, if you apply a script on MSFT 1 minute chart, the primary Bars would be

MSFT 1 minute data set.

This section is written in sequential fashion. Example code is re-used and built

upon from sub section to sub section.

Working With Multi-Time Frame Objects

Data processing sequence
Understanding the sequence in which bars series process and the granularity provided

by market data vendors is essential for efficient multi-series development. Let’s

assume we have two series (primary and secondary) in our script, which is

representing the same instrument, yet different intervals. During historical data

processing, NinjaTrader updates the two series strictly according to their timestamps,

calling the primary bar series of the corresponding timestamps first, and then calling

the secondary series.

Note: Historical bars are processed according to their timestamps with the primary

bars first, followed by the secondary, which is NOT guaranteed to be the same

sequence that these events occurred in real-time. If your development requires

NinjaScript 1785

© 2023 NinjaTrader, LLC

ticks to process in the same sequence historically as well as in real-time, you will

need to enable Tick Replay (utilizes more PC resources).

Shared Timestamps
In circumstances where multiple bars share the same exact timestamps, your primary

bars series will always be processed first, followed by the secondary bars series

(regardless of the period value used). Consequently, if you were looking to obtain a

value from the secondary bars series, it would ONLY be available after the primary

series has been processed for the same timestamps. For example, consider a news

event or a fast moving market with an influx of ticks (session begin/session end). This

activity will yield a wider range of bars than usual and the probability of those bars

sharing the same timestamps increases. If such a succession of bars with the same

timestamps is processed, the primary bars would be processed first and then the

secondary bars during this period.

Tip: While the following behavior applies to all period types, the effects are amplified

on smaller time frames. If you plan on using a high-resolution (e.g., 1-second, 10-

tick, etc), please make sure to thoroughly read and understand the material below

when working with these additional series. It is also important to keep in mind that

the granularity of the timestamps will dictate how accurately NinjaTrader can

synchronize the bars in historical processing. The available level of granularity will

be dependent upon which data provider you use with NinjaTrader.

Let’s look at an illustration of how the multi-time frame bar processing sequence can be

understood. Assume our primary series is a 5-tick bar series, and our secondary

series is a 1-tick bar series. The time of day is near the session close, so a rapid

sequence of bars is generated.

In the figure below, the 1st group of bars (colored orange), and the 4th group of bars

(colored purple) process in an exact logical sequence (i.e., a single primary bar update,

followed by five secondary series updates). This is because each bar in these groups

have unique timestamps and NinjaTrader can synchronize those bars logically in the

exact time sequence each series updated. However, all of the bars marked with red

text share the same exact timestamps down to the millisecond (14:59:00:480). Since

there were six ticks in sequence with the shared timestamps, this range of ticks

expands two of the primary bars (colored green and blue). As a result, the primary bar

#3 appears to update earlier when compared to the secondary series. In reality, both

NinjaTrader 81786

© 2023 NinjaTrader, LLC

bars series are incrementing in their exact sequence according to the timestamps of

each series.

Figure 1. Bar processing w ith shared timestamps

1. Timestamps of primary series (hour, minute, second, millisecond)

2. Current bars numbered in series representing 5-tick primary series

3. Current bars numbered in series representing 1-tick secondary series

4. Millisecond time stamps of secondary series

5. A sequence of bars sharing the same time stamps

Adding Additional Bars Objects to NinjaScript

Additional Bars are added to a script via the AddDataSeries() method in the

OnStateChange() method when the State has reached State.Configure. When a

Bars object is added to a script, it is also added to the BarsArray array. BarsArray

functions like a container in the script that holds all Bars objects added to the

script. As a Bars object is added to the script, it's added to BarsArray and given

an index number so we can retrieve this Bars object later.

Warning:

· This method should ONLY be called from the OnStateChange() method

during State.Configure

· Arguments supplied to AddDataSeries() should be hardcoded and NOT

dependent on run-time variables which cannot be reliably obtained during

State.Configure (e.g., Instrument, Bars, or user input). Attempting to add a

data series dynamically is NOT guaranteed and therefore should be avoided.

 Trying to load bars dynamically may result in an error similar to: Unable to

load bars series. Your NinjaScript may be trying to use an additional

data series dynamically in an unsupported manner.

NinjaScript 1787

© 2023 NinjaTrader, LLC

· When instantiating indicators in a Multi-Series script in OnStateChange, the

input any hosted indicator is running on should be explicitly stated (since a

specific BarsInProgress is not guaranteed)

For the purpose of demonstration, let's assume that a MSFT 1 minute bar is our

primary Bars object (set when the script is applied to a 1 minute MSFT chart) and

that the OnStateChange() method is adding a 3 minute Bars object of MSFT, then

adding a 1 minute Bars object of AAPL, for a total of 3 unique Bars objects.

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Multi-Time Frame & Instruments Example";

 }

 else if (State == State.Configure)

 {

 AddDataSeries(BarsPeriodType.Minute, 3);

 AddDataSeries("AAPL", BarsPeriodType.Minute, 1);

 }

}

Note: To maximize data loading performance, any NinjaScript object (indicator

or strategy as host) which references a multi-series indicator which calls

AddDataSeries must include it's own calls to AddDataSeries(). For example, if

the code above was included in an indicator, and that indicator was referenced

in a NinjaScript strategy, then the hosting strategy will need to include the

same calls to AddDataSeries(). When the strategy adds the additional Bars

objects, the calls to AddDataSeries() within the indicator will be ignored. If the

Bars objects are not added by the strategy in such cases, and error will be

thrown in the Log tab of the Control Center that would read - "A hosted indicator

tried to load additional data. All data must first be loaded by the hosting

NinjaScript in its configure state."

Creating Series<T> Objects

Series<T> Objects

NinjaTrader 81788

© 2023 NinjaTrader, LLC

Series<T> is the base class for PriceSeries, TimeSeries, and VolumeSeries.

Rather than using one of these pre-defined derived classes, you can create your

own Series<T> collection to hold any Type that you choose. The advantage that

Series<T> has over other collections is that it can be quickly initialized to contain a

number of index slots equal to the number of bars in one of the Bars objects on

the chart, with each index slot corresponding to a specific bar.

Initializing a Series<T> with BarsArray
A Series<T> can be constructed by passing in a specific index of BarsArray.

Initializing a Series<T> this way produces an empty Series<T> container holding

the same number of index slots as the BarsArray that was passed in as an

argument. For example, assuming that BarsArray[1] holds 500 bars, the code

below will create an empty Series<T> with 500 index slots:

 Initializing Series<T> with BarsArray

private Series<double> myEmptyIndexedSeries; // Define a

Series<T> objectvariable.

// Initialize the Series object to have the same number of

index slots as BarsArray[1]

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 // Passing in BarsArray[1] as an argument results

in an empty Series with an identical number of index slots

 myEmptyIndexedSeries = new

Series<double>(BarsArray[1]);

 }

}

This method of initializing a Series<T> can be especially useful when you wish to

store user-defined information related to each bar in a Bars object on the chart.

This process ensures that index slots are available for every bar on the chart right

away.

Initializing a Series<T> with an Indicator Method
Passing in an indicator method as an argument when instantiating a Series<T>

object provides an alternative to the process outlined above. Because indicator

methods already contain Series objects synced to the bars on a chart, they can be

used to inform the constructor of Series<T> of how many index slots to create.

NinjaScript 1789

© 2023 NinjaTrader, LLC

 Initializing Series<T> with an Indicator Method

// Declare two Series objects

private Series<double> primarySeries;

private Series<double> secondarySeries;

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a secondary bar object to the strategy.

 AddDataSeries(BarsPeriodType.Minute, 5);

 }

 else if (State == State.DataLoaded)

 {

 // Syncs a Series object to the primary bar object

 primarySeries = new Series<double>(this);

 /* Syncs another Series object to the secondary bar

object.

 We use an arbitrary indicator overloaded with an

ISeries<double> input to achieve the sync.

 The indicator can be any indicator. The

Series<double> will be synced to whatever the

 BarsArray[] is provided.*/

 secondarySeries = new

Series<double>(SMA(BarsArray[1], 50));

 // Stop-loss orders are placed 5 ticks below

average entry price

 SetStopLoss(CalculationMode.Ticks, 5);

 // Profit target orders are placed 10 ticks above

average entry price

 SetProfitTarget(CalculationMode.Ticks, 10);

 }

}

How Bars Data is Referenced

Understanding how multi-time frame bars are processed and which OHLCV data

is referenced is critical.

NinjaTrader 81790

© 2023 NinjaTrader, LLC

Figure 1 below demonstrates the concept of bar processing on historical data or in

real-time when the Calculate property is set to Calculate.OnBarClose. The 1

minute bars in yellow will only know the OHLCV of the 3 minute bar in yellow. The

1 minute bars in cyan will only know the OHLCV data of the 3 minute bar in cyan.

Take a look at "Bar #5," which is the fifth one minute bar. If you wanted to know the

current high value for the 3-minute time frame, you would get the value of the first

3 minute bar since this is the last "closed" bar. The second 3 minute bar (cyan)

would not be known at that time.

Figure 1. Bar processing on historical data using Calculate.OnBarClose

1. Primary 1-minute bar series

2. Secondary 3-minute bar series

3. Bar #5

Contrast the above image and concept with the image below, which demonstrates

bar processing in real-time when the Calculate property is set to

Calculate.OnEachTick (tick by tick processing) or Calculate.OnPriceChange

(processing by change in price). The 1 minute bars in yellow will know the current

OHLCV of the 3 minute bar in yellow (second 3 minute bar) which is still in

formation and has not yet closed.

Figure 2. Bar processing in real-time using Calculate.OnEachTick or Calculate.OnPriceChange

1. Primary 1-minute bar series

2. Secondary 3-minute bar series

NinjaScript 1791

© 2023 NinjaTrader, LLC

3. Bar #5

If you have a multi-time frame script in real-time, and it is processing tick by tick

instead of on the close of each bar, understand that the OHLCV data you access

in real-time is different than on historical data.

Below is another example to illustrate this point:

Your script has complex logic that changes the bar color on the chart. You are

running tick by tick, as per the above "Figure 2" image, the 5th 1 minute bar is

looking at OHLCV data from the second 3 minute bar. Your script changes the fifth

1 minute bar color to green. In the future, you reload your script into the chart and

the fifth 1 minute bar is now a historical bar. As per Figure 1 above, the fifth 1

minute bar now references the OHLCV data of the first 3 minute bar (instead of the

2nd 3 minute bar as per Figure 2) and as a result, your script logic condition for

coloring the bar green is no longer valid. The result is that now your chart looks

different.

Special considerations for session boundaries :

Bars are not considered closed until the first tick of the following bar comes in (see

also "True Event Driven OnBarUpdate" below). As a consequence, if the above

series 2 cyan bar represents the final bar of a session, and this bar is referenced

from the matching series 1 cyan bar, or anywhere after that, the data from the

close of the bar (the beginning of the next session) will be referenced. If you plan

on using multiple session templates, you will need to handle the final bar of a

trading day case explicitly (for example, using a Session Iterator and the

PriorDayOHLC) if you would like to reference data from the end of the previous

trading day instead of the beginning of the current trading day.

Using Bars Objects as Input to Indicator Methods

In the sub-section above, the concept of index values was introduced. This is a

critical concept to understand since it is used consistently when working with

multi-Bars script.

Let's demonstrate this concept:

Carrying on from the example above, our primary Bars is set from a MSFT 1

minute chart

NinjaTrader 81792

© 2023 NinjaTrader, LLC

MSFT 1 minute Bars is given an index value of 0 in BarsArray

In the OnStateChange() method we added a MSFT 3 minute Bars object and an

AAPL 1 minute Bars object to the script

MSFT 3 minute Bars is given an index value of 1 in BarsArray

AAPL 1 minute Bars is given an index value of 2 in BarsArray

Incremental index values are given to Bars objects as they are added to a script. If

there are 10 Bars objects in a script, then you will have index values ranging from

0 to 9.

Our script now has 3 Bars objects in the container BarsArray. From this point

forward, we can ask this container to give us the Bars object we want to work with

by providing the index value. The syntax for this is:

 BarsArray[index]

This allows us to get the correct Bars object and use it as input for an indicator

method. For example:

 ADX(14)[0] > 30 && ADX(BarsArray[2], 14)[0] > 30

The above expression in English would translate to:

 If the 14 period ADX of MSFT 1 minute is greater than 30 and the 14

period ADX of AAPL 1 minute is greater than 30

Before we can apply this concept, we need to ensure that our Bars objects

actually contain bars that we can use to run calculations. This can be done by

checking the CurrentBars array, which returns the number of the current bar in

each Bars object. Using this in conjunction with BarsRequiredToPlot will ensure

each Bars object has sufficient data before we begin processing.

Note: By default, the CurrentBars starting value will be -1 until all series have

processed the first bar.

NinjaScript 1793

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Checks to ensure all Bars objects contain enough

bars before beginning.

 // If this is a strategy, use BarsRequiredToTrade

instead of BarsRequiredToPlot

 if (CurrentBars[0] <= BarsRequiredToPlot ||

CurrentBars[1] <= BarsRequiredToPlot || CurrentBars[2] <=

BarsRequiredToPlot)

 return;

}

Putting it all together now, the following example checks if the current CCI value for

all Bars objects is above 200. You will notice that BarsInProgress is used. This is

to check which Bars object is calling the OnBarUpdate() method. More on this

later in this section.

protected override void OnBarUpdate()

{

 // Checks to ensure all Bars objects contain enough

bars before beginning

 // If this is a strategy, use BarsRequiredToTrade

instead of BarsRequiredToPlot

 if (CurrentBars[0] <= BarsRequiredToPlot ||

CurrentBars[1] <= BarsRequiredToPlot || CurrentBars[2] <=

BarsRequiredToPlot)

 return;

 if (BarsInProgress == 0)

 {

 if (CCI(20)[0] > 200 && CCI(BarsArray[1], 20)[0]

> 200

 && CCI(BarsArray[2], 20)[0] > 200)

 {

 // Do something

 }

 }

}

True Event Driven OnBarUpdate() Method

NinjaTrader 81794

© 2023 NinjaTrader, LLC

Since a NinjaScript script is truly event driven, the OnBarUpdate() method is called

for every bar update event for each Bars object added to the script. This model

maximizes flexibility. For example, you could have multiple trading systems

combined into one strategy, each dependent on one another. For example, you

could have a 1 minute MSFT Bars object and a 1 minute AAPL Bars object,

process different trading rules on each Bars object and check to see if MSFT is

long when AAPL trading logic is being processed.

The BarsInProgress property is used to identify which Bars object is calling the

OnBarUpdate() method. This allows you to filter out the events that you are looking

for.

Continuing our example above, let's take a closer look at what is happening.

Remember, we have three Bars objects working in our script, a primary Bars

MSFT 1 minute, an MSFT 3 minute, and an AAPL 1 minute.

NinjaScript 1795

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Checks to ensure all Bars objects contain enough

bars before beginning

 // If this is a strategy, use BarsRequiredToTrade

instead of BarsRequiredToPlot

 if (CurrentBars[0] <= BarsRequiredToPlot ||

CurrentBars[1] <= BarsRequiredToPlot || CurrentBars[2] <=

BarsRequiredToPlot)

 return;

 // Checks if OnBarUpdate() is called from an update on

the primary Bars

 if (BarsInProgress == 0)

 {

 if (Close[0] > Open[0])

 // Do something

 }

 // Checks if OnBarUpdate() is called from an update on

MSFT 3 minute Bars

 if (BarsInProgress == 1)

 {

 if (Close[0] > Open[0])

 // Do something

 }

 // Checks if OnBarUpdate() is called from an update on

AAPL 1 minute Bars

 if (BarsInProgress == 2)

 {

 if (Close[0] > Open[0])

 // Do something

 }

}

What is important to understand in the above sample code is that we have "if"

branches that check to see what Bars object is calling the OnBarUpdate() method

in order to process relevant trading logic. If we only wanted to process the events

from the primary Bars we could add the following condition at the top of the

OnBarUpdate() method:

 if (BarsInProgress != 0)

 return;

NinjaTrader 81796

© 2023 NinjaTrader, LLC

What is also important to understand is the concept of context. When the

OnBarUpdate() method is called, it will be called within the context of the calling

Bars object. This means that if the primary Bars triggers the OnBarUpdate()

method, all indicator methods and price data will point to that Bars object's data.

Notice how the statement "if (Close[0] > Open[0]" exists under each "if" branch in

the code sample above. The values returned by Close[0] and Open[0] will be the

close and open price values for the calling Bars object. So when the

BarsInProgress == 0 (primary Bars) the close value returned is the close price of

the MSFT 1 minute bar. When the BarsInProgress == 1 the close value returned is

the close price of the MSFT 3 minute Bars object.

Notes:

· A multi-series script only processes bar update events from the primary Bars

(the series the script is applied to) and any additional Bars objects the script

adds itself. Additional Bars objects from a multi-series chart or from other

multi-series scripts that may be running concurrently will not be processed

by this multi-series script.

· If a multi-series script adds an additional Bars object that already exists on

the chart, the script will use the preexisting series instead of creating a new

one to conserve memory. This includes that series' session template as

applied from the chart. If the Bars object does not exist on the chart, the

session template of the added Bars object will be the session template of the

primary Bars object. If the primary Bars object is using the "<Use instrument

settings>" session template, then the additional Bars objects will use the

default session templates as defined for their particular instruments in the

Instruments window.

· In a multi-series script, CurrentBars starting value will be -1 until all series

have processed the first bar. To ensure you have satisfied this requirement

on all your Bars objects, it is recommend you start your OnBarUpdate()

method with CurrentBars checks, as seen in the code sample above.

· A multi-series indicator will hold the same number of data points for plots as

the primary series. Setting values to plots should be done in the primary

series in OnBarUpdate(). If you are using calculations based off of a larger

secondary series, it may plot like a step ladder because there are more data

points available than there are actual meaningful data values.

NinjaScript 1797

© 2023 NinjaTrader, LLC

· The default CloseStrategy() handling will only be applied to the primary series
of a MultiSeries NinjaScript strategy.

· An indicator / strategy with multiple DataSeries of the same instrument will
only process realtime OnBarUpdate() calls when a tick occurs in session of
the trading hour templates of all added series. Any ticks not processed will
be queued and processed as a tick comes in for all subsequent DataSeries.

Accessing the Price Data in a Multi-Bars NinjaScript

As you probably know already, you can access the current bar's closing price with

the following statement:

 Close[0];

You can also access price data such as the close price of other Bars objects at

any time. This is accomplished by accessing the Opens, Highs, Lows, Closes,

Volumes, Medians, Typicals and Times series by index value. These properties

hold collections (containers) that hold their named values for all Bars objects in a

script.

Continuing with our example code above, if you wanted to access the high price of

the MSFT 3 minute Bars object at index 1 you would write:

 Highs[1][0];

This is just saying "give me the series of high prices for the Bars object at index 1

'Highs[1]' and return to me the current high value '[0]'". If the BarsInProgress index

was equal to 1, the current context is of the MSFT 3 min Bars object so you could

just write:

 High[0];

The following example demonstrates various ways to access price data.

NinjaTrader 81798

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Checks to ensure all Bars objects contain enough

bars before beginning

 // If this is a strategy, use BarsRequiredToTrade

instead of BarsRequiredToPlot

 if (CurrentBars[0] <= BarsRequiredToPlot ||

CurrentBars[1] <= BarsRequiredToPlot || CurrentBars[2] <=

BarsRequiredToPlot)

 return;

 // Checks if OnBarUpdate() is called from an update on

the primary Bars

 if (BarsInProgress == 0)

 {

 double primaryClose = Close[0];

 double msft3minClose = Closes[1][0];

 double aapl1minClose = Closes[2][0];

 // primaryClose could also be expressed as

 // primaryClose = Closes[0][0];

 }

 // Checks if OnBarUpdate() is called from an update on

MSFT 3 minute Bars object

 if (BarsInProgress == 1)

 {

 double primaryClose = Closes[0][0];

 double msft3minClose = Close[0];

 double aapl1minClose = Closes[2][0];

 }

}

Entering, Exiting and Retrieving Position Information

This section is relevant for NinjaScript strategies only. Entry and Exit methods are

executed within the BarsInProgress context. Let's demonstrate with an example:

NinjaScript 1799

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Checks to ensure all Bars objects contain enough

bars before beginning

 // If this is an indicator, use BarsRequiredToPlot

instead of BarsRequiredToTrade

 if (CurrentBars[0] <= BarsRequiredToPlot ||

CurrentBars[1] <= BarsRequiredToPlot || CurrentBars[2] <=

BarsRequiredToPlot)

 return;

 // Checks if OnBarUpdate() is called from an update on

the primary Bars

 if (BarsInProgress == 0)

 {

 // Submits a buy market order for MSFT

 EnterLong();

 }

 // Checks if OnBarUpdate() is called from an update on

AAPL 1 minute Bars object

 if (BarsInProgress == 2)

 {

 // Submits a buy market order for AAPL

 EnterLong();

 // Submits a buy market for MSFT when

OnBarUpdate() is called for AAPL

 EnterLong(0, 100, "BUY MSFT");

 }

}

As you can see above, orders are submitted for MSFT when BarsInProgress is

equal to 0 and for AAPL when BarsInProgress is equal to 2. The orders submitted

are within the context of the Bars object calling the OnBarUpdate() method and the

instrument associated to the calling Bars object. There is one exception, which is

the order placed for MSFT within the context of the OnBarUpdate() call for AAPL.

Each order method has a variation that allows you to specify the BarsInProgress

index value which enables submission of orders for any instrument within the

context of another instrument.

Notes:

NinjaTrader 81800

© 2023 NinjaTrader, LLC

1. Should you have multiple Bars objects of the same instrument while using

Set() methods in your strategy, you should only submit orders for this

instrument to the first Bars context of that instrument. This is to ensure your

order logic is processed correctly and any necessary order amendments are

done properly.

2. Should you have multiple Bars objects of the same instrument while using

options to terminate orders/positions at the end of the session (TIF=Day or

IsExitOnSessionCloseStrategy=true), you should not submit orders to Bars

objects other than the first Bars context for that instrument when on the last bar

of the session. This is necessary because some of the end of session

handling is applied only to the first Bars context of an instrument, and

submitting orders to other Bars objects for that instrument can bypass the end-

of-session handling.

3. For advanced order methods, if you DO NOT specify a BarsInProgress ,

the order will be submitted to the current bars in progress updating. If the

current BarsInProgress is a higher time frame, this could delay the time that

the order is filled during historical backtesting. As a result, you should always

submit historical orders to the most granular of time frames.

4. When backtesting and submitting orders 'On bar close' and utilizing

OnExecutionUpdate or OnOrderUpdate to submit orders, these orders will be

processed immediately and filled by the fill engine depending on if the order

satisfies its fill condition. This evaluation is done by looking ahead to the next

bar of the current series. This is done prior to any secondary higher granularity

series having a chance to run its 'OnBarUpdate' logic. If you planned on

running order logic in your highest granularity added series then please insure

that you submit orders in all cases to the highest granularity series.

The Position property always references the position of the instrument of the

current context. If the BarsInProgress is equal to 2 (AAPL 1 minute Bars), Position

would refer to the position being held for AAPL. The Positions property holds a

collection of Position objects for each instrument in a strategy. Note that there is a

critical difference here. Throughout this entire section we have been dealing with

Bars objects. Although in our sample we have three Bars objects (MSFT 1 and 3

min and AAPL 1 min) we only have two instruments in the strategy.

MSFT position is given an index value of 0

AAPL position is given an index value of 1

NinjaScript 1801

© 2023 NinjaTrader, LLC

In the example below, when the OnBarUpdate() method is called for the primary

Bars we also check if the position held for AAPL is NOT flat and then enter a long

position in MSFT. The net result of this strategy is that a long position is entered for

AAPL, and then once AAPL is long, we go long MSFT.

protected override void OnBarUpdate()

{

 // Checks to ensure all Bars objects contain enough

bars before beginning

 // If this is an indicator, use BarsRequiredToPlot

instead of BarsRequiredToTrade

 if (CurrentBars[0] <= BarsRequiredToPlot ||

CurrentBars[1] <= BarsRequiredToPlot || CurrentBars[2] <=

BarsRequiredToPlot)

 return;

 // Checks if OnBarUpdate() is called from an update on

the primary Bars

 if (BarsInProgress == 0 && Positions[1].MarketPosition

 != MarketPosition.Flat)

 {

 // Submits a buy market order for MSFT

 EnterLong();

 }

 // Checks if OnBarUpdate() is called from an update on

AAPL 1 minute Bars

 if (BarsInProgress == 2)

 {

 // Submits a buy market order for AAPL

 EnterLong();

 }

}

11.5.9 NinjaScript Lifecycle

NinjaTrader uses a State change system to represent various life cycles of your NinjaScript

object. For more basic indicators and strategies, simply understanding each State described

on the OnStateChange() page is sufficient. However, for more advanced development

projects, it is critical to understand how NinjaTrader calls these states for various instances

throughout the lifetime of the entire application.

When NinjaTrader instantiates a NinjaScript object
There are two categories of instances instantiated by NinjaTrader:

NinjaTrader 81802

© 2023 NinjaTrader, LLC

· "UI" instances representing its default properties on various user interfaces

· The "configured" instance executing your custom instructions

In both categories, OnStateChange() is called at least twice: once to State.SetDefaults

acquiring various default property values, and then again to State.Terminated handling

internal references cleanup.

Note: It is important to understand that previous major versions of NinjaTrader were not

so diligent in running termination logic for UI instances and the current major NinjaTrader 8

version has been changed to help properly address related issues.

To elaborate on that process, imagine the sequence of user events required to start an

indicator on a chart:

1. User right clicks on a Chart and select "Indicator"

2. User adds an Indicator from the Available list

3. User configures desired Properties and presses "Apply" or "OK"

During this sequence, there are actually 3 instances of the same indicator created by

NinjaTrader:

1. The instance displaying the Name property to the list of "Available" indicators (Note: this

process involves creating an instance of all indicators in order to build the complete list)

2. The instance displaying the individual Name and its default Properties

3. The instance configured and executing on the chart

NinjaScript 1803

© 2023 NinjaTrader, LLC

To visualize how each instance goes through its States, please consider the logic and flow

chart below:

1. In order to display the indicator name in the list of "Available" indicators, the NinjaTrader

core must find the Name of each installed indicator defined in their SetDefaults. This

occurs simultaneously for every indicator installed on the system in order to build the full

list of available indicators.

2. The selected indicator is then cloned and SetDefaults is called again in order to display

the default properties to the "Properties" grid. This only occurs for the individual indicator.

3. After the user has set their desired property settings and press OK or Apply, the indicator

is once again cloned and runs through its full state management. This only occurs for the

indicator configured to execute on the chart.

NinjaTrader 81804

© 2023 NinjaTrader, LLC

Warning: Since NinjaTrader is multi-threaded, it is possible the OnStateChange() logic

will be operating on a different thread than your indicator instances. Due to this fact, if

logic in your OnStateChange() method is thread sensitivity (e.g., dependent on UI threads

vs Instrument threads) please make sure to read the section on multi-threading

considerations and check for thread access in your OnStateChange() logic

It is the 3rd "configured" instance you are concerned with developing, but you should also be

aware of the "UI" instances which are triggered at various stages of NinjaTrader.

 Notes:

1. The example above is written for an indicator, but the same concept of state

management applies to every NinjaScript object type

NinjaScript 1805

© 2023 NinjaTrader, LLC

2. The UI instances do not reach State.Terminated until the user closes out of the UI

feature displaying the object

3. Since AddOns run in the background and are not dependent on UI elements, they will

run through their SetDefaults/Terminated states after each NinjaScript compile and

startup/shutdown of NinjaTrader.

4. The configured instance will also be cloned back to UI instances during various user

actions (e.g, re-opening an indicator dialog to reconfigure settings, or user copying &

pasting the indicator to a new panel or chart). Therefore you should not assume that

objects (such as ChartControl) will not be accessible in the UI instances.

5. In some extreme scenarios, you may need to execute custom logic before or after an

object is cloned. Overriding the default behavior can be done via the virtual Clone()

method

What does this mean for me?
Since OnStateChange() can be called at various times throughout NinjaTrader, you should

be diligent in handling each state and managing resources only when it is appropriate that

your NinjaScript object was actually configured:

· State.SetDefaults should be kept as lean as possible to prevent logic from processing

superfluously and causing problems unrelated to the configured instance. Only properties

which need to be displayed on the UI should be set in this state.

· Resources should only be set up once an object has reached State.Configure or

State.DataLoaded (see best practices for more information)

· State.Terminated logic should be specific in when it resets a value or destroys a resource.

 Since the running instance can be cloned back to a UI instance, checking that a mutable

property exists before accessing sometimes is not enough. You may need to consider

adding a flag to help decide when a resource needs to be reset or destroyed.

Example
Let’s say your object was an indicator looking to add a custom toolbar element to the chart,

and when the indicator is removed from the chart, you would want to make sure your toolbar

elements are also properly removed. In the OnStateChange() handler you change could add

the custom toolbar once the State has reached State.Historical, and remove the toolbar

once the State has reached State.Terminated.

To ensure that the remove logic only runs in instances that were actually configured, you can

see we in the example below we also track that the toolbar needs a reset in

State.Terminated state via a custom bool variable. In other words, the proper reset request

comes from our configured instance and would be ignored if the State.Terminated is called

from outside our object (i.e., a UI instance). This will prepare our object to properly handle

both situations in which State.Terminated could be called in the NinjaTrader state

management system.

NinjaTrader 81806

© 2023 NinjaTrader, LLC

// custom flag to help time termination logic

private bool toolBarNeedsReset = false;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "State lifetime indicator";

 }

 else if (State == State.Historical)

 {

 // before indicator starts historical processing

 // add a custom tool bar using a custom method

 AddToolBarButton(); // this is a pseudo-method for example

purposes

 toolBarNeedsReset = true; // use a flag to track this logic

was executed

 }

 else if (State == State.Terminated)

 {

 // here we intend to remove the custom tool bar when the

indicator shuts down

 if (toolBarNeedsReset) // flag is only true after actually

added

 RemoveToolBarButton();

 }

}

Cloning NinjaScript
Clone is the operation of iterating over all public browsable properties on a NinjaScript object

and duplicating the values over to a freshly generated instance. For the majority of NinjaScript

with standard properties the clone process is transparent to you and you do not need to be

concerned the the clone process. For those of you that want more control or will be utilizing

complex properties then knowledge about clone is essential. Cloning is performed in 2

primary use cases:

1. Configuring an instance in an object dialog and then cloning the configured data to an

actual NinjaScript instance applied for example to a Chart. (Configuration then Run)

2. When triggering 'Reload NinjaScript' or "Reload All Historical Data'

NinjaScript objects have a base clone method implemented which will iterating over all

browsable properties and copy by value to the next instance. The rules follow the 'clone' rules

described in the clone documentation located here and described above. The default behavior

will work in almost all cases except for when you have some complex custom property which

NinjaScript 1807

© 2023 NinjaTrader, LLC

needs specific clone behavior. In which case we allow the ability to override Clone() and

specify your own behavior.

Note: If you plan to utilize complex class properties on NinjaScript, you can specify your

own clone method. However when NinjaScript is compiled in NinjaTrader a new DLL

holding the compiled IL code is 'hot-loaded' into NinjaTrader. As a user or developer would

try to reload NinjaScript or configure an existing NinjaScript object, any complex class will

not resolve since the class will be residing in two different assemblies. This problem

cannot be solved with custom clone method and workarounds for this are setting

Browsable(false) attribute on that property so it is not cloned or putting the property it its

own dedicated assembly.

Saving NinjaScript Properties to the Workspace via XML Serialization
XML Serialization comes into play when you have a set of properties and want those

properties to persist the user saved workspace (or any templates that are user created).

By default basic types such as int, string, bool will all serialize without issue, if you have a

complex property you want its setting maintained on restore then you need to create a string

serialized representation of that class. The technique is shown in this example post here

where we show how to serialize a color brush.

11.5.10 Using 3rd Party Indicators

3rd Party Indicators Overview
You can use 3rd party indicators within your strategies or custom indicators. A 3rd party

indicator is an indicator that was not developed by NinjaTrader.

Note: It is important to understand the functionality provided or NOT provided in a 3rd

party proprietary indicator. Just because they provide an indicator that displays a bullish or

bearish trend on a chart does NOT mean that you can access this trend state from their

indicator. It is up to the developer of the indicator to determine what information is

accessible.

3rd party indicators can be provided to you in one of the following ways:

· NinjaScript archive file that can be directly imported into NinjaTrader

· A custom installer

· A set of files and instructions for saving them in the correct folders

If you were provided with a NinjaScript archive file that you have successfully imported via the

Control Center window "File > Utilities > Import NinjaScript" menu, you can skip over the

information below since NinjaTrader automatically configures the indicators ready for use.

NinjaTrader 81808

© 2023 NinjaTrader, LLC

If you were provided with a custom installer or a compiled assembly (.DLL) file that you had to

manually save in the folder My Documents\NinjaTrader Folder>\bin\Custom then you must

follow the instructions below.

Vendor File
The 3rd party developer should have either installed a "Vendor" file or provided you with one.

Its likely in the format "NinjaTrader.VendorName.cs" where VendorName is the name of the

3rd party vendor. This file allows you to conveniently access their indicators.

· If you were provided an installer, you can check with the vendor if this file was included or;

· If they provided you this file, save it to "My Documents\<NinjaTrader Folder>\bin\Custom"

and restart NinjaTrader

Adding a Reference
1. From within the NinjaScript Editor, right click on your mouse to bring up the context menu

and select the sub-menu References... as per the image to the right.

NinjaScript 1809

© 2023 NinjaTrader, LLC

2. A References window will appear

3. Press the "add" and select the 3rd party vendor DLL file

Warning: Please make sure in this step to select only the 'true' DLL file needed for

reference, which would not contain any X86 or X64 suffixes in its file-name, otherwise you

could run into compile issues later.

4. You will see a reference to the 3rd party vendor DLL in the References window

5. Press the OK button

You will now be able to access the indicator methods provided by the 3rd party vendor

11.5.11 Using ATM Strategies

You can create an automated strategy that generates a trade signal that executes a

NinjaTrader ATM Strategy.

· ATM Strategies operate in real-time only and will not execute on historical data thus they

can't be backtested

· Executions resulting from an ATM Strategy that is created from within a NinjaScript

automated strategy will not plot on a chart during real-time operation

· Strategy set up parameters such as EntriesPerDirection, EntryHandling,

IsExitOnSessionCloseStrategy do not apply when calling the AtmStrategyCreate() method

NinjaTrader 81810

© 2023 NinjaTrader, LLC

· Executions from ATM Strategies will not have an impact on the hosting NinjaScript

strategy position and PnL - the NinjaScript strategy hands off the execution aspects to the

ATM, thus no monitoring via the regular NinjaScript strategy methods will take place (also

applies to strategy performance tracking)

· ATM Strategy stop orders can either be StopMarket or StopLimit orders, depending on

which type is defined in the ATM Strategy Template (Advanced Options) you call in the

AtmStrategyCreate() method in your NinjaScript strategy. To make the distinction clear

which is used, following a naming convention for the template name is highly suggested

(i.e. AtmStrategyTemplate_STPLMT)

· A general sample for calling ATM's is preinstalled with NinjaTrader under the

'SampleATMStrategy' script - for a script showing how to implement reversal type setups,

please see this link to our online resources.

There is a Clear Line...
There is a clear line between a NinjaScript Strategy and an ATM Strategy. The use model for

creating an ATM Strategy within a NinjaScript Strategy is when you want to programmatically

monitor and generate an entry signal and then manualy manage the resulting open position

via an ATM Strategy in one of NinjaTrader's order entry windows.

!!! IMPORTANT: Manually Closing an ATM Strategy from an Order Entry Window
such as the SuperDOM
It is crucial that when running ATM Strategies created by a NinjaScript strategy that you

understand how to properly manually close the ATM Strategy from any of the order entry

windows.

· If the order entry window ATM Strategy Selection Mode is NOT in

"DisplaySelectedATMStrategyOnly" click on the "CLOSE" button via your middle mouse

button (scroll wheel)

· If the order entry window ATM Strategy Selection Mode is in

"DisplaySelectedATMStrategyOnly" you can click on the "CLOSE" button with your left

mouse button to close the selected active ATM strategy

Following the approaches above will internally close the ATM Strategy. Not following the

approach will close the account/instrument position, terminate all strategies and cancel all

orders. The result is that your NinjaScript strategy will be terminated.

11.5.12 Using BitmapImage Objects with Buttons

Images as Buttons Overview
BitmapImage objects can be used to apply an image as a background to a Button object

added to a NinjaTrader window.

Note: The following topic covers methods and properties outside of the NinjaScript

http://www.ninjatrader.com/support/forum/local_links.php?action=jump&catid=8&id=866

NinjaScript 1811

© 2023 NinjaTrader, LLC

libraries. Most of the items covered in the example below belong to .NET's

System.Windows.Media.Imaging and System.Windows.Controls namespaces. More

information on these namespaces can be found at the links below:

· System.Windows.Controls

· System.Windows.Media.Imaging

Using an image as the background for a button can be achieved through a fairly

straightforward process using some of the .NET framework's Controls and Imaging methods

There are a few best practices to keep in mind when working with Buttons:

· Dispose of any leftover objects in State.Terminated for efficient memory use

· Use your object's main Dispatcher when adding or removing Buttons to or from your chart,

to ensure that the correct thread is used

· Be aware of the proper States in which to initialize objects related to the Button

(State.Configure), apply the Button (State.Historical), and dispose of unneeded objects

(State.Terminated)

Adding a Button to a Chart Toolbar Using an Image as the Background
The example below walks through the process of adding a Button to a chart toolbar

specifically, and applying a .jpg image as the Button's background. This example also

displays several best practices when working with Buttons, such as proper object disposal

and ensuring that the Button is not populated when the indicator is applied in an inactive chart

tab.

https://msdn.microsoft.com/en-us/library/system.windows.controls(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.imaging(v=vs.110).aspx

NinjaTrader 81812

© 2023 NinjaTrader, LLC

//Add the following Using statements

using System.Windows.Media.Imaging;

using System.Windows.Controls;

public class addButton : Indicator

{

 // Define a Chart object to refer to the chart on which the

indicator resides

 private Chart chartWindow;

 // Define a Button

 private System.Windows.Controls.Button myButton = null;

 // Instantiate a BitmapImage to hold an image

 BitmapImage myBitmapImage = new BitmapImage();

 // Instantiate an ImageBrush to apply to the Button

 ImageBrush backgroundImage = new ImageBrush();

 private bool IsToolBarButtonAdded;

 protected override void OnStateChange()

 {

 if (State == State.Configure)

 {

 // Assign an image on the filesystem to the

BitmapImage.

 // This example assumes that a jpg image named

"ButtonBackground" resides in the install directory

 myBitmapImage.BeginInit();

 myBitmapImage.UriSource = new

Uri(NinjaTrader.Core.Globals.InstallDir + "ButtonBackground.jpg");

 myBitmapImage.EndInit();

 // Assign the BitmapImage as the ImageSource of the

ImageBrush

 backgroundImage.ImageSource = myBitmapImage;

 }

 else if (State == State.Historical)

 {

 //Call the custom addButtonToToolbar method in

State.Historical to ensure it is only done when applied to a chart

 // -- not when loaded in the Indicators window

 if (!IsToolBarButtonAdded) AddButtonToToolbar();

 }

 else if (State == State.Terminated)

 {

 //Call a custom method to dispose of any leftover

objects in State.Terminated

 DisposeCleanUp();

 }

 }

 private void AddButtonToToolbar()

 {

 // Use this.Dispatcher to ensure code is executed on the

proper thread

 ChartControl.Dispatcher.InvokeAsync((Action)(() =>

 {

 //Obtain the Chart on which the indicator is configured

 chartWindow =

Window.GetWindow(this.ChartControl.Parent) as Chart;

 if (chartWindow == null)

 {

 Print("chartWindow == null");

 return;

 }

 // Create a style to apply to the button

 Style s = new Style();

 s.TargetType = typeof(System.Windows.Controls.Button);

 s.Setters.Add(new

Setter(System.Windows.Controls.Button.FontSizeProperty, 11.0));

 s.Setters.Add(new

Setter(System.Windows.Controls.Button.BackgroundProperty,

Brushes.Orange));

 s.Setters.Add(new

Setter(System.Windows.Controls.Button.ForegroundProperty,

Brushes.Black));

 s.Setters.Add(new

Setter(System.Windows.Controls.Button.FontFamilyProperty, new

FontFamily("Arial")));

 s.Setters.Add(new

Setter(System.Windows.Controls.Button.FontWeightProperty,

FontWeights.Bold));

 // Instantiate the Button

 myButton = new System.Windows.Controls.Button();

 //Set Button Style

 myButton.Style = s;

 // Set the Imagebrush as the Background for the Button

 myButton.Background = backgroundImage;

 myButton.Content = "Click Here";

 myButton.IsEnabled = true;

 myButton.HorizontalAlignment =

HorizontalAlignment.Left;

 // Add the Button to the Chart's Toolbar

 chartWindow.MainMenu.Add(myButton);

 //Prevent the Button From Displaying when WorkSpace

Opens if it is not in an active tab

 myButton.Visibility = Visibility.Collapsed;

 foreach (TabItem tab in

this.chartWindow.MainTabControl.Items)

 {

 if ((tab.Content as ChartTab).ChartControl ==

this.ChartControl

 && tab ==

this.chartWindow.MainTabControl.SelectedItem)

 {

 myButton.Visibility = Visibility.Visible;

 }

 }

 IsToolBarButtonAdded = true;

 }));

 }

 private void DisposeCleanUp()

 {

 //ChartWindow Null Check

 if (chartWindow != null)

 {

 //Dispatcher used to Assure Executed on UI Thread

 ChartControl.Dispatcher.InvokeAsync((Action)(() =>

 {

 //Button Null Check

 if (myButton != null)

 {

 //Remove Button from Indicator's Chart ToolBar

 chartWindow.MainMenu.Remove(myButton);

 }

 }));

 }

 }

}

NinjaScript 1813

© 2023 NinjaTrader, LLC

11.5.13 Using Historical Bid/Ask Series

Historical Bid/Ask Series Overview
NinjaTrader has the ability to use historical bid and ask price series in your NinjaScript instead

of only being able to use a last price series. The following outlines the intricacies of this

capability:

Notes:

· You can have multiple bid/ask/last series in your NinjaScript indicator/strategy. Please

use the AddDataSeries() method to add these series to your script.

· The historical bid/ask series holds all bid/ask events sent out by the exchange. This

would not be equivalent to the bid/ask at a specific time a trade went off.

· When processing your NinjaScript, the historical bid/ask series would have the historical

portion triggered in the OnBarUpdate() method only. OnMarketData() method events for

the historical bid/ask series would only be triggered in real-time.

Tips:

· For using OnMarketData() events historically, please see the educational topic on

Developing for Tick Replay

· Changing the price type used for the primary Bars object to which a script is applied can

be done in the Data Series window from any open chart.

Accessing Bid/Ask Series
When calling AddDataSeries() to add an additional Bars object to your script, a constructor

overload will be available which takes a MarketDataType enumeration as an argument. This

will allow you to specify the price series which will be used in that particular object. If you were

to pass in MarketDataType.Ask or MarketDataType.Bid, as in the example below, that

particular data series will use that price type for all of its PriceSeries collections, such as

Close, Open, High, and Low.

Warning: A Tick Replay indicator or strategy CANNOT use a MarketDataType.Ask or

MarketDataType.Bid series. Please see Developing for Tick Replay for more

information.

Example

NinjaTrader 81814

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Add an AAPL data series using the Ask series

 AddDataSeries("AAPL", BarsPeriodType.Minute, 30,

MarketDataType.Ask);

 //Add another AAPL data series using the Bid series, with

other settings identical

 AddDataSeries("AAPL", BarsPeriodType.Minute, 30,

MarketDataType.Bid);

 }

}

11.5.14 Using Images and Geometry with Custom Icons

Custom Icon Overview
When overriding the Icon method in a Share Service, Drawing Object, or Chart Style, you can

use a variety of inputs to specify what will be displayed on the icon, including UniCode

characters (if they exist in the icon pack for the font family used in NinjaTrader), custom

Geometry Paths from the System.Windows.Shapes namespace, or image files. Using an

image file for a custom icon can allow the flexibility of creating your icon's visuals outside of

your code via image editing software. For more information about adding custom Icons, see

the "Icon" page under the topics for each of the NinjaScript object types listed above.

Using an Image as an Icon

Using an Image as an Icon
The process for using an image as an icon is fairly straightforward using WPF

objects, and is the same for different NinjaScript objects.

1. Instantiate a new BitmapImage object

2. Assign a Uri to the BitmapImage, pointing to an image file

3. Instantiate a Grid of the same dimensions as the icon

4. Instantiate an Image object

5. Assign the BitmapImage as the Image's Source

6. Add the Image to the Grid

7. Return the Grid by overriding the Icon property

Note: Be careful to instantiate the Grid to be same size as the needed icon.

NinjaScript 1815

© 2023 NinjaTrader, LLC

Some icon sizes differ from others. For example, the icon for Share Services

is substantially larger than the icon for a Chart Style in the Chart Toolbar.

NinjaTrader 81816

© 2023 NinjaTrader, LLC

// Add the following Using statements

using System.Windows.Controls;

using System.Windows.Media;

using System.Windows.Media.Imaging;

BitmapImage iconBitmapImage = new BitmapImage();

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Set the BitmapImage's UriSource to the location of

an image file

 iconBitmapImage.BeginInit();

 iconBitmapImage.UriSource = new

Uri(NinjaTrader.Core.Globals.InstallDir + "icon.jpg");

 iconBitmapImage.EndInit();

 }

}

// Override Icon (read-only) to return the custom Grid and

Image

public override object Icon

{

 get

 {

 // Instantiate a Grid on which to place the image

 Grid myCanvas = new Grid { Height = 16, Width =

16 };

 // Instantiate an Image to place on the Grid

 Image image = new Image

 {

 Height = 16,

 Width = 16,

 Source = iconBitmapImage

 };

 // Add the image to the Grid

 myCanvas.Children.Add(image);

 return myCanvas;

 }

}

NinjaScript 1817

© 2023 NinjaTrader, LLC

Using Geometry on an Icon

Using Geometry on an Icon
Custom geometry Paths can be used to draw and fill custom shapes, which can

then be applied directly to a Canvas returned for use in an Icon. The process for

using a Path is similar to that for using an Image:

1. Instantiate a new Path object

2. Instantiate a Grid of the same dimensions as the icon

3. Define the visual properties of the Path

4. Add the Path to the Grid

5. Return the Grid by overriding the Icon property

// Add the following namespace to use Path objects

using System.Windows.Shapes;

using System.Windows.Controls;

public override object Icon

{

 get

 {

 // Instantiate a Grid on which to place the Path

 Grid myCanvas = new Grid { Height = 16, Width =

16 };

 // Instantiate a Path object on which to draw

geometry

 System.Windows.Shapes.Path myPath = new

System.Windows.Shapes.Path();

 // Define the Path's visual properties

 myPath.Fill = Brushes.Red;

 myPath.Data =

System.Windows.Media.Geometry.Parse("M 0 0 L 5 0 L 5 5 L 10

5 L 10 0 L 15 0 L 15 5 L 10 5 L 10 10 L 5 10 L 5 5 L 0 5

Z");

 // Add the Path to the Canvas, then return the

Canvas

 myCanvas.Children.Add(myPath);

 return myCanvas;

 }

}

NinjaTrader 81818

© 2023 NinjaTrader, LLC

11.5.15 Using SharpDX for Custom Chart Rendering

Understanding the SharpDX .NET Library
NinjaTrader Chart objects (such as Indicators, Strategies, DrawingTools, ChartStyles)

implement an OnRender() method aimed to render custom lines, shapes, and text to the

chart. To achieve the level of performance required to keep up with market data events,

NinjaTrader uses a 3rd-party open-source .NET library named SharpDX. This 3rd party

library provides a C# wrapper for the powerful Microsoft DirectX API used for graphics

processing and known for its hardware-accelerated performance, including 2D vector and

text layout graphics used for NinjaTrader Chart Rendering. The SharpDX/DirectX library is

extensive, although NinjaTrader only uses a handful of namespaces and classes, which are

documented as a guide in this reference. In addition to this educational resource, we have

also compiled a more focused collection of SharpDX SDK Reference resources to help you

learn the SharpDX concepts used in NinjaTrader Chart Rendering.

Tips:

1. There are several pre-installed examples of OnRender() and SharpDX objects used

in the NinjaTrader.Custom project. For starters, please look at the

SampleCustomRender indicator file

2. Although not entirely identical, the SharpDX wrapper is designed to resemble

System.Drawing namespace; experienced GDI developers will be familiar with

concepts discussed in this section.

3. Microsoft provides various DirectX Programming Guides aimed to educate users with

the underlying C++ DirectX API. While SharpDX (C#) syntax is different, you may find

these guides helpful for understanding SharpDX concepts not offered by this guide.

There are three main SharpDX namespaces you need to be familiar with:

SharpDX Contains basic objects used by

SharpDX.

SharpDX.Direct2D1 Contains objects used for

rendering for 2D geometry,

bitmaps, and text.

SharpDX.DirectWrite Contains objects used for text

rendering

The rest of this page will help you navigate the fundamental concepts needed to achieve

custom rendering to your charts.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/ee663274(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd372337(v=vs.85).aspx

NinjaScript 1819

© 2023 NinjaTrader, LLC

SharpDX Vectors and Charting Coordinates

Understanding the SharpDX.Vector2
SharpDX Draw methods use a SharpDX.Vector2 object which describes where to

render a command relative to the chart panel. These Vector2 objects can be

thought as a two-dimensional point in the chart panels X and Y axis. Since the

chart canvas used to draw on consists of the full panel of the chart, a vector using

a value of 0 for both the X and Y coordinates would be located in the top left

corner of the chart:

// creates a vector located at the top left corner of the

chart

float x = 0;

float y = 0;

SharpDX.Vector2 myVector2 = new Vector2(x, y);

Tip: You can learn about Understanding Chart Canvas Coordinates on

another topic

Vector2 objects contain X and Y properties helpful to recalculate new properties

based on the initial vector:

float width = endPoint.X - startPoint.X;
float height = endPoint.Y - startPoint.Y;

Additionally, you can recalculate a new vector from existing vector objects:

SharpDX.Vector2 center = (startPoint + endPoint) / 2;

It is also helpful to know that Vector2 objects are similar to the Windows Point

structure and these two types can be used interchangeably. Depending on the

mechanism used to obtain user input or other application values, you may receive

the coordinates in a Point. For convenience, NinjaTrader provides a

DXExtension.ToVector2() method used for converting between these two objects

if needed:

https://msdn.microsoft.com/en-us/library/system.windows.point(v=vs.110).aspx

NinjaTrader 81820

© 2023 NinjaTrader, LLC

SharpDX.Vector2 dxVector2 = wpfPoint.ToVector2();

Calculating Chart Coordinates
If you simply used a vector with static values, your Vector2 objects would never

change, and your drawing would remain fixed on a particular area of the chart

(which may be desired). However, since NinjaTrader charts are dynamic and

responded to various market data updates, scroll, resize, and scale operations -

you also need a way to recalculate vectors to display information dynamically. To

assist in this process, NinjaTrader provides some GUI related utilities to help

navigate the chart and calculate values for your custom rendering.

// creates a vector located at the top left corner of the
chart panel
startPoint = new SharpDX.Vector2(ChartPanel.X,
ChartPanel.Y);

// creates a vector located at the bottom right corner of
the chart panel
endPoint = new SharpDX.Vector2(ChartPanel.X + ChartPanel.W,
ChartPanel.Y + ChartPanel.H);

Common utilities fall under 4 key components, and you can learn more about their

specific functions from the help guide topics linked in the table below:

ChartControl The entire hosting grid of the

Chart

ChartBars The primary bars series

configured on the Chart

ChartPanel The panel on which the

calling script resides

ChartScale The Y-Axis values of the

configured ChartPanel

NinjaScript 1821

© 2023 NinjaTrader, LLC

Note: For full absolute device coordinates always use ChartPanel X, Y, W, H

values. ChartScale and ChartControl properties return WPF units, so they

can be drastically different depending on DPI of the user's display. You can

learn about Working with Pixel Coordinates on another topic.

SharpDX Brush Resources

Understanding SharpDX Brush Resources
To color or "paint" an area of the chart, you must define custom resources which

describe how you wish the custom render to appear. SharpDX contains special

resources modeled after the familiar WPF Brushes. However, the two objects are

different in the way they are constructed and also in how they are managed after

they are used.

There are many types of SharpDX Brush Resources which all derive from the

same base Direct2D1.Brush class. This base object is not enough to describe

how your object should be presented, so in order to use a brush for rendering

purposes, you will need to determine exactly what type of brush you wish to use:

Direct2D1.SolidColorBrush Paints an area with a solid

color.

Direct2D1.RadialGradientBru

sh

Paints an area with a radial

gradient.

Direct2D1.LinearGradientBru

sh

Paints an area with a linear

gradient.

Describing SolidColorBrush Colors
The most common and simple brush to use is a Direct2D1.SolidColorBrush which

allows you to paint using a solid color (or with transparency). In the most basic

form, SolidColorBrush can be constructed using a predefined SharpDX.Color

SharpDX.Direct2D1.SolidColorBrush customDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue);

NinjaTrader 81822

© 2023 NinjaTrader, LLC

You can also use a SharpDX.Color3 or SharpDX.Color4 structure as a way to get

more customizable colors in your rendering:

// create a 3 component color using rgb values in float

notation

SharpDX.Color3 dxColor3 = new SharpDX.Color3(1.0f, 0.0f,

0.0f);

// create a 4 component color using rgb + alpha

(transparency) in float notation

SharpDX.Color4 dxColor4 = new SharpDX.Color4(dxColor3,

0.5f);

// solid color brush uses a Color4 during construction

SharpDX.Direct2D1.SolidColorBrush argbColorBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget, dxColor4);

Alternatively, you can set the "transparency" of an existing brush by accessing its

Opacity property:

customDXBrush.Opacity = .25f;

Note: Unlike their WPF counterparts, SharpDX brushes are thread-safe and

do NOT need to be frozen.

Converting SharpDX Brushes
SharpDX Brushes are device-dependent resources, which means they can

only be used with the device (i.e., RenderTarget) which created them. In practice,

this mean you should ONLY create your SharpDX brushes during the chart

object's OnRender() or OnRenderTargetChanged() methods.

Warning: Failure to create device-dependent resources during the

OnRender() or OnRenderTargetChanged() can lead to a host of issues

including memory and application corruption which can negatively impact the

stability of NinjaTrader. Please be careful your SharpDX device-dependent

resources are only created and updated during either of these two run-time

NinjaScript 1823

© 2023 NinjaTrader, LLC

methods. Please see the Best Practices for SharpDX Resources section on

this page for more information.

Because of this detail, a common problem you may run into is the requirement to

share a SharpDX device brush resource with a WPF application brush. For

example, you may have WPF brushes defined in the UI during OnStateChange() or

recalculated conditionally during OnBarUpdate(), but ultimately wish to use also in

custom rendering routines. For convenience, NinjaTrader provide a

DXExtension.ToDxBrush() method used for converting these objects if necessary:

areaBrushDx = areaBrush.ToDxBrush(RenderTarget);
smallAreaBrushDx = smallAreaBrush.ToDxBrush(RenderTarget);
textBrushDx = textBrush.ToDxBrush(RenderTarget);

Note: If you are using a large number of brushes, and are not tied to WPF

resources, you should favor creating the SharpDX Brush directly since the

ToDxBrush() method can lead to performance issues if called too frequently

during a single render pass. Please see the Best Practices for SharpDX

Resources section on this page for more information.

SharpDX RenderTarget

Understanding the RenderTarget
A SharpDX Render Target is a general purpose object resource used for receiving

and executing drawing commands. When using a NinjaTrader chart object, a pre-

constructed Chart RenderTarget object is available for you to use and ready to

receive commands. You can think of the RenderTarget as the device context

you are using to render to (i.e. the Chart Panel). While there is nothing special you

need to do to setup this resource, it is important to understand some details

regarding the RenderTarget to learn how it can be used.

The RenderTarget is primarily used for executing commands such as drawing

shapes or text:

RenderTarget.DrawLine(startPoint, endPoint, areaBrushDx)

NinjaTrader 81824

© 2023 NinjaTrader, LLC

It is commonly used for creating various resources such as Brushes and other

SharpDX objects:

SharpDX.Direct2D1.SolidColorBrush customDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue);

It can also be used to set various properties to describe how the RenderTarget

should render:

RenderTarget.AntialiasMode =

SharpDX.Direct2D1.AntialiasMode.PerPrimitive;

Sequencing RenderTarget commands
If the sequence in which objects render is essential to your custom rendering, you

will need to be mindful of the order in which you call various RenderTarget

members. For example, we can draw a second line which uses a different

AntialiasMode and the renders each line in the order the render target received its

commands:

RenderTarget.AntialiasMode =

SharpDX.Direct2D1.AntialiasMode.Aliased;

RenderTarget.DrawLine(startPoint, endPoint, areaBrushDx,

8);

RenderTarget.AntialiasMode =

SharpDX.Direct2D1.AntialiasMode.PerPrimitive;

RenderTarget.DrawLine(startPoint, endPoint, customDXBrush,

2);

In the above example, this order of operations would result in the second

RenderTarget.DrawLine() to be rendered "on top" of the first

RenderTarget.DrawLine(). If you instead called these two methods in reverse

order, you would not see the thinner line since it would be covered up by the

thicker line.

NinjaScript 1825

© 2023 NinjaTrader, LLC

Note: It is important to realize that RenderTarget sequencing and the Chart

Object ZOrder are two different concepts. The ZOrder property controls the

overall layer your entire chart object appears relative to other chart objects

existing on the same chart. RenderTarget sequencing only affects the order

objects are rendered relative itself. Therefore, it is not possible to sequence

your chart object's RenderTarget to draw on two different ZOrders (e.g., one

line above chart bars and another line below).

Using the RenderTarget with Device Resources
Throughout the lifetime of a chart, the render target is created and destroyed

several times to satisfy various user commands. As a result, any resources that

are created need to be recreated and destroyed as that render target is updated.

The NinjaTrader OnRenderTargetChanged() method was designed to help with

this process and will be called anytime the RenderTarget has changed. You

should use this method if you have objects which are passed around from various

other resources.

Warning: Failure to create device-dependent resources during the

OnRender() or OnRenderTargetChanged() can lead to a host of issues

including memory and application corruption which can negatively impact the

stability of NinjaTrader. Please be careful your SharpDX device-dependent

resources are only created and updated during either of these two run-time

methods. Please see the Best Practices for SharpDX Resources section on

this page for more information.

SharpDX Lines and Shapes

RenderTarget Draw Methods
All drawings consistent of a few basic shapes which can be called through a

handful of RenderTarget commands. "Draw..." methods create just the outline of

the shape, and "Fill..." will paint the interior of the shape.

RenderTarget.DrawEllipse() Draws the outline of the

specified ellipse using the

specified stroke style.

NinjaTrader 81826

© 2023 NinjaTrader, LLC

RenderTarget.DrawGeometr

y()

Draws the outline of the

specified geometry using the

specified stroke style.

RenderTarget.DrawLine() Draws a line between the

specified points.

RenderTarget.DrawRectangl

e()

Draws the outline of a

rectangle that has the

specified dimensions and

stroke style.

RenderTarget.FillEllipse() Paints the interior of the

specified ellipse.

RenderTarget.FillGeometry() Paints the interior of the

specified geometry.

RenderTarget.FillRectangle() Paints the interior of the

specified rectangle.

Note: AntialiasMode.PerPrimitive allows for graphics to render more sharply,

but comes at a performance cost. It is recommended to set the

RenderTarget.AntialiasMode back to the default AntialiasMode.Aliased after

you finish your RenderTarget Draw command. Please see the Best

Practices for SharpDX Resources section on this page for more information.

Line
The simplest shape is a Line, executed by the RenderTarget.DrawLine()

command which just takes two Vector2 objects which describe where to draw the

line, and (optionally) the width of the line to draw:

NinjaScript 1827

© 2023 NinjaTrader, LLC

// create two vectors for the line to draw

SharpDX.Vector2 startPoint = new

SharpDX.Vector2(ChartPanel.X, ChartPanel.Y);

SharpDX.Vector2 endPoint = new SharpDX.Vector2(ChartPanel.X

 + ChartPanel.W, ChartPanel.Y + ChartPanel.H);

// define the brush used in the line

SharpDX.Direct2D1.SolidColorBrush customDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue);

// execute the render target draw line with desired values

RenderTarget.DrawLine(startPoint, endPoint, customDXBrush,

2);

// always dispose of a brush when finished

customDXBrush.Dispose();

Rectangle
Using either the RenderTarget.FillRectangle() or RenderTarget.DrawRectangle()

requires a SharpDX.RectangleF structure, constructed using four values to

represent the location (x, y) and size (width, height) of the rectangle to draw.

NinjaTrader 81828

© 2023 NinjaTrader, LLC

// create two vectors to position the rectangle

SharpDX.Vector2 startPoint = new

SharpDX.Vector2(ChartPanel.X, ChartPanel.Y);

SharpDX.Vector2 endPoint = new SharpDX.Vector2(ChartPanel.X

 + ChartPanel.W, ChartPanel.Y + ChartPanel.H);

// calculate the desired width and heigh of the rectangle

float width = endPoint.X - startPoint.X;

float height = endPoint.Y - startPoint.Y;

// define the brush used in the rectangle

SharpDX.Direct2D1.SolidColorBrush customDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue);

// construct the rectangleF struct to describe the with

position and size the drawing

SharpDX.RectangleF rect = new

SharpDX.RectangleF(startPoint.X, startPoint.Y, width,

height);

// execute the render target fill rectangle with desired

values

RenderTarget.FillRectangle(rect, customDXBrush);

// always dispose of a brush when finished

customDXBrush.Dispose();

NinjaScript 1829

© 2023 NinjaTrader, LLC

Ellipse
Similar to the Rectangle, you can draw an Ellipse (or circle) using either the

RenderTarget.FillEllipse() or RenderTarget.DrawEllipse() methods using a

SharpDX Direct2D1 Ellipse struct. For this structure, you will need to use a

Vector2 object to determine the Center position of the ellipse, a RadiusX, and a

RadiusY which determines the size of the ellipse:

NinjaTrader 81830

© 2023 NinjaTrader, LLC

// create two vectors to position the ellipse

SharpDX.Vector2 startPoint = new

SharpDX.Vector2(ChartPanel.X, ChartPanel.Y);

SharpDX.Vector2 endPoint = new SharpDX.Vector2(ChartPanel.X

 + ChartPanel.W, ChartPanel.Y + ChartPanel.H);

// calculate the center point of the ellipse from start/end

points

SharpDX.Vector2 centerPoint = (startPoint + endPoint) / 2;

// set the radius of the ellipse

float radiusX = 50;

float radiusY = 50;

// construct the rectangleF struct to describe the position

and size the drawing

SharpDX.Direct2D1.Ellipse ellipse = new

SharpDX.Direct2D1.Ellipse(centerPoint, radiusX, radiusY);

// define the brush used in the rectangle

SharpDX.Direct2D1.SolidColorBrush customDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue);

// execute the render target fill ellipse with desired

values

RenderTarget.FillEllipse(ellipse, customDXBrush);

// always dispose of a brush when finished

customDXBrush.Dispose();

NinjaScript 1831

© 2023 NinjaTrader, LLC

Geometry
For more complicated shapes, you can use the RenderTarget.FillGeometry() or

RenderTarget.DrawGeometry() methods using a Direct2D1.PathGeometry object,

which is ultimately defined by a Direct2D1.GeometrySink interface.

Warning: Any SharpDX PathGeometry object used in your development

must be disposed of after they have been used. NinjaTrader is NOT

guaranteed to dispose of these resources for you! Please see the Best

Practices for SharpDX Resources section on this page for more information.

To describe a PathGeometry object's path, use the object's

PathGeometry.Open() method to retrieve an GeometrySink. Then, use the

GeometrySink to populate the geometry with figures and segments. To create a

figure, call the GeometrySink.BeginFigure() method, specify the figure's start point,

and then use its Add methods (such as GeometrySink.AddLine()) to add

segments. When you are finished adding segments, call the

GeometrySink.EndFigure() method. You can repeat this sequence to create

additional figures. When you are finished creating figures, call the

GeometrySink.Close() method.

NinjaTrader 81832

© 2023 NinjaTrader, LLC

// create three vectors to position the geometry

SharpDX.Vector2 startPoint = new

SharpDX.Vector2(ChartPanel.X, ChartPanel.Y);

SharpDX.Vector2 endPoint = new SharpDX.Vector2(ChartPanel.X

 + ChartPanel.W, ChartPanel.Y + ChartPanel.H);

SharpDX.Vector2 centerPoint = (startPoint + endPoint) / 2;

// create the PathGeometry used by the RenderTarget

Fill/Draw method

SharpDX.Direct2D1.PathGeometry trianglePathGeometry = new

 SharpDX.Direct2D1.PathGeometry(Core.Globals.D2DFactory);

// retrieve the GeometrySink used to describe the

PathGeometry

SharpDX.Direct2D1.GeometrySink geometrySink =

trianglePathGeometry.Open();

// create the points used to define the GeometrySink

SharpDX.Vector2 beginPoint = new

SharpDX.Vector2(centerPoint.X, startPoint.Y);

// Create a figure using the beginPoint

geometrySink.BeginFigure(beginPoint,

SharpDX.Direct2D1.FigureBegin.Filled);

// add lines to the figure

SharpDX.Vector2 line1 = new SharpDX.Vector2(endPoint.X,

centerPoint.Y);

geometrySink.AddLine(line1);

SharpDX.Vector2 line2 = new SharpDX.Vector2(centerPoint.X,

endPoint.Y);

geometrySink.AddLine(line2);

// end and close figure when finished

geometrySink.EndFigure(SharpDX.Direct2D1.FigureEnd.Closed);

geometrySink.Close();

// define the brush used in the geometry

SharpDX.Direct2D1.SolidColorBrush customDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue);

// execute the render target fill geometry with desired

values

RenderTarget.FillGeometry(trianglePathGeometry,

customDXBrush);

// always dispose of a PathGeometry when finished

trianglePathGeometry.Dispose();
// always dispose of a brush when finished

customDXBrush.Dispose();

NinjaScript 1833

© 2023 NinjaTrader, LLC

Tip: For more examples of using Shapes for custom rendering, many of the

DrawingTools included in the NinjaTrader.Custom project use these types of

SharpDX objects and methods extensively.

SharpDX Text Rendering

Using SharpDX for rendering Text
Up until this point, we have been using the SharpDX.Direct2D1 namespace to

render shapes. When dealing with text, there is a separate SharpDX.DirectWrite

namespace which works along with the Direct2D1 objects.

There are two principle objects used for text rendering: A TextFormat object

which sets the style of the text, and a TextLayout object used to construct

complex texts with various settings and provides metrics for measuring the shape

the formatted text.

Each one of these objects has their own RenderTarget methods:

RenderTarget.DrawText() for simple TextFormat objects and

RenderTarget.DrawTextLayout() for more advanced layouts. Both methods

accept a TextFormat object; DrawTextLayout is more complicated but has

better performance since it reuses the same text layout which does not need to be

recalculated.

Tip: Both the TextFormat and TextLayout objects require a DirectWrite

factory during construction. For convenience, you can simply use the pre-built

NinjaTrader.Core.Globals.DirectWriteFactory property.

Formatting Text
The TextFormat object determines the font size, style and family, among other

properties.

Warning: Any SharpDX TextFormat object used in your development must

be disposed of after they have been used. NinjaTrader is NOT guaranteed to

dispose of these resources for you! Please see the Best Practices for

SharpDX Resources section on this page for more information.

NinjaTrader 81834

© 2023 NinjaTrader, LLC

SharpDX.DirectWrite.TextFormat textFormat = new

SharpDX.DirectWrite.TextFormat(Core.Globals.DirectWriteFact

ory, "Arial", 12);

Once the text formatting has been described, you can use this object to

immediately start rendering text in the DrawText() method. This approach also

requires a SharpDX.RectangleF to help determine the size and position the text

renders on the chart.

NinjaScript 1835

© 2023 NinjaTrader, LLC

// define the point for the text to render

SharpDX.Vector2 startPoint = new

SharpDX.Vector2(ChartPanel.X, ChartPanel.Y);

// construct the text format with desired font family and

size

SharpDX.DirectWrite.TextFormat textFormat = new

SharpDX.DirectWrite.TextFormat(Core.Globals.DirectWriteFact

ory, "Arial", 36);

// construct the rectangleF struct to describe the position

and size the text

SharpDX.RectangleF rectangleF = new

SharpDX.RectangleF(startPoint.X, startPoint.Y,

ChartPanel.W, ChartPanel.H);

// define the brush used for the text

SharpDX.Direct2D1.SolidColorBrush customDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue);

// execute the render target text command with desired

values

RenderTarget.DrawText("I am some text", textFormat,

rectangleF, customDXBrush);

// always dispose of textFormat when finished

textFormat.Dispose();

// always dipose of brush when finished

customDXBrush.Dispose();

NinjaTrader 81836

© 2023 NinjaTrader, LLC

Converting Text
One common approach to text formatting is to use the same formats as existing

chart objects. This provides familiar text format matching other objects which

exist on the chart. To accomplish this, you can simply use the ChartControl

NinjaTrader.Gui.SimpleFont object and convert to SharpDX using the

ToDirectWriteTextFormat() method.

SharpDX.DirectWrite.TextFormat textFormat =

ChartControl.Properties.LabelFont.ToDirectWriteTextFormat()

;

Text Layouts
The TextLayout object works in combination with the TextFormat object by

extending its functionality and providing an interface more powerful than a simple

Rectangle, enabling you to position, measure, or clip the text to a surrounding

shape.

When constructing the TextLayout object, you will pass in the exact text as a

string you wish to render, along with the desired TextFormat. This gives you the

ability to measure the text string after it has been formatted. During construction,

you also have an opportunity to specify the maximum height and width of the

TextLayout. For example, we can set the text layout to bound to height and width

chart panel:

SharpDX.DirectWrite.TextLayout textLayout = new

SharpDX.DirectWrite.TextLayout(Core.Globals.DirectWriteFact

ory, "I am also some text", textFormat, ChartPanel.W,

ChartPanel.H);

After the text has its format and layout, you can use the

RenderTarget.DrawTextLayout() method to specify the exact location as a

Vector2, as well as the Brush used to draw the text.

RenderTarget.DrawTextLayout(startPoint, textLayout,

customDXBrush);

Measuring Text Layouts

NinjaScript 1837

© 2023 NinjaTrader, LLC

Working with an existing TextLayout object, you can use its TextLayout.Metrics

object to retrieve metadata related to the size of the formatted text. This is helpful

if you are unsure of the size of the text before it is rendered. For example, you

may wish to draw a rectangle around the formatted text calculated width and

height. Using the approach below, the rectangle will dynamically resize to fit the

text values used:

NinjaTrader 81838

© 2023 NinjaTrader, LLC

// define the point for the text to render

SharpDX.Vector2 startPoint = new

SharpDX.Vector2(ChartPanel.X + 20, ChartPanel.Y + 20);

// construct the text format with desired font family and

size

SharpDX.DirectWrite.TextFormat textFormat = new

SharpDX.DirectWrite.TextFormat(Core.Globals.DirectWriteFact

ory, "Arial", 36);

// construct the text layout with desired text, text

format, max width and height

SharpDX.DirectWrite.TextLayout textLayout = new

SharpDX.DirectWrite.TextLayout(Core.Globals.DirectWriteFact

ory, "I am also some text", textFormat, ChartPanel.W,

ChartPanel.H);

// create a rectangle which will automatically resize to

the width/height of the textLayout

SharpDX.RectangleF rectangleF = new

SharpDX.RectangleF(startPoint.X, startPoint.Y,

textLayout.Metrics.Width, textLayout.Metrics.Height);

// define the brush used for the text and rectangle

SharpDX.Direct2D1.SolidColorBrush customDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue);

// execute the render target draw rectangle with desired

values

RenderTarget.DrawRectangle(rectangleF, customDXBrush);

// execute the render target text layout command with

desired values

RenderTarget.DrawTextLayout(startPoint, textLayout,

customDXBrush);

// always dispose of textLayout, textFormat, or brush when

finished

textLayout.Dispose();

textFormat.Dispose();

customDXBrush.Dispose();

NinjaScript 1839

© 2023 NinjaTrader, LLC

Note: The TextLayout.Metrics height and width properties return the text

pixel height, including the line spacing of the font. Due to the nature of most

font families, there will be an amount of line spacing above and below the text.

You can use the TextLayout.GetLineMetrics() method to help calculate the

distance from the top of the text line to its baseline.

SharpDX Stroke Style

Using the StrokeStyle Object
When rendering SharpDX Lines and Shapes, you can optionally configure a

SharpDX.Direct2D1.StrokeStyle allowing you to utilize several pre-made dash

styles, or even create a custom dash pattern.

Note: Unlike other SharpDX objects such as brushes, the StrokeStyle is a

device-independent resource. This means you only need to create the object

once throughout the lifetime of the script. However, the StrokeStyle needs to

be disposed of when the script is terminated. The Creating a Custom

DashStyle example below shows how to use a stroke style from the beginning

to end of the lifetime of your script. Please see the Best Practices for

SharpDX Resources section on this page for more information.

 For convenience, SharpDX provides the StrokeStyleProperties struct for creating

new a StrokeStyle:

// create a stroke style property using a pre-configured

"DashDot" dash style

SharpDX.Direct2D1.StrokeStyleProperties

dxStrokeStyleProperties = new

SharpDX.Direct2D1.StrokeStyleProperties

{

 DashStyle = SharpDX.Direct2D1.DashStyle.DashDot,

};

Once you have your desired stroke style properties, you can create a new stroke

style object.

NinjaTrader 81840

© 2023 NinjaTrader, LLC

Warning: Any SharpDX StrokeStyle object used in your development must

be disposed of after they have been used. NinjaTrader is NOT guaranteed to

dispose of these resources for you! Please see the Best Practices for

SharpDX Resources section on this page for more information.

SharpDX.Direct2D1.StrokeStyle dxStrokeStyle = new

SharpDX.Direct2D1.StrokeStyle(NinjaTrader.Core.Globals.D2DF

actory, dxStrokeStyleProperties);

Tip: The SharpDX.Direct2D1.StrokeStyle require a Direct2D1 factory

during construction. For convenience, you can simply use the pre-built

NinjaTrader.Core.Globals.D2DFactory property. The DirectD2D factory should

only be instantiated and access from OnRender() or

OnRenderTargetChanged(), as access outside those methods could cause

performance issues.

And then use that object with the RenderTarget.DrawLine() method:

RenderTarget.DrawLine(startPoint, endPoint, dxBrush, width,
dxStrokeStyle);

Creating a Custom DashStyle
By setting the StrokeStyle.DashStyle property to "Custom", you can further refine

the appearance of a SharpDX rendered line or shape by describing the length and

space between the lines. Creating a custom DashStyle is not only useful for using

RenderTarget methods, but also can be used for customizing the appearance of

standard NinjaScript Plots.

The code example creates a single StrokeStyle object using custom dash style

properties. The example then uses those the custom stroke style object with user

defined dashes for overriding the default NinjaTrader plot appearances, and using

the same stroke style in a RenderTarget.DrawLine() command.

NinjaScript 1841

© 2023 NinjaTrader, LLC

// a SharpDX.Direct2D1.StrokeStyle is device independent

// it only needs to be setup once throughout the lifetime

of your script

private SharpDX.Direct2D1.StrokeStyle dxStrokeStyle;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Custom StrokeStyle";

 AddPlot(Brushes.Blue, "Custom StrokeStyle");

 }

 else if (State == State.Configure)

 {

 // create a custom stroke style when configured

 SharpDX.Direct2D1.StrokeStyleProperties

dxStrokeStyleProperties = new

SharpDX.Direct2D1.StrokeStyleProperties

 {

 // set the dash style to "Custom" define the dash

pattern

 DashStyle = SharpDX.Direct2D1.DashStyle.Custom,

 // set further custom/optional StrokeStyle

appearances

 DashCap = CapStyle.Round,

 EndCap = CapStyle.Flat,

 StartCap = CapStyle.Square,

 LineJoin = LineJoin.Miter,

 // offset in the dash sequence

 DashOffset = 10.0f,

 };

 // define the an array of floating-point values

 float[] dashes = { 1.0f, 2.0f, 2.0f, 3.0f, 2.0f,

2.0f };

 // create the stroke style using the custom

properties and dash array

 dxStrokeStyle = new

SharpDX.Direct2D1.StrokeStyle(NinjaTrader.Core.Globals.D2DF

actory,

 dxStrokeStyleProperties, dashes);

 }

 else if (State == State.Terminated)

 {

 // make sure to dispose of stroke style when finished

 if (dxStrokeStyle != null)

 {

 if (!dxStrokeStyle.IsDisposed)

 dxStrokeStyle.Dispose();

 }

 }

}

protected override void OnBarUpdate()

{

 Value[0] = Close[0];

}

protected override void OnRender(ChartControl chartControl,

 ChartScale chartScale)

{

 // override the appearance of the default plot style

 Plots[0].StrokeStyle = dxStrokeStyle;

 base.OnRender(chartControl, chartScale);

 // use the custom dash style in a

RenderTarget.DrawLine() commands

 using (SharpDX.Direct2D1.SolidColorBrush dxBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.Blue))

 {

 RenderTarget.DrawLine(new

SharpDX.Vector2(ChartPanel.X, ChartPanel.Y), new

SharpDX.Vector2(ChartPanel.X + ChartPanel.W, ChartPanel.Y +

 ChartPanel.H), dxBrush, 2, dxStrokeStyle);

 }

}

NinjaTrader 81842

© 2023 NinjaTrader, LLC

 Best Practices for SharpDX Resources

Understanding Device-dependent vs Device-independent resources
Direct2D has several types of resources which may be mapped to the different

hardware devices:

· Device-independent resources are on the CPU

· Device-dependent resources are on the GPU

When device-dependent resources are created, system resources are

dedicated to that object. Resources which are device-dependent are

associated with a particular RenderTarget device and are only available on that

device. Therefore, objects which were created using a RenderTarget can only

be used by that device. As the RenderTarget updates, objects which were

previously created will no longer be compatible and can lead to errors. You can

use the NinjaTrader OnRenderTargetChanged() method to detect when the render

target has updated and gives you an opportunity to recreate resources.

Device-dependent resources
The following objects are associated with a specific RenderTarget. They must

be created and dispose of any time the RenderTarget is updated:

· Brush

· GeometrySink

· GradientStopCollection

· LinearGradientBrush

· RadialGradientBrush

· SolidColorBrush

Device-independent resources
The following objects are NOT associated with a specific device. They can be

created once and last for the lifetime of your script, or until they need to be

modified:

· PathGeometry

· StrokeStyle

· TextFormat

· TextLayout

NinjaScript 1843

© 2023 NinjaTrader, LLC

Note: For more technical information on device resources, please see the

MSDN Direct2D Resources Overview

SharpDX DisposeBase
Although most C# objects stored in memory are handled by the operating system,

there are a few SharpDX resources which are not managed. It is important to

take care of these resources during the lifetime of your script as there is no

guarantee that NinjaTrader will be able to dispose of these unmanaged references

for you.

The following commonly used objects implement from the SharpDX.DisposeBase

and should be disposed any time they are created:

· Brush

· GeometrySink

· GradientStopCollection

· LinearGradientBrush

· PathGeometry

· RadialGradientBrush

· SolidColorBrush

· StrokeStyle

· TextFormat

· TextLayout

Warning: The list above is NOT exhaustive and there are other less common

SharpDX objects that could implement DisposeBase. Failure to clean up

these resources WILL result in NinjaTrader using more memory than

necessary and may expose potential "memory leaks" coming from your script.

 If you experience unusual amounts of memory being utilized over time, an

unmanaged SharpDX resource is often times the culprit.

Since there is no guarantee that NinjaTrader will release objects from memory

when your script is terminated, it is best to protect these resources from issues

and call Dispose() as soon as possible. This commonly involves calling

Dispose() at the end of OnRender(),or during OnRenderTargetChanged() when

dealing with device- dependent resources such as brush. Device-

independent resources can be created once and then retained for the life of your

application.

https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx

NinjaTrader 81844

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

 ChartScale chartScale)

{

 // 1 - setup your resource

 SharpDX.Direct2D1.SolidColorBrush customDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue

 // 2 - use your resource

 RenderTarget.DrawLine(startPoint, endPoint,

customDXBrush);

 // 3- dispose of your resource

 customDXBrush.Dispose()

}

Note: If your resource is setup (i.e., uses the "new" keyword) during

OnRender() or OnRenderTargetChange(), calling .Dispose() during

State.Terminated will ONLY dispose of the very last reference in memory and

is NOT sufficient to completely manage all instances created during the

lifetime of your script. You should be diligent in calling Dispose() throughout

the lifetime of the script.

You can also consider implementing the using Statement (C# Reference) which

will implicitly call Dispose() for you when you are done:

// customDXBrush implicitly calls Dispose() after this

block executes

using (SharpDX.Direct2D1.SolidColorBrush customDXBrush =

new SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue))

{

 RenderTarget.DrawLine(startPoint, endPoint,

customDXBrush);

}

Critical: Attempting to use an object which has already been disposed can

lead to memory corruption that NinjaTrader may not be able to recover.

Attempts to use an object in this manner can result in an error similar to: Error

https://msdn.microsoft.com/en-us/library/yh598w02.aspx

NinjaScript 1845

© 2023 NinjaTrader, LLC

on calling 'OnRender' method on bar 0: Attempted to read or write

protected memory. This is often an indication that other memory is

corrupt.

You can check to see if can object has been disposed of by using the

DisposeBase.IsDiposed property:

SharpDX.Direct2D1.Brush customDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.DodgerBlue);

// checks the object is not disposed of before using

if(!customDXBrush.IsDisposed)

{

 RenderTarget.DrawLine(startPoint, endPoint,

customDXBrush);

 customDXBrush.Dispose();

}

You should also favor managing these resources yourself, which means methods

which accept a SharpDX DisposeBase object as an argument should be created

before they are passed into the method and disposed of after they are used. For

example, the code below should be avoided:

 Practice to avoid

// do NOT convert an object as it is passed to an argument.

// You may have no chance to Dispose of the object!

// Finalizer is not guaranteed to release of these

resources

RenderTarget.DrawLine(startPoint, endPoint,

Brushes.AliceBlue.ToDxBrush(RenderTarget));

MyCustomMethod(Brushes.AliceBlue.ToDxBrush(RenderTarget));

Instead, you should manage these objects yourself:

NinjaTrader 81846

© 2023 NinjaTrader, LLC

 Best practice

// Do create and store this reference yourself so you can

control when it is released (Y)

SharpDX.Direct2D1.Brush customDXBrush =

WPFBrush.ToDxBrush(RenderTarget);

RenderTarget.DrawLine(startPoint, endPoint,

customDXBrush));

MyCustomMethod(customDXBrush);

customDXBrush.Dipose()

Other Best Practices

If possible, you should avoid using the ToDxBrush() method if it is not necessary.

It is relatively harmless to use this approach for a few brushes, but can introduce

performance issues if used too liberally.

 Practice to avoid

// do NOT convert from WPF brushes unnecessarily

SharpDX.Direct2D1.Brush dxBrush1 =

System.Windows.Media.Brushes.Blue.ToDxBrush(RenderTarget);

SharpDX.Direct2D1.Brush dxBrush2 =

System.Windows.Media.Brushes.Red.ToDxBrush(RenderTarget);

SharpDX.Direct2D1.Brush dxBrush3 =

System.Windows.Media.Brushes.Green.ToDxBrush(RenderTarget);

SharpDX.Direct2D1.Brush dxBrush4 =

System.Windows.Media.Brushes.Purple.ToDxBrush(RenderTarget)

;

SharpDX.Direct2D1.Brush dxBrush5 =

System.Windows.Media.Brushes.Orange.ToDxBrush(RenderTarget)

;

SharpDX.Direct2D1.Brush dxBrush6 =

System.Windows.Media.Brushes.Yellow.ToDxBrush(RenderTarget)

;

Instead, you should construct a SharpDX Brush directly if a WPF brush is not ever

needed:

NinjaScript 1847

© 2023 NinjaTrader, LLC

 Best practice

// Do create SharpDX Brushes directly if you have a large

amount of brushes

SharpDX.Direct2D1.Brush dxBrush1 = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.Blue);

SharpDX.Direct2D1.Brush dxBrush2 = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.Red);

SharpDX.Direct2D1.Brush dxBrush3 = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.Green);

SharpDX.Direct2D1.Brush dxBrush4 = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.Purple);

SharpDX.Direct2D1.Brush dxBrush5 = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.Orange);

SharpDX.Direct2D1.Brush dxBrush6 = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.Yellow);

Rendering with anti-aliasing disabled can be used to render a higher qualify

shapes but comes as a performance impact. You should make sure to set this

render target property back to its default when you are finished with a render

routine.

 Best practice

// AntialiasMode.PerPrimitive is more resource intensive

// store the old reference before setting the desired value

SharpDX.Direct2D1.AntialiasMode oldAntialiasMode =

RenderTarget.AntialiasMode;

RenderTarget.AntialiasMode =

SharpDX.Direct2D1.AntialiasMode.PerPrimitive;

// execute your render routines

// and then set back to initial AntialiasMode when finished

RenderTarget.AntialiasMode = oldAntialiasMode;

11.5.16 Working with Brushes

In order to achieve custom rendering for various chart related objects, a Brush is used to

"paint" an area or another chart object. There are a number of different brushes which are

NinjaTrader 81848

© 2023 NinjaTrader, LLC

available through the .NET Framework, where the most common type of brush is a

SolidColorBrush which is used to paint an area with a single solid color.

Notes: The following document is written in sequential fashion, starting with the most

simple concepts, to the more advance topics. The majority of the brushes discussed in

this document will be referred to as "WPF" brushes which exist in the

System.Windows.Media namespace, however there are also "SharpDX" brushes which

exist in the 3rd party SharpDX.Direct2D1 namespace used for advanced chart rendering.

Advanced brush types should ONLY be used by experienced programmers familiar with

.NET graphics functionality.

Understanding predefined brushes

Using Predefined Brushes
For convenience, the .NET Framework supplies a collection of static predefined

Brushes, such as Red or Green. The advantage to using these brushes is that

they are readily available, properly named to quickly find a simple color value, and

can be reused on-the-fly without having to recreate an instance of the brush at run

time, and do not need to be otherwise managed. There are 256 predefined named

brushes which are available in the Brushes class. You can browse this list in the

NinjaScript editor just by typing Brushes. and using Intelliprompt to find the desired

named brush of your choice.

Note: Since predefined brushes are static, properties of the brush object

(such as Color, Opacity, etc.) CANNOT be modified. However, this also

means predefined brushes are thread-safe and do NOT need to be frozen.

For customizing and freezing a brush, please see the section below on

Creating a Custom Solid Color Brush.

https://msdn.microsoft.com/en-us/library/system.windows.media.solidcolorbrush(v=vs.110).aspx

NinjaScript 1849

© 2023 NinjaTrader, LLC

Tip: You can also find a list of these predefined brushes as well as their

hexadecimal value on the MSDN article for the Brushes Class

// set the chart's background color to a predefined "Blue"

brush

BackBrush = Brushes.Blue;

//draw a line using a predefined "LimeGreen" brush.

Draw.Line(this, "tag1", false, 10, 1000, 0, 1001,

Brushes.LimeGreen, DashStyleHelper.Dot, 2);

Understanding custom brushes

Creating a Custom Solid Color Brush
In cases where you would like more specific color than one of the predefined

brushes, you can optionally create your own Brush object to be used for custom

rendering. In order to achieve this, you will need to initiate your own custom brush

object, where you can then specify your color using RGB (red, green, blue) values

Color.FromRgb().

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.color.fromrgb(v=vs.110).aspx

NinjaTrader 81850

© 2023 NinjaTrader, LLC

Notes:

· Anytime you create a custom brush that will be used by NinjaTrader

rendering it must be frozen using the .Freeze() method due to the multi-

threaded nature of NinjaTrader.

· You may have up to 65535 unique Brush instances, therefore, using static

predefined brushes (as in the section above) should be favored.

Alternatively, in order to use fewer brushes, please try to cache your custom

brushes until a new brush would actually need to be created.

// initiate new solid color brush with custom blue color

Brush myBrush = new SolidColorBrush(Color.FromRgb(56, 120,

153));

myBrush.Freeze();

Draw.Line(this, "tag1", true, 10, 1000, 0, 1001, myBrush,

DashStyleHelper.Dot, 2);

Warning: If you do not call .Freeze() on a custom defined brush WILL

eventually result in threading errors should you try to modify or access that

brush after it is defined.

Creating a Transparent Solid Color Brush
You can create a transparent brush using the Color.FromArgb() where the A
parameter defines alpha transparency.

Note: Anytime you create a custom brush that will be used by NinjaTrader

rendering it must be frozen using the .Freeze() method due to the multi-

threaded nature of NinjaTrader.

https://msdn.microsoft.com/en-us/library/ms557735(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms557735(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.color.fromargb(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms557735(v=vs.110).aspx

NinjaScript 1851

© 2023 NinjaTrader, LLC

// initiate new solid color brush which has an alpha

(transparency) value of 100

myBrush = new SolidColorBrush(Color.FromArgb(100, 56, 120,

153));

myBrush.Freeze();

Draw.Line(this, "tag1", true, 10, 1000, 0, 1001, myBrush,

DashStyleHelper.Dot, 2);

Warning: If you do not call .Freeze() on a custom defined brush WILL

eventually result in threading errors should you try to modify or access that

brush after it is defined.

Using brushes defined on the user interface

Saving a Brush as a user defined property (Serialization)
If you would like a brush to become a public UI property, meaning the brush can be

set up and defined by a user during configuration, it is important to be able to save

the user's brush selection in order to restore that brush either from a workspace or

from a template file at a later time. Saving a custom defined user input is done

through a concept of Serialization which writes the object and its value to a .xml

file. This process normally works fine for a simple user defined value type (such

as a double or an int) but for more complex types such as Brushes, the object

itself cannot be serialized directly to the .xml file and will result in errors upon

saving the indicator or strategy to a workspace or template file. The example

below will demonstrate and explain how to properly store a user define brush input

which will be correctly serialized.

In order to achieve the desired behavior of saving the user defined brush input, we

will add the XmlIgnore property attribute to the public brush resource, which

essentially tells the serialization routine to ignore this property.

[XmlIgnore]

public Brush MyBrush { get; set; }

https://msdn.microsoft.com/en-us/library/ms557735(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms233843.aspx
https://msdn.microsoft.com/en-us/library/system.xml.serialization.xmlignoreattribute(v=vs.110).aspx

NinjaTrader 81852

© 2023 NinjaTrader, LLC

In its place, we create a new public string called "MyBrushSerialize" which will

convert the public "MyBrush" to a string type which can then be processed by the

serialization routines. We also add the Browsable(false) attribute to this public

string to prevent this property from showing up on the UI, which is of no value to

the end user.

[Browsable(false)]

public string MyBrushSerialize

{

 get { return Serialize.BrushToString(MyBrush); }

 set { MyBrush = Serialize.StringToBrush(value); }

}

Tip: For a complete example of User Definable Color Inputs, please see the

reference sample here.

Adding a User Defined Brush to the Color Picker
You can optionally define a custom brush to be added to the standard color picker

by using a [CustomBrush] attribute to a public brush. The CustomBrush attribute

will then add it to the color picker menu for that indicator when you look through the

plots, lines, or other brushes from the indicators configured menu and will be listed

toward the top of the list (as pictured below)

[CustomBrush]

public Brush MyBrush

{

 get { return new SolidColorBrush(Color.FromRgb(25, 175,

185)); }

 set { }

}

https://msdn.microsoft.com/en-us/library/system.componentmodel.browsableattribute(v=vs.110).aspx

NinjaScript 1853

© 2023 NinjaTrader, LLC

Using advanced brush types (SharpDX)

Understanding SharpDX Brushes
While the majority of the NinjaTrader platform's UI is WPF, under the hood, chart's

use a DirectX API for faster performance. To render custom objects to a chart

during OnRender(), a particular SharpDX Brush object must be implemented

which reside in the SharpDX.Direct2D1 namespace. These brushes can then

be passed as arguments to the SharpDX RenderTarget methods such

FillRectangle(), DrawLine(), etc. While SharpDX Brushes behave much the

same as previously discussed WPF Brushes, there are a few special

considerations you must take as detailed in the following sections.

Note: The SharpDX Brushes used in RenderTarget methods should NOT

be confused with the WPF Brushes used with DrawingTool Draw methods.

Creating a SharpDX Brush
A SharpDX Brush must be created either in OnRender() or

RenderTargetChanged(). If you have custom brushes which may be changed

NinjaTrader 81854

© 2023 NinjaTrader, LLC

on various conditions such as in OnBarUpdate() or by a user during

OnStateChange(), or you are pre-computing a custom brush for performance

optimization, you will need to ensure the actual SharpDX instance is updated in

OnRender() or RenderTargetChange().

Warning: Each DirectX render target requires its own brushes. You MUST

create brushes directly in OnRender() or using OnRenderTargetChanged().

 If you do not you will receive an error at runtime similar to:

"A direct X error has occured while rendering the chart: HRESULT:

[0x88990015], Module: [SharpDX.Direct2D1], ApiCode:

[D2DERR_WRONG_RESOURCE_DOMAIN/WrongResourceDomain],

Message: The resource was realized on the wrong render target. : Each

DirectX render target requires its own brushes. You must create brushes

directly in OnRender() or using OnRenderTargetChanged().

Please see OnRenderTargetChanged() for examples of a brush that needs to

be recalculated, or OnRender() for an example of recreating a static brush.

// use predefined "Blue" SharpDX Color

SharpDX.Direct2D1.SolidColorBrush solidBlueDXBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.Blue);

// create custom Brush using a "Red" SharpDX Color with

"Alpha" (0.100f) transparency/opacity

SharpDX.Direct2D1.SolidColorBrush transparentRedDXBrush =

new SharpDX.Direct2D1.SolidColorBrush(RenderTarget, new

SharpDX.Color4(new SharpDX.Color3(220f, 0f, 0f), 0.100f));

Converting to SharpDX Brush
For convenience, you can convert a computed WPF Brush to a SharpDX Brush

using the ToDxBrush() extension method.

Warning: Converting ToDxBrush() can result in performance issues

depending on the number of brushes being used. If you experience

performance issues with your custom SharpDX rendering, you should favor

NinjaScript 1855

© 2023 NinjaTrader, LLC

using SharpDX brushes directly instead of converting the brush using

ToDxBrush().

// convert predefined WPF "Blue" to SharpDX Brush

SharpDX.Direct2D1.Brush blueDXBrush =

Brushes.Blue.ToDxBrush(RenderTarget);

// convert the computed WPF Brush to SharpDX Brush

SharpDX.Direct2D1.Brush customDXBrush =

customWPFBrush.ToDxBrush(RenderTarget);

Disposing DXBrush
Since SharpDX Brushes reference unmanaged resources, these brushes should

always be disposed of after they have been used.

Warning: Failing to dispose of a SharpDX Brush and other unmanaged

resources can cause the platform to utilize more memory than necessary.

customDXBrush.Dipose();

Using Complex Brushes
In addition to the SolidColorBrush object demonstrated on this page, the .NET

Framework provides more complex brushes which have more attributes than just

filling an area with a solid color. Information on these special types of brushes can

be found on the MSDN website: LinearGradientBrush, RadialGradientBrush,

ImageBrush.

These complex types also have an equivalent found in the SharpDX SDK

Reference: SharpDX.Direct2D1.LinearGradientBrush,

SharpDX.Direct2D1.RadialGradientBrush

https://msdn.microsoft.com/en-us/library/system.windows.media.solidcolorbrush(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.lineargradientbrush(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.radialgradientbrush(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.imagebrush(v=vs.110).aspx

NinjaTrader 81856

© 2023 NinjaTrader, LLC

11.5.17 Working with Chart Object Coordinates

Understanding Chart Canvas Coordinates
The chart canvas represents the portion of a chart window on which objects can be painted

(the area outlined in blue in the image below). The canvas area is measured by an x-axis and

y-axis independent of the price and time-axis of the chart itself. When working with

coordinates on a chart canvas, it is important to note that the origin point (coordinates 0,0) is

in the top-left corner of the canvas, NOT the bottom-left. Moving down the canvas increases

the y-coordinate, and moving the the right on the canvas increases the x-coordinate.

Understanding Chart Areas
When using ChartControl properties and methods, it is important to understand the layout of

a chart window, and which specific area of the window is being measured by a specific

property. The image below shows the three primary areas of a chart window.

NinjaScript 1857

© 2023 NinjaTrader, LLC

The three regions shaded in the image above are labeled as follows:

1. The chart canvas covers the area in which bars, drawing objects, and indicator plots can

be painted. It is bounded on the bottom by the x-axis, and on the right, left, or both by the y-

axis. This is measured by properties such as CanvasLeft and CanvasRight.

2. The y-axis extends vertically from the chart's horizontal scroll bar to the top of the chart

canvas, and can be displayed to the right or left (or both) of the canvas area, depending the

"Scale Justification" properties of the Bars object or indicators painted on the chart. This is

measured by properties such as AxisYLeftWidth and AxisYRightWidth.

3. The x-axis sits beneath the chart canvas, and extends horizontally from the left edge of the

chart canvas (or the left edge of the y-axis if it is visible on the left) to the right edge of the y-

axis applied to the right of the canvas (or the right edge of the canvas itself if the y-axis is not

visible on the right). This is measured by properties such as AxisXHeight.

11.5.18 Working with Pixel Coordinates

Understanding Device Pixels vs. Application Pixels (WPF)
When working with pixel coordinates (for example, when using SharpDX drawing methods for

custom drawing), it is important to note if the coordinates specified in method arguments refer

to application pixels (i.e., WPF coordinates), or the larger concept of Device Independent

Pixels (DIP).

https://msdn.microsoft.com/en-us/library/windows/desktop/ff684173(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff684173(v=vs.85).aspx

NinjaTrader 81858

© 2023 NinjaTrader, LLC

The physical size of an application-specific pixel can vary based on PC hardware and

operating-system settings, which introduces a challenge for developers using pixel

coordinates for processes such as custom drawing on a chart canvas. By specifying the

number of pixels when defining a coordinate, the object placed at that coordinate could render

in a very different position depending on the users display settings. Device Independent

Pixels provide a way to measure or quantify pixel coordinates without being impacted by

different sizes of application pixels. Specifying Device Independent Pixels can ensure that

objects render in the intended location or position, regardless of these unpredictable factors.

Converting to Device Pixels
NinjaScript provides helper methods to convert from application pixels to device pixels (or vice

versa) within the ChartingExtensions class. Since some NinjaScript methods and properties

return application pixels where device pixels are needed, using these helper methods can

provide great flexibility by allowing you to define physical application pixels, then converting

them to device independent pixels before passing them to a method. Using this process, the

application pixel values used will result in objects being rendered exactly where intended.

Example

NinjaScript 1859

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // get the point the user clicked, (which returns application

pixel)

 Point clickPoint = chartControl.MouseDownPoint;

 // Convert the clickPoint X and Y coordinates to device

independent pixels (DIP)

 // This will ensure that the MouseDownPoint will work across all

screen displays

 clickPoint.X =

ChartingExtensions.ConvertToHorizontalPixels(clickPoint.X,

chartControl.PresentationSource);

 clickPoint.Y =

ChartingExtensions.ConvertToVerticalPixels(clickPoint.Y,

chartControl.PresentationSource);

 // set the location (vector) from the user clickPoint

 SharpDX.Vector2 vectorForEllipse = clickPoint.ToVector2();

 // create the shape (ellipse), and color (brush) for our object

to render

 SharpDX.Direct2D1.Ellipse ellipse = new

SharpDX.Direct2D1.Ellipse(vectorForEllipse, 10f, 10f);

 SharpDX.Direct2D1.Brush ellipseBrushDX =

Brushes.Blue.ToDxBrush(RenderTarget);

 // finally, render a ellipse at the exact point the user clicked

 RenderTarget.FillEllipse(ellipse, ellipseBrushDX);

}

11.5.19 Working with Price Series

Price Data Overview
The core objective of developing custom Indicators and Strategies with NinjaScript is to

evaluate price data. NinjaScript allows you to reference current and historical price data.

There are several categories of price data which include ISeries<T>, Indicator and Custom

Historical Series.

Definitions

ISeries<T> Standard bar based price types

such as closing, opening, high,

low prices and volume

NinjaTrader 81860

© 2023 NinjaTrader, LLC

Indicator Calculated values based on price

type values such as a simple

moving average

Custom Historical Series<T> Custom calculated values that

you wish to store and associate to

each historical bar

Referencing Series

ISeries<T> Syntax
Editor

Shortcut
Definition

Close
Close[int

barsAgo]

"c" + Tab

Key
Last traded price of a bar

Open
Open[int

barsAgo]

"o" + Tab

Key
Opening price of a bar

High
High[int

barsAgo]

"h" + Tab

Key

Highest traded price of a

bar

Low
Low[int

barsAgo]

"l" + Tab

Key

Lowest traded price of a

bar

Volume
Volume[int

barsAgo]

"v" + Tab

Key

Number of

shares/contracts traded

of a bar

Input
Input[int

barsAgo]

"i" + Tab

Key

Default price type of a

bar

You will notice that to reference any price data you need to include a value for [int barsAgo].

This is a very simple concept; barsAgo represents the number of bars ago to reference and

int indicates that barsAgo is an integer value. As an example, we could write a statement to

check if the the high price of 1 bar ago is less than the high price of the current bar like this:

High[1] < High[0];

You could write a statement to calculate the average closing price of the last three bars like

this:

NinjaScript 1861

© 2023 NinjaTrader, LLC

(Close[2] + Close[1] + Close[0]) / 3;

As you may have already figured out, referencing the current bar data is accomplished by

passing in a value of 0 (zero) to the barsAgo parameter. Basically, we are saying show me

the price data of zero bars ago, which means the current bar.

Note: In most cases, you will access the historical price series using a core event

handler such as OnBarUpdate. For more advance developers, you may find situations

where you wish to access historical price series outside of the core event methods, such

as your own custom mouse click. In these advanced scenarios, you may run into

situations where the barsAgo pointer is not in sync with the current bar, and may result in

errors when trying to obtain this information. In those cases, please use the Bars.Get...()

methods with the absolute bar index (e.g., Bars.GetClose(), Bars.GetTime(), etc.)

Referencing Indicator Data
NinjaScript includes a library of built in indicators that you can access. Please see the
Indicator Methods reference section for clear definitions for how to access each indicator.

All indicator values can be accessed in the following way:

indicator(parameters)[int barsAgo]

where indicator is the name of the indicator you want to access, parameters is any

associated parameters the indicator requires and barsAgo is the number of bars we wish to

offset from the current bar.

As an example, we could write a statement to check if the current closing price is greater than

the 20 period simple moving average like this:

Close[0] > SMA(20)[0];

If you wanted to perform the same check but only check against a 20 period simple moving

average of high prices you would write it like this:

Close[0] > SMA(High, 20)[0];

You could write a statement to see if a 14 period CCI indicator is rising like this:

CCI(14)[0] > CCI(14)[1];

Value of a 10 period CCI 1 bar ago = CCI(10)[1]

NinjaTrader 81862

© 2023 NinjaTrader, LLC

Please review the Indicator Methods section for proper syntax for accessing different indicator

values.

11.5.20 Reference Samples

Reference Samples Overview

› Indicator

› Strategy

11.5.20.1 Indicator

Indicator Overview

› Calculating the highest high or lowest low for a specified time range

› Changing fonts for draw objects

› Coloring a region

› Creating a user-defined parameter type (enum)

› Creating your own Level II data book (Accessing market depth)

› Draw Objects

› Ensuring indicator plots are valid before programmatically accessing them

› Exposing indicator values that are not plots

› Getting indicator values from a specified time

› Manipulating DateTime objects

› Manipulating string objects

› Multi-Colored Plots

› Removing and Custom Formatting an Indicator’s Chart Label

› Using a secondary series as an input series for an indicator

› Using a Series or DataSeries object to store calculations

› Using a TypeConverter to Customize Property Grid Behavior

› Using custom events to output the current Level II data book

› Using StreamReader to read from a text file

› Using StreamWriter to write to a text file

› Using System.IO File properties to write to and read from a text file

› Using Try-Catch Blocks

› Creating Chart WPF (UI) Modifications from an Indicator

11.5.20.1.1 Calculating the highest high or low est low for a specif ied time range

Determining a high or low value for given time range can be useful.

Key concepts in this example
· Converting time to bars ago values

NinjaScript 1863

© 2023 NinjaTrader, LLC

· Getting the highest high and lowest low values

Important related documentation
· GetBar()

· MAX()

· MIN()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleGetHighLowByTimeRange_NT8.zip

11.5.20.1.2 Changing fonts for draw objects

Drawing text on a chart can be useful for outputting information, but when all information is

displayed with the same font and size it could be difficult to quickly see the key information.

Since NinjaScript is based on C#, it is possible to use Font objects to create more styles for

your text

Key concepts in this example
· Drawing text on a chart

· Changing the font size on a chart

Important related documentation
· Text()

· SimpleFont()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleChangeFont_NT8.zip

11.5.20.1.3 Coloring a region

Filling in a region between two DataSeries objects on your indicators can be beneficial for

creating visual indicators. The colored regions allow for immediate recognition of various

zones that can help a discretionary trader quickly identify what's important and trade

accordingly.

This reference sample demonstrates the following concept
· Coloring a region between two DataSeries objects

· Coloring a region between a DataSeries object and a double value

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleGetHighLowByTimeRange_NT8.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleChangeFont_NT8.zip

NinjaTrader 81864

© 2023 NinjaTrader, LLC

Important methods and properties used include
· Bollinger()

· Draw.Region()

Other methods and properties of interest include:

· Draw.Diamond()

· Draw.Rectangle()

· DrawOnPricePanel

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleDrawRegion_NT8.zip

11.5.20.1.4 Creating a user-defined parameter type (enum)

Creating user-defined parameters allows you to present the user with hard coded options

they can choose. These options provide flexibility in your indicators and can be of value to the

user if they like to switch settings often.

Key concepts in this example
· Hard code various Moving Average types the user can select

· Use a switch to determine which code logic is executed based on the Moving Average type

selected

Important related documentation
· enum

· branching statements

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleUniversalMovingAverage_NT8.zip

11.5.20.1.5 Creating your ow n Level II data book (Accessing market depth)

Level II data is important for the momentum trader. It allows them to determine which way the

market makers are trading and can be useful in helping the trader decide which way the

momentum is going.

Key concepts in this example
· Storing Level II data in a custom object list

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleDrawRegion_NT8.zip
http://csharp-station.com/Tutorial/CSharp/Lesson17
http://csharp-station.com/Tutorial/CSharp/Lesson03
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleUniversalMovingAverage_NT8.zip

NinjaScript 1865

© 2023 NinjaTrader, LLC

· Printing Level II books for discretionary trading

Important related documentation
· List<>

· MarketDepthEventArgs

· Operation

· Position

· Price

· Volume

· Time

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleLevel2Book_NT8.zip

11.5.20.1.6 Draw Objects

Being able to mark visually conditions of interest on the chart is useful for the discretionary

trader. With NinjaScript you can draw various objects onto your chart to alert you of these

points of interest.

Key concepts in this example
· Drawing unique diamonds to mark the beginning and end of uptrends

· Drawing and updating a single rectangle that marks the current uptrend

Important related documentation
· Drawing

· Draw.Diamond()

· Draw.Rectangle()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleDrawObject_NT8.zip

11.5.20.1.7 Ensuring indicator plots are valid before programmatically accessing them

When accessing NinjaScript indicators in other scripts it is important to check if the hosted

indicator's plot values are already set prior to use in the hosting script. This check ensures

that proper values are always used and that irrelevant values do not throw off the script logic.

https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleLevel2Book_NT8.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleDrawObject_NT8.zip

NinjaTrader 81866

© 2023 NinjaTrader, LLC

This reference sample demonstrates how to run these checks in a hosting indicator by

checking another hosted indicator for set plot values.

Another example for when you would want to use this is if you were trying to access the

Pivots indicator, but did not have enough days loaded to properly calculate those values yet.

Basing logic on the Pivots in such a scenario would yield values that are not useful and can

be detrimental if not handled correctly in your code.

Key concepts in this example
· Checking indicator plots for valid values

· Handling logic for when the indicator plots are not valid

Attached archive contains two indicator files
· SampleEveryNBarTest is the hosting indicator

· SampleEveryNBar is the hosted indicator

Note: When hosting an indicator in an Indicator column in the Market Analyzer you will

need to manually ensure enough bars back are loaded for the indicator to calculate

correctly.

Important related documentation
· IsValidDataPoint()

· Series

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleEveryNBarTest_NT8.zip

11.5.20.1.8 Exposing indicator values that are not plots

There may be cases where you want to have your indicator calculate non-plotted values that

you will want to access when using this indicator inside of another indicator or strategy.

Key concepts in this example
· Creating exposed BoolSeries objects

· Storing and retrieving values from BoolSeries objects

Important related documentation
· Series<T>

We suggest using an available class that implements the Series interface.

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleEveryNBarTest_NT8.zip

NinjaScript 1867

© 2023 NinjaTrader, LLC

· Price Series

· Time Series

· Volume Series

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleBoolSeries_NT8.zip

11.5.20.1.9 Getting indicator values from a specif ied time

Sometimes, you may want to access a value from a historical point in time, but have not kept

track of the value to make this readily available. With NinjaScript, it is possible to pick a bar

based on time to access that value. GetBar() returns the number of bars ago that holds the

same timestamp of the time you request. This sample demonstrates how to get an indicator

value from 9:30AM of the previous trading day.

Key concepts in this example
· Obtaining a Simple Moving Average value from a specific time by referencing the bar

number for that time.

Important related documentation
· GetBar()

· Draw.Line()

· Time

· Sessions

· DateTime

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleGetBar_NT8.zip

11.5.20.1.10 Manipulating DateTime objects

An essential element of any trader's strategies or indicators is time. You may find yourself

wanting a high and low marker for a certain timeframe or you might want something drawn on

your charts during those choppy lunch hours. DateTime objects are included in the .NET

framework, and they can be used to do any time related action, like limiting trading hours or

finding the highest high between 9:30AM and 10:30AM.

Key concepts in this example

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleBoolSeries_NT8.zip
https://learn.microsoft.com/en-us/dotnet/api/system.datetime?view=netframework-4.8
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleGetBar_NT8.zip

NinjaTrader 81868

© 2023 NinjaTrader, LLC

· Common manipulation of DateTime objects

Important related documentation
· DateTime

· DateTime.Add()

· DateTime.Compare()

· DateTime.Now

· DateTime.TryParse()

· TimeSpan

· DateTime.ToString(string)

· string.Format()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleDateTimeFunctions_NT8.zip

11.5.20.1.11 Manipulating string objects

Dealing with strings and other related concepts are essential to many computer programs.

This sample is a collection of some of the most common string and text related functions

including splitting a string, replacing a string with another string, and a few other string

functions.

Key concepts in this example
· Simple text/string manipulation ideas

Important related documentation
C#

· string.IndexOf()

· string.Replace()

· string.Split()

· Escape characters

· Foreach iterator

· String literals

NinjaTrader

· ClearOutputWindow()

Note: A related sample demonstrating how to format numbers can be found here.

Import instructions

https://learn.microsoft.com/en-us/dotnet/api/system.datetime?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.datetime.add?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.datetime.compare?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.datetime.now?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.datetime.tryparse?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.timespan?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.datetime.tostring?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.string.format?view=netframework-4.8
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleDateTimeFunctions_NT8.zip
https://learn.microsoft.com/en-us/dotnet/api/system.string.indexof?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.string.replace?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.string.split?view=netframework-4.8
http://msdn.microsoft.com/en-us/library/h21280bw.aspx
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/iteration-statements
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/
http://www.ninjatrader.com/support/helpGuides/nt8/en-us/clearoutputwindow.htm?zoom_highlightsub=ClearOutputWindow

NinjaScript 1869

© 2023 NinjaTrader, LLC

1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleStringFunctions_NT8.zip

11.5.20.1.12 Multi-Colored Plots

With multi-colored plots it becomes easy to pick out changes in value of your indicator from a

quick glance.

Key concepts in this example
· Adding plots for each color used

· Plotting a SMA line with three different colors depending on the rising, falling, or neutral

nature of the line

Important related documentation
· AddPlot()

· IsFalling()

· IsRising()

· PlotBrushes

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleMultiColoredPlot_NT8.zip

11.5.20.1.13 Removing and Custom Formatting an Indicator’s Chart Label

If you create a NinjaScript indicator or strategy with many customizable parameters, you will

have a long label when you load the NinjaScript onto your chart. This may be visually

cumbersome so you may want to trim the displayed label to a more manageable size that

only contains the most important parameters.

Key concepts in this example:
· Creating a custom string for the label of the NinjaScript item.

Important related documentation
· Draw.TextFixed()

· Draw.Text()

· Override DisplayName()

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleStringFunctions_NT8.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleMultiColoredPlot_NT8.zip

NinjaTrader 81870

© 2023 NinjaTrader, LLC

Tip: When adding an indicator onto a chart you can also completely remove any labeling

on the chart of the indicator name. You can do this by clearing the "Label" field under the

"General" category when you add the indicator onto the chart.

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleDisplayName_NT8.zip

11.5.20.1.14 Using a secondary series as an input series for an indicator

Adding additional series to a script can be useful. You may also want to use this added data

for an indicator's Input Series.

Key concepts in this example
· Adding series

· Supplying a series object to an indicator as the input series parameter

· Plotting using data from two different series

Important related documentation
· AddDataSeries()

· AddPlot()

· IsValidDataPoint()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleSecondarySeriesAsInputSeries_NT8.zip

11.5.20.1.15 Using a Series or DataSeries object to store calculations

When creating Indicators or Strategies you may find that you need to store values in a way

that is similar to the way price data is stored in NinjaTrader.

Series<T> objects are useful for storing various types of values.

Since they are linked to your historical bars object, you can store and link a value to each bar.

This allows you the flexibility of accessing the values at any point in the future for further

calculations or plotting.

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleDisplayName_NT8.zip
http://www.ninjatrader.com/support/helpGuides/nt8/en-us/adddataseries.htm
https://ninjatrader.com/support/helpGuides/nt8/en-us/addplot.htm
https://ninjatrader.com/support/helpGuides/nt8/en-us/isvaliddatapoint.htm
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleSecondarySeriesAsInputSeries_NT8.zip

NinjaScript 1871

© 2023 NinjaTrader, LLC

Key concepts in this example
· Creating objects that store data

· Storing and retrieving values from these objects

Important related documentation
· Series<T>

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleCustomSeries_NT8.zip

11.5.20.1.16 Using a TypeConverter to Customize Property Grid Behavior

The default behavior of the NinjaTrader property grid is designed to handle the most basic

display of your custom Indicator and Strategy properties. However, there are special cases

where you may want to control how unique properties display to other users. Since using a

TypeConverter is more of a general C# concept used to convert values between data types (a

string to an enum for example), so the possibilities of what you can do are within the bounds

of the .NET Framework. This NinjaScript sample was produced to help NinjaScript developers

understand how to leverage the IndicatorBaseConverter and StrategyBaseConverter helper

classes to customize property grid behavior without affecting general NinjaTrader property

behavior.

Note
· NinjaTrader expects custom properties to be of value type or type which implements

ICloneable interface

· This reference sample assumes you are familiar with basic C# TypeConverter practices

and is intended as a starting point. There are extensive 3rd party guides available online

which can help you implement a particular type converter goal not covered in this sample

Key concepts in this example
There are 5 use cases demonstrated in this sample which fall into two different categories:

1. Dynamically manipulate what is displayed on the UI Property Grid

a. Show / hide properties based on secondary input

b. Disable / enable properties based on secondary input

2. Customizing how a property is displayed

a. Display "Friendly" enum values

b. Re-implement a "bool" CheckBox as "Friendly" a ComboBox

c. Display a custom collection / list with user defined values at run time

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleCustomSeries_NT8.zip

NinjaTrader 81872

© 2023 NinjaTrader, LLC

Important related documentation
C#

· ICloneable Interface

· PropertyDescriptor Class

· RefreshPropertiesAttribute

· TypeConverter Class

· DisplayAttribute Class

NinjaTrader

· IndicatorBaseConverter Class

· StrategyBaseConverter Class

· TypeConverterAttribute

Note: The reference sample files on this page are written for an indicator using the

IndicatorBaseConverter class, but the same key concepts are available to strategies by

replacing the StrategyBaseConverter where noted in the sample code.

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

Additional resources
MSDN - How to: Implement a Type Converter

SampleIndicatorTypeConverter_NT8.zip

11.5.20.1.17 Using custom events to output the current Level II data book

Custom events allow you the flexibility to access indicator/price information whenever you

deem it necessary. You do not need to wait for the next incoming tick or next bar update

before you can process some code logic.

Key concepts in this example
· Creating a custom event from a Timer object

· Printing Level II books whenever you receive a Timer event

Important related documentation
· List

· Timer

· TriggerCustomEvent()

· State.Terminated

https://msdn.microsoft.com/en-us/library/system.icloneable%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.propertydescriptor%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.refreshpropertiesattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.displayattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ayybcxe5.aspx
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleIndicatorTypeConverter_NT8.zip
https://msdn.microsoft.com/en-us/library/6sh2ey19%28v=vs.110%29.aspx
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatchertimer?view=netframework-4.7.2

NinjaScript 1873

© 2023 NinjaTrader, LLC

· MarketDepthEventArgs

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleCustomEvents_NT8.zip

11.5.20.1.18 Using StreamReader to read from a text f ile

Sometimes you may have data stored outside of NinjaTrader that you want to bring in and use

for calculations. Using StreamReader will allow us to bring in the data stored in text files and

allow us to do manipulations with them.

Key concepts in this example
· Opening a text file with StreamReader

· Parsing Open-High-Low-Close data with date stamps from a file

· Determining current day Open-High-Low-Close after reading data from the text file with

StreamReader

Important related documentation
· StreamReader

· ReadLine

· StringReader

· TextReader

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleStreamReader_NT8.zip

11.5.20.1.19 Using StreamWriter to w rite to a text f ile

Sometimes you may want to store information related to certain market conditions or trades

outside of NinjaTrader. The formatting of the text file can also make for easy importing into

Microsoft Excel in the future.

Key concepts in this example
· Creating a text file with StreamWriter

· Writing Open-High-Low-Close data with date stamps to the file

Important related documentation

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleCustomEvents_NT8.zip
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamreader?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamreader.readline?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.io.stringreader?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.io.textreader?view=netframework-4.8
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleStreamReader_NT8.zip

NinjaTrader 81874

© 2023 NinjaTrader, LLC

· StreamWriter

· WriteLine

· StringWriter

· TextWriter

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleStreamWriter_NT8.zip

11.5.20.1.20 Using System.IO File properties to w rite to and read from a text f ile

Using Stream objects can be cumbersome when you only want to write/read a small amount

of data. Fortunately, you can handle this operation with another method. Keep in mind that in

exchange for the convenience you will lose some performance.

Key concepts in this example
· Creating and appending a text file with Open-High-Low-Close data and date stamps

· Determining current day Open-High-Low-Close after reading data from the text file

Important related documentation
· File.AppendAllText()

· File.ReadAllText()

Other methods and properties of interest include:

· File.ReadAllLines()

· File.WriteAllLines()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleFileReadWrite_NT8.zip

11.5.20.1.21 Using Try-Catch Blocks

Debugging your NinjaScript code can be time consuming and frustrating. When NinjaTrader

encounters a run-time exception in your programming logic it will terminate the execution of

the script and log the exception to the Control Center Log tab. This in itself can be of value

however, there may be times where your script is too large and the exception error message

provided is not granular enough. This is where standard C# exception handling using the

keywords "try" and "catch" (try-catch block) can be very useful. A try-catch block allows you to

encapsulate a section of your code to trap exceptions and write out meaningful information

that can help you resolve your run-time errors.

https://learn.microsoft.com/en-us/dotnet/api/system.io.streamwriter?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.io.textwriter.writeline?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.io.stringwriter?view=netframework-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.io.textwriter?view=netframework-4.8
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleStreamWriter_NT8.zip
http://msdn2.microsoft.com/en-us/library/system.io.file.appendalltext.aspx
http://msdn2.microsoft.com/en-us/library/system.io.file.readalltext.aspx
http://msdn2.microsoft.com/en-us/library/system.io.file.readalllines.aspx
http://msdn2.microsoft.com/en-us/library/system.io.file.writealllines.aspx
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleFileReadWrite_NT8.zip

NinjaScript 1875

© 2023 NinjaTrader, LLC

Key concepts in this example
· try-catch blocks

Important related documentation
· Log()

· Print()

· PrintTo()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleTryCatch_NT8.zip

11.5.20.1.22 Creating Chart WPF (UI) Modif ications from an Indicator

NinjaTrader's extensive C# backend allows for powerful expandability that is unmatched in

other trading platforms. Within the context of C# and NinjaScript it is possible to manipulate

the window in which the NinjaScript is added. This example demonstrates how chart window

modifications can be performed to add your own WPF controls to your chart for custom

functionality. These window modifications could be, but are not limited to: adding custom

buttons, menus or toolbars.

Key concepts in this example
· Adding your own toolbar with WPF Controls to the left/right side of a chart

· Adding your own toolbar with WPF Controls to the top of a chart

· Adding WPF Controls to the MainMenu title bar of a chart window

· Adding custom WPF Controls to Chart Trader

· Modifying existing Chart Trader buttons

Important related documentation
C#

· Button

· Grid

· GridSplitter

· Menu

· MenuItem

· StackPanel
NinjaTrader

· NTMenuItem

· TabControlManager

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleTryCatch_NT8.zip
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.button?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.grid?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.gridsplitter?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.menu?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.menuitem?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.stackpanel?view=netframework-4.8

NinjaTrader 81876

© 2023 NinjaTrader, LLC

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleWPFModifications.zip

11.5.20.2 Strategy

Strategy Overview

› Backtesting NinjaScript Strategies with an intrabar granularity

› Entering on one time frame and exiting on another

› Getting PnL from an ATM strategy

› Halting a Strategy Once User Defined Conditions Are Met

› Keeping orders alive

› Modifying the price of stop loss and profit target orders

› Monitoring for and trading a breakout

› Monitoring Stop-Loss and Profit Target Orders

› Plotting from within a NinjaScript Strategy

› Removing draw objects from the chart

› Resetting values at the beginning of new trading sessions

› Rounding values to the nearest tick size

› Scaling out of a position

› Separating logic to either calculate once on bar close or on every tick

› Stopping a strategy after consecutive losers

› Trading crossovers

› Using a time filter to limit trading hours

› Using CancelOrder() method to cancel orders

› Using multiple entry/exit signals simultaneously

› Using OnOrderUpdate() and OnExecution() methods to submit protective orders

› Using IsRising and IsFalling conditions in the Strategy Builder

› Using trade performance statistics for money management

11.5.20.2.1 Backtesting NinjaScript Strategies w ith an intrabar granularity

You can submit orders to different Bars objects. This allows you the flexibility of submitting

orders to different timeframes. Like in live trading, taking entry conditions from a 5min chart

means executing your order as soon as possible instead of waiting until the next 5min bar

starts building. You can achieve this by submitting your orders to a more granular secondary

bar series to achieve an "intrabar" fill.

Key concepts in this example
· Finding entry conditions on the primary bar object

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleWPFModifications.zip

NinjaScript 1877

© 2023 NinjaTrader, LLC

· Submitting orders to the secondary bar object for an intrabar fill

Important related documentation
· AddDataSeries()

· BarsInProgress

· EnterLong()

· BarsArray

· EnterLongLimit()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleIntrabarBacktest_NT8.zip

11.5.20.2.2 Entering on one time frame and exiting on another

You can submit orders to different bars objects. This allows you the flexibility of submitting

orders to different timeframes. You can watch for trade conditions across different time

frames and place orders on whichever one you want. This is useful for strategies that require

more finesse in the exit than the entry. You can now enter trades on longer time frames and

then monitor and exit your trade on a more granular time frame.

Key concepts in this example
· Comparing values across multiple time frames

· Submitting orders to a non-primary bar object

Important related documentation
· BarsArray

· BarsInProgress

· AddDataSeries()

· BarsSinceExitExecution()

· BarsRequiredToTrade()

· EnterLongLimit()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleMultiTimeFrameOrders_NT8.zip

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleIntrabarBacktest_NT8.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleMultiTimeFrameOrders_NT8.zip

NinjaTrader 81878

© 2023 NinjaTrader, LLC

11.5.20.2.3 Getting PnL from an ATM strategy

When integrating Advanced Trade Management templates into NinjaScript Strategies, the

procedure for obtaining trade performance and order status is a little different than for

strategies without ATM templates. The difference is that ATM templates basically take over

and manage the trade separately from the NinjaScript portion of the strategy. Until the ATM

trade terminates, the NinjaScript portion just observes and waits for another trading

opportunity. Accessing all the trade data is still possible, but the set of commands to use

differ from the traditional NinjaScript commands. This sample borrows code from the built-in

strategy SampleAtmStrategy and doesn't include all the references specific to that strategy. In

addition, this sample draws some profit/loss information right on the chart.

Note: This is a real-time strategy only. You will also need to first setup an ATM template

titled "AtmStrategyTemplate" for this sample to work. You can set this up in the

SuperDOM or Chart Trader windows.

Key concepts in this example
· Obtaining unrealized and realized profit/loss from ATM templates initiated by a NinjaScript

strategy

· Keeping a running total of all the realized profits/losses

Important related documentation
· GetAtmStrategyRealizedProfitLoss()

· GetAtmStrategyUnrealizedProfitLoss()

· Draw.TextFixed()

· RoundToTickSize()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleATMPnL_NT8.zip

11.5.20.2.4 Halting a Strategy Once User Defined Conditions Are Met

For error-handling, money-management or any other reason you may want to halt your

strategy from processing its' core program logic. Before you halt your strategy, it is best to

close all positions and cancel all active orders to prevent the risk of having an unmanaged

position in the market. We have provided two reference samples for these topics.

Key concepts in the SampleHaltBasicStrategy example*
· Using PnL statistics to determine when to halt processing of the strategy

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleATMPnL_NT8.zip

NinjaScript 1879

© 2023 NinjaTrader, LLC

· Cancelling active orders

· Closing active positions

Key concepts in the SampleHaltAdvancedStrategy example**
· Using a custom method to halt processing on all event-driven methods

· Advanced order handling in error situations with the OnOrderUpdate() method

* This is intended for strategies driven exclusively by the OnBarUpdate() method.

** This sample's intended audience is for advanced programmers who have programmed

strategies that take advantage of event-driven methods such as, but not limited to,

OnMarketData() or OnOrderUpdate() in addition to the OnBarUpdate() method.

Important related documentation
· CancelOrder()

· Order

· SystemPerformance

· AllTrades*

· TradesPerformance

· OnMarketData()

· OnOrderUpdate()

* This reference sample uses the .AllTrades property. This property will include all historical

virtual trades as well as real-time trades. If you wish to only make calculations based on real-

time trades you can use the .RealtimeTrades property.

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleHaltAdvancedStrategy_NT8.zip

SampleHaltBasicStrategy_NT8.zip

11.5.20.2.5 Keeping orders alive

The default behavior for NinjaTrader is to cancel limit orders if the trigger conditions are no

longer true. It is possible to submit orders that stay active until cancelled by setting

liveUntilCancelled to true. This sample demonstrates and explains the difference between

submitting an order with isLiveUntilCancelled true and false. The comments contain a longer,

more detailed explanation.

Key concepts in this example:
· How to submit an order that stays active until it is explicitly canceled*

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleHaltAdvancedStrategy_NT8.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleHaltBasicStrategy_NT8.zip

NinjaTrader 81880

© 2023 NinjaTrader, LLC

*Another sample demonstrating how to explicitly cancel orders can be found here: Using

CancelOrder() method to cancel orders

Important related documentation
· EnterLongLimit()

· isliveUntilCancelled

· CrossAbove()

· CrossBelow()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleIsLiveUntilCanceled_NT8.zip

11.5.20.2.6 Modifying the price of stop loss and profit target orders

One of the benefits of NinjaScript is the ability to automatically submit stop loss and profit

target orders in real-time triggered when your entry order is filled.

Key concepts in this example
· Submitting a stop loss and profit target order using default values offset from your entry

order average fill price

· Modification of the stop loss order to a break even price once a desired level of profit has

been reached

Important related documentation
· SetStopLoss()

· SetProfitTarget()

· SetTrailStop()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SamplePriceModification_NT8.zip

11.5.20.2.7 Monitoring for and trading a breakout

A common concept many traders use is the idea of a breakout. Points of interest are when

the price breaks out from a consolidation range or from previous highs and lows.

Key concepts in this example
· Determining and storing the first 30 bar high

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleIsLiveUntilCanceled_NT8.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SamplePriceModification_NT8.zip

NinjaScript 1881

© 2023 NinjaTrader, LLC

· Submitting a long stop order to be filled when price breaks out from the 30 bar high

· Closing positions after a certain amount of bars have passed

· Resetting the 30 bar high at the start of every new trading session

Important related documentation
· IsFirstBarOfSession

· BarsSinceNewTradingDay

· BarsSinceEntryExecution()

· BarsSinceExitExecution()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleBreakoutStrategy_NT8.zip

11.5.20.2.8 Monitoring Stop-Loss and Profit Target Orders

At times you may have a need to monitor the stop-loss and profit target orders generated by

the SetStopLoss(), SetTrailStop() or SetProfitTarget() methods. You can accomplish this by

capturing their unique Order object as the the OnOrderUpdate() method is called and process

them into a collection for future referencing.

Key concepts in this example
· Monitoring stop-loss order states

· Monitoring profit target order states

Important related documentation
· Order

· OrderState

· OnOrderUpdate()

· System.Collections (for List<>)

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleMonitorStopProfit_NT8.zip

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleBreakoutStrategy_NT8.zip
https://learn.microsoft.com/en-us/dotnet/api/system.collections?view=netframework-4.8
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleMonitorStopProfit_NT8.zip

NinjaTrader 81882

© 2023 NinjaTrader, LLC

11.5.20.2.9 Plotting from w ithin a NinjaScript Strategy

When running a strategy on a chart you may find the need to plot values onto a chart. If these

values are internal strategy calculations that are difficult to migrate to an indicator, you can

use the following technique to achieve a plot.

With NinjaTrader 8 we introduced strategy plots which provide the ability for a strategy to

render its own plots. These plots must be specific to a single panel just like indicators. If you

need to have strategy plots on more than a single panel then please use the technique seen

in the attached sample. You can find documentation on the standard methods for plotting in

the Indicator help guide section, although the documents are for indicators the plotting items

are shared between indicators and strategies.

Important related documentation:
· Plotting from a strategy with Indicator plot methods

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleStrategyPlot_NT8.zip

11.5.20.2.10 Removing draw objects from the chart

Drawing objects can be used for a number of different purposes, like keeping track of where a

strategy has its entry point, profit target, and stop loss. If a strategy draws an object(s) for

every trade it takes, the chart could quickly become cluttered. This sample will show how to

remove the objects that aren't necessary anymore.

Note: This is a real-time only strategy. Please view this strategy on a real-time data

connection or the Simulated Data Feed.

Key concepts in this example
· Drawing lines at the price where the orders are that extend for the duration of the trade

· Removing those lines when the trade is over

Important related documentation
· Draw

· Line()

· RemoveDrawObject()

· RemoveDrawObjects()

· CrossAbove()

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleStrategyPlot_NT8.zip

NinjaScript 1883

© 2023 NinjaTrader, LLC

· CrossBelow()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleRemoveDrawObjects_NT8.zip

11.5.20.2.11 Resetting values at the beginning of new trading sessions

Normally calculated values are carried over between trading sessions, but sometimes you

may want to reset these values to begin a trading session fresh. The technique demonstrated

in this reference sample can be useful to do things like resetting counters you may be running

or clearing bool flags you may have set.

Key concepts in this example
· Resetting a variable at the beginning of a new trading session

· Limiting the number of trades a strategy can make per trading session

Important related documentation
· IsFirstBarOfSession

· IsFirstTickOfBar

· EnterLong()

· ExitLong()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleTradeLimiter_NT8.zip

11.5.20.2.12 Rounding values to the nearest tick size

When NinjaTrader receives a request to submit an order, it automatically rounds any limit

price or stop price to the nearest tick for that specific instrument.

When debugging and/or printing out order information, this may not be apparent. NinjaTrader

includes a Method named RoundToTickSize to apply the same internal rounding to any value

you wish, which can help make comparisons easier.

Key concepts in this example
· Rounding a value to the nearest tick

Important related documentation

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleRemoveDrawObjects_NT8.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleTradeLimiter_NT8.zip

NinjaTrader 81884

© 2023 NinjaTrader, LLC

· RoundToTickSize()

· EnterLongLimit()

· ExitLong()

· CrossAbove()

· CrossBelow()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleRoundToTickSize_NT8.zip

11.5.20.2.13 Scaling out of a position

A common technique used by discretionary traders is scaling in and scaling out of a position.

To scale out of a position refers to closing a portion of your position when you hit a profit

target and then raising your stop to close your remaining portion later.

Key concepts in this example
· Submitting Profit Target orders

· Submitting Trailing Stop orders

· Closing half of your position at a time

Important related documentation
· MarketPosition

· SetProfitTarget()

· SetTrailStop()

· EntriesPerDirection*

· EntryHandling*

· SetStopLoss()

* Entry handling properties can be either programmatically set or set through the Strategy

dialog window

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleScaleOut_NT8.zip

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleRoundToTickSize_NT8.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleScaleOut_NT8.zip

NinjaScript 1885

© 2023 NinjaTrader, LLC

11.5.20.2.14 Separating logic to either calculate once on bar close or on every tick

Depending on your trade ideas, the timing of entries and exits could be crucial. Sometimes

waiting 30 seconds for a bar to close is too long when you are trying to exit a position. To

address this you could select your strategy to calculate on every single tick, but this may

impact your entry timings. For example, crossover entries could flip back and forth making it

difficult to place entry orders. If you are facing this issue, it is possible to separate out parts of

your strategy logic to calculate on every single tick and other parts to calculate once at the

end of each bar.

Key concepts in this example
· Running some logic once per bar

· Running other logic on every single tick

Important related documentation
· Calculate

· IsFirstTickOfBar

· CrossBelow()

· EnterLong()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleEnterOnceExitEveryTick_NT8.zip

11.5.20.2.15 Stopping a strategy after consecutive losers

Trending days or ranging days can make or break a strategy. If you have a system that does

extremely well on trending days, you may look for a way to turn that system off during range-

bound days. A simple filter you may use could be something like, "If the last three trades were

consecutive losers, stop trading for the rest of the session

Key concepts in this example
· Obtaining previous trade information to decide whether or not to keep trading for the day

Important related documentation
· SystemPerformance

· TradeCollection

· AllTrades*

· EnterLong()

· ExitLong()

· IsFirstBarOfSession

· IsFirstTickOfBar

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleEnterOnceExitEveryTick_NT8.zip

NinjaTrader 81886

© 2023 NinjaTrader, LLC

* This reference sample uses the .AllTrades property. This property will include all historical

virtual trades as well as real-time trades. If you wish to only make calculations based on real-

time trades you can use the .RealtimeTrades property.

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleTradeObjects_Nt8.zip

11.5.20.2.16 Trading crossovers

Similar in concept to a breakout, many traders like to trade crossovers. This can be a

crossover of price from a certain threshold or even an indicator crossing over another

indicator.

Key concepts in this example
· Determining and storing the first 15 bar high and low values for the current session

· Submitting long or short entry orders depending on which threshold is crossed

· Using a trail stop to exit positions

Tip: This reference sample sets Calculat to OnEachTick. The reason we are doing this is

so we can submit orders as soon as a crossover occurs instead of waiting for the bar to

close before submitting the order.

Important related documentation
· Calculate

· CrossAbove()

· CrossBelow()

· SetTrailStop()

· SetStopLoss()

· SetProfitTarget()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleHighLowCross_NT8.zip

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleTradeObjects_Nt8.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleHighLowCross_NT8.zip

NinjaScript 1887

© 2023 NinjaTrader, LLC

11.5.20.2.17 Using a time f ilter to limit trading hours

A common observation many traders have made is that certain hours of the day are more

volatile than others.

Depending on the trader's style they may want to trade only during the volatile hours of the

day or the less volatile days of the week.

Key concepts in this example
· Comparing days of the week

· Comparing the time of day

Important related documentation
· DayOfWeek

· Time

· ToTime()

· ToDay()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleTimeFilter_NT8.zip

11.5.20.2.18 Using CancelOrder() method to cancel orders

When using NinjaTrader's Enter() and Exit() methods, the default behavior is to automatically

expire them at the end of a bar unless they are resubmitted to keep them alive. Sometimes

you may want more flexibility in this behavior and wish to submit orders as live-until-cancelled.

When orders are submitted as live-until-cancelled, the way to cancel them is by using the

CancelOrder() method.

Key concepts in this example
· Submitting live-until-cancelled entry orders

· Manually cancelling orders

Important related documentation
· CancelOrder()

· Order

· OnOrderUpdate()

· OnExecutionUpdate()

· EnterLongLimit()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleTimeFilter_NT8.zip

NinjaTrader 81888

© 2023 NinjaTrader, LLC

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleCancelOrder_NT8.zip

11.5.20.2.19 Using multiple entry/exit signals simultaneously

Sometimes you want to trade an instrument with several different possible entry conditions.

To keep track of which trade used which conditions can become cumbersome if done on

paper.

The attached reference sample demonstrates the following key concepts:
· Adding user definable indicators to the strategy for display on the chart

· Setting the manner in which NinjaTrader handles entry orders

· Using unique identifiers for entry and exit orders

Important methods and properties used include:
· AddChartIndicator()

· EntriesPerDirection*

· EntryHandling*

* Entry handling properties can be either programmatically set or set through the Strategy

dialog window

Other methods and properties of interest include:
· EnterLongLimit()

· EnterLongStopMarket()

· EnterLongStopLimit()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleMultipleEntryExitSignals_NT8.zip

11.5.20.2.20 Using OnOrderUpdate() and OnExecution() methods to submit protective orders

The OnOrderUpdate() and OnExecutionUpdate() methods are reserved for experienced

programmers.

Instead of using Set() methods to submit stop-loss and profit target orders, you can submit

and update them manually through the use of Order and Execution objects in the

OnOrderUpdate() and OnExecutionUpdate() methods.

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleCancelOrder_NT8.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SampleMultipleEntryExitSignals_NT8.zip

NinjaScript 1889

© 2023 NinjaTrader, LLC

The OnOrderUpdate() method is updated whenever the state of an order changes which

allows you to submit and control your stop-loss and profit target orders the instant your entry

order is filled.

The OnExecutionUpdate() method is updated whenever you receive an execution or a fill on

your orders. This method provides you the fastest possible submission of protective orders.

Utilizing the increased granularity provided in these advanced methods can be advantageous

to you by providing you with maximum control of how your stop-loss and profit target orders

behave.

Key concepts in this example
· Submitting live-until-cancelled entry orders

· Modifying stop-loss order to breakeven after a certain amount in profit

Important related documentation
· Order

· Execution

· OnOrderUpdate()

· OnExecutionUpdate()

· SetStopLoss()

· SetProfitTarget()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleOnOrderUpdate_NT8.zip

11.5.20.2.21 Using IsRising and IsFalling conditions in the Strategy Builder

NinjaTrader's Strategy Builder includes access to many methods and properties, including

the IsRising() and IsFalling() methods. It is possible to check if an indicator (or any Series<t>)

is rising or falling using these methods. You can also use High values, Low values, or any

other Series<t> with IsRising() or IsFalling() to qualitatively determine the direction of the

DataSeries. This simple sample demonstrates IsRising() and IsFalling() in the Strategy

Builder.

Note: This is a Strategy Builder sample.

Key concepts in this example
· Using IsRising() and IsFalling() in the Strategy Builder

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleOnOrderUpdate_NT8.zip

NinjaTrader 81890

© 2023 NinjaTrader, LLC

Important methods and properties used include
· IsRising()

· IsFalling()

Other methods and properties of interest include:
· EnterLong()

· ExitLong()

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SampleIsFallingIsRising.zip

11.5.20.2.22 Using trade performance statistics for money management

For money management reasons you may want to limit your strategy from aggressive

daytrading or you may want to cut your losses short on volatile sessions that are not playing

out in your favor. This can be done through the utilization of the Performance object.

Key concepts in this example
· Locking in realized profits after a certain amount of gains have been achieved during the

trading session

· Cutting realized losses short after a certain amount of losses have been accrued over the

trading session

· Preventing aggressive amounts of trading

Important related documentation
· SystemPerformance

· TradeCollection

· AllTrades*

* This reference sample uses the .AllTrades property. This property will include all historical

virtual trades as well as real-time trades. If you wish to only make calculations based on real-

time trades you can use the .RealtimeTrades property.

Import instructions
1. Download the file contained in this Help Guide topic to your PC desktop

2. From the Control Center window, select the menu Tools > Import > NinjaScript

3. Select the downloaded file

SamplePnL_NT8.zip

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleIsFallingIsRising.zip
https://ninjatrader.com/support/helpGuides/nt8/samples/SamplePnL_NT8.zip

NinjaScript 1891

© 2023 NinjaTrader, LLC

11.5.21 Tips

Tips Overview

› Adding Indicators to Strategies

› Checking for Null References

› Creating User Defined Input Parameters

› Debugging your NinjaScript Code

› Floating-Point Arithmetic

› Formatting numbers

› How do I resolve NinjaScript Programming Errors?

› Make sure you have enough bars in the data series you are accessing

› Order Types

› Parameter sequencing

› Referencing the correct bar

› Strategy Position vs. Account Position

› TraceOrders

› User Definable Color Inputs

› Using [] brackets

11.5.21.1 Adding Indicators to Strategies

When backtesting strategies it can be useful to add the indicators you use for calculations

onto the chart to make it easier to check your strategy for accuracy. Instead of doing this step

manually every time you run the strategy you can program it to automatically load the

indicators for you.

For example:

To add a volume indicator to your charts you need to add this code snippet into the

OnStateChange section of your code for the State: State.DataLoaded

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 AddChartIndicator(VOL());

 }

}

To choose which panel you want your indicator plotted on you can use this code snippet into

the State.DataLoaded state:

NinjaTrader 81892

© 2023 NinjaTrader, LLC

VOL().Panel = 2;

AddChartIndicator(VOL());

To customize plot colors:

VOL().Plots[0].Brush = Brushes.Red; // Plots the VOL with a red

plot

To customize plot width:

VOL().Plots[0].Width = 4; // Plots the VOL bars with a width of

4

To customize the plot dash style:

VOL().Plots[0].DashStyleHelper = DashStyleHelper.Dash;

To customize the plot style:

VOL().Plots[0].PlotStyle = PlotStyle.Bar;

VOL().Plots[0].AutoWidth = true;

To customize lines you can do it the same way as above.

RSI(14, 3).Lines[0].Value = 20;

RSI(14, 3).Lines[0].Brush = Brushes.Green;

Remember, you need to use the AddChartIndicator() method to add your indicator if you wish

to use any of the plot / line indicator customization examples.

11.5.21.2 Checking for Null References

A common object-oriented programming error is not checking for null references on your

object variables This will cause an "Object reference not set to an instance of an object" error.

For example:

You create a variable that holds an Order object

NinjaScript 1893

© 2023 NinjaTrader, LLC

private Order entryOrder = null;

But in the OnBarUpdate() method you do not check if this variable as been assigned an Order

object, thus when trying to access object properties it fails and yields the "Object reference

not set" error since the variable is null.

protected override void OnBarUpdate()

{

 if (entryOrder.Filled > 0)

 // Do something

}

This will generate an error because you cannot access the object or any of its properties yet.

You must always check if an object variable is null before attempting to access the object.

protected override void OnBarUpdate()

{

 if (entryOrder == null)

 {

 entryOrder = EnterLong();

 }

 else if (entryOrder != null)

 {

 if (entryOrder.Filled > 0)

 // Do something

 }

}

11.5.21.3 Creating User Defined Input Parameters

You can create user defined input parameters for both NinjaScript Indicators and Strategies.

Although user defined input parameters can be specified as part of the initial set up of

NinjaScript Indicator or Strategies using the Wizard you may have a requirement to add new

parameters at a later point in your development process. To create these parameters you will

need to edit your NinjaScript code and follow these steps.

1. Open your NinjaScript file

2. Inside of the if (State == State.SetDefaults) statement, assign a value to the variable for

your parameter

NinjaTrader 81894

© 2023 NinjaTrader, LLC

Period = 5;

Note: This is also where you set the default value for your parameter.

3. Scroll down to the bottom of the editor and expand the minimized "Properties" section by

clicking on the + sign on the left.

4. Use the following template code for each parameter you wish to create. Please note that

the type (int, double, etc) will differ depending on what type of variable you wish to create

[Range(1, int.MaxValue)]

[NinjaScriptProperty]

[Display(Name="Period", Description="Numbers of bars used for

calculations", Order=1, GroupName="Parameters")]

public int Period

{ get; set; }

5. To specify lower and upper bounds, you would modify [Range(1, int.MaxValue)]. For

example:

// No upper bound, lower bound of 1

[Range(1, int.MaxValue)]

// No lower bound, upper bound of 100

[Range(int.MinValue, 100)]

// No lower or upper bound

[Range(int.MinValue, int.MaxValue)]

6. Use the "Description" field to provide a brief description of what the parameter does.

7. Pay attention to this line as the object type will vary depending on the type of parameter

you wish to make:

public int Period

8. Now, wherever in your code you want to call the user-definable parameter, just use

"Period".

if (SMA(Period)[0] > SMA(Period)[1])

 // Do something

NinjaScript 1895

© 2023 NinjaTrader, LLC

11.5.21.4 Debugging your NinjaScript Code

Debugging can be a frustrating and time-consuming task. In order to make the most of your

time, it is best to proceed in a methodical manner. The first step you should do is to strip your

code down into simple code segments. You want to start your debugging at a point where you

know the code works as expected. From there you can then add more layers of complexity.

With each additional layer, you want to ensure it works as expected before adding more

layers.

To begin the process of stripping down your code you can either make a new temporary

NinjaScript and copy over only the key relevant code segments or you can comment out

segments that are not vital to the test.

To comment out code segments you can either press the "Comment selection" button on the

top toolbar in the NinjaScript editor or type "//" in front of the line. To mass comment code

segments, you can use your mouse cursor and select multiple lines and press the "Comment

selection" button as well. To uncomment code, remove the "//" or select the line and press the

"Uncomment selection" button.

double limitPrice = 0; //You can comment after working code

// double stopPrice = 0;

// you can also comment out whole lines to prevent it from being

used by using //

Commenting code segments is also useful if you wanted to just temporarily check if your

code compiles. When your NinjaScript editor pops up with errors you can click on the error

message and it will bring you to the erroneous line. After you comment out the erroneous

lines you should be able to compile.

The most common method you can use to ensure your code works as expected is through

the use of the Print() command. The Print command will print the supplied value to the New -

> NinjaScript Output window.

Example:

if (Close[0] > Open[0])

{

 Print("Code has entered If statement. Close: " + Close[0] + "

Open: " + Open[0]);

 // Do something

}

Placing Print() commands throughout your code logic allows you to trace where you are

exactly. You can see where your code goes and where it does not go by viewing the output

NinjaTrader 81896

© 2023 NinjaTrader, LLC

from the Output Window. Coupled with reading the error log from the Log tab in the Control

Center, you can pinpoint where your code is crashing or locking up and make changes

accordingly.

Debugging orders can be a bit harder though because you cannot discern the behavior state

of your orders through the Print() command easily. In addition to Print(), you can use

TraceOrders to help you decipher what is happening under the hood for orders. TraceOrders

will print information into the Output Window that will contain details about your orders.

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 TraceOrders = true;

 }

}

When debugging stop or limit orders it can also be extremely useful to draw dots along your

chart of the actual stop/limit prices. This way you can visually see where your orders are at

and if they should have been filled or not. Draw.Dot

Draw.Dot(this, "tag1", true, 0, Low[0] - TickSize, Brushes.Red);

Sometimes your code will compile and run fine, but it will produce inaccurate results. To

check for accuracy, you can use Print() along with the Data Box to compare values. If you are

doing a complex mathematical calculation, you can print the value at every step to ensure the

calculations are as expected.

External references can also be very useful when debugging. They are great for gaining

insight into syntax and usage of various methods. Searching Google or MSDN can provide

useful examples and code snippets you can adapt to use with your own code.

Some useful resources:

NinjaScript Debugging

CSharp Essentials

C# Station

Microsoft Developer Network

The Code Project

11.5.21.5 Floating-Point Arithmetic

Some common problems that you may encounter when comparing different double values

are the caveats involved with floating-point arithmetic. Because of the way computers store

floating-point numbers, under certain conditions your value will be an approximate of the

http://www.ninjatrader.com/support/forum/showthread.php?p=23415#post23415
http://www.techotopia.com/index.php/C_Sharp_Essentials
https://csharp-station.com/
http://msdn2.microsoft.com/en-us/library/aa139615.aspx
http://www.codeproject.com/

NinjaScript 1897

© 2023 NinjaTrader, LLC

actual decimal number you wanted. If this situation arises in your code, your comparison logic

may not execute as you had intended even if your logic was mathematically sound on paper.

To address this issue you will need to use a range comparison that takes into account the

slight differences in the least significant digits of the floats.

For example, under normal mathematics we would assume double x is equivalent to double

y.

double x = 90.10;

double y = 100 * 0.9010;

Print("double x: " + x);

Print("double y: " + y);

Even the output of this code segment suggests they are the same:

double x = 90.1

double y = 90.1

Unfortunately, as demonstrated by this code segment, they are not.

bool c = (x == y);

Print("x equals y: " + c);

This segment outputs the following:

x equals y: False

This means when we try to check for equality it would never evaluate to true even if it does

mathematically.

if (x == y)

 // Do something. This will never be true.

Instead of comparing double x to y for an exact equality we will need to check a range.

if (Math.Abs(x - y) < 0.0001)

 // Do something

NinjaTrader 81898

© 2023 NinjaTrader, LLC

The arbitrary constant you choose to compare the range with should match the precision and

accuracy of the floating-point numbers you are comparing.

Alternatively, you can check the difference between the two variables against the

double.Epsilon field. double.Epsilon field represents the smallest possible double value.

if (x - y < double.Epsilon)

 // Do something

You can also use a Compare() method to accurately compare floating-point numbers. Take

note that this method should only be used to compare price values since its precision is

based on the instrument's tick size and may be unsuited for use in other floating-point

situations.

double newPriceRange = Close[0] - Open[0];

double oldPriceRange = Close[1] - Open[1];

if (Instrument.MasterInstrument.Compare(newPriceRange,

oldPriceRange) == 1)

{

 // Do something

}

The Compare() method returns a value of "1" if the first parameter is greater than the second,

"-1" if the first parameter is less than the second, and "0" if the first parameter is equal to the

second.

For a more formal analysis of floating-point arithmetic, there are many resources online:

http://docs.sun.com/source/806-3568/ncg_goldberg.html

http://www.codeproject.com/dotnet/ExtremeFloatingPoint1.asp#terms

11.5.21.6 Formatting numbers

String formatting on numbers is very useful for creating readable output. This can be done

through the use of the number object's ToString() method.

A common practice is printing out mathematical operations with the use of the ToString()

method on the double object. What usually happens is the printing of a long string containing

all the decimal places existing in the double. This sometimes makes output cluttered and hard

to read. Luckily, C# has a robust set of string formatting options available to make the string

more comprehendible.

Here is a list of common formatting options available in the ToString() method:

https://learn.microsoft.com/en-us/dotnet/api/system.double.epsilon?view=netframework-4.8
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://www.codeproject.com/dotnet/ExtremeFloatingPoint1.asp#terms

NinjaScript 1899

© 2023 NinjaTrader, LLC

double c = 10.25693;

Print("No formatting: " + c.ToString());

Print("Currency formatting: " + c.ToString("C"));

Print("Exponential formatting: " + c.ToString("E"));

Print("Fixed-point formatting: " + c.ToString("F2"));

Print("General formatting: " + c.ToString("G"));

Print("Percent formatting: " + c.ToString("P0"));

Print("Formatted to 2 decimal places: " + c.ToString("N2"));

Print("Formatted to 3 decimal places: " + c.ToString("N3"));

Print("Formatted to 4 decimal places: " + c.ToString("N4"));

The corresponding output is as follows:

No formatting: 10.25693

Currency formatting: $10.26

Exponential formatting: 1.025693E+001

Fixed-point formatting: 10.26

General formatting: 10.25693

Percent formatting: 1,026 %

Formatted to 2 decimal places: 10.26

Formatted to 3 decimal places: 10.257

Formatted to 4 decimal places: 10.2569

For custom formatting you can use the following:

double phoneNumber = 9165551022;

Print("Phone number: " + phoneNumber.ToString("(###) ### - ####"));

Corresponding output:

Phone number: (916) 555 - 1022

For more information on general string formatting the Microsoft documentation may be of use.

Many other resources can be found online through a Google search as well.

https://learn.microsoft.com/en-us/dotnet/standard/base-types/standard-numeric-format-

strings

https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-numeric-format-strings

https://learn.microsoft.com/en-us/dotnet/standard/base-types/standard-numeric-format-strings
https://learn.microsoft.com/en-us/dotnet/standard/base-types/standard-numeric-format-strings
https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-numeric-format-strings

NinjaTrader 81900

© 2023 NinjaTrader, LLC

11.5.21.7 How do I resolve NinjaScript Programming Errors?

You may come across various situations where your NinjaScript files will not compile. This

can include situations such as:

· You are trying to import a NinjaScript Archive File and you receive an error such as "You

have custom NinjaScript files on your PC that have programming errors..."

· You are new to NinjaScript development and somehow your files will no longer compile

Because importing NinjaScript files requires compilation of your entire NinjaScript library you

will first need to resolve the errors to allow for a successful compilation.

1st Step in Resolving Errors
1. Backup NinjaScript files (Tools > Export > Backup File, ensure that "NinjaScript Files" is

checked and then press the "Export" button) .

2. Open the NinjaScript Editor via the menu New > NinjaScript Editor

3. Press the "F5" key on your keyboard to compile your NinjaScript library or right click in the

window and click "Compile". A list of errors will appear at the bottom of the NinjaScript

Editor along with the file name where each error is located.

4. Determine if you no longer need the NinjaScript file with the errors. If you no longer need it,

skip to step 9.

5. Double click on the error message to open the NinjaScript with the errors. Try to resolve

the error and recompile by pressing the "F5" key.

6. If the error still exists in this file, "comment out" some or all of the content in the

OnBarUpdate() method and recompile by pressing the "F5" key

7. If errors still exist in this file, "comment out" some or all of the content in the

OnStateChange() method and recompile by pressing the "F5" key

8. If errors still exist in this file, "comment out" any properties that in the "Properties" region

that may be causing the problems and recompile by pressing the "F5" key

9. If errors still exist in this file, try to remove the file from compilation or delete the file (See

"To remove or delete the erroneous file" instructions below)

10.If another NinjaScript file references a file you wish to delete, open the file that references

the file you wish to delete and "comment out" or delete the reference

11.Repeat steps 2 through 10 for every NinjaScript that still has errors

To remove or delete the erroneous file
With NinjaTrader 8, we now have the option to remove a file from compilation but not delete it.

This means all your code is intact but is not compiled so it will not produce errors. This also

means the item is not available for use until you add it back into compilation.

1. Open the NinjaScript Editor via the menu New > NinjaScript Editor

2. Highlight the NinjaScript file you wish to prevent from being compiled, Right click on it and

click "Exclude from Compilation".

3. If another NinjaScript file references the file you wish to delete, you must first remove the

reference to the file you wish to delete, see step 10 above

4. You also have the option to completely delete the file as well, this is the same process as

above except you would select "Remove" instead.

NinjaScript 1901

© 2023 NinjaTrader, LLC

2nd Step in Resolving Errors
If the above procedure does not resolve all errors, you may need to reinstall NinjaTrader.

1. Backup NinjaScript files (Tools > Export > Backup File, ensure that "NinjaScript Files" is

checked and then press the "Export" button) .

2. Shut down NinjaTrader

3. Uninstall NinjaTrader from the windows Control Panel Add/Remove Programs

4. Manually delete or move the folder My Documents\NinjaTrader 8

5. Reinstall the latest version of NinjaTrader from our website

11.5.21.8 Make sure you have enough bars in the data series you are accessing

A common programming error is not checking to ensure there are enough bars contained in

the data series you are accessing. This will explain some of the concepts to check for this

situation.

For example:

protected override void OnBarUpdate()

{

 if (Close[0] > Close[1])

 // Do something

}

In the code snippet above, the OnBarUpdate() method is called for each bar contained in your

data series.

On the very first bar (think of the 1st bar on the chart from left to right) the value of "close of 1

bar ago" (Close[1]) does not yet exist and your indicator/strategy will not work and throw an

exception to the Control Center Log tab "Index was out of range...".

Following are two ways to ways to resolve this:

protected override void OnBarUpdate()

{

 if (CurrentBar < 1)

 return;

 if (Close[0] > Close[1])

 // Do something

}

The resolution above is to check how many bars we have seen (CurrentBar) and to exit the

OnBarUpdate() method if an insufficient number of bars has been seen.

NinjaTrader 81902

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (Close[0] > Close[Math.Min(CurrentBar, 1)])

 // Do something

}

The resolution above substitutes the minimum value between the current bar being

processed and the desired number of bars ago value, in this case 1.

 Multi Time Frame and Instrument Scripts

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Multi-Time Frame & Instruments Example";

 }

 else if (State == State.Configure)

 {

 // Adds a secondary bar object to the script.

 AddDataSeries(BarsPeriodType.Minute, 5);

 // Adds an additional bar object to the script.

 AddDataSeries(BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Checks to ensure all Bars objects contain enough bars

before beginning

 // If this is a strategy, use BarsRequiredToTrade instead of

BarsRequiredToPlot

 if (CurrentBars[0] <= BarsRequiredToPlot || CurrentBars[1] <=

BarsRequiredToPlot || CurrentBars[2] <= BarsRequiredToPlot)

 return;

}

The resolution above would be used in a Multi Time Frame script. Since OnBarUpdate()

processes multiple data series, we need to make sure each Data Series we reference has

processed enough bars.

NinjaScript 1903

© 2023 NinjaTrader, LLC

11.5.21.9 Order Types

Understanding the different types of entry and exit orders you can place through NinjaScript is

important. As a trader, it is critical you place the right type of order depending on the current

market conditions and your trading style.

Order Methods

EnterLong();

EnterShort();

ExitLong();

ExitShort();

These place market orders to either buy or sell. Market orders offer the fastest execution

speed and under most conditions, guarantee that your order is filled. Be wary about using

them on low volatility securities with large spreads though. You might get filled at a much

higher/lower price than you expected.

EnterLongStopMarket();

EnterShortStopMarket();

ExitLongStopMarket();

ExitShortStopMarket();

These orders wait for the price of the instrument to pass your stop price. Once it passes the

stop price the order becomes a market order for execution. Stop orders increase your

chances of getting filled at a particular price, but are not guaranteed because they are still

ultimately market orders.

EnterLongLimit();

EnterShortLimit();

ExitLongLimit();

ExitShortLimit();

Limit orders allow you to specify the price you want to be filled at. These orders are useful on

low volatility instruments because they ensure you get filled at the price you specified or

better. Take note that limit orders are not guaranteed to execute and may cause only partial

fills.

NinjaTrader 81904

© 2023 NinjaTrader, LLC

EnterLongStopLimit();

EnterShortStopLimit();

ExitLongStopLimit();

ExitShortStopLimit();

The stop-limit order offers the trader complete control over the order. Like a stop order, the

stop-limit order waits until the specified stop price has been reached. Unlike the stop order

though, the stop-limit order becomes a limit order instead of a market order when the stop

price is reached. The drawback for a stop-limit order is the same as all limit orders; the trader

might not be filled if the limit price is never reached.

EnterLongMIT();

EnterShortMIT();

ExitLongMIT();

ExitShortMIT();

The MIT (Market If Touched) order allows the order to be submitted at Market once the price is

touched. This order is similar to a stop order except the buy and sell actions are reversed. For

example, a buy MIT order is submitted below market where a buy Stop would be submitted

above market.

11.5.21.10Parameter sequencing

Indicator and strategy parameters (user defined inputs) will always be displayed in an order

that the user specifies in the NinjaScript file.

In the NinjaScript Editor, expand the "Properties" region of your code where all of your

parameters are defined. In this example, this will be our Properties section:

[Range(1, int.MaxValue), NinjaScriptProperty]

[Display(ResourceType = typeof(Custom.Resource), Name = "Fast",

GroupName = "NinjaScriptStrategyParameters", Order = 0)]

public int Fast

{ get; set; }

[Range(1, int.MaxValue), NinjaScriptProperty]

[Display(ResourceType = typeof(Custom.Resource), Name = "Slow",

GroupName = "NinjaScriptStrategyParameters", Order = 1)]

public int Slow

{ get; set; }

In this case, the Fast parameter will show up as the first parameter with the Slow parameter

showing as the second.

NinjaScript 1905

© 2023 NinjaTrader, LLC

To switch the order around, we could modify Order. If we change Slow's Order to 0 and

Fast's Order to 1 as shown below ...

[Range(1, int.MaxValue), NinjaScriptProperty]

[Display(ResourceType = typeof(Custom.Resource), Name = "Fast",

GroupName = "NinjaScriptStrategyParameters", Order = 1)]

public int Fast

{ get; set; }

[Range(1, int.MaxValue), NinjaScriptProperty]

[Display(ResourceType = typeof(Custom.Resource), Name = "Slow",

GroupName = "NinjaScriptStrategyParameters", Order = 0)]

public int Slow

{ get; set; }

... the Slow property will show first and the Fast property second.

11.5.21.11Referencing the correct bar

When coding an indicator or strategy it is important to be able to access the intended bars for

correct calculations. In NinjaScript we are able to access the bars we want through proper

use of the bar's indexing.

The bar's indexing is setup in a reverse chronological order. This means "0" refers to the

most recent bar, "1" refers to the previous bar, "2" refers to the bar before that one, etc.

For example, if we wanted to subtract the high and low of 10 bars ago from each other we

would do this:

double value = High[10] - Low[10];

Now that we know how the indexing works there are several properties and methods at our

disposal that can help us access important keystone bars. The more important ones are

CurrentBar and BarsSinceNewTradingDay.

CurrentBar
CurrentBar returns an int representing the number of bars existing on the chart. This property

is most useful when you want to run calculations from the very beginning of the chart.

For example, if you wanted to find the average high value of the first 10 bars on the chart you

could do this:

NinjaTrader 81906

© 2023 NinjaTrader, LLC

double highValue = 0;

int x = CurrentBar;

while (x > CurrentBar - 10)

{

 highValue += High[x];

 x--;

}

Print("The average high value: " + highValue/10);

Note: A common mistake in using CurrentBar is using it in the index to access the most

recent bar. In this situation, instead of doing something like Close[CurrentBar] you will

want to do Close[0].

BarsSinceNewTradingDay
BarsSinceNewTradingDay is another property that can help you find the first bar of the current

trading day. The difference between BarsSinceNewTradingDay and CurrentBar is that

BarsSinceNewTradingDay resets its count whenever a new session begins. This means if

you use it in an index it will only get you to the beginning of the current session and not any

previous sessions.

For example, if you wanted to find the open of the current session you could do this:

double openValue = Open[Bars.BarsSinceNewTradingDay];

The example used in the discussion about CurrentBar can also be done with

Bars.BarsSinceNewTradingDay if you wanted to calculate values based on the current

session instead of the start of the chart too.

Note: If you wish to access values older than 256 bars ago you will need to ensure the

MaximumBarsLookBack is set to .Infinite.

Other Properties and Methods
There are also a number of other properties and methods that can be useful in helping you

locate the correct bars index to reference. Please take a look at these in the help guide:

BarsSinceEntryExecution()

BarsSinceExitExecution()

GetBar()

GetDayBar()

HighestBar()

http://www.ninjatrader.com/support/helpGuides/nt8/en-us/maximumbarslookback.htm?zoom_highlightsub=maximumbar

NinjaScript 1907

© 2023 NinjaTrader, LLC

LowestBar()

LRO()

MRO()

11.5.21.12Strategy Position vs. Account Position

An important concept to understand prior to using NinjaScript strategies in a real-time trading

environment (live brokerage account for example) is the difference between a Strategy

Positionand an Account Position. A Strategy Position is a virtual position that is created by the

entry and exit executions generated by a strategy and is independent from any other running

strategy's position or an account position. An Account Position is the position you actually

hold in a real-time trading account, whether it is a NinjaTrader internal simulation account

(Sim101) or your live real-money brokerage account. In most cases, a trader would want their

Strategy Position's size and market direction to be equal (in sync) to their Account Position

but there are situations when this may not be the case.

For example:

· You want to run multiple strategies in the same market simultaneously where strategy A

holds a LONG 1 position, strategy B holds a LONG 2 position resulting in an account that

should hold a LONG 3 position in order to be in sync with both strategies

· You want to run a strategy and at the same time trade the same market the strategy is

running on using discretionary tactics through one of NinjaTrader's advanced order entry

window such as the SuperDOM or Chart Trader

An extremely common scenario...

An extremely common scenario is starting a NinjaScript strategy in the middle of a trading

session, such as one hour after the session has begun. The NinjaScript strategy is run on

each historical bar for the 1st hour of the session (it will actually run on all historical data

loaded in a chart) to determine the current position state it would be in if it had been running

live since the start of the session. This position state then becomes the Strategy Position for

your strategy. Let us assume that during the historical hour your strategy would have entered

a LONG 1 position and the position is still open. This would mean the Strategy Position is

LONG 1 and since this trade was not actually executed on an account your Account Position

is FLAT.

What can you do in this case?

If you want your Account Position to match your Strategy Position, you will need to place a

manual order into the account the strategy is running on. Continuing from the above example,

you would need to place a 1-lot market order for the market being traded into the account the

strategy is running on. Alternatively, there is the ability to have your account automatically

synced to your strategy position on strategy startup. To use this feature, please set "Sync

account position" to true in the Strategy dialogue window. For more information on this feature

please see the article here about syncing Account Positions to Strategy Positions.

http://www.ninjatrader.com/support/helpGuides/nt7/syncing_account_positions.htm

NinjaTrader 81908

© 2023 NinjaTrader, LLC

What if I do not submit a manual order to sync my account?

The resulting behavior when the Strategy Position and Account Position are out of sync is

when your strategy (continuing with the example above) closes the long position with a sell

order it would bring the Strategy Position to flat and your Account Position to SHORT 1.

Critical: * TD AMERITRADE Users * When starting a NinjaScript strategy, please be

absolutely sure your strategy position is in sync with your account position. It is imperative

that they are in sync for your NinjaScript strategy to run properly.

11.5.21.13TraceOrders

TraceOrders is a useful property when debugging the behavior of your orders. With the use of

this property, you can track orders placed, amended, and canceled. The traces displayed in

the NinjaScript Output window or if used, in the OnOrderTrace Override in the script where

this was set. This will provide meaningful information for diagnosis when NinjaTrader ignores,

changes or cancels orders when various strategy order methods are called.

To enable TraceOrders, add this line into the OnStateChange() method in the state

SetDefaults of your NinjaScript strategy:

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 TraceOrders = true;

 }

}

Trace output examples:

Entered internal SubmitOrderManaged() method at 6/2/2015 8:42:00

AM: BarsInProgress=0 Action=Buy OrderType=Market Quantity=1

LimitPrice=0 StopPrice=0 SignalName='market order'

FromEntrySignal=''

This trace is outputted when we place an entry order. It tells us all the pertaining properties of

our order as well as the time it was submitted.

Amended open order at 6/2/2015 11:39:00 AM: BarsInProgress=0

Action=Buy OrderType=Limit Quantity=1 LimitPrice=130.41 StopPrice=0

 SignalName='long order to be resubmitted' FromEntrySignal=''

NinjaScript 1909

© 2023 NinjaTrader, LLC

This trace tells us that a previously submitted order was modified instead of submitting a

completely new order.

Ignored SubmitOrderManaged() method at 6/2/2015 12:55:00 PM:

BarsInProgress=0 Action=Buy OrderType=Limit Quantity=1

LimitPrice=129.92 StopPrice=0 SignalName='long order to be

resubmitted' FromEntrySignal='' Reason='Exceeded entry signals

limit based on EntryHandling and EntriesPerDirection properties'

This trace provides the reason why our Limit order was ignored.

Cancelled expired order: BarsInProgress=0, orderId='NT-00123-118'

account='Sim101' name='long order to be resubmitted'

orderState=Working instrument='AAPL' orderAction=Buy

orderType='Limit' limitPrice=130.3 stopPrice=0 quantity=1 tif=Gtc

oco='' filled=0 averageFillPrice=0 id=-1 gtd='2099-12-01'

This trace tells us that our Limit order was canceled because it had expired.

A new concept in NinjaTrader 8 is the OnOrderTrace override method.

This method prevents TraceOrders from printing the traces directly to the output window but

instead sends this information to the OnOrderTrace override where you can do logic or

format the trace how you would like and then print only what you need to see.

protected override void OnOrderTrace(DateTime timestamp, string

message)

{

 Print(string.Format("{0} {1}", timestamp, message));

}

These examples illustrate the most common traces you will run across. They are mostly

useful in determining the reason your orders are not submitted or cancelled. TraceOrders will

only show you what is happening under the hood when you submit orders, but it will not tell

you what happens after the order is submitted. To determine the behavior of your orders after

submission you will need to look into your NinjaTrader trace logs. You can view those either

through the "Log" tab on the "Control Center" or from the trace folder in My

Documents\NinjaTrader 8\trace\.

For more information on how to debug your NinjaScript please review the Debugging tip.

NinjaTrader 81910

© 2023 NinjaTrader, LLC

11.5.21.14User Definable Color Inputs

User definable inputs do not need to be limited to numeric values. You can have brushes as

an input as well. To do this you will need to make a public property for a Brush object instead

of an int or double.

In the "Properties" region of your code, there is only a slight change in the code snippet you

would normally use to create user definable inputs.

[XmlIgnore()]

[Display(Name = "BorderBrush", GroupName = "NinjaScriptParameters",

 Order = 0)]

The second difference is in the next line of code:

public Brush BorderBrush

{ get; set; }

This creates a brush input for use in the dialog window when we try to add the NinjaScript to a

chart.

Some additional extra code that is required for creating a color input is to serialize the brush.

Serialization is necessary for NinjaTrader to use the brush input throughout the program.

Please note that serialization is a general concept not exclusive to brush inputs. There may

be other struct/classes (for a TimeSpan example, please cross reference this page) that you

could use in your code that would also need to have their "value" properties serialized.

[Browsable(false)]

public string BorderBrushSerialize

{

 get { return Serialize.BrushToString(BorderBrush); }

 set { BorderBrush = Serialize.StringToBrush(value); }

}

Attached is a NinjaScript indicator sample that uses two user definable brush inputs to

determine the color of a drawn rectangle.

SampleBrushInput.zip

11.5.21.15Using [] brackets

In C#, square brackets represent a way to access values stored within an collection.

NinjaScript comes with quite a few collections that we call ISeries objects which could be

accessed with square brackets. ISeries objects are linked to the underlying bars series in that

https://ninjatrader.com/support/helpGuides/nt8/samples/SampleBrushInput.zip

NinjaScript 1911

© 2023 NinjaTrader, LLC

they hold the same number of values as the number of bars on a chart. For example, to get

the close price one bar ago, you would use Close[1] since the value of 1 within the square

brackets represents the number of bars ago whose value you wish to reference. As another

example, to get the high three bars ago, you would use High[3].

double close1 = Close[1]; // gets the close price one bar ago

double high3 = High[3]; // gets the high of three bars ago

double low = Low; // results in compile error. Low is an array, and
can't be accessed directly. It should be Low[n Bars ago].

Many of NinjaTrader's indicators store their values in Series as well, generally in a Plot. Plots

are essentially a Series<double> object and to retrieve values from them you need to specify

which value you want to access. In most cases, you'd like the current value, so you could use

SMA(14)[0], not just SMA(14). SMA(14) is the Indicator its self or Series, and you can't access

its values by calling it directly. Using SMA(14)[0] retrieves the part of the Series you're

interested in--the most current value.

double SMA_current = SMA(14)[0]; // gets the current value of the
SMA

double SMA_1 = SMA(14)[1]; // gets the SMA value one bar ago

double SMA_value = SMA(14); // results in compile error. SMA(14)
is a Series and the variable SMA_value of type double can't hold a

Series.

Most of the time, you need an index value (number in the square brackets), but there are also

cases when you need to use the ISeries instead. CrossAbove() and CrossBelow() are two

key examples. If you look at the reference page for CrossAbove(), the two method signatures

(overloads) look like this:

CrossAbove(ISeries<double> series1, ISeries<double> series2, int

lookBackPeriod)

CrossAbove(ISeries<double> series1, double value, int lookBackPeriod)

This means the first variable must always be a ISeries<double> object, and the second

variable can be either another ISeries<double> or a double value (100, 70.25, etc). To specify

a ISeries<double> object, you can just leave off the square brackets. For example

if(CrossAbove(SMA(14), SMA(28), 1)) checks if the 14 period SMA has crossed above the 28

period SMA within the last bar. if(CrossAbove(SMA(14)[0], SMA(28)[0], 1)) would give you a

NinjaTrader 81912

© 2023 NinjaTrader, LLC

compile error because it expects a ISeries<double> as input, not a double value (which is

returned when an index is present).

if (CrossAbove(SMA(14), SMA(28), 1)) // works fine

if (CrossAbove(SMA(14), 1000, 1)) // works fine, this uses a double
for the second argument. See the above overload.

if (CrossAbove(SMA(14)[0], SMA(28)[0], 1)) // compile error: SMA(14)
[0] is a double, not a ISeries<double>

if (CrossAbove(SMA(14), SMA(28)[0], 1)) // would work fine with a
ISeries<double> as first argument and a double as the second

argument

11.6 Language Reference

NinjaScript Language Reference

› Add On

› Bars Type

› Chart

› Chart Style

› Common

› Drawing

› Drawing Tool

› Import Type

› Indicator

› Indicator Methods

› ISeries<T>

› Market Analyzer Column

› Instrument

› Optimization Fitness

› Optimizer

› Performance Metrics

› Share Service

› Strategy

› SuperDOM Column

NinjaScript 1913

© 2023 NinjaTrader, LLC

11.6.1 Alphabetical Reference

11.6.2 Common

The following section documents methods and properties available to every NinjaScript type

that access various forms of data including bar data, price data, and statistical forms of data.

The Common section is broken into several categories pertaining to distinct NinjaScript

objects or concepts. An index of topics under the Common section can be found below:

Attributes Documents both .NET native and NinjaScript custom

attributes which are commonly used to define the

behavior of a NinjaScript property or object

Alert,

Debug,

Share

Documents methods for triggering alerts, printing debug

messages, and using Share Services

Analytical Documents methods and properties useful for analyzing

and identifying specific conditions within Series<T>

collections

Bars Represents the data returned from the historical data
repository

Charts Covers information related to accessing chart related

data

Drawing Documents the drawing of custom shapes, lines, text

and colors on your price and indicator panels from both

Indicators and Strategies

Instrument Represents an instance of a Master Instrument

ISeries<T> Documents the interface that is implemented by all

NinjaScript classes that manage historical data as an

ISeries<double> used for indicator input, and other

object data

OnBarUpda

te()

An event driven method which is called whenever a bar
is updated

OnFundam

entalData()

An event driven method which is called for every change
in fundamental data

https://msdn.microsoft.com/en-us/library/5x6cd29c(v=vs.110).aspx

NinjaTrader 81914

© 2023 NinjaTrader, LLC

OnMarketD

epth()

An event driven method which is called and guaranteed
to be in the correct sequence for every change in level
two market data

OnStateCh

ange()

An event driven method which is called whenever the
script enters a new State

SessionIter

ator

An interface which allows you to traverse through

various trading hours data elements which apply to a

segment of bars

System

Indicator

Methods

Documents syntax and return values for system

indicator methods

TradingHou

rs

Represents the Trading Hours information returned from
the current bars series

Name Determines the listed name of the NinjaScript object

IsVisible Determines if the current NinjaScript object should be

visible on the chart

DisplayNa

me

Determines the text display on the chart panel

Description Text which is used on the UI's information box to be

display to a user when configuration a NinjaScript object

Clone() Used to override the default NinjaScript Clone() method

which is called any time an instance of a NinjaScript

object is created

TriggerCust

omEvent()

Provides a way to use your own custom events (such

as a Timer object) so that internal NinjaScript indexes

and pointers are correctly set prior to processing user

code triggered by your custom event

11.6.2.1 AddDataSeries()

Definition
Adds a Bars object for developing a multi-series (multi-time frame or multi-instrument)

NinjaScript.

NinjaScript 1915

© 2023 NinjaTrader, LLC

Related Methods and Properties

AddHeikenAshi() This method adds a Heiken Ashi Bars object for

multi-series NinjaScript.

AddKagi() This method adds a Kagi Bars object for multi-

series NinjaScript.

AddLineBreak() This method adds a Line Break Bars object for

multi-series NinjaScript.

AddPointAndFigure

()

This method adds a Point-and-Figure Bars

object for multi-series NinjaScript.

AddRenko() This method adds a Renko Bars object for multi-

series NinjaScript.

AddVolumetric() This method adds a Order Flow Volumetric Bars

object for multi-series NinjaScript.

BarsArray An array holding Bars objects that are added via

the AddDataSeries() method.

BarsInProgress An index value of the current Bars object that has

called the OnBarUpdate() method.

BarsPeriods Holds an array of BarsPeriod objects

synchronized to the number of unique Bars

objects held within the parent NinjaScript object.

CurrentBars Holds an array of int values representing the

number of the current bar in a Bars object.

Syntax
The following syntax will add another Bars object for the primary instrument of the script.
AddDataSeries(BarsPeriod barsPeriod)

AddDataSeries(BarsPeriodType periodType, int period)

The following syntax allows you to add another Bars object for a different instrument to the

script:
AddDataSeries(string instrumentName, BarsPeriodType periodType, int period)

AddDataSeries(string instrumentName, BarsPeriodType periodType, int period,

MarketDataType marketDataType)

NinjaTrader 81916

© 2023 NinjaTrader, LLC

AddDataSeries(string instrumentName, BarsPeriod barsPeriod)

AddDataSeries(string instrumentName, BarsPeriod barsPeriod, string tradingHoursName)

AddDataSeries(string instrumentName, BarsPeriod barsPeriod, string tradingHoursName,

bool? isResetOnNewTradingDay)

AddDataSeries(string instrumentName, BarsPeriod barsPeriod, int barsToLoad, string

tradingHoursName, bool? isResetOnNewTradingDay)

AddDataSeries(string instrumentName) //only for R15 and higher

Warning:

· This method should ONLY be called from the OnStateChange() method during

State.Configure

· Should your script be the host for other scripts that are creating indicators and series

dependent resources in State.DataLoaded, please make sure that the host is doing the

same AddDataSeries() calls as those hosted scripts would. For further reference,

please also review the 2nd example below and the 'Adding additional Bars Objects to

NinjaScript' section in Multi-Time Frame & Instruments

· Arguments supplied to AddDataSeries() should be hardcoded and NOT dependent on

run-time variables which cannot be reliably obtained during State.Configure (e.g.,

Instrument, Bars, or user input). Attempting to add a data series dynamically is NOT

guaranteed and therefore should be avoided. Trying to load bars dynamically may result

in an error similar to: Unable to load bars series. Your NinjaScript may be trying to

use an additional data series dynamically in an unsupported manner.

· When adding multiple Data Series of the same instrument and the same Bar Type, the

'barsToLoad' property will only be effective on the first added series. Subsequent series

with a different barsToLoad setting will not load a different number of bars than the first

series.

· The AddDataSeries(string instrumentName) overload allows loading a different

instrument yet using the same BarsPeriod. This could not be supported for Strategy

Analyzer use with the 'Optimize Data Series' option enabled, doing so may result in an

error similar to: Unable to load bars series. Your NinjaScript may be trying to use

an additional data series dynamically in an unsupported manner.

· If your NinjaScript object is using AddDataSeries() allowing to specify a

tradingHoursName, please keep in mind that: An indicator / strategy with multiple

DataSeries of the same instrument will only process realtime OnBarUpdate() calls when

a tick occurs in session of the trading hour template of all added series. Any ticks not

processed will be queued and processed as a tick comes in for all subsequent

DataSeries.

· When instantiating indicators in a Multi-Series script in OnStateChange, the input any

hosted indicator is running on should be explicitly stated

Parameters

NinjaScript 1917

© 2023 NinjaTrader, LLC

instrumentName A string determining instrument name such as

"MSFT"

barsPeriod The BarsPeriod object (period type and interval)

periodType The BarsType used for the bars period

Possible values are:

· BarsPeriodType.Tick

· BarsPeriodType.Volume

· BarsPeriodType.Range

· BarsPeriodType.Second

· BarsPeriodType.Minute

· BarsPeriodType.Day

· BarsPeriodType.Week

· BarsPeriodType.Month

· BarsPeriodType.Year

period An int determining the period interval such as

"3" for 3 minute bars

marketDataType The MarketDataType used for the bars object

(last, bid, ask)

Possible values are:

· MarketDataType.Ask

· MarketDataType.Bid

· MarketDataType.Last

Note: Please see the article here on using

Bid/Ask series.

tradingHoursName A string determining the trading hours template

for the instrument

isResetOnNewTra

dingDay

A nullable bool* determining if the Bars object

should Break at EOD

NinjaTrader 81918

© 2023 NinjaTrader, LLC

*Will accept true, false or null as the input. If

null is used, the data series will use the settings

of the primary data series.

barsToLoad An int determining the number of historical bars

to load

Tips:

1. You can optionally add the exchange name as a suffix to the symbol name. This is only

advised if the instrument has multiple possible exchanges that it can trade on and it is

configured within the Instruments window. For example: AddDataSeries("MSFT Arca",
BarsPeriodType.Minute, 5);

2. You can add a custom BarsType which is installed on your system by casting the

registered enum value for that BarsPeriodType. For example:
AddDataSeries((BarsPeriodType)14, 10);

3. You can specify optional BarsPeriod values (such as Value2) of a custom BarsType in

the BarsPeriod object initializer. For example: AddDataSeries(new BarsPeriod()
{ BarsPeriodType = (BarsPeriodType)14, Value = 10, Value2 = 20 });

4. For the instrument name parameter null could be passed in, resulting in the primary

data series instrument being used.

Examples

NinjaScript 1919

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Add a 5 minute Bars object - BarsInProgress index = 1

 AddDataSeries(BarsPeriodType.Minute, 5);

 // Add a 100 tick Bars object for the ES 09-16 contract -

BarsInProgress index = 2

 AddDataSeries("ES 09-16", BarsPeriodType.Tick, 100);

 }

}

protected override void OnBarUpdate()

{

 // Ignore bar update events for the supplementary - Bars

object added above

 if (BarsInProgress == 1 || BarsInProgress == 2)

 return;

 // Go long if we have three up bars on all bars objects

 if (Close[0] > Open[0] && Closes[1][0] > Opens[1][0] &&

Closes[2][0] > Opens[2][0])

 EnterLong();

}

NinjaTrader 81920

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Our hosting script needs to have the AddDataSeries

call included as well, which the Pivots indicator we call in the

2nd statement below

 // also has per default in it's own State.Configure

method. This is required since our Pivots indicator below is

created in State.DataLoaded // (which is happening after

State.Configure and it depends on the AddDataSeries call to have

the bars available to properly calculate in

 // daily bars mode.

 AddDataSeries(BarsPeriodType.Day, 1);

 }

 else if (State == State.DataLoaded)

 {

 //In this state, we pass the 1 day series to the Pivots

indicator (as BarsArray[1]) and create its instance

 pivots = Pivots(BarsArray[1], PivotRange.Weekly,

HLCCalculationMode.DailyBars, 0, 0, 0, 20);

 }

}

11.6.2.1.1 AddHeikenAshi()

Definition
Similar to the AddDataSeries() method for adding Bars objects, this method adds a Heiken

Ashi Bars object for multi-series NinjaScript.

Notes:

1. When running NinjaScript, you will be able to choose the first instrument and bar

interval to run on. This first Bars object will carry a BarsInProgress index of 0.

2. In a multi-time frame and multi-instrument NinjaScript, supplementary Bars objects are

added via this method in State.Configure state of the OnStateChange() method and

given an incremented BarsInProgress index value. See additional information on

running multi-bars scripts.

3. The BarsInProgress property can be used to filter updates between different bars

series

4. If using OnMarketData(), a subscription will be created on all bars series added in your

indicator or strategy strategy (even if the instrument is the same). The market data

subscription behavior occurs both in real-time and during TickReplay historical

5. For adding regular Bars types please use AddDataSeries()

NinjaScript 1921

© 2023 NinjaTrader, LLC

6. A Tick Replay indicator or strategy CANNOT use a MarketDataType.Ask or

MarketDataType.Bid series. Please see Developing for Tick Replay for more

information.

Syntax
AddHeikenAshi(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, Data.MarketDataType marketDataType)

AddHeikenAshi(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, Data.MarketDataType marketDataType, string tradingHoursName)

AddHeikenAshi(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, Data.MarketDataType marketDataType, string tradingHoursName,

bool? isResetOnNewTradingDay)

Warnings:

· This method should ONLY be called from the OnStateChange() method during

State.Configure

· Should your script be the host for other scripts that are creating indicators and series

dependent resources in State.DataLoaded, please make sure that the host is doing the

same AddHeikenAshi() calls as those hosted scripts would. For further reference,

please also review the 'Adding additional Bars Objects to NinjaScript' section in Multi-

Time Frame & Instruments

· Arguments supplied to AddHeikenAshi() should be hardcoded and NOT dependent on

run-time variables which cannot be reliably obtained during State.Configure (e.g.,

Instrument, Bars, or user input). Attempting to add a data series dynamically is NOT

guaranteed and therefore should be avoided. Trying to load bars dynamically may result

in an error similar to: Unable to load bars series. Your NinjaScript may be trying to

use an additional data series dynamically in an unsupported manner.

Parameters

instrumentName A string determining instrument name such as

"MSFT"

baseBarsPeriodTy

pe

The underlying BarsType used for the Heiken

Ashi bars period.

Possible values are:

· BarsPeriodType.Tick

· BarsPeriodType.Volume

NinjaTrader 81922

© 2023 NinjaTrader, LLC

· BarsPeriodType.Range

· BarsPeriodType.Second

· BarsPeriodType.Minute

· BarsPeriodType.Day

· BarsPeriodType.Week

· BarsPeriodType.Month

· BarsPeriodType.Year

baseBarsPeriodTy

peValue

An int determining the underlying period interval

such as "3" for 3 minute bars

marketDataType The MarketDataType used for the bars object

(last, bid, ask)

Possible values are:

· MarketDataType.Ask

· MarketDataType.Bid

· MarketDataType.Last

Note: Please see the article here on using

Bid/Ask series.

tradingHoursName A string determining the trading hours template

for the instrument

isResetOnNewTra

dingDay

A nullable bool* determining if the Bars object

should Break at EOD

*Will accept true, false or null as the input. If

null is used, the data series will use the settings

of the primary data series.

Tip: You can optionally add the exchange name as a suffix to the symbol name. This is

only advised if the instrument has multiple possible exchanges that it can trade on and it is

configured within the Instruments window. For example: AddHeikenAshi("MSFT Arca",
BarsPeriodType.Minute, 1, MarketDataType.Last);

Examples

NinjaScript 1923

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 }

 else if (State == State.Configure)

 {

 // Add a 1 minute Heiken Ashi Bars object for the ES 03-18

contract - BarsInProgress index = 1

 AddHeikenAshi("ES 03-18", BarsPeriodType.Minute, 1,

MarketDataType.Last);

 }

}

protected override void OnBarUpdate()

{

 // Ignore the primary Bars object and only process the Heiken

Ashi object

 if (BarsInProgress == 1)

 {

 // Do something;

 }

}

11.6.2.1.2 AddKagi()

Definition
Similar to the AddDataSeries() method for adding Bars objects, this method adds a Kagi Bars

object for multi-series NinjaScript.

Notes:

1. When running NinjaScript, you will be able to choose the first instrument and bar

interval to run on. This first Bars object will carry a BarsInProgress index of 0.

2. In a multi-time frame and multi-instrument NinjaScript, supplementary Bars objects are

added via this method in State.Configure state of the OnStateChange() method and

given an incremented BarsInProgress index value. See additional information on

running multi-bars scripts.

3. The BarsInProgress property can be used to filter updates between different bars

series

4. If using OnMarketData(), a subscription will be created on all bars series added in your

indicator or strategy strategy (even if the instrument is the same). The market data

subscription behavior occurs both in real-time and during TickReplay historical

5. For adding regular Bars types please use AddDataSeries()

NinjaTrader 81924

© 2023 NinjaTrader, LLC

6. A Tick Replay indicator or strategy CANNOT use a MarketDataType.Ask or

MarketDataType.Bid series. Please see Developing for Tick Replay for more

information.

Syntax
AddKagi(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, int reversal, Data.ReversalType reversalType,

Data.MarketDataType marketDataType)

AddKagi(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, int reversal, Data.ReversalType reversalType,

Data.MarketDataType marketDataType, string tradingHoursName)

AddKagi(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, int reversal, Data.ReversalType reversalType,

Data.MarketDataType marketDataType, string tradingHoursName, bool?

isResetOnNewTradingDay)

Warnings:

· This method should ONLY be called from the OnStateChange() method during

State.Configure

· Should your script be the host for other scripts that are creating indicators and series

dependent resources in State.DataLoaded, please make sure that the host is doing the

same AddKagi() calls as those hosted scripts would. For further reference, please also

review the 'Adding additional Bars Objects to NinjaScript' section in Multi-Time Frame &

Instruments

· Arguments supplied to AddKagi() should be hardcoded and NOT dependent on run-

time variables which cannot be reliably obtained during State.Configure (e.g.,

Instrument, Bars, or user input). Attempting to add a data series dynamically is NOT

guaranteed and therefore should be avoided. Trying to load bars dynamically may result

in an error similar to: Unable to load bars series. Your NinjaScript may be trying to

use an additional data series dynamically in an unsupported manner.

Parameters

instrumentName A string determining instrument name such as

"MSFT"

baseBarsPeriodTy

pe

The underlying BarsType used for the Kagi bars

period

Possible values are:

NinjaScript 1925

© 2023 NinjaTrader, LLC

· BarsPeriodType.Day

· BarsPeriodType.Minute

· BarsPeriodType.Second

· BarsPeriodType.Tick

· BarsPeriodType.Volume

baseBarsPeriodTy

peValue

An int determining the underlying period interval

such as "3" for 3 minute bars

reversal An int determining the required price movement

in the reversal direction before a reversal is

identified on the chart

reversalType An enum determining the mode reversal period

is based.

Possible values are:

· ReversalType.Percent

· ReversalType.Tick

marketDataType The MarketDataType used for the bars object

(last, bid, ask)

Possible values are:

· MarketDataType.Ask

· MarketDataType.Bid

· MarketDataType.Last

Note: Please see the article here on using

Bid/Ask series.

tradingHoursName A string determining the trading hours template

for the instrument

isResetOnNewTra

dingDay

A nullable bool* determining if the Bars object

should Break at EOD

NinjaTrader 81926

© 2023 NinjaTrader, LLC

*Will accept true, false or null as the input. If

null is used, the data series will use the settings

of the primary data series.

Tip: You can optionally add the exchange name as a suffix to the symbol name. This is

only advised if the instrument has multiple possible exchanges that it can trade on and it is

configured within the Instruments window. For example: AddKagi("MSFT Arca",
PeriodType.Minute, 1, 2, ReversalType.Tick, MarketDataType.Last)

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 }

 else if (State == State.Configure)

 {

 // Add a 1 minute Kagi Bars object for the ES 03-18 contract

- BarsInProgress index = 1

 AddKagi("ES 03-18", BPeriodType.Minute, 1, 2,

ReversalType.Tick, MarketDataType.Last);

 }

}

protected override void OnBarUpdate()

{

 // Ignore the primary Bars object and only process the Kagi

Bars object

 if (BarsInProgress == 1)

 {

 // Do something;

 }

}

11.6.2.1.3 AddLineBreak()

Definition
Similar to the AddDataSeries() method for adding Bars objects, this method adds a Line

Break Bars object for multi-series NinjaScript.

NinjaScript 1927

© 2023 NinjaTrader, LLC

Notes:

1. When running NinjaScript, you will be able to choose the first instrument and bar

interval to run on. This first Bars object will carry a BarsInProgress index of 0.

2. In a multi-time frame and multi-instrument NinjaScript, supplementary Bars objects are

added via this method in State.Configure state of the OnStateChange() method and

given an incremented BarsInProgress index value. See additional information on

running multi-bars scripts.

3. The BarsInProgress property can be used to filter updates between different bars

series

4. If using OnMarketData(), a subscription will be created on all bars series added in your

indicator or strategy strategy (even if the instrument is the same). The market data

subscription behavior occurs both in real-time and during TickReplay historical

5. For adding regular Bars types please use AddDataSeries()

6. A Tick Replay indicator or strategy CANNOT use a MarketDataType.Ask or

MarketDataType.Bid series. Please see Developing for Tick Replay for more

information.

Syntax
AddLineBreak(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, int lineBreakCount, Data.MarketDataType marketDataType)

AddLineBreak(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, int lineBreakCount, Data.MarketDataType marketDataType,

string tradingHoursName)

AddLineBreak(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, int lineBreakCount, Data.MarketDataType marketDataType,

string tradingHoursName, bool? isResetOnNewTradingDay)

Warnings:

· This method should ONLY be called from the OnStateChange() method during

State.Configure

· Should your script be the host for other scripts that are creating indicators and series

dependent resources in State.DataLoaded, please make sure that the host is doing the

same AddLineBreak() calls as those hosted scripts would. For further reference,

please also review the 'Adding additional Bars Objects to NinjaScript' section in Multi-

Time Frame & Instruments

· Arguments supplied to AddLineBreak() should be hardcoded and NOT dependent on

run-time variables which cannot be reliably obtained during State.Configure (e.g.,

Instrument, Bars, or user input). Attempting to add a data series dynamically is NOT

guaranteed and therefore should be avoided. Trying to load bars dynamically may result

in an error similar to: Unable to load bars series. Your NinjaScript may be trying to

use an additional data series dynamically in an unsupported manner.

NinjaTrader 81928

© 2023 NinjaTrader, LLC

Parameters

instrumentName A string determining instrument name such as

"MSFT"

baseBarsPeriodTy

pe

The underlying BarsType used for the LineBreak

bars period

Possible values are:

BarsPeriodType.Day

BarsPeriodType.Minute

BarsPeriodType.Second

BarsPeriodType.Tick

BarsPeriodType.Volume

baseBarsPeriodTy

peValue

An int determining the underlying period interval

such as "3" for 3 minute bars

lineBreakCount An int determining the number of bars back

used to calculate a line break

marketDataType The MarketDataType used for the bars object

(last, bid, ask)

Possible values are:

· MarketDataType.Ask

· MarketDataType.Bid

· MarketDataType.Last

Note: Please see the article here on using

Bid/Ask series.

tradingHoursName A string determining the trading hours template

for the instrument

isResetOnNewTra

dingDay

A nullable bool* determining if the Bars object

should Break at EOD

NinjaScript 1929

© 2023 NinjaTrader, LLC

*Will accept true, false or null as the input. If

null is used, the data series will use the settings

of the primary data series.

Tip: You can optionally add the exchange name as a suffix to the symbol name. This is

only advised if the instrument has multiple possible exchanges that it can trade on and it is

configured within the Instruments window. For example: AddLineBreak("MSFT Arca",
PeriodType.Minute, 1, 3, MarketDataType.Last)

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 }

 if (State == State.Configure)

 {

 // Add a 1 minute Line Break Bars object for the ES 03-18 -

BarsInProgress index = 1

 AddLineBreak("ES 03-18", BarsPeriodType.Minute, 1, 3,

MarketDataType.Last);

 }

}

protected override void OnBarUpdate()

{

 // Ignore the primary Bars object and only process the Line

Break Bars object

 if (BarsInProgress == 1)

 {

 // Do something;

 }

}

11.6.2.1.4 AddPointAndFigure()

Definition
Similar to the AddDataSeries() method for adding Bars objects, this method adds a Point-

and-Figure Bars object for multi-series NinjaScript.

NinjaTrader 81930

© 2023 NinjaTrader, LLC

Notes:

1. When running NinjaScript, you will be able to choose the first instrument and bar

interval to run on. This first Bars object will carry a BarsInProgress index of 0.

2. In a multi-time frame and multi-instrument NinjaScript, supplementary Bars objects are

added via this method in State.Configure state of the OnStateChange() method and

given an incremented BarsInProgress index value. See additional information on

running multi-bars scripts.

3. The BarsInProgress property can be used to filter updates between different bars

series

4. If using OnMarketData(), a subscription will be created on all bars series added in your

indicator or strategy strategy (even if the instrument is the same). The market data

subscription behavior occurs both in real-time and during TickReplay historical

5. For adding regular Bars types please use AddDataSeries()

6. A Tick Replay indicator or strategy CANNOT use a MarketDataType.Ask or

MarketDataType.Bid series. Please see Developing for Tick Replay for more

information.

Syntax
AddPointAndFigure(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, int boxSize, int reversal, Data.PointAndFigurePriceType

pointAndFigurePriceType, Data.MarketDataType marketDataType)

AddPointAndFigure(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, int boxSize, int reversal, Data.PointAndFigurePriceType

pointAndFigurePriceType, Data.MarketDataType marketDataType, string tradingHoursName)

AddPointAndFigure(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, int boxSize, int reversal, Data.PointAndFigurePriceType

pointAndFigurePriceType, Data.MarketDataType marketDataType, string tradingHoursName,

bool? isResetOnNewTradingDay)

Warnings:

· This method should ONLY be called from the OnStateChange() method during

State.Configure

· Should your script be the host for other scripts that are creating indicators and series

dependent resources in State.DataLoaded, please make sure that the host is doing the

same AddPointAndFigure() calls as those hosted scripts would. For further reference,

please also review the 'Adding additional Bars Objects to NinjaScript' section in Multi-

Time Frame & Instruments

· Arguments supplied to AddPointAndFigure() should be hardcoded and NOT

dependent on run-time variables which cannot be reliably obtained during

State.Configure (e.g., Instrument, Bars, or user input). Attempting to add a data series

dynamically is NOT guaranteed and therefore should be avoided. Trying to load bars

dynamically may result in an error similar to: Unable to load bars series. Your

NinjaScript 1931

© 2023 NinjaTrader, LLC

NinjaScript may be trying to use an additional data series dynamically in an

unsupported manner.

Parameters

instrumentName A string determining instrument name such as

"MSFT"

baseBarsPeriodTy

pe

The underlying BarsType used for the Point-and-

Figure bars period

Possible values are:

· BarsPeriodType.Day

· BarsPeriodType.Minute

· BarsPeriodType.Second

· BarsPeriodType.Tick

· BarsPeriodType.Volume

baseBarsPeriodTy

peValue

An int determining the underlying period interval

such as "3" for 3 minute bars

boxSize An int determining the price movement signified

by the X's and O's of a Point-and-Figure chart

reversal An int determining the number of boxes the

price needs to move in the reversal direction

before a new column will be built

pointAndFigurePric

eType

Determines where to base reversal calculations

Possible values are:

· PointAndFigurePriceType.Close

· PointAndFigurePriceType.HighsAndLows

marketDataType The MarketDataType used for the bars object

(last, bid, ask)

Possible values are:

· MarketDataType.Ask

NinjaTrader 81932

© 2023 NinjaTrader, LLC

· MarketDataType.Bid

· MarketDataType.Last

Note: Please see the article here on using

Bid/Ask series.

tradingHoursName A string determining the trading hours template

for the instrument

isResetOnNewTra

dingDay

A nullable bool* determining if the Bars object

should Break at EOD

*Will accept true, false or null as the input. If

null is used, the data series will use the settings

of the primary data series.

Tip: You can optionally add the exchange name as a suffix to the symbol name. This is

only advised if the instrument has multiple possible exchanges that it can trade on and it is

configured within the Instruments window. For example: AddPointAndFigure("MSFT Arca",
BarsPeriodType.Minute, 1, 2, 3, PointAndFigurePriceType.Close, MarketDataType.Last)

Examples

NinjaScript 1933

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Add a 1 minute Point-and-Figure Bars object for the ES

03-18 contract - BarsInProgress index = 1

 AddPointAndFigure("ES 03-18", BarsPeriodType.Minute, 1, 2,

 3, PointAndFigurePriceType.Close, MarketDataType.Last);

 }

}

protected override void OnBarUpdate()

{

 // Ignore the primary Bars object and only process the Point-

and-Figure Bars object

 if (BarsInProgress == 1)

 {

 // Do something;

 }

}

11.6.2.1.5 AddRenko()

Definition
Similar to the AddDataSeries() method for adding Bars objects, this method adds a Renko

Bars object for multi-series NinjaScript.

Notes:

1. When running NinjaScript, you will be able to choose the first instrument and bar

interval to run on. This first Bars object will carry a BarsInProgress index of 0.

2. In a multi-time frame and multi-instrument NinjaScript, supplementary Bars objects are

added via this method in State.Configure state of the OnStateChange() method and

given an incremented BarsInProgress index value. See additional information on

running multi-bars scripts.

3. The BarsInProgress property can be used to filter updates between different bars

series

4. If using OnMarketData(), a subscription will be created on all bars series added in your

indicator or strategy strategy (even if the instrument is the same). The market data

subscription behavior occurs both in real-time and during TickReplay historical

5. For adding regular Bars types please use AddDataSeries()

6. A Tick Replay indicator or strategy CANNOT use a MarketDataType.Ask or

MarketDataType.Bid series. Please see Developing for Tick Replay for more

information.

NinjaTrader 81934

© 2023 NinjaTrader, LLC

Syntax
AddRenko(string instrumentName, int brickSize, Data.MarketDataType marketDataType)

AddRenko(string instrumentName, int brickSize, Data.MarketDataType marketDataType,

string tradingHoursName)

AddRenko(string instrumentName, int brickSize, Data.MarketDataType marketDataType,

string tradingHoursName, bool?isResetOnNewTradingDay)

Warnings:

· This method should ONLY be called from the OnStateChange() method during

State.Configure

· Should your script be the host for other scripts that are creating indicators and series

dependent resources in State.DataLoaded, please make sure that the host is doing the

same AddRenko() calls as those hosted scripts would. For further reference, please

also review the 'Adding additional Bars Objects to NinjaScript' section in Multi-Time

Frame & Instruments

· Arguments supplied to AddRenko() should be hardcoded and NOT dependent on run-

time variables which cannot be reliably obtained during State.Configure (e.g.,

Instrument, Bars, or user input). Attempting to add a data series dynamically is NOT

guaranteed and therefore should be avoided. Trying to load bars dynamically may result

in an error similar to: Unable to load bars series. Your NinjaScript may be trying to

use an additional data series dynamically in an unsupported manner.

Parameters

instrumentName A string determining instrument name such as

"MSFT"

brickSize An int determining the size (in ticks) of each bar

marketDataType The MarketDataType used for the bars object

(last, bid, ask)

Possible values are:

· MarketDataType.Ask

· MarketDataType.Bid

· MarketDataType.Last

Note: Please see the article here on using

Bid/Ask series.

NinjaScript 1935

© 2023 NinjaTrader, LLC

tradingHoursName A string determining the trading hours template

for the instrument

isResetOnNewTradi

ngDay
A nullable bool* determining if the Bars object

should Break at EOD

*Will accept true, false or null as the input. If

null is used, the data series will use the settings

of the primary data series.

Tip: You can optionally add the exchange name as a suffix to the symbol name. This is

only advised if the instrument has multiple possible exchanges that it can trade on and it is

configured within the Instruments window. For example: AddRenko("MSFT Arca", 2,
MarketDataType.Last)

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Add a 1 minute Renko Bars object for the ES 03-18

contract - BarsInProgress index = 1

 AddRenko("ES 03-18", 2, MarketDataType.Last);

 }

}

protected override void OnBarUpdate()

{

 // Ignore the primary Bars object and only process the Renko

Bars object

 if (BarsInProgress == 1)

 {

 // Do something;

 }

}

11.6.2.1.6 AddVolumetric()

Definition
Similar to the AddDataSeries() method for adding Bars objects, this method adds a Order

Flow Volumetric Bars object for multi-series NinjaScript.

NinjaTrader 81936

© 2023 NinjaTrader, LLC

Notes:

1. When running NinjaScript, you will be able to choose the first instrument and bar

interval to run on. This first Bars object will carry a BarsInProgress index of 0.

2. In a multi-time frame and multi-instrument NinjaScript, supplementary Bars objects are

added via this method in State.Configure state of the OnStateChange() method and

given an incremented BarsInProgress index value. See additional information on

running multi-bars scripts.

3. The BarsInProgress property can be used to filter updates between different bars

series

4. If using OnMarketData(), a subscription will be created on all bars series added in your

indicator or strategy strategy (even if the instrument is the same). The market data

subscription behavior occurs both in real-time and during TickReplay historical

5. For adding regular Bars types please use AddDataSeries()

6. A Tick Replay indicator or strategy CANNOT use a MarketDataType.Ask or

MarketDataType.Bid series. Please see Developing for Tick Replay for more

information.

7. To access additional Volumetric data points programmtically in your NinjaScript

studies, please see the example here.

Syntax
AddVolumetric(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, Data.VolumetricDeltaType deltaType, int tickPerLevel)

AddVolumetric(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, Data.VolumetricDeltaType deltaType, int tickPerLevel, bool?

isResetOnNewTradingDay)

AddVolumetric(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, Data.VolumetricDeltaType deltaType, int tickPerLevel, string

tradingHoursName, bool? isResetOnNewTradingDay)

AddVolumetric(string instrumentName, Data.BarsPeriodType baseBarsPeriodType, int

baseBarsPeriodTypeValue, Data.VolumetricDeltaType deltaType, int tickPerLevel, int

sizeFilter, string tradingHoursName, bool? isResetOnNewTradingDay) (R17 and higher

only)

Warnings:

· This method should ONLY be called from the OnStateChange() method during

State.Configure

· Should your script be the host for other scripts that are creating indicators and series

dependent resources in State.DataLoaded, please make sure that the host is doing the

same AddVolumetric() calls as those hosted scripts would. For further reference,

please also review the 'Adding additional Bars Objects to NinjaScript' section in Multi-

Time Frame & Instruments

NinjaScript 1937

© 2023 NinjaTrader, LLC

· Arguments supplied to AddVolumetric() should be hardcoded and NOT dependent on

run-time variables which cannot be reliably obtained during State.Configure (e.g.,

Instrument, Bars, or user input). Attempting to add a data series dynamically is NOT

guaranteed and therefore should be avoided. Trying to load bars dynamically may result

in an error similar to: Unable to load bars series. Your NinjaScript may be trying to

use an additional data series dynamically in an unsupported manner.

Parameters

instrumentName A string determining instrument name such as

"MSFT"

baseBarsPeriodTy

pe

The underlying BarsType used for the Volumetric

bars period.

Possible values are:

· BarsPeriodType.Tick

· BarsPeriodType.Volume

· BarsPeriodType.Range

· BarsPeriodType.Second

· BarsPeriodType.Minute

· BarsPeriodType.Day

· BarsPeriodType.Week

· BarsPeriodType.Month

· BarsPeriodType.Year

baseBarsPeriodTy

peValue

An int determining the underlying period interval

such as "3" for 3 minute bars

deltaType The DeltaType used for the Volumetric bars

object delta calculations

Possible values are:

· VolumetricDeltaType.BidAsk

· VolumetricDetlaType.UpDownTick

ticksPerLevel An int setting the aggregation of price levels for

the Volumetric bar, pass in a 1 to analyze each

NinjaTrader 81938

© 2023 NinjaTrader, LLC

price level individually

sizeFilter An int setting the trade size allowed to count in

the delta calculations

tradingHoursName A string determining the trading hours template

for the instrument

isResetOnNewTra

dingDay

A nullable bool* determining if the Bars object

should Break at EOD

*Will accept true, false or null as the input. If

null is used, the data series will use the settings

of the primary data series.

Tip: You can optionally add the exchange name as a suffix to the symbol name. This is

only advised if the instrument has multiple possible exchanges that it can trade on and it is

configured within the Instruments window. For example: AddVolumetric("MSFT Arca",
BarsPeriodType.Minute, 1, VolumetricDeltaType.BidAsk, 1);

Examples

NinjaScript 1939

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 }

 else if (State == State.Configure)

 {

 // Add a 1 minute Order Flow Volumetric Bars object for the

ES 03-18 contract - BarsInProgress index = 1

 AddVolumetric("ES 03-18", BarsPeriodType.Minute, 1,

VolumetricDeltaType.BidAsk, 1);

 }

}

protected override void OnBarUpdate()

{

 // Ignore the primary Bars object and only process the Order

Flow Volumetric object

 if (BarsInProgress == 1)

 {

 // Do something;

 }

}

11.6.2.1.7 BarsArray

Definition
An array holding Bars objects that are added via the AddDataSeries() method. BarsArray can

be used as input for indicator methods. This property is of primary value when working with

multi-time frame or multi-instrument scripts.

Property Value
An array of Bars objects.

Warning: This property should NOT be accessed within the OnStateChange() method

before the State has reached State.DataLoaded

Syntax
BarsArray[int index]

Examples

NinjaTrader 81940

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 }

 else if (State == State.Configure)

 {

 // Add a 5 minute Bars object which is added to the BarArray

 // which will take index 1 since the primary Bars object of

the strategy

 // will be index 0

 AddDataSeries(BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Ignore bar update events for the supplementary Bars object

added above

 if (BarsInProgress == 1)

 return;

 // Pass in a Bars object as input for the simple moving average

method

 // Evaluates if the 20 SMA of the primary Bars is greater than

 // the 20 SMA of the secondary Bars added above

 if (SMA(20)[0] > SMA(BarsArray[1], 20)[0])

 EnterLong();

}

11.6.2.1.8 BarsInProgress

Definition
An index value of the current Bars object that has called the OnBarUpdate() method. In a

multi-bars script, the OnBarUpdate() method is called for each Bars object of a script. This

flexibility allows you to separate trading logic from different bar events.

Notes:

1. In a single Bars script this property will always return an index value of 0 representing

the primary Bars and instrument the script is running on.

2. See additional information on running multi-bars scripts.

NinjaScript 1941

© 2023 NinjaTrader, LLC

Property Value
An int value represents the Bars object that is calling the OnBarUpdate() method.

Syntax
BarsInProgress

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Add a 5 minute Bars object: BarsInProgress index = 1

 AddDataSeries(BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Check which Bars object is calling the OnBarUpdate()

method

 if (BarsInProgress == 0)

 {

 // A value of zero represents the primary Bars which is

the ES 09-14

 // 1 minute chart.

 // Do something within the context of the 1 minute Bars

here

 }

 else if (BarsInProgress == 1)

 {

 // A value of 1 represents the secondary 5 minute bars

added in OnStateChange() State.Configure

 // Do something within the context of the 5 minute Bars

 }

}

11.6.2.1.9 BarsPeriods

Definition
Holds an array of BarsPeriod objects synchronized to the number of unique Bars objects held

within the parent NinjaScript object. If a NinjaScript object holds two Bars series, then

BarsPeriods will hold two BarsPeriod objects.

Property Value
An array of BarsPeriod objects.

NinjaTrader 81942

© 2023 NinjaTrader, LLC

Warning: This property should NOT be accessed within the OnStateChange() method

before the State has reached State.DataLoaded

Syntax
BarsPeriods[int barSeriesIndex]

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the original data the

strategy is ran on,

 // set by the UI, takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Print out 5, the value of the secondary bars object

 if (BarsInProgress == 1)

 Print(BarsPeriods[1].Value);

}

11.6.2.1.10 CurrentBars

Definition
Holds an array of int values representing the number of the current bar in a Bars object. An int

value is added to this array when calling the AddDataSeries() method. Its purpose is to

provide access to the CurrentBar of all Bars objects in a multi-instrument or multi-time frame

script.

Note: In multi series processing, the CurrentBars starting value will be -1 until all series

have processed the first bar.

Property Value

NinjaScript 1943

© 2023 NinjaTrader, LLC

An array of int values.

Warning: This property should NOT be accessed within the OnStateChange() method

before the State has reached State.DataLoaded

Syntax
CurrentBars[int barSeriesIndex]

Examples

 Indicator (BarsRequiredToPlot)

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the script. It will

automatically be assigned

 // a Bars object index of 1 since the primary data the

indicator is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Evaluates to make sure we have at least 20 (default value

of BarsRequiredToPlot)

 // or more bars in both Bars objects before continuing.

 if (CurrentBars[0] < BarsRequiredToPlot || CurrentBars[1] <

BarsRequiredToPlot)

 return;

 // Indicator script logic calculation code...

}

NinjaTrader 81944

© 2023 NinjaTrader, LLC

 Strategy (BarsRequiredToTrade)

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the script. It will

automatically be assigned

 // a Bars object index of 1 since the primary data the

indicator is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Evaluates to make sure we have at least 20 (default value

of BarsRequiredToTrade)

 // or more bars in both Bars objects before continuing.

 if (CurrentBars[0] < BarsRequiredToTrade || CurrentBars[1] <

BarsRequiredToTrade)

 return;

 // Strategy script logic calculation code...

}

11.6.2.2 Alert, Debug, Share

The following section documents properties and methods used to trigger alerts from a

NinjaScript object, send debug messages to the NinjaScript Output Window, or utilize Share

Services to send emails or post to social-media networks.

Alert() Generates a visual/audible alert for the Alerts Log window

ClearOut

putWindo

w()

Clears all data from the NinjaTrader Output Window

Log() Generates a NinjaScript category log event record which

is output to the Log tab of the NinjaTrader Control Center /

Account Data windows

PlaySoun

d()

Plays a .wav file while running on real-time data

NinjaScript 1945

© 2023 NinjaTrader, LLC

Print() Converts object data to a string format and appends the

specified value as text to the NinjaScript Output window

PrintTo Determines either tab of NinjaScript Output window the

Print() and ClearOutputWindow() method targets

RearmAl

ert()

Rearms an alert created via the Alert() method

SendMail(

)

Sends an email message through the default email

sharing service.

Share() Sends a message or screen shot to a social network or

Share Service.

11.6.2.2.1 Alert()

Definition
Generates a visual/audible alert to display in the Alerts Log window.

Notes:

1. This method can only be called once the State has reached State.Realtime. Calls to

this method in any other State will be silently ignored.

2. For add-ons, please see the AlertCallback() method

Method Return Value
This method does not return a value

Syntax
Alert(string id, Priority priority, string message, string soundLocation, int
rearmSeconds, Brush backBrush, Brush foreColor)

Parameters

id A string representing a unique id for the alert

priority Sets the precedence of the alert in relation to

other alerts

Possible values include:

Priority.High

NinjaTrader 81946

© 2023 NinjaTrader, LLC

Priority.Low

Priority.Medium

message A string representing the Alert message

soundLocation A string representing the absolute file path of the

.wav file to play

rearmSeconds An int which sets the number of seconds an

alert rearms. Note: If the same alert (identified

by the id parameter) is called within a time

window of the time of last alert + rearmSeconds,

the alert will be ignored

backBrush Sets the background color of the Alerts window

row for this alert when triggered (reference)

foreBrush Sets the foreground color of the Alerts window

row for this alert when triggered (reference)

Tip: You can obtain the default NinjaTrader installation directory to access the sounds

folder by using NinjaTrader.Core.Globals.InstallDir property. Please see the example

below for usage.

Example

protected override void OnBarUpdate()

{

 // Generate an alert when the RSI value is greater or equal to

20

 if(RSI(14, 3)[0] >= 20)

 Alert("myAlert", Priority.High, "Reached threshold",

NinjaTrader.Core.Globals.InstallDir+@"\sounds\Alert1.wav", 10,

Brushes.Black, Brushes.Yellow);

}

11.6.2.2.2 ClearOutputWindow ()

Definition
Clears all data from the NinjaTrader Output Window.

http://msdn.microsoft.com/en-us/library/system.drawing.color_members(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/system.drawing.color_members(v=vs.90).aspx

NinjaScript 1947

© 2023 NinjaTrader, LLC

Note: The ClearOutputWindow() method only targets the Output tab most recently

determined by set PrintTo property.

Method Return Value
This method does not return a value.

Syntax
ClearOutputWindow()

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 Description = @"An indicator used to demonstrate various

NinjaScript methods and properties";

 }

 else if (State == State.Configure)

 {

 AddDataSeries(BarsPeriodType.Minute, 5);

 }

 else if(State == State.DataLoaded)

 {

 //clear the output window as soon as the bars data is loaded

 ClearOutputWindow();

 }

}

11.6.2.2.3 Log()

Definition
Generates a NinjaScript category log event record and associated time stamp which is output

to the Log tab of the NinjaTrader Control Center / Account Data windows. The Log() method

also writes records to the NinjaTrader log file which can be useful for supporting 3rd party

code.

Notes:

1. Log events do NOT process to the NinjaScript output window. For temporary logging,

please see the Print() method and Output window.

NinjaTrader 81948

© 2023 NinjaTrader, LLC

2. The Log event time stamp represents the user configured Time zone from the Tools >

Options > General category. This setting could be different from the computer

system's time zone.

Method Return Value
This method does not return a value.

Syntax
Log(string message, LogLevel logLevel)

Warning: Each call to this method creates a log entry which takes memory to keep

loaded in the Log tab of the Control Center. Excessive logging can result in huge portions

of memory being allocated to display the log messages. Please see the NinjaScript

section of the Performance Tips article for more information.

Parameters

message A string value representing the message to be

logged

logLevel Sets the message level for the log event.

Different levels are color coded in the

NinjaTrader log.

· LogLevel.Alert (also generates a pop-up

notification window with log message)

· LogLevel.Error

· LogLevel.Information

· LogLevel.Warning

Examples

// Generates a log message

Log("This is a log message", LogLevel.Information);

// Generates a log message with a notification window

Log("This will generate a pop-up notification window as well",

LogLevel.Alert);

NinjaScript 1949

© 2023 NinjaTrader, LLC

11.6.2.2.4 PlaySound()

Definition
Plays a .wav file while running on real-time data.

Notes:

1. This method will only execute once the State has reached State.Realtime. Calls to

this method during State.Historical will be ignored (in contrast to the implementation for

AddOns)

2. The default behavior is to play the .wav file in an asynchronous manner, which can

result in calls to PlaySound() to play over one another. Sound files can optionally be

configured to execute in a synchronous manner by enabling the Tools > Options >

Sounds > "Play consecutively" property

Method Return Value
This method does not return a value.

Syntax
PlaySound(string fileName)

Warning: The underlying framework used to play the sound requires the audio file to be in

PCM .wav format. Using another file format such as will generate an error at runtime.

Parameters

fileName The absolute file path of the .wav file to play

Tip: You can obtain the default NinjaTrader installation directory to access the sounds

folder by using NinjaTrader.Core.Globals.InstallDir property. Please see the example

below for usage.

Examples

NinjaTrader 81950

© 2023 NinjaTrader, LLC

// Plays the wav file mySound.wav

PlaySound(@"C:\mySound.wav");

// Plays the default Alert1 sound that comes packaged with

NinjaTrader

PlaySound(NinjaTrader.Core.Globals.InstallDir +

@"\sounds\Alert1.wav");

11.6.2.2.5 Print()

Definition
Converts object data to a string format and appends the specified value as text to the

NinjaScript Output window. Printing data to the NinjaScript Output window is a useful

debugging technique to verify values while developing your custom NinjaScript object.

Notes: The Print() method only targets the Output tab recently specified by set PrintTo

property.

Method Return Value
This method does not return a value.

Syntax
Print(object value)

Warning: High frequency of Print() method calls can represent a performance hit on your

PC. Please see the NinjaScript section of the Performance Tips article for more

information.

Parameters

value The object to print to the output window

Tips:

1. You can format prices aligned for easier debugging by using the ToString() method.

E.g., Low[0].ToString("0.00") forces the format from 12.5 to 12.50.

Low[0].ToString("0.000") forces 12.500.

NinjaScript 1951

© 2023 NinjaTrader, LLC

2. You can format one or more objects in a specified string with the text equivalent of a

corresponding object's value for better maintainability using the .NET string.Format()

method. Please see the examples below.

Examples

 Passing objects directly to Print() method

protected override void OnBarUpdate()

{

 // Generates a message

 Print("This is a message");

 //Output: This is a message

 Print("The high of the current bar is : " + High[0]);

 //Output: The high of the current bar is : 2112.75

 // Prints the current bar SMA value to the output window

 Print(SMA(Close, 20)[0]);

 //Output: 2110.5;

}

 Passing string.Format() directly to Print() method

protected override void OnBarUpdate()

{

 //Format and Print each bar value to the output window

 Print(string.Format("{0};{1};{2};{3};{4};{5}", Time[0], Open[0],

 High[0], Low[0], Close[0], Volume[0]));

 //Output: 2/24/2015 11:01:00

AM;2110.5;2110.5;2109.75;2110;1702

}

https://msdn.microsoft.com/en-us/library/system.string.format%28v=vs.110%29.aspx

NinjaTrader 81952

© 2023 NinjaTrader, LLC

 Storing and reusing variables in Print() method

protected override void OnBarUpdate()

{

 //store the Close[0] value in a variable which can be printed

later*

 double myValue = Close[0];

 //create and store a custom error message

 string myError = string.Format("Error on Bar {0}, value {1} was

not expected", CurrentBar, myValue);

 //*Storing the value adds better reusability of the error

message above for other objects

 //For example later down on line #19 we replace myValue =

Close[0] with another double value Low[0]

 //This allows you to reuse the custom error formatted above on

line #7 without repeating yourself

 //our first test case, if true print our error

 if(myValue > High[0])

 Print(myError);

 //Output: Error on Bar 233, value 1588.25 was not expected

 //reassign myValue

 myValue = Low[0];

 //our second test case (now uses Low[0]), if true print our

error

 if(myValue > Close[0])

 Print(myError);

 //Output: Error on Bar 57, value 1585.5 was not expected

}

11.6.2.2.6 PrintTo

Definition
Determines either tab of the NinjaScript Output window the Print() and ClearOutputWindow()

method targets

Property Value
An enum value representing the target Output Tab. The default value is

PrintTo.OutputTab1.

Possible values are:

PrintTo.OutputTab1 Output Windows tab named

"Output 1"

NinjaScript 1953

© 2023 NinjaTrader, LLC

PrintTo.OutputTab2 Output Windows tab named

"Output 2"

Syntax
PrintTo

Examples

 Setting the default PrintTo in separate scripts (#1)

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Sample PrintTo Indicator #1";

 Description = @"Used to Print updates to Output 1";

 //Set this scripts Print() calls to the first output tab

 PrintTo = PrintTo.OutputTab1;

 }

}

protected override void OnBarUpdate()

{

 Print("This script will print messages to Output Tab 1");

}

 Setting the default PrintTo in separate scripts (#2)

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Sample PrintTo Indicator #2";

 Description = "@Used to Print updates to Output 2";

 //Set this scripts Print() calls to the second output tab

 PrintTo = PrintTo.OutputTab2;

 }

}

protected override void OnBarUpdate()

{

 Print("This script will print messages to Output Tab 2");

}

NinjaTrader 81954

© 2023 NinjaTrader, LLC

 Setting PrintTo conditionally in a single script

protected override void OnMarketData(MarketDataEventArgs

marketDataUpdate)

{

 if(marketDataUpdate.MarketDataType == MarketDataType.Ask)

 {

 //Print Ask updates to Output 1

 PrintTo = PrintTo.OutputTab1;

 Print("Ask: " + marketDataUpdate.Price);

 }

 else if (marketDataUpdate.MarketDataType == MarketDataType.Bid)

 {

 //Print Bid updates to Output 2

 PrintTo = PrintTo.OutputTab2;

 Print("Bid: " + marketDataUpdate.Price);

 }

}

11.6.2.2.7 RearmAlert()

Definition
Rearms an alert created via the Alert() method.

Note: A NinjaScript generated alert by may need to be rearmed after the alert is triggered

depending on the Alert() methods rearmSeconds parameter.

Method Return Value
This method does not return a value.

Syntax
RearmAlert(string id)

Parameters

id A unique string id representing an alert id to

rearm

Examples

NinjaScript 1955

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 //rearms "myAlert" on each new trading session

 if(Bars.IsFirstBarOfSession)

 RearmAlert("myAlert");

}

11.6.2.2.8 SendMail()

Definition
Sends an email message through the default email sharing service.

Notes:

1. This method can only be called once the State has reached State.Realtime. Calls to

this method in any other State will be silently ignored (in contrast to the implementation

for AddOns)

2. You MUST configure an email account as a default "Mail" Share Service from the

General Options

Method Return Value
This method does not return a value.

Syntax
SendMail(string to, string subject, string text)

Warning: If mail is not received, please check the Log tab of the control center for any

specific errors which could be related to delivering the message.

Parameters

to The email recipient

subject Subject line of email

text Message body of email

Examples

NinjaTrader 81956

© 2023 NinjaTrader, LLC

// Generates an email message

SendMail("customer@winners.com", "Trade Alert", "Buy ES");

11.6.2.2.9 Share()

Definition
Sends a message or screen shot to a social network or Share Service.

Notes:

1. This method can only be called once the State has reached State.Realtime. Calls to

this method in any other State will be silently ignored.

2. You MUST configure an account with a Share Service provider from the General

Options

Method Return Value
This method does not return a value.

Syntax
Share(string serviceName, string message)

Share(string serviceName, string message, object[] args)

Share(string serviceName, string message, string screenshotPath)

Share(string serviceName, string message, string screenshotPath, object[] args)

Parameters

serviceName A string value representing the share service to

be used

message A string value representing the text body sent to

the social network or other Share providers.

Note: The message is what appears in the text

box of the Share window

screenshotPath Optional string path to screenshot or other

images sent to the social network or other Share

providers

args A generic object[] array used to designate

additional information sent to the share service

NinjaScript 1957

© 2023 NinjaTrader, LLC

Tips:

1. The "args" parameter differs for each share service used. If you are using a custom

developed share adapter, you need to work with the developer of that adapter to

understand what the "args" parameter represents for that adapter.

2. For the default NinjaTrader share adapters, the "args" array represents the following:

§ Mail share service:

· args[0] = A string representing the email "To" field,

· args[1] = A string representing the email "Subject" field

§ StockTwits share service:

· args[0] = An enum representing the "StockTwitsSentiment" parameter

Examples

// using "args" as the Mail "To" and "Subject" parameters

Share("Gmail", "Test Message", new object[]{ "example@test.com",

"Test Subject Line" });

11.6.2.3 Analytical

NinjaScript provides a number of methods and properties useful for analyzing and identifying

specific conditions within Series<T> collections. Some of these methods test a condition and

return true or false, while others return an int-based bar index or other numerical value. A list

of analytical methods can be found below:

Methods and Properties

CountIf() Counts the number of occurrences of the test

condition

CrossAbove() Evaluates a cross above condition

CrossBelow() Evaluates a cross below condition

GetCurrentAsk(

)

Returns the current Ask price

GetCurrentAskV

olume()

Returns the current Ask volume

NinjaTrader 81958

© 2023 NinjaTrader, LLC

GetCurrentBid() Returns the current Bid price

GetCurrentBidV

olume()

Returns the current Bid volume

GetMedian() Returns the median value of the specified series

HighestBar() Returns the number of bars ago the highest price

value occurred

IsFalling() Evaluates a falling condition

IsRising() Evaluates a rising condition

Least Recent

Occurrence

(LRO)

Returns the number of bars ago that the least

recent occurrence of a test condition evaluated to

true

LowestBar() Returns the number of bars ago the lowest price

value occurred

Most Recent

Occurrence

(MRO)

Returns the number of bars ago that the most

recent occurrence of a test condition evaluated to

true

Slope() Returns a measurement of the steepness of a price

series measured by the change over time

TickSize The value of 1 tick for the corresponding instrument

ToDay() Calculates an integer value representing a date

ToTime() Calculates an integer value representing a time

11.6.2.3.1 ApproxCompare()

Definition
Compares two double or float values for equality or being greater than / less than the

compared to value.

Note: Comparing for being greater than / less is done using an epsilon value of 1E19

NinjaScript 1959

© 2023 NinjaTrader, LLC

Method Return Value
An int value representing the outcome of the comparison. Returns 0 if values are equal, 1 if

value1 is greater than value2. -1 if value1 is less than value2.

Syntax
this.ApproxCompare(this double double1, double double2)

this.ApproxCompare(this float float1, double float2)

Parameters

double1 / float1 First value to compare against (not actually

passed in)

double2 / float2 Second passed in value to compare against

Tip: Main use would be using it for equality comparisons to circumvent running into

floating point considerations, value compares for < or > could be usually done more

straightforward directly.

Examples

// Build the High / Low difference and if 0 sets the indicator

main Value series to 0

if ((High[0] - Low[0]).ApproxCompare(0) == 0)

 Value[0] = 0;

11.6.2.3.2 CountIf()

Definition
Counts the number of instances the test condition occurs over the look-back period

expressed in bars.

Note: This method does NOT work on multi-series strategies and indicators.

Method Return Value
An int value representing the number of occurrences found

Syntax
CountIf(Func<bool> condition, int period)

NinjaTrader 81960

© 2023 NinjaTrader, LLC

Parameters

condition A true/false expression

period Number of bars to check for the test condition

Tip: The syntax for the "condition" parameter uses lambda expression syntax

Examples

// If in the last 10 bars we have had 8 up bars then go long

if (CountIf(() => Close[0] > Open[0], 10) > 8)

 EnterLong();

11.6.2.3.3 CrossAbove()

Definition
Evaluates a cross above condition over the specified bar look-back period.

Note: This method does not return true if both series being compared have equal values

on the current or previous bar with a lookbackPeriod of 1.

Method Return Value
This method returns true if a cross above condition occurred; otherwise, false.

Syntax
CrossAbove(ISeries<double> series1, ISeries<double> series2, int lookBackPeriod)
CrossAbove(ISeries<double> series1, double value, int lookBackPeriod)

Parameters

lookBackPeriod Number of bars back to check the cross above

condition

series1 & series2 Any Series<double> type object such as an

indicator, Close, High, Low, etc...

value Any double value

Examples

http://msdn.microsoft.com/en-us/library/bb397687.aspx

NinjaScript 1961

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Go short if CCI crossed above 250 within the last bar

 if (CrossAbove(CCI(14), 250, 1))

 EnterShort();

 // Go long if 10 EMA crosses above 20 EMA within the last bar

 if (CrossAbove(EMA(10), EMA(20), 1))

 EnterLong();

 // Go long we have an up bar and the 10 EMA crosses above 20 EMA

within the last 5 bars

 if (Close[0] > Open[0] && CrossAbove(EMA(10), EMA(20), 5))

 EnterLong();

}

11.6.2.3.4 CrossBelow ()

Definition
Evaluates a cross below condition over the specified bar look-back period.

Note: This method does not return true if both series being compared have equal values

on the current or previous bar with a lookbackPeriod of 1.

Method Return Value
This method returns true if a cross below condition occurred; otherwise, false.

Syntax
CrossBelow(ISeries<double> series1, ISeries<double> series2, int lookBackPeriod)

CrossBelow(ISeries<double> series1, double value, int lookBackPeriod)

Parameters

lookBackPeriod Number of bars back to check the cross below

condition

series1 & series2 Any Series<double> type object such as an

indicator, Close, High, Low, etc...

value Any double value

Examples

NinjaTrader 81962

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Go long if CCI crossed below -250 within the last bar

 if (CrossBelow(CCI(14), -250, 1))

 EnterLong();

 // Go short if 10 EMA crosses below 20 EMA within the last bar

 if (CrossBelow(EMA(10), EMA(20), 1))

 EnterShort();

 // Go short we have a down bar and the 10 EMA crosses below 20

EMA within the last 5 bars

 if (Close[0] < Open[0] && CrossBelow(EMA(10), EMA(20), 5))

 EnterShort();

}

11.6.2.3.5 GetCurrentAsk()

Definition
Returns the current real-time ask price.

Notes:

1. When accessed during State.Historical, the Close price of the evaluated bar is

substituted. To access historical Ask prices, please see Developing for Tick Replay.

2. The GetCurrentAsk() method runs on the bar series currently updating determined by

the BarsInProgress property. For multi-instrument scripts, an additional int

"barsSeriesIndex" parameter can be supplied which forces the method to run on an

supplementary bar series.

Method Return Value
A double value representing the current ask price.

Syntax
GetCurrentAsk()

GetCurrentAsk(int barsSeriesIndex)

Parameters

barsSeriesIndex An int value determining the bar

series the method runs. Note:

This optional parameter is

reserved for multi-instrument

scripts

NinjaScript 1963

© 2023 NinjaTrader, LLC

Examples

protected override void OnBarUpdate()

{

 // Ensure we do not call GetCurrentAsk() on historical data

 if (State == State.Historical)

 return;

 double currentAsk = GetCurrentAsk();

 Print("The Current Ask price is: " + currentAsk);

 // The Current Ask price is: 1924.75

}

NinjaTrader 81964

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example's Indicator";

 }

 if (State == State.Configure)

 {

 //Add MSFT as our additional data series

 AddDataSeries("MSFT", BarsPeriodType.Minute, 1);

 }

}

protected override void OnBarUpdate()

{

 // Ensure we do not call GetCurrentBid() on historical data

 if (State == State.Historical)

 return;

 if (BarsInProgress == 0)

 {

 double primaryAsk = GetCurrentAsk(0);

 Print("The Primary Ask price is: " + primaryAsk);

 // The Primary Ask price is: 1924.75

 }

 if (BarsInProgress == 1)

 {

 double msftAsk = GetCurrentAsk(1);

 Print("MSFT's Current Ask price is: " + msftAsk);

 // MSFT's Current Ask is: 43.63

 }

}

11.6.2.3.6 GetCurrentAskVolume()

Definition
Returns the current real-time ask volume.

Notes:

1. When accessed during State.Historical, the Volume of the evaluated bar series is

substituted. To access historical Ask Volumes, please see Developing for Tick Replay.

2. The GetCurrentAskVolume() method runs on the bar series currently updating

determined by the BarsInProgress property. For multi-instrument scripts, an additional int

NinjaScript 1965

© 2023 NinjaTrader, LLC

"barsSeriesIndex" parameter can be supplied which forces the method to run on an

supplementary bar series.

Method Return Value
A long value representing the current ask volume.

Syntax
GetCurrentAskVolume()

GetCurrentAskVolume(int barsSeriesIndex)

Parameters

barsSeriesIndex An int value determining the bar

series the method runs. Note:

This optional parameter is

reserved for multi-instrument

scripts

Examples

protected override void OnBarUpdate()

{

 long currentAskVolume = GetCurrentAskVolume();

 Print("The Current Ask volume is: " + currentAskVolume);

 //The Current Ask volume is: 158

}

NinjaTrader 81966

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 }

 if (State == State.Configure)

 {

 //Add MSFT as our additional data series

 AddDataSeries("MSFT", BarsPeriodType.Minute, 1);

 }

}

protected override void OnBarUpdate()

{

 if(BarsInProgress == 0)

 {

 long currentAskVolume = GetCurrentAskVolume(0);

 Print("The Current Ask volume is: " + currentAskVolume);

 //The Current Ask volume is: 346

 }

 if(BarsInProgress == 1)

 {

 long msftAskVolume = GetCurrentAskVolume(1);

 Print("MSFT's Current Ask volume is: " + msftAskVolume);

 //MSFT's Current Ask volume is: 1548

 }

}

11.6.2.3.7 GetCurrentBid()

Definition
Returns the current real-time bid price.

Notes:

1. When accessed during State.Historical, the Close price of the evaluated bar is

substituted. To access historical bid prices, please see Developing for Tick Replay.

2. The GetCurrentBid() method runs on the bar series currently updating determined by

the BarsInProgress property. For multi-instrument scripts, an additional int

"barsSeriesIndex" parameter can be supplied which forces the method to run on an

supplementary bar series.

Method Return Value

NinjaScript 1967

© 2023 NinjaTrader, LLC

A double value representing the current bid price.

Syntax
GetCurrentBid()

GetCurrentBid(int barsSeriesIndex)

Parameters

barsSeriesIndex An int value determining the bar

series the method runs. Note:

This optional parameter is

reserved for multi-instrument

scripts

Examples

protected override void OnBarUpdate()

{

 // Ensure we do not call GetCurrentBid() on historical data

 if (State == State.Historical)

 return;

 double currentBid = GetCurrentBid();

 Print("The Current Bid price is: " + currentBid);

 // The Current Bid price is: 1924.75

}

NinjaTrader 81968

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example's Indicator";

 }

 if (State == State.Configure)

 {

 //Add MSFT as our additional data series

 AddDataSeries("MSFT", BarsPeriodType.Minute, 1);

 }

}

protected override void OnBarUpdate()

{

 // Ensure we do not call GetCurrentBid() on historical data

 if (State == State.Historical)

 return;

 if (BarsInProgress == 0)

 {

 double primaryBid = GetCurrentBid(0);

 Print("The Primary Bid price is: " + primaryBid);

 // The Primary Bid price is: 1924.75

 }

 if (BarsInProgress == 1)

 {

 double msftBid = GetCurrentBid(1);

 Print("MSFT's Current Bid price is: " + msftBid);

 // MSFT's Current Bid is: 43.63

 }

}

11.6.2.3.8 GetCurrentBidVolume()

Definition
Returns the current real-time bid volume.

Notes:

1. When accessed during State.Historical, the Volume of the evaluated bar series is

substituted. To access historical Bid Volumes, please see Developing for Tick Replay.

2. The GetCurrentBidVolume() method runs on the bar series currently updating

determined by the BarsInProgress property. For multi-instrument scripts, an additional int

NinjaScript 1969

© 2023 NinjaTrader, LLC

"barsSeriesIndex" parameter can be supplied which forces the method to run on an

supplementary bar series.

Method Return Value
A long value representing the current bid volume.

Syntax
GetCurrentBidVolume()

GetCurrentBidVolume(int barsSeriesIndex)

Parameters

barsSeriesIndex An int value determining the bar

series the method runs. Note:

This optional parameter is

reserved for multi-instrument

scripts

Examples

protected override void OnBarUpdate()

{

 long currentBidVolume = GetCurrentBidVolume();

 Print("The Current Bid volume is: " + currentBidVolume);

 //The Current Bid volume is: 158

}

NinjaTrader 81970

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 }

 if (State == State.Configure)

 {

 //Add MSFT as our additional data series

 AddDataSeries("MSFT", BarsPeriodType.Minute, 1);

 }

}

protected override void OnBarUpdate()

{

 if(BarsInProgress == 0)

 {

 long currentBidVolume = GetCurrentBidVolume(0);

 Print("The Current Bid volume is: " + currentBidVolume);

 //The Current Bid volume is: 346

 }

 if(BarsInProgress == 1)

 {

 long msftBidVolume = GetCurrentBidVolume(1);

 Print("MSFT's Current Bid volume is: " + msftBidVolume);

 //MSFT's Current Bid volume is: 1548

 }

}

11.6.2.3.9 GetMedian()

Definition
Returns the statistical median value of the specified series over the specified look-back

period. This method sorts the values of the specified look back period in ascending order and

return the middle value.

Notes:

1. This method should NOT be confused with Median prices defined as (High + Low) / 2.

This method returns the statistical median of a series.

2. If an even number is passed as the look-back period, the average of the two middle

values in the sorted values will be returned.

Method Return Value

NinjaScript 1971

© 2023 NinjaTrader, LLC

A double value representing the median value of the series.

Syntax
GetMedian(ISeries<double> series, int lookBackPeriod)

Parameters

lookBackPeriod Number of bars back to include in the calculation

series Any Series<double> type object such as an

indicator, Close, High, Low, etc...

Examples

protected override void OnBarUpdate()

{

 // Print the median price of the last 10 open prices

 //(current open price + look back period's 9 open prices before

that)

 double openMedian = GetMedian(Open, 9);

 Print("The median of the last 10 open prices is: " +

openMedian);

}

11.6.2.3.10 HighestBar()

Definition
Returns the number of bars ago the highest price value occurred within the specified look-

back period.

Method Return Value
An int value representing a value of bars ago.

Syntax
HighestBar(ISeries<double> series, int period)

Parameters

period The number of bars to include in the calculation

series Any Series<double> type object such as an

indicator, Close, High, Low, etc...

NinjaTrader 81972

© 2023 NinjaTrader, LLC

Examples

protected override void OnBarUpdate()

{

 // store the highest bars ago value

 int highestBarsAgo = HighestBar(High,

Bars.BarsSinceNewTradingDay);

 //evaluate high price from highest bars ago value

 double highestPrice = High[highestBarsAgo];

 //Printed result: Highest price of the session: 2095.5 -

occurred 24 bars ago

 Print(string.Format("Highest price of the session: {0} -

occurred {1} bars ago", highestPrice, highestBarsAgo));

}

11.6.2.3.11 IsFalling()

Definition
Evaluates a falling condition which is true when the current value is less than the value of 1

bar ago.

Method Return Value
This method returns true if a falling condition is present; otherwise, false.

Syntax
IsFalling(ISeries<double> series)

Parameters

series Any Series<double> type object such as an

indicator, Close, High, Low, etc...

Examples

protected override void OnBarUpdate()

{

 // If the 20 period SMA is falling (in downtrend) go short

 if (IsFalling(SMA(20)))

 EnterShort();

}

NinjaScript 1973

© 2023 NinjaTrader, LLC

11.6.2.3.12 IsRising()

Definition
Evaluates a rising condition which is true when the current value is greater than the value of 1

bar ago.

Method Return Value
This method returns true if a rising condition is present; otherwise, false.

Syntax
IsRising(ISeries<double> series)

Parameters

series Any Series<double> type object such as an

indicator, Close, High, Low, etc...

Examples

protected override void OnBarUpdate()

{

 // If the 20 period SMA is rising (in uptrend) go long

 if (IsRising(SMA(20)))

 EnterLong();

}

11.6.2.3.13 Least Recent Occurrence (LRO)

Definition
Returns the number of bars ago that the test condition evaluated to true within the specified

look back period expressed in bars. The LRO() method start from the furthest bar away and

works toward the current bar.

Note: This method does NOT work on multi-series strategies and indicators.

Method Return Value
An int value representing the number of bars ago. Returns a value of -1 if the specified test

condition did not evaluate to true within the look-back period.

Syntax
LRO(Func<bool> condition, int instance, int lookBackPeriod)

NinjaTrader 81974

© 2023 NinjaTrader, LLC

Warnings:

1. The "instance" parameter MUST be greater than 0.

2. The "lookBackPeriod" parameter MUST be greater than 0.

3. Please check the Log tab for any other exceptions that may be thrown by the condition

function parameter.

Parameters

condition A true/false expression

instance The occurrence to check for (1 is the least

recent, 2 is the 2nd least recent, etc...)

lookBackPeriod The number of bars to look back to check for the

test condition. The test evaluates on the current

bar and the bars within the look-back period.

Tip: The syntax for the "condition" parameter uses lambda expression syntax

Examples

protected override void OnBarUpdate()

{

 // Prints the high price of the least recent up bar over the

last 10 bars (current bar + look back period's 9 bars before that)

 int barsAgo = LRO(() => Close[0] > Open[0], 1, 9);

 if (barsAgo > -1)

 Print("The bar high was " + High[barsAgo]);

}

See Also
Most Recent Occurrence(MRO)

11.6.2.3.14 Low estBar()

Definition
Returns the number of bars ago the lowest price value occurred within the specified look-

back period.

http://msdn.microsoft.com/en-us/library/bb397687.aspx

NinjaScript 1975

© 2023 NinjaTrader, LLC

Method Return Value
An int value representing a value of bars ago.

Syntax
LowestBar(ISeries<double> series, int period)

Parameters

period The number of bars to check for the test

condition

series Any Series<double> type object such as an

indicator, Close, High, Low, etc...

Examples

protected override void OnBarUpdate()

{

 // store the lowest bar ago value

 int lowestBar = LowestBar(Low, Bars.BarsSinceNewTradingDay);

 //evaluate low price from lowest bar ago value

 double lowestPrice = Low[lowestBar];

 //Printed result: Lowest price of the session: 2087.25 -

occurred 362 bars ago

 Print(string.Format("Lowest price of the session: {0} - occurred

{1} bars ago", lowestPrice, lowestBar));

}

11.6.2.3.15 Most Recent Occurrence (MRO)

Definition
Returns the number of bars ago that the test condition evaluated to true within the specified

look back period expressed in bars. The MRO() method starts from the current bar works

away (backward) from it.

Note: This method does NOT work on multi-series strategies and indicators.

Method Return Value

NinjaTrader 81976

© 2023 NinjaTrader, LLC

An int value representing the number of bars ago. Returns a value of -1 if the specified test

condition did not evaluate to true within the look-back period.

Syntax
MRO(Func<bool> condition, int instance, int lookBackPeriod)

Warnings:

1. The "instance" parameter MUST be greater than 0.

2. The "lookBackPeriod" parameter MUST be greater than 0.

3. Please check the Log tab for any other exceptions that may be thrown by the condition

function parameter.

Parameters

condition A true/false expression

instance The occurrence to check for (1 is the most

recent, 2 is the 2nd most recent, etc...)

lookBackPeriod The number of bars to look back to check for the

test condition. The test evaluates on the current

bar and the bars within the look-back period.

Tip: The syntax for the "condition" parameter uses lambda expression syntax

Examples

protected override void OnBarUpdate()

{

 // Prints the high price of the most recent up bar over the last

10 bars (current bar + look back period's 9 bars before that)

 int barsAgo = MRO(() => Close[0] > Open[0], 1, 9);

 if (barsAgo > -1)

 Print("The bar high was " + High[barsAgo]);

}

http://msdn.microsoft.com/en-us/library/bb397687.aspx

NinjaScript 1977

© 2023 NinjaTrader, LLC

See Also
Least Recent Occurrence(LRO)

11.6.2.3.16 Slope()

Definition
Returns a measurement of the steepness of a price series (y value) measured by the change

over time (x value). The return value can also be thought of as the ratio between the

startBarsAgo and endBarsAgo parameters passed to the method.

The formula which is returned from the parameters passed is:

(series[endBarsAgo] - series[startBarsAgo]) / (startBarsAgo - endBarsAgo)

Note: The return value should NOT be confused with the angle (or radians) of a line that

displays on the chart.

Method Return Value
This method returns a double value indicating the slope of a line; A value of 0 returns if the

either the startBars or endBars parameters are less than 0 or both parameters are of equal

value.

Syntax
Slope(ISeries<double> series, int startBarsAgo, int endBarsAgo)

Warning: The "startBarsAgo" parameter MUST be greater than the "endBarsAgo"

parameter

Parameters

series Any Series<double> type object such as an

indicator, Close, High, Low, etc...

startBarsAgo The starting point of a series to be evaluated

endBarsAgo The ending point of a series to be evaluated

NinjaTrader 81978

© 2023 NinjaTrader, LLC

Tip: Thinking in degrees, for example a 1 to -1 return range would translate to 45 to -45.

To convert you could look into working with this formula - Math.Atan(Slope) * 180 / Math.PI

Examples

protected override void OnBarUpdate()

{

 // Prints the slope of the 20 period simple moving average of

the last 10 bars

 Print(Slope(SMA(20), 10, 0));

}

11.6.2.3.17 TickSize

Definition
The minimum fluctuation value which is always a value of 1-tick for the corresponding master

instrument.

Property Value
A double value that represents the minimum fluctuation of an instrument.

Syntax
TickSize

Warning: This property should NOT be accessed during State.SetDefaults from within

the OnStateChange() method, all bars series would be guaranteed to have loaded in

State.DataLoaded

Examples

// Prints the ticksize to the output window

Print("The ticksize of this instrument is " + TickSize);

// Prints the value of the current bar low less one tick size

double value = Low[0] - TickSize;

Print(value);

NinjaScript 1979

© 2023 NinjaTrader, LLC

11.6.2.3.18 ToDay()

Definition
Calculates an integer value representing a date.

Note: Integer representation of day is format as yyyyMMdd where January 8, 2015 would

be 20150108.

Method Return Value
An int value representing date structure

Syntax
ToDay(DateTime time)

Parameters

time A DateTime structure to calculate Note: See

also the Time property

Tip: NinjaScript uses the .NET DateTime structures which can be complicated for novice

programmers. If you are familiar with C# you can directly use DateTime structure

properties and methods for date and time comparisons otherwise use this method and the

ToTime() method.

Examples

protected override void OnBarUpdate()

{

 // Compare the date of the current bar to September 15, 2014

 if (ToDay(Time[0]) > 20140915)

 {

 // Do something

 }

}

11.6.2.3.19 ToTime()

Definition
Calculates an integer value representing a time.

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaTrader 81980

© 2023 NinjaTrader, LLC

Note: Integer representation of time is in the format Hmmss where 7:30 AM would be

73000 and 2:15:12 PM would be 141512.

Method Return Value
An int value representing a time structure

Syntax
ToTime(DateTime time)
ToTime(int hour, int minute, int second)

Parameters

time A DateTime structure to calculate Note: See

also the Time property

hour An int value representing the hour used for the

input

minute An int value representing the minute used for

the input

second An int value representing the second used for

the input

Tip: NinjaScript uses the .NET DateTime structure which can be complicated for novice

programmers. If you are familiar with C# you can directly use DateTime structure

properties and methods for date and time comparisons otherwise use this method and the

ToDay() method.

Examples

// Only trade between 7:45 AM and 1:45 PM

if (ToTime(Time[0]) >= 74500 && ToTime(Time[0]) <= 134500)

{

 // Strategy logic goes here

}

NinjaScript 1981

© 2023 NinjaTrader, LLC

//store start time as an int variable to be compared

int startTime = ToTime(9, 30, 00); // 93000

//only trade after 9:30AM

if (ToTime(Time[0]) >= startTime)

{

 // Strategy logic goes here

}

11.6.2.4 Attributes

The following section documents both .NET native and NinjaScript custom attributes which

are commonly used to define the behavior of a NinjaScript property or object. The attributes

outlined in the section are primarily used to customize how properties display on the UI, but

may also control or how the object is compiled and executed at run time.

Notes:

1. The .NET Framework supplies many other pre-defined system attributes which can

technically be used for custom NinjaScript programming, but are NOT covered in this

section and therefore are considered unsupported. 3rd party developers are

encourage to explore additional usage, but the resulting behavior CANNOT be

guaranteed.

2. Not all attributes can be applied to all object types. For example, applying an

attribute that is defined to target an class will NOT compile should you attempt to

apply this attribute to a type of property.

Common Attributes

BrowsableAttribute Determines if a property should

be displays in the NinjaTrader UI's

property grid

CategoryOrderAttribute Determines the sequence in

which a NinjaScript object's

Display.GroupName categories

are arranged in relation to other

categories in the UI.

DisplayAttribute Determines how a property is

displays on the NinjaTrader UI's

property grid.

https://msdn.microsoft.com/en-us/library/5x6cd29c(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/2e39z096.aspx

NinjaTrader 81982

© 2023 NinjaTrader, LLC

NinjaScriptPropertyAttribute Determines if a property should

be included in the NinjaScript

object's constructor as a

parameter

RangeAttribute Determines if the value of a

property is valid within a specified

range

XmlIgnoreAttribute Determines if a property

participates in the XML

serialization routines (saving

workspaces or templates)

Applying Attributes
Attributes are applied directly before the property, method, or class, and are identified by

wrapping brackets:

[AnExampleAttribute] // a pseudo-attribute demonstrating how to

target an object

public object AnExampleProperty // the property that is being

targeted

{ get; set; }

Tip: Conventionally, the suffix "attribute" is provided to the object's name to help

determine that is an attribute, however C# does not require you to specify the full name of

an attribute. For example DisplayAttribute() will compile the same as Display().

11.6.2.4.1 Brow sableAttribute

Definition
Determines if the following declared property displays in the NinjaTrader UI's property grid. By

default, all public properties in a NinjaScript object display, however this behavior can be

changed by setting the Browsable attribute to false.

Note: The BrowsableAttribute object is a general purpose attribute made available from

the .NET Framework. The information on this page is written to demonstrate how you may

use this object within NinjaScript conventions used with the NinjaTrader UI's property grid

NinjaScript 1983

© 2023 NinjaTrader, LLC

(e.g., an indicator dialog). There are more methods and properties that you can learn

about from MSDN's BrowsableAttribute Class which are NOT covered in this topic; as

such there is NO guarantee they will work with the NinjaTrader UI's property grids.

Syntax
[Browsable(bool)]

Parameters
A bool which sets a value indicating if a property is browsable; default value is true

Examples

#region Properties

// do not show this value on the UI's property grid

[Browsable(false)]

public bool MyBool

{ get; set; }

#endregion

11.6.2.4.2 CategoryOrderAttribute

Definition
Determines the sequence in which a NinjaScript object's Display.GroupName categories are

arranged in relation to other categories in the UI. The default behavior will display each

GroupName of an object in alphabetical order, however this behavior can be changed by

defining the CategoryOrder attribute before the object's declaration.

Notes:

· The CategoryOrder attribute is ONLY valid on class-level declarations.

· Categories with values less than 1,000,000 appear at the very top of the property grid

(excluding the Strategy Analyzer "General" category)

· NinjaTrader UI reserves using values ending in 000, 500 and the values documented

below are subject to change

· If you wish to inject your category between a standard NinjaScript category, please refer

to the table below to locate the appropriate position (e.g., to set a property after "Data

Series" and before the "Setup" use value of 2,000,001)

NinjaScript Indicators

https://msdn.microsoft.com/en-us/library/system.componentmodel.browsableattribute(v=vs.110).aspx

NinjaTrader 81984

© 2023 NinjaTrader, LLC

The follow table applies for Indicators configured from a Chart Indicator, Market Analyzer

Indicator Column, or SuperDOM Indicator:

Parameters 1000000

Data Series 2000000

Time Frame 3000000

Setup 4000000

Visual 5000000

Lines 6000000

Plots 7000000

NinjaScript Strategies
The following table applies to Chart Strategies, Control Center Strategies Grid, and the

Strategy Analyzer

Parameters 1000000

Data Series 2000000

Time Frame 3000000

Setup 4000000

Historical Fill Processing 5000000

Optimize 6000000

Order Handling 7000000

Order Properties 8000000

NinjaScript 1985

© 2023 NinjaTrader, LLC

Note: The Strategy Analyzer "General" category is purposely excluded from this table and

will always show on the top of the parameter grid.

Syntax
[Gui.CategoryOrder(string category, int order)]

Warning: Attempting to modify the default NinjaScript Category ordering is NOT

supported. Trying to do so may result in unexpected outcomes.

Parameters

category A string identifying the

GroupName to be categorize

order An int determining the sequence

the Category displays

Examples

[Gui.CategoryOrder("My Strings", 1)] // display "My Strings" first

[Gui.CategoryOrder("My Bools", 2)] // then "My Bools"

[Gui.CategoryOrder("My Ints", 3)] // and finally "My Ints"

public class MyCustomIndicator : Indicator

{

 #region Properties

 [Display(GroupName="My Ints")]

 public int MyCustomInt

 { get; set; }

 [Display(GroupName="My Bools")]

 public bool MyCustomBool

 { get; set; }

 [Display(GroupName="My Strings")]

 public string MyCustomString

 { get; set; }

 #endregion

}

NinjaTrader 81986

© 2023 NinjaTrader, LLC

11.6.2.4.3 DisplayAttribute

Definition
Determines how the following declared property display on the NinjaTrader UI's property grid.

Note: The DisplayAttribute object is a general purpose attribute made available from the

.NET Framework. The information on this page is written to demonstrate how you may

use this object within NinjaScript conventions used with the NinjaTrader UI's property grid

(e.g., an indicator dialog). There are more methods and properties that you can learn

about from MSDN's DisplayAttribute Class which are NOT covered in this topic; as such

there is NO guarantee they will work with the NinjaTrader UI's property grids.

Syntax
[Display(Name=string)]

[Display(Description=string)]

[Display(GroupName=string)]

[Display(Order=int)]

Warning: The "Name" parameter MUST be unique for each property of a particular

object. Sharing the same Name can have undesirable consequences on various features

of the property grid.

Parameters

Name A string which sets the text used

to display the property on the UI

Description A string which sets the tool tip

used to describe the property

from the UI

Note: Expandable properties will

NOT display a tool tip (e.g.,

SimpleFont, Stroke, or any

custom component which are a

type of an

ExpandableObjectConverter)

GroupName A string which sets a name that

is used to group various

properties in the UI. If no

https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.displayattribute(v=vs.110).aspx

NinjaScript 1987

© 2023 NinjaTrader, LLC

GroupName is specified,

properties will be listed in the

generic "Parameters" section.

Order An int which sets the sequence

the property is categorized in

relation to other properties in the

UI.

Tips:

1. Multiple named parameters can be written separated by a comma during a single

declaration as demonstrated in the example below.

2. You may have noticed the default NinjaTrader types such as indicators or strategies

use a "ResourceType = typeof(Custom.Resource)" property in the DisplayAttribute. This

is done for localization purposes, so the default NinjaTrader UI translates to other

supported international languages, but is not required for your custom NinjaScript

types. The ResourceType property can be safely ignored and left out in your custom

development.

Examples

#region Properties

// set how the property displays from the UI property grid

[Display(Name="My Period", Order=1, GroupName="My Parameters")]

public int MyPeriod

{ get; set; }

#endregion

11.6.2.4.4 NinjaScriptPropertyAttribute

Definition
Determines if the following declared property should be included in the NinjaScript object's

constructor as a parameter. This is useful if you plan on calling a NinjaScript object from

another (e.g., calling a custom indicator from a strategy) or customizing the display

parameter data on a grid or from a chart. This also used to make parameters optimizable in

the Strategy Analyzer.

NinjaTrader 81988

© 2023 NinjaTrader, LLC

Warning: Only types which can be Xml Serialized should be marked as a

NinjaScriptAttribute, otherwise you may run into errors when persisting values in various

scenarios (e.g., saving workspace, or running Strategy Optimizations). Should you have a

property you wish to use as user defined input, you will need to implement a secondary

simple type (such as an int or string) as the value to be serialized as user input. Please

see the example below which demonstrates using a simple type as the

NinjaScriptProperty against types which cannot be serialized

Syntax
[NinjaScriptProperty]

Parameters
This object contains no parameters

Examples

 Basic usage of NinjaScriptProperty

#region Properties

// set NinjaScriptProperty to ensure this property is used when

calling from another object

[NinjaScriptProperty]

public bool MyBool

{ get; set; }

// do not set NinjaScriptProperty since this property is not

required to call

// nor do we wish to display it on the chart label

public int MyInt

{ get; set; }

#endregion

NinjaScript 1989

© 2023 NinjaTrader, LLC

 Using a simple type as the NinjaScriptProperty against types
which cannot be serialized

[NinjaScriptProperty]

[XmlIgnore] // cannot serialize type of TimeSpan, use the

BeginTimeSpanSerialize object to persist properties

public TimeSpan BeginTimeSpan

{ get; set; }

// users will configure this "string" as the TimeSpan which will be

set as a TimeSpan object used in data processing

[Browsable(false)] // prevents this property from showing up on the

UI

[Display(Name = "Begin TimeSpan", GroupName =

"NinjaScriptStrategyParameters", Order = 1)]

public string BeginTimeSpanSerialize

{

 get { return BeginTimeSpan.ToString(); }

 set { BeginTimeSpan = TimeSpan.Parse(value); }

}

11.6.2.4.5 RangeAttribute

Definition
Determines if the value of the following declared property is valid within a specified range.

These values are checked when the NinjaScript object has reached State.Configure. For

configuration through the UI (e.g., the user has selected Apply or OK to configure the value

from the indicator dialog box) and determines to be invalid, the value will be automatically

rounded to the nearest minimum or maximum value. Should the property be set as a

NinjaScriptAttribute and called from a hosting NinjaScript object and determines to be invalid,

an exception will be thrown and the hosted indicator will NOT execute.

Note: The RangeAttribute object is a general purpose attribute made available from the

.NET Framework. The information on this page is written to demonstrate how you may

use this object within NinjaScript conventions used for the NinjaTrader UI's property grid

(e.g., an indicator dialog). There are more methods and properties that you can learn

about from MSDN's RangeAttribute Class which are NOT covered in this topic; as such

there is NO guarantee they will work with the NinjaTrader UI's property grids.

Syntax
[Range(int minimum, int maximum)]

[Range(double minimum, double maximum)]

[Range(type type, string minimum, string aximum)]

Parameters

https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.rangeattribute(v=vs.110).aspx

NinjaTrader 81990

© 2023 NinjaTrader, LLC

maximum Defines the highest allowed value

the user can set for the property

minimum Defines the lowest allowed value

the user can set for the property

type The type of object to test

Examples

#region Properties

// set range between 1 and the highest possible integer

[Range(1, int.MaxValue)]

public int Myint

{ get; set; }

//set range between .001 and 1

[Range(.001, 1.0)]

public double MyDouble

{ get; set; }

// set range as a type DateTime between these dates

[Range(typeof(DateTime), "01/01/1990", "12/31/2015")]

public DateTime MyTime

{ get; set; }

#endregion

11.6.2.4.6 TypeConverterAttribute

Definition
Binds an object or property to a specific TypeConverter implementation. This is commonly

used to customize property descriptors on the NinjaTrader property grid.

Notes:

· If you are looking to extend behavior of an Indicator or Strategy (e.g., values of one

property influence another), you must implement either an IndicatorBaseTypeConverter

or StrategyBaseTypeConveter. This is to ensure default property descriptor behavior

works as intended.

· For converting types of a specific property, implementing a standard TypeConverter is

sufficient

https://msdn.microsoft.com/en-us/library/system.type(v=vs.110).aspx

NinjaScript 1991

© 2023 NinjaTrader, LLC

· A working NinjaScript demo can be found through the reference sample on "Using a

TypeConverter to Customize Property Grid Behavior"

· The TypeConverterAttribute object is a general purpose attribute made available from

the .NET Framework. The information on this page is written to demonstrate how you

may use this object within NinjaScript conventions used with the NinjaTrader UI's

property grid (e.g., an indicator dialog). There are more methods and properties that you

can learn about from MSDN's TypeConverterAttribute Class which are NOT covered in

this topic; as such there is NO guarantee they will work with the NinjaTrader UI's

property grids.

Syntax
TypeConverterAttribute(string)

TypeConverterAttribute(type)

Examples

// Only applied to this property: can just implement a general

TypeConveter

[TypeConverter(typeof(MyCustomBoolConveter))]

public bool CustomBool

// Applied to the entire indicator: must implement an

IndicatorBaseTypeConveter

[TypeConverter("NinjaTrader.NinjaScript.Indicators.MyConverter")]

public class MyCustomIndicator : Indicator

{

}

// Applied to the entire strategy: must implement a

StrategyBaseTypeConveter

[TypeConverter("NinjaTrader.NinjaScript.Strategies.MyCustomConveter

")]

public class MyCustomStrategy : Strategy

{

}

11.6.2.4.7 XmlIgnoreAttribute

Definition
Determines if the following declared property participates in the XML serialization routines

which are used to save NinjaScript objects to a workspace or template. The default behavior

will attempt to serialize all public properties, however there may be some types of objects

https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverterattribute(v=vs.110).aspx

NinjaTrader 81992

© 2023 NinjaTrader, LLC

which cannot be serialized, or you may not wish for this property to be saved/restored.

Should that be the case, you can optionally set the object to be ignored by defining the

XmlIgnore attribute.

Note: The XmlIgnoreAttribute object is a general purpose attribute made available from

the .NET Framework. The information on this page is written to demonstrate how you

may use this object within NinjaScript conventions to be used for the NinjaTrader

serialization (e.g., saving an indicator property to a workspace). There are more methods

and properties that you can learn about from MSDN's XmlIgnoreAttribute Class which are

NOT covered in this topic; as such there is NO guarantee they will work with the

NinjaTrader serialization.

Syntax
[XmlIgnore]

[XmlIgnore(bool)]

Parameters
This attribute does not require any parameters; default value is true and usage will ensure the

property is ignored by XML routines.

Examples

#region Properties

[XmlIgnore] // ensures that the property will NOT be

saved/recovered as part of a chart template or workspace

public Brush MyBrush

{ get; set; }

#endregion

Tip: A complete example of the usage of XmlIgnore attribute and workspace serialization

can be found in the tips section of our support forum on User Definable Color Inputs

11.6.2.5 Bars

Definition
Represents the data returned from the historical data repository. The Bars object contain

several methods and properties for working with bar data.

https://msdn.microsoft.com/en-us/library/system.xml.serialization.xmlignoreattribute(v=vs.110).aspx

NinjaScript 1993

© 2023 NinjaTrader, LLC

Warning: The Bars object and its member should NOT be accessed within the

OnStateChange() method before the State has reached State.DataLoaded

Additional Access Information
Members within the Bars class can be accessed without a null reference check in the
OnBarUpdate() event handler. When the OnBarUpdate() event is triggered, there will always
be a Bar object which holds the method or property. Should you wish to access these
members elsewhere, check for null reference first. e.g. if (Bars != null)

Methods and Properties

BarsSinceNewTra

dingDay

Number of bars that have elapsed since the start

of the trading day

GetAsk() Returns the Ask price

GetBar() Returns the bar index based on time

GetBid() Returns the Bid price

GetClose() Returns the closing price

GetDayBar() Returns a Bar object that represents a trading

day whose properties for open, high, low, close,

time and volume can be accessed.

GetHigh() Returns the High price

GetLow() Returns the Low price

GetOpen() Returns the opening price

GetTime() Returns the time

GetVolume() Returns the volume

IsFirstBarOfSessio

n

Returns true if the bar is the first bar of a

session

IsFirstBarOfSessio

nByIndex()

Returns true if the bar is the first bar of a

session

NinjaTrader 81994

© 2023 NinjaTrader, LLC

IsLastBarOfSessio

n

Returns true if the bar is the last bar of a

session

IsResetOnNewTra

dingDay

Returns true if the chart bars should reset on a

new trading day

IsTickReplay Returns true if the bars are using tick replay

PercentComplete Value indicating the completion percent of a bar

TickCount Total number of ticks of the current bar

ToChartString() Returns the bars series as a string formatted as

the series would be displayed in the user

interface

11.6.2.5.1 BarsSinceNew TradingDay

Definition
Returns the number of bars elapsed since the start of the trading day relative to the current

bar processing.

Property Value
An int value representing the number of bars elapsed. This property cannot be set.

Syntax
Bars.BarsSinceNewTradingDay

Examples

// Only process strategy logic after five bars have posted since

the start of the trading day

protected override void OnBarUpdate()

{

 if (Bars.BarsSinceNewTradingDay >= 5)

 {

 //Strategy logic here

 }

}

11.6.2.5.2 GetAsk()

Definition
Returns the ask price value at a selected absolute bar index value.

NinjaScript 1995

© 2023 NinjaTrader, LLC

Notes:

· This method does NOT return the current real-time asking price, but rather the historical

/ real-time asking price at the desired index. For obtaining the current real-time asking

price, please use GetCurrentAsk().

· This method returns expected values when 1 tick bid / ask stamped data is used and

available from your provider.

Method Return Value
A double value that represents the asking price at the desired bar index.

Syntax
Bars.GetAsk(int index)

Parameters

index The absolute bar index value used

Examples

protected override void OnBarUpdate()

{

 // If the Highs of the two most recent bars are falling, place

a long stop market order

 // at the Ask price

 if (High[0] < High[1] && High[1] < High[2])

 {

 EnterLongStopMarket(Bars.GetAsk(CurrentBar));

 }

}

11.6.2.5.3 GetBar()

Definition
Returns the first bar that matches the time stamp of the "time" parameter provided.

Note: If the time parameter provided is older than the first bar in the series, a bar index of

0 is returned. If the time stamp is newer than the last bar in the series, the last absolute

bar index is returned.

Method Return Value

NinjaTrader 81996

© 2023 NinjaTrader, LLC

An int value representing an absolute bar index value.

Syntax
Bars.GetBar(DateTime time)

Parameters

time Time stamp to be converted to an absolute bar

index

Examples

// Check that its past 9:45 AM

if (ToTime(Time[0]) >= ToTime(9, 45, 00))

{

 // Calculate the bars ago value for the 9 AM bar for the current

day

 int barsAgo = CurrentBar - Bars.GetBar(new DateTime(2006, 12,

18, 9, 0, 0));

 // Print out the 9 AM bar closing price

 Print("The close price on the 9 AM bar was: " +

Close[barsAgo].ToString());

}

11.6.2.5.4 GetBid()

Definition
Returns the bid price value at a selected absolute bar index value.

Notes:

· This method does NOT return the current real-time bid price, but rather the historical /

real-time bid price at the desired index. For obtaining the current real-time bid price,

please use GetCurrentBid().

· This method returns expected values when 1 tick bid / ask stamped data is used and

available from your provider.

Method Return Value
A double value that represents the biding price at the desired bar index.

Syntax

NinjaScript 1997

© 2023 NinjaTrader, LLC

Bars.GetBid(int index)

Parameters

index The absolute bar index value used

Examples

protected override void OnBarUpdate()

{

 // If the Highs of the two most recent bars are falling, place a

long stop market order

 // at the Ask price

 if (Low[0] > Low[1] && Low[1] < Low[2])

 {

 EnterShortStopMarket(Bars.GetBid(CurrentBar));

 }

}

11.6.2.5.5 GetClose()

Definition
Returns the closing price at the current bar index value.

Method Return Value
A double value that represents the close price at the desired bar index.

Syntax
Bars.GetClose(int index)

Parameters

index An int representing an absolute bar index value

Examples

NinjaTrader 81998

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // loop through only the rendered bars on the chart

 for(int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 // get the close price at the selected bar index value

 double closePrice = Bars.GetClose(barIndex);

 Print("Bar #" + barIndex + " closing price is " +

closePrice);

 }

}

11.6.2.5.6 GetDayBar()

Definition
Returns a virtual historical Bar object that represents a trading day whose properties for open,

high, low, close, time and volume can be accessed.

Notes:

1. The bar object returned is a "virtual bar" built from the underlying bar series and its

configured session. Since the bar object is virtual, its property values are calculated

based on session definitions contained in the trading day only. The returned bar object

does NOT necessarily represent the actual day. For accessing a true "Daily" bar,

please see use AddDataSeries() and use the BarsPeriodType.Day as the bars period.

2. GetDayBar() should ONLY be used for accessing prior trading day data. To access

current trading day data, use the CurrentDayOHL() method.

Method Return Value
A virtual bar object representing the current configured session. Otherwise null if there is

insufficient intraday data

Syntax
The properties below return double values:
Bars.GetDayBar(int tradingDaysBack).Open

Bars.GetDayBar(int tradingDaysBack).High

Bars.GetDayBar(int tradingDaysBack).Low

Bars.GetDayBar(int tradingDaysBack).Close

The property below returns a DateTime structure:
Bars.GetDayBar(int tradingDaysBack).Time

http://msdn.microsoft.com/en-us/library/system.datetime.aspx

NinjaScript 1999

© 2023 NinjaTrader, LLC

The property below returns an int value:
Bars.GetDayBar(int tradingDaysBack).Volume

Warning: You must check for a null reference to ensure there is sufficient intraday data to

build a trading day bar.

Parameters

tradingDaysBack An int representing the number of the trading

day to get OHLCV and time information from

Examples

protected override void OnBarUpdate()

{

 // Check to ensure that sufficient intraday data was supplied

 if(Bars.GetDayBar(1) != null)

 Print("The prior trading day's close is: " +

Bars.GetDayBar(1).Close);

}

11.6.2.5.7 GetHigh()

Definition
Returns the high price at the selected bar index value.

Method Return Value
A double value that represents the high price at the desired bar index.

Syntax
Bars.GetHigh(int index)

Parameters

index An int representing an absolute bar index value

Examples

NinjaTrader 82000

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // loop through only the rendered bars on the chart

 for(int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 // get the high price at the selected bar index value

 double highPrice = Bars.GetHigh(barIndex);

 Print("Bar #" + barIndex + " high price is " + highPrice);

 }

}

11.6.2.5.8 GetLow ()

Definition
Returns the low price at the selected bar index value.

Method Return Value
A double value that represents the low price at the desired bar index.

Syntax
Bars.GetLow(int index)

Parameters

index An int representing an absolute bar index value

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // loop through only the rendered bars on the chart

 for(int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 // get the low price at the selected bar index value

 double lowPrice = Bars.GetLow(barIndex);

 Print("Bar #" + barIndex + " low price is " + lowPrice);

 }

}

NinjaScript 2001

© 2023 NinjaTrader, LLC

11.6.2.5.9 GetOpen()

Definition
Returns the open price at the selected bar index value.

Method Return Value
A double value that represents the open price at the desired bar index.

Syntax
Bars.GetOpen(int index)

Parameters

index An int representing an absolute bar index value

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // loop through only the rendered bars on the chart

 for(int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 // get the open price at the selected bar index value

 double openPrice = Bars.GetOpen(barIndex);

 Print("Bar #" + barIndex + " open price is " + openPrice);

 }

}

11.6.2.5.10 GetSessionEndTime()

Definition
Returns the daily bar session ending time stamp relative to the current bar index value.

Note: This method is ONLY intended for bars built from daily data. If called on intraday

data, GetSessionEndTime() will return the Bars.GetTime() value.

Method Return Value
A DateTime structure that represents the daily bars ending time stamp at the desired bar

index; intraday bars will return the time stamp at the current bar index value.

NinjaTrader 82002

© 2023 NinjaTrader, LLC

Syntax
Bars.GetSessionEndTime(int index)

Parameters

index An int representing an absolute bar index value

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // loop through only the rendered bars on the chart

 for (int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 // get the time stamp at the selected bar index value

 DateTime timeValue = Bars.GetSessionEndTime(barIndex);

 Print("Bar #" + barIndex + " time stamp is " + timeValue);

 }

}

11.6.2.5.11 GetTime()

Definition
Returns the time stamp at the current bar index value.

Note: This method will return what is displayed in the chart's data box. For formatting

purposes, the value returned is NOT guaranteed be equal to the TimeSeries value. If you

are using daily bars and need the session end time, you should use

Bars.GetSessionEndTime() instead.

Method Return Value
A DateTime structure that represents the time stamp at the desired bar index.

Syntax
Bars.GetTime(int index)

Parameters

index An int representing an absolute bar index value

NinjaScript 2003

© 2023 NinjaTrader, LLC

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // loop through only the rendered bars on the chart

 for(int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 // get the time stamp at the selected bar index value

 DateTime timeValue = Bars.GetTime(barIndex);

 Print("Bar #" + barIndex + " time stamp is " + timeValue);

 }

}

11.6.2.5.12 GetVolume()

Definition
Returns the volume at the selected bar index value.

Method Return Value
A long value represents the volume at the desired bar index.

Syntax
Bars.GetVolume(int index)

Parameters

index An int representing an absolute bar index value

Examples

NinjaTrader 82004

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // loop through all the rendered bars on the chart

 for(int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 // get the volume value at the selected bar index value

 long volumeValue = Bars.GetVolume(barIndex);

 Print("Bar #" + barIndex + " volume value is " +

volumeValue);

 }

}

11.6.2.5.13 IsFirstBarOfSession

Definition
Indicates if the current bar processing is the first bar updated in a trading session.

Note: This property always returns true on the very first bar processed (i.e., CurrentBar

== 0). The represented time of the bar will NOT necessarily be equal to the trading hours

start time (e.g., if you request 50 1-minute bars at 11:50:00 AM, the first bar processed of

the session would be 11:00:00 AM). Loading a data series based on "dates" (Days or

custom range) ensures that the first bar processed matches hours defined by the session

template.

Property Value
This property returns true if the bar is the first processed in a session; otherwise, false. This

property is read-only.

Warning: This property will always return false on non-intraday bar periods (e.g., Day,

Month, etc). For checking for new non-intraday bar updates, please see IsFirstTickOfBar

Syntax
Bars.IsFirstBarOfSession

Tip: For checking at a specified bar index, please see IsFirstBarOfSessionByIndex()

NinjaScript 2005

© 2023 NinjaTrader, LLC

Examples

protected override void OnBarUpdate()

{

 // Print the current bar number of the first bar processed for

each session on a chart

 if (Bars.IsFirstBarOfSession)

 Print(string.Format("Bar number {0} was the first bar

processed of the session at {1}.", CurrentBar, Time[0]));

}

11.6.2.5.14 IsFirstBarOfSessionByIndex()

Definition
Indicates if the selected bar index value is the first bar of a trading session.

Property Value
This property returns true if the bar is the first bar of a session; otherwise, false. This

property is read-only.

Syntax
Bars.IsFirstBarOfSessionByIndex(int index)

Warning: This property will always return false on non-intraday bar periods (e.g., Day,

Month, etc)

Parameters

index An int representing an absolute bar index value

Examples

NinjaTrader 82006

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // loop through only the rendered bars on the chart

 for(int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 // check if the rendered bar is the first bar of the trading

session

 if (Bars.IsFirstBarOfSessionByIndex(barIndex))

 {

 DateTime slotTimeAtBarIndex =

chartControl.GetTimeBySlotIndex(barIndex);

 Print(string.Format("Bar index {0} was the first bar of

the session at slot time {1}.", barIndex, slotTimeAtBarIndex));

 }

 }

}

11.6.2.5.15 IsLastBarOfSession

Definition
Indicates if the current bar processing is the last bar updated in a trading session.

Notes:

· This property will always return false on non-intraday bar periods (e.g., Day, Month, etc.)

· When running Calculate.OnEachTick / OnPriceChange, this property will always

return true on the most current real-time bar since it is the last bar that is updating in the

trading session. If you need to find a bar which coincides with the session end time,

please use the SessionIterator.ActualSessionEnd.

Property Value
This property returns true if the bar is the last processed in a session; otherwise, false. This

property is read-only.

Syntax
Bars.IsLastBarOfSession

Examples

NinjaScript 2007

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print the current bar number of the first bar processed for

each session on a chart

 if(Bars.IsLastBarOfSession)

 Print(string.Format("Bar number {0} was the last bar

processed of the session at {1}.", CurrentBar, Time[0]));

}

11.6.2.5.16 IsResetOnNew TradingDay

Definition
Indicates if the bars series is using the Break EOD data series property.

Property Value
This property returns true if the bars series should reset on a new trading day; otherwise,

false. This property is read-only.

Syntax
Bars.IsResetOnNewTradingDay

Tip: This property can be helpful in determine on how to amend new bar data when

working with a BarType

Examples

NinjaTrader 82008

© 2023 NinjaTrader, LLC

protected override void OnDataPoint(Bars bars, double open, double

high, double low, double close, DateTime time, long volume, bool

isBar, double bid, double ask)

{

 // create a session iterator to keep track of session related

information

 if(SessionIterator == null)

 SessionIterator = new SessionIterator(bars);

 // determine if the bars are in a new session

 bool isNewSession = SessionIterator.IsNewSession(time, isBar);

 if(isNewSession)

 SessionIterator.GetNextSession(time, isBar);

 // If bars are using "Break end of day", add a new bar for next

session

 if(bars.IsResetOnNewTradingDay && isNewSession))

 AddBar(bars, open, high, low, close, time, volume);

 else

 {

 // do something with existing bar values

 }

}

11.6.2.5.17 IsTickReplay

Definition
Indicates if the bar series is using the Tick Replay data series property.

Property Value
This property returns true if the bar series is using tick replay; otherwise, false. This property

is read-only.

Syntax
Bars.IsTickReplay

Warning: A Tick Replay indicator or strategy CANNOT use a MarketDataType.Ask or

MarketDataType.Bid series. Please see Developing for Tick Replay for more

information.

Examples

NinjaScript 2009

© 2023 NinjaTrader, LLC

private double askPrice;

protected override void OnMarketData(MarketDataEventArgs

marketDataUpdate)

{

 if(Bars.IsTickReplay)

 {

 // if using tick replay, get the current ask price associated

with the tick

 askPrice = marketDataUpdate.Ask;

 }

 else // otherwise, get the real-time market data price during

MarketDataType.Ask event

 askPrice = marketDataUpdate.MarketDataType ==

MarketDataType.Ask ? marketDataUpdate.Price : double.MinValue;

 // only print if a value is set

 if(askPrice != double.MinValue)

 {

 Print("ask price: " + askPrice);

 }

}

11.6.2.5.18 PercentComplete

Definition
Returns a value indicating the percentage complete of the real-time bar processing.

Notes:

1. Since a historical bar is complete, values during State.Historical should be ignored

(also the case with TickReplay bars)

2. Some BarsTypes may not be compatible with the PercentComplete property. In these

cases, a value of 0 always returns (e.g., Range, Renko, Point & Figure, Kagi,

LineBreak, and some other 3rd party bars types)

Property Value
A double value representing a percent e.g. a value of .5 indicates the bar was at 50%. This

property is read-only.

Syntax
Bars.PercentComplete

Tip: If you are developing a custom BarsType, please use the GetPercentComplete()

NinjaTrader 82010

© 2023 NinjaTrader, LLC

method used to calculate the value returned by PercentComplete

Examples

protected override void OnBarUpdate()

{

 if(State == State.Realtime)

 {

 Draw.TextFixed(this, "barstatus",

Bars.PercentComplete.ToString("P2"), TextPosition.BottomRight);

 }

}

11.6.2.5.19 TickCount

Definition
Returns the total number of ticks of the current bar processing.

Note: For historical usage, you must use Calculate.OnEachTick with TickReplay

enabled; otherwise a value of 1 will returned.

Property Value
A long value that represents the total number of ticks of the current bar.

Syntax
Bars.TickCount

Examples

// Prints the tick count to the output window

Print("The tick count of the current bar is " +

Bars.TickCount.ToString());

11.6.2.5.20 ToChartString()

Definition
Returns the bars series as a formatted string, including the Instrument.FullName, BarsPeriod

Value, and BarsPeriodType name.

NinjaScript 2011

© 2023 NinjaTrader, LLC

Note: To obtain a return value which matches the user configured ChartBars Label

property, please see the ChartBars.ToChartString() method

Syntax
Bars.ToChartString()

Return Value
A string value that represents the bars series

Parameters
This method does not accept any parameters

Examples

protected override void OnBarUpdate()

{

 // print the chart string on start up

 if(CurrentBar == 0)

 Print(Bars.ToChartString()); // ES 09-15 (60 Minute)

}

11.6.2.6 Charts

The following section covers information related to accessing chart related data, such as

ChartControl, ChartBars, ChartScales, and ChartPanels, and advanced Indicator Rendering.

In this section

1.

ChartBar

s

The Chart's Primary Data Series which the NinjaScript

object is running

2.

ChartCo

ntrol

The entire grid hosting the chart including the X-axis,

additional panels, and chart related properties

3.

ChartPa

nel

The Panel that the indicator object is running

4.

ChartSc

The Y-axis of the indicator object's panel

NinjaTrader 82012

© 2023 NinjaTrader, LLC

ale

A chart's objects can be broken down into the four following areas:

11.6.2.6.1 ChartBars

The ChartBars class provides GUI access related methods and properties to the primary

bars series configured on the Chart through the Data Series menu. For data access

information related to the NinjaScript input's bars series, please use the Bars Series object

(or the BarsArray for multi-series input)

Note: A ChartBars object will ONLY exist should the hosting NinjaScript type be loaded

through a Chart. For example, a Strategy would have access to a ChartBars property

when running on a Chart, but would NOT when loaded through the Strategies Grid or

Strategy analyzer.

NinjaScript 2013

© 2023 NinjaTrader, LLC

Warning: It is crucial to check for object references before accessing the ChartBars

otherwise possible null reference errors can be expected depending on where the

NinjaScript object was started. See example below

Methods and Properties

Bars Data returned from the historical

data repository.

Count The total number of ChartBars
that exist on the chart

NinjaTrader 82014

© 2023 NinjaTrader, LLC

FromIndex An index value representing the

first bar painted on the chart.

GetBarIdxByTime() An ChartBar index value

calculated from a time value on

the chart.

GetBarIdxByX() Returns the ChartBar index value

at a specified x-coordinate relative

to the ChartControl.

GetTimeByBarIdx() The ChartBars time value

calculated from a bar index value

on the chart.

Panel The Panel index value that the

ChartBars eside.

Properties Various ChartBar properties that

have been configured from the

Chart's Data Series menu.

ToChartString() A string formatted for the Chart's

Data Series Label as well as the

period.

ToIndex An index value representing the

last bar painted on the chart.

Example

NinjaScript 2015

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 if(ChartBars != null)

 {

 Print("The starting number of bars on the chart is " +

ChartBars.Bars.Count);

 }

 else

 {

 Print("Strategy was not loaded from a chart, exiting

strategy...");

 return;

 }

 }

}

11.6.2.6.1.1 Bars

Definition
Represents the data returned from the historical data repository in relation to the primary

ChartBars object configured on the chart. See also Bars

Property Value
A Bars object

Syntax
ChartBars.Bars

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 if(ChartBars != null && ChartBars.Bars != null)

 {

 Print("The configured bars period type represented on the

chart is" + ChartBars.Bars.BarsPeriod.BarsPeriodType);

 }

}

11.6.2.6.1.2 Count

Definition
The total number of ChartBars in the charts primary data series

NinjaTrader 82016

© 2023 NinjaTrader, LLC

Property Value
An int value representing the the total number of bars.

Syntax
ChartBars.Count

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 if(ChartBars != null)

 {

 Print("ChartBars contain " + ChartBars.Count + " bars");

 //Output: ChartBars contain 73 bars

 }

}

11.6.2.6.1.3 FromIndex

Definition
An index value representing the first bar rendered on the chart. See also ToIndex.

Note: This value is NOT the first value that exists on the ChartBars, but rather the first

bar index that is within the viewable range of the chart canvas area. This value changes

as the user interacts with the ChartControl time-scale (x-axis).

Property Value
An int representing the first bar index painted on the chart

Syntax
ChartBars.FromIndex

Examples

NinjaScript 2017

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 if (ChartBars != null)

 {

 // loop through all of the viewable range of the chart

 for (int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 // print the High value for each index within the viewable

range

 Print(High.GetValueAt(barIndex));

 }

 }

}

11.6.2.6.1.4 GetBarIdxByTime()

Definition
Returns the ChartBars index value calculated from the time parameter provided.

Method Return Value
An int representing the bar index value at a specific time

Syntax
ChartBars.GetBarIdxByTime(ChartControl chartControl, DateTime time)

Method Parameters

chartControl The ChartControl object used to

determine the chart's time axis

time The DateTime value used to

convert to a ChartBar index value

Examples

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx

NinjaTrader 82018

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (ChartBars != null)

 {

 Print(ChartBars.GetBarIdxByTime(ChartControl, Time[0]));

 }

}

11.6.2.6.1.5 GetBarIdxByX()

Definition
Returns the ChartBars index value at a specified x-coordinate relative to the ChartControl.

Method Return Value
An int value representing the bar index

Syntax
ChartBars.GetBarIdxByX(ChartControl chartControl, int x)

Method Parameters

chartControl The ChartControl object used to

determine the chart's time axis

x The x-coordinate used to find a

bar index value

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // get the users mouse down point and convert to device pixels

for DPI accuracy

 int mousePoint =

chartControl.MouseDownPoint.X.ConvertToHorizontalPixels(chartContro

l.PresentationSource);

 // convert mouse point to bar index

 int barIdx = ChartBars.GetBarIdxByX(chartControl, mousePoint);

 Print("User clicked on Bar #" + barIdx);

}

NinjaScript 2019

© 2023 NinjaTrader, LLC

11.6.2.6.1.6 GetTimeByBarIdx()

Definition
Returns the ChartBars time value calculated from a bar index parameter provided.

Method Return Value
A DateTime struct representing a bar time value at a specific bar index value

Syntax
ChartBars.GetTimeByBarIdx(ChartControl chartControl, int barIndex)

Method Parameters

chartControl The ChartControl object used to

determine the chart's time axis

barIndex An int value representing a bar

index used to convert to a

ChartBar index value

Examples

protected override void OnBarUpdate()

{

 if (ChartBars != null)

 {

 Print(ChartBars.GetTimeByBarIdx(ChartControl,

50)); //8/11/2015 4:30:00 AM

 }

}

11.6.2.6.1.7 Panel

Definition
A zero-based index value that represents the ChartPanel where the ChartBars reside.

Note: This is NOT the same as the PanelUI property displays on the Chart's Data Series

menu. A ChartBars.Panel value of 0 represents the first panel on the chart.

Property Value
An int indicating the panel of the ChartBars

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx

NinjaTrader 82020

© 2023 NinjaTrader, LLC

Syntax
Bars.Panel

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 Print("ChartBars reside on panel index: " + ChartBars.Panel);

 // Output: ChartBars reside on panel index: 0

}

11.6.2.6.1.8 Properties

Definition
Represents various ChartBar properties configured from the Chart's Data Series menu.

Note: The properties on this page indicate what have been configured by the user, and is

NOT necessarily representative of what is actually contained on the chart. For example, a

user may have a requested 120 days of chart data, however only 60 days of bar data

actually returned from their provider.

NinjaScript 2021

© 2023 NinjaTrader, LLC

Warning: These are UI properties which are designed to be set by a user. Attempting to

modify these values through a custom script is NOT guaranteed to take effect.

Properties

AutoScale A bool indicating if the Chart Data

Series participates in the chart's

auto scaling methods

NinjaTrader 82022

© 2023 NinjaTrader, LLC

BarsBack An int representing the Chart's

Data Series configured "Bars to

load" when the RangeType.Bars is

selected

BarsPeriod The BarsPeriod object configured

for Chart's Data Series

CenterPriceOnScale A bool indicating if the Chart's Data

Series should center the last

traded price on the chart scale

ChartStyle The ChartStyle object configured

for the Chart's Data Series

ChartStyleType A ChartStyleType enum indicating

the type of chart style configured.

System defaults include:

· ChartStyleType.Box,

· ChartStyleType.CandleStick,

· ChartStyleType.LineOnClose,

· ChartStyleType.OHLC,

· ChartStyleType.PointAndFigure,

· ChartStyleType.KagiLine,

· ChartStyleType.OpenClose,

· ChartStyleType.Mountain

DaysBack An int representing the Chart's

Data Series configured "Days to

load" when the RangeType.Days is

selected

DisplayInDataBox A bool indicating if the Chart's Data

Series value should display in the

Chart's Data Box

DisplayName A string representing the Chart's

Data Series instrument and period

From A DateTime representing the

Chart's Data Series configured

NinjaScript 2023

© 2023 NinjaTrader, LLC

"Start Date" when the
RangeType.CustomRange

configured.

Instrument A string representing the Chart's

Data Series instrument

IsStableSession A bool indicating the Chart's Data

Series Break EOD option is

configured

IsTickReplay A bool indicating the Chart's Data

Series Tick Replay option is

configured

Label A string representing the

configured Chart's Data Series

"Label"

LongExecutionBrush A Brush object representing the

Chart's Data Series "Color for

execution - buy" brush configured

PaintPriceMarker A bool indicating the Chart's Data

Series Price Marker "Visible" option

is configured

Panel An int indicating whichChart's

Data Series "Panel" the ChartBars

are configured

PlotExecutions A ChartExecutionStyle enum

representing "Plot executions"

option. Possible values include:

· ChartExecutionStyle.DoNotPlot,

· ChartExecutionStyle.MarkersOnl

y,

· ChartExecutionStyle.TextAndMar

ker

NinjaTrader 82024

© 2023 NinjaTrader, LLC

PositionPenLoser A Stroke object representing the

Chart's Data Series "NinjaScript

strategy unprofitable trade line"

PositionPenWinner A Stroke object representing the

Chart's Data Series "NinjaScript

strategy profitable trade line"

PriceMarker A PriceMarker object representing

various brushes used to paint the

Chart's Data Series "Price marker"

RangeType A RangeType enum indicating the

"Load data based on" value

configured on the Data Series.

Possible values include:

· RangeType.Bars,

· RangeType.Days,

· RangeType.CustomRange

ScaleJustification A ScaleJustification enum

indicating the "Scale justification"

option configured on the Chart's

Data Series. Possible values

include:

· ScaleJustification.Right,

· ScaleJustification.Left,

· ScaleJustification.Overlay

ShortExecutionBrush A Brush object representing the

Chart's Data Series "Color for

execution - sell" brush configured

ShowGlobalDrawObjects A bool indicating the Chart's Data

Series "Show global draw object"

option is configured

To A DateTime representing the

configured "End Date" used with

any RangeType

NinjaScript 2025

© 2023 NinjaTrader, LLC

TradingHoursBreakLine A TradingHoursBreakLine object

representing the stroke used and
TradingHoursBreakLineVisible

enum used for the Chart's Data

Series "Trading hours break line".

Possible
TradingHoursBreakLine.TradingHou

rsBreakLineVisible values

include:

· TradingHoursBreakLineVisible.All

Sessions,

· TradingHoursBreakLineVisible.E

odOnly,

· TradingHoursBreakLineVisible.O

ff

TradingHoursData A string representing the Chart's

Data Series configured "Trading

hours" option

11.6.2.6.1.9 ToChartString()

Definition
Returns a formatted string representing the ChartBars.Properties.Label property, BarsPeriod

Value, and BarsPeriodType name.

Note: The property returned is dependent on a user configured Data Series property, and

results may return differently than expected. See also Bars.ToChartString() for a return

value which is not subject to user-defined variables.

Syntax
ChartBars.ToChartString()

Return Value
A string value that represents the ChartBars label and configured bars period

Parameters
This method does not accept any parameters

Examples

NinjaTrader 82026

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 if (ChartBars != null)

 Print(ChartBars.ToChartString()); // My Favorite Instrument

(1 Minute)

}

11.6.2.6.1.10 ToIndex

Definition
An index value representing the last bar rendered on the chart. See also FromIndex.

Note: This value is NOT the last value that exists on the ChartBars, but rather the last

bar index that is within the viewable range of the chart canvas area. This value changes

as the user interacts with the ChartControl time-scale (x-axis).

Property Value
An int representing the last bar index painted on the chart

Syntax
ChartBars.ToIndex

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 if (ChartBars != null)

 {

 // loop through all of the viewable range of the chart

 for (int barIndex = ChartBars.FromIndex; barIndex <=

ChartBars.ToIndex; barIndex++)

 {

 // print the High value for each index within the viewable

range

 Print(High.GetValueAt(barIndex));

 }

 }

}

NinjaScript 2027

© 2023 NinjaTrader, LLC

11.6.2.6.2 ChartControl

The ChartControl class provides access to a wide range of properties and methods related

to the location of objects on a chart and other chart-related properties. The ChartControl

object provides information related to the entire hosting grid of the chart, which overlap with

the ChartPanel, ChartScale and ChartBars.

Note: The ChartControl object is ONLY guaranteed to be available when a NinjaScript

type initiates from a Chart Window. There are situations where an indicator or strategy

starts from another Windows (such as the Control Center's Strategies Grid, or from a

Strategy Analyzer), where the ChartContol object is NOT accessible. Therefore, the

ChartControl object should always be safely accessed (e.g., from within a try-catch, or

conditionally using null reference checks)

NinjaTrader 82028

© 2023 NinjaTrader, LLC

Warning: The ChartControl and its methods and properties should ONLY be access

once the State has reached State.Historical

Methods and Properties

AxisXHeigh

t

Measures the distance (in pixels) between the x-axis and

the top of the horizontal scroll bar

AxisYLeftW

idth

Measures the distance (in pixels) between the y-axis and

the left margin of a chart

AxisYRight

Width

Measures the distance (in pixels) between the y-axis and

the right margin of a chart

BarMarginL

eft

Measures the margin to the left of each bar on the chart,

in pixels

BarsArray Provides a collection of ChartBars objects currently

configured on the chart

BarSpacin

gType

Provides the type of bar spacing used for the primary

Bars object on the chart

BarsPeriod Provides the period (interval) used for the primary Bars

object on the chart

BarWidth Measures the value of the bar width set for the primary

Bars object on the chart

BarWidthAr

ray

An array containing the values of the BarWidth

properties of all Bars objects on the chart

CanvasLeft Indicates the x-coordinate (in pixels) of the beginning of

the chart canvas area

CanvasRig

ht

Indicates the x-coordinate (in pixels) of the end of the

chart canvas area

CanvasZoo

mState

Indicates the current state of the Zoom tool on the chart

NinjaScript 2029

© 2023 NinjaTrader, LLC

ChartPanel

s

Holds a collection of ChartPanel objects

CrosshairT

ype

Indicates the Cross Hair type currently enabled on the

chart

FirstTimeP

ainted

Indicates a time value of the first bar painted on the chart

GetBarPain

tWidth()

Returns the width of the bars in the primary Bars object

on the chart, in pixels

GetSlotInde

xByTime()

Returns the slot index of the primary Bars object on the

chart corresponding to a specified time value

GetSlotInde

xByX()

Returns the slot index of the primary Bars object on the

chart corresponding to a specified x-coordinate on the

visible chart canvas

GetTimeBy

SlotIndex()

Returns a time value corresponding to a specified slot

index of the primary Bars object on the chart

GetTimeBy

X()

Returns a time value related to the primary Bars' slot

index at a specified x-coordinate on the chart canvas

GetXByBarI

ndex()

Returns the chart-canvas x-coordinate of the bar at a

specified index of a specified ChartBars object on the

chart

GetXByTim

e()

Returns the chart-canvas x-coordinate of the slot index

of the primary Bars object corresponding to a specified

time

Indicators Returns a collection of indicators currently configured on

the chart

IsScrollArro

wVisible

Indicates the time-axis scroll arrow is visible in the top-

right corner of the chart

IsStayInDra

wMode

Indicates the Stay in Draw Mode is currently enabled on

the chart

NinjaTrader 82030

© 2023 NinjaTrader, LLC

IsYAxisDis

playedLeft

Indicates the y-axis displays (in any chart panel) to the

left side of the chart canvas

IsYAxisDis

playedOver

lay

Indicates an object on the chart is using the Overlay

scale justification

IsYAxisDis

playedRigh

t

Indicates the y-axis displays (in any chart panel) to the

right side of the chart canvas

LastSlotPai

nted

Indicates the slot index of the most recently painted bar

on the primary Bars object configured on the chart

LastTimeP

ainted

Indicates the time of the most recently painted bar on the

primary Bars object configured on the chart

MouseDow

nPoint

Indicates the x- and y-coordinates of the mouse cursor

at the most recent OnMouseDown() event

Properties A collection of properties related to the configuration of

the Chart

SlotsPainte

d

Indicates the number of index slots in which bars are

painted within the chart canvas area

Strategies A collection of strategies configured on the chart

TimePainte

d

Indicates the range of time in which bars are painted on

the visible chart canvas

11.6.2.6.2.1 AxisXHeight

Definition
Measures the distance (in pixels) between the x-axis and the top of the horizontal scroll bar

near the bottom of the chart.

Property Value
A double representing the number of pixels separating the x-axis and the top of the horizontal

scroll bar on the chart.

Syntax
<ChartControl>.AxisXHeight

NinjaScript 2031

© 2023 NinjaTrader, LLC

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print the number of pixels between the x-axis and the top

of the horizontal scrollbar

 double height = chartControl.AxisXHeight;

 Print(height);

}

Based on the image below, AxisXHeight reveals that the space between the x-axis and the top

of the horizontal scrollbar is 31 pixels on this chart.

11.6.2.6.2.2 AxisYLeftWidth

Definition
Measures the distance (in pixels) between the y-axis and the left edge of a chart.

Property Value

NinjaTrader 82032

© 2023 NinjaTrader, LLC

 A double representing the number of pixels separating the y-axis and the left edge of the

chart.

Syntax
 <ChartControl>.AxisYLeftWidth

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print the number of pixels between the y-axis and the left

edge of the chart

 double leftWidth = chartControl.AxisYLeftWidth;

 Print(leftWidth);

}

Based on the image below, AxisYLeftWidth reveals that the space between the y-axis and the

left edge of the chart is 53 pixels on this chart.

NinjaScript 2033

© 2023 NinjaTrader, LLC

Note: When there are no left-justified data series on a chart, AxisYLeftWidth will return 0,

as there will be no space between the y-axis and the left margin.

11.6.2.6.2.3 AxisYRightWidth

Definition
Measures the distance (in pixels) between the y-axis and the right edge of a chart.

Property Value
 A double representing the number of pixels separating the y-axis and the right edge of the

chart.

Syntax
 <ChartControl>.AxisYRightWidth

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print the number of pixels between the y-axis and the

right edge of the chart

 double rightWidth = chartControl.AxisYRightWidth;

 Print(rightWidth);

}

Based on the image below, AxisYRightWidth reveals that the space between the y-axis and

the right edge of the chart is 53 pixels on this chart.

NinjaTrader 82034

© 2023 NinjaTrader, LLC

Note: When there are no right-justified data series on a chart, AxisYRightWidth will return

0, as there will be no space between the y-axis and the right edge.

11.6.2.6.2.4 BarMarginLeft

Definition
A hard-coded minimum bar margin value, set to 8 pixels, which can be used as a base value

when creating custom Chart Styles.

Property Value
A value representing the minimum margin applied to the left edge of bars. This value is hard-

coded to 8 pixels, and it can be used as a base value when setting the bar margin in custom

Chart Styles.

Syntax
<ChartControl>.BarMarginLeft

Example

NinjaScript 2035

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print the number of pixels maintained as a margin to the

left of bars

 double barMargin = chartControl.BarMarginLeft;

 Print(barMargin);

}

Based on the image below, BarMarginLeft reveals that the minimum margin maintained to the

left of each bar is 8 pixels on this chart.

11.6.2.6.2.5 BarsArray

Definition
Provides a collection of ChartBars objects currently configured on the chart.

Property Value
An ObservableCollection of ChartBars objects

https://msdn.microsoft.com/en-us/library/ms668604(v=vs.110).aspx

NinjaTrader 82036

© 2023 NinjaTrader, LLC

Syntax
<ChartControl>.BarsArray

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Instantiate a new <ChartControl>.BarsArray collection

 System.Collections.ObjectModel.ObservableCollection<ChartBars>

myChartBars = chartControl.BarsArray;

 // Print the number of bars in each Bars object within the

<ChartControl>.BarsArray collection

 foreach(ChartBars bars in myChartBars)

 {

 Print(bars.Bars.Count);

 }

}

11.6.2.6.2.6 BarSpacingType

Definition
Indicates the type of bar spacing used for the primary Bars object on the chart.

Property Value
An enum representing one of the values below:

Equidistan

tSingle

Indicates Equidistant Bar Spacing is used, and only one

Bars object exists on the chart

Equidistan

tMulti

Indicates Equidistant Bar Spacing is used, and more than

one Bars objects exist on the chart

TimeBase

d

Indicates Time-Based bar spacing is used

Syntax
<ChartControl>.BarSpacingType

Example

NinjaScript 2037

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print the type of bar spacing used on the chart

 Print(chartControl.BarSpacingType);

}

Based on the image below, BarSpacingType confirms that there are multiple Bars objects

configured on the chart, and that the chart is set to Equidistant Bar Spacing:

11.6.2.6.2.7 BarsPeriod

Definition
Provides the period (interval) used for the primary Bars object on the chart.

Property Value

NinjaTrader 82038

© 2023 NinjaTrader, LLC

A NinjaTrader.Data.BarsPeriod object containing information on the period used by the Bars

object on the chart.

Syntax
<ChartControl>.BarsPeriod

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 BarsPeriod period = chartControl.BarsPeriod;

 // Print the period (interval) of the Bars object on the chart

 Print(period);

}

Based on the image below, BarsPeriod confirms that the primary Bars object on the chart is

configured to a 5-minute interval.

NinjaScript 2039

© 2023 NinjaTrader, LLC

11.6.2.6.2.8 BarWidth

Definition
Measures the value of the bar width set for the primary Bars object on the chart.

Note: This property value is not stated in pixels. To obtain the pixel-width of bars on the

chart, use GetBarPaintWidth() instead.

Property Value
A double representing the value of the bar width.

Syntax
<ChartControl>.BarWidth

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 double barWidth = chartControl.BarWidth;

 // Prints the width of bars on the chart

 Print(barWidth);

}

Based on the image below, BarWidth reveals that the bars on the chart are 4.02 pixels wide.

NinjaTrader 82040

© 2023 NinjaTrader, LLC

11.6.2.6.2.9 BarWidthArray

Definition
An array containing the values of the BarWidth properties of all Bars objects applied to the

chart.

Property Value
An array of double variables containing the values of the BarWidth properties of Bars objects

on the chart.

Syntax
<ChartControl>.BarWidthArray[]

Examples

NinjaScript 2041

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Assign BarWidthArray to a new array

 double[] barWidths = chartControl.BarWidthArray;

 double referenceWidth = barWidths[0];

 // Trigger an alert if bar widths on the chart differ

 foreach (double width in barWidths)

 {

 if (width != referenceWidth)

 Alert("mismatchWidths", Priority.Low, "Bar widths on

the chart do not match!", " ", 20, Brushes.White, Brushes.Black);

 }

}

11.6.2.6.2.10 CanvasLeft

Definition
Indicates the x-coordinate (in pixels) of the beginning of the chart canvas area.

Property Value
A double representing the beginning of the chart canvas area.

Syntax
<ChartControl>.CanvasLeft

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Store the beginning and ending x-coordinates of the canvas

area

 double canvasBeginCoordinate = chartControl.CanvasLeft;

 double canvasEndCoordinate = chartControl.CanvasRight;

 // Print the stored values

 Print(String.Format("Chart canvas begins at x-coordinate {0}

and ends at x-coordinate {1}", canvasBeginCoordinate,

canvasEndCoordinate));

}

NinjaTrader 82042

© 2023 NinjaTrader, LLC

Based on the image below, CanvasLeft reveals that the chart canvas area begins at x-

coordinate 53.

Note: When no data series are left-aligned on a chart, CanvasLeft will return 0,

representing the x-coordinate origin, because the chart canvas will begin at coordinate 0.

11.6.2.6.2.11 CanvasRight

Definition
Indicates the x-coordinate (in pixels) of the end of the chart canvas area.

Property Value
A double representing the end of the chart canvas area.

Syntax
<ChartControl>.CanvasRight

NinjaScript 2043

© 2023 NinjaTrader, LLC

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Store the beginning and ending x-coordinates of the canvas

area

 double canvasBeginCoordinate = chartControl.CanvasLeft;

 double canvasEndCoordinate = chartControl.CanvasRight;

 // Print the stored values

 Print(String.Format("Chart canvas begins at x-coordinate {0}

and ends at x-coordinate {1}", canvasBeginCoordinate,

canvasEndCoordinate));

}

Based on the image below, CanvasRight reveals that the chart canvas ends at x-coordinate

526.

NinjaTrader 82044

© 2023 NinjaTrader, LLC

Yes,

11.6.2.6.2.12 CanvasZoomState

Definition
Indicates the current state of the Zoom tool on the chart. This property reveals the state of the

tool while it is in use, and does not indicate a chart is zoomed in on or not. As soon as a

zoom action is completed, the tool is considered to be no longer in use.

Property Value
An enum representing the state of the Zoom tool on the chart. Possible values are listed

below:

None The Zoom tool is not currently being used

NinjaScript 2045

© 2023 NinjaTrader, LLC

Selecte

d

The Zoom tool is selected, but has not yet been used to

zoom in

Drawing

Rectan

gle

The Zoom tool is currently in use (User is currently drawing

the rectangle in which to zoom)

Syntax
<ChartControl>.CanvasZoomState

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 CanvasZoomState zoomState = chartControl.CanvasZoomState;

 // Trigger an alert while a user is zooming in on a chart

 if (zoomState == CanvasZoomState.DrawingRectangle)

 Alert("zoomAlert", Priority.Medium, "Make sure to zoom in

on the entire chart pattern!", " ", 60, Brushes.White,

Brushes.Black);

}

Based on the image below, CanvasZoomState confirms that the Zoom rectangle is currently

being drawn:

NinjaTrader 82046

© 2023 NinjaTrader, LLC

11.6.2.6.2.13 ChartPanels

Definition
Holds a collection of ChartPanel objects containing information about the panels active on the

chart.

Property Value
An ObservableCollection of ChartPanel objects

Syntax
<ChartControl>.ChartPanels

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print the number of panels currently displayed on the chart

 Print(String.Format("There are {0} panels on the chart",

chartControl.ChartPanels.Count));

}

https://msdn.microsoft.com/en-us/library/ms668604(v=vs.110).aspx

NinjaScript 2047

© 2023 NinjaTrader, LLC

Based on the image below, there are three ChartPanel objects in the ChartPanels collection,

as seen by ChartPanels.Count in the code above.

11.6.2.6.2.14 CrosshairType

Definition
Indicates the Cross Hair type currently enabled on the chart.

Property Value
An enum specifying the type of Cross Hair currently enabled on the chart. Possible values are

listed below:

Local The local (single-chart) Cross Hair is enabled

Global Global Cross Hair

GlobalN

oTimeS

croll

Global Cross Hair (No Time Scroll) is enabled

NinjaTrader 82048

© 2023 NinjaTrader, LLC

Syntax
<ChartControl>.CrosshairType

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print a message if the user enables the Global Cross Hair

without time scrolling

 if (chartControl.CrosshairType ==

CrosshairType.GlobalNoTimeScroll)

 Print("It is recommended to enable Global Cross Hair time

scrolling with this indicator");

}

In the image below, CrosshairType reveals that Global Cross Hair (No Time Scroll) is enabled

on the chart.

11.6.2.6.2.15 FirstTimePainted

Definition
Indicates a DateTime value of the first bar painted on the chart.

NinjaScript 2049

© 2023 NinjaTrader, LLC

FirstTimePainted provides the timestamp of the first bar, NOT the time at which the bar was

painted. For example, if a chart was opened and historical bars drawn on August 2nd at 5:00

pm, but the first bar on the chart is painted at a time-axis value of July 31st at 1:00 am, then

FirstTimePainted will return the July 31st date and time.

Property Value
A DateTime object containing information on the timestamp of the first bar of the chart.

Syntax
<ChartControl>.FirstTimePainted

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Draw text to display the first timestamp of a bar on the

chart

 Draw.Text(this, "firstTimeText", String.Format("The first bar

of {0} is drawn at {1}", Instrument.MasterInstrument.Name,

chartControl.FirstTimePainted), 1, High[0],Brushes.Black);

}

In the image below, FirstTimePainted reveals that the first painted slot corresponds to 8/12/17

at 10:40:00 AM.

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx

NinjaTrader 82050

© 2023 NinjaTrader, LLC

11.6.2.6.2.16 GetBarPaintWidth()

Definition
Returns the width of the bars in the primary Bars object on the chart, in pixels.

Method Return Value
A double representing the pixel width of bars on the chart

Syntax
<ChartControl>.GetBarPaintWidth(ChartBars chartBars)

Method Parameters

chartBar

s

A ChartBars object to measure

Example

NinjaScript 2051

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Use BarsArray[0] to pass in a ChartBars object representing

the primary Bars object on the chart

 double barPixelWidth =

chartControl.GetBarPaintWidth(chartControl.BarsArray[0]);

 // Print the pixel width of bars painted on the chart

 Print(String.Format("Bars on the chart are {0} pixels wide",

barPixelWidth));

}

In the image below, GetBarPaintWidth() reveals that the bars are being drawn 27 pixels wide

on the chart:

11.6.2.6.2.17 GetSlotIndexByTime()

Definition
Returns the slot index relative to the chart control corresponding to a specified time value.

NinjaTrader 82052

© 2023 NinjaTrader, LLC

Notes:

· A "Slot" is used in Equidistant bar spacing and represents a position on the chart

canvas background which may or may not contain a bar. The concept of "Slots" does

NOT exist on a TimeBased bar spacing type.

· If you are looking for information on a bar series, please see

ChartBars.GetBarIdxByTime()

Method Return Value
A double representing a slot index

Syntax
<ChartControl>.GetSlotIndexByTime(DateTime time)

Warning: This method CANNOT be called on BarSpacingType.TimeBased charts.

You will need to ensure an Equidistant bar spacing type is used, otherwise errors will be

thrown.

Method Parameters

time A DateTime Structure used to determine a slot index

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // ensure that GetSlotIndexByTime is called on TimeBased charts

 if(chartControl.BarSpacingType != BarSpacingType.TimeBased)

 {

 // get the slot index of the first time painted on the chart

 double slotIndex =

chartControl.GetSlotIndexByTime(chartControl.FirstTimePainted);

 Print(slotIndex);

 }

}

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx

NinjaScript 2053

© 2023 NinjaTrader, LLC

11.6.2.6.2.18 GetSlotIndexByX()

Definition
Returns the slot index relative to the chart control corresponding to a specified x-coordinate

Notes:

· A "Slot" is used in Equidistant bar spacing and represents a position on the chart

canvas background which may or may not contain a bar. The concept of "Slots" does

NOT exist on a TimeBased bar spacing type.

· If you are looking for information on a bar series, please see ChartBars.GetBarIdxByX()

· Since the slot index is based on the chart canvas, the value returned by

GetSlotIndexByX() can be expected to change as new bars are painted, or as the chart

is scrolled backward or forward on the x-axis.

Method Return Value
A double representing a slot index; returns -1 on a time based bar spacing type

Syntax
<ChartControl>.GetSlotIndexByX(int x)

Method Parameters

x An int used to determine a slot index

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Find the index of the bar painted at x-coordinate 35

 double slotIndex = chartControl.GetSlotIndexByX(35);

 // Print the slot index of the specified time

 Print(slotIndex);

}

11.6.2.6.2.19 GetTimeBySlotIndex()

Definition
Returns a time value relative to the chart control corresponding to a specified slot index.

Notes:

NinjaTrader 82054

© 2023 NinjaTrader, LLC

· A "Slot" is used in Equidistant bar spacing and represents a position on the chart

canvas background which may or may not contain a bar. The concept of "Slots" does

NOT exist on a TimeBased bar spacing type.

· If you are looking for information on a bar series, please see

ChartBars.GetTimeByBarIdx()

· For slot index values in the future, an estimation of time will be returned. It is not

possible to predict the future time of a bar for all bar series (i.e., tick/volume based bars)

Method Return Value
A DateTime object corresponding the a specified slot index; returns DateTime value for

'now' on a time based bar spacing type

Syntax
<ChartControl>.GetTimeBySlotIndex(double slotIndex)

Method Parameters

slotInde

x

The slot index used to determine a time value

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Find the timestamp of the bar at index 150

 DateTime slotTime = chartControl.GetTimeBySlotIndex(150);

 // Print the date of slotTime

 Print(slotTime.Date);

}

11.6.2.6.2.20 GetTimeByX()

Definition
Returns a time value related to the primary Bars' slot index at a specified x-coordinate relative

to the ChartControl.

Note: Since the time is based upon a coordinate of the chart canvas, the value returned

by GetTimeByX() can be expected to change as new bars are painted on the chart, or as

NinjaScript 2055

© 2023 NinjaTrader, LLC

the chart is scrolled backward or forward on the x-axis.

Method Return Value
A DateTime object corresponding to a slot index at a specified x-coordinate

Syntax
<ChartControl>.GetTimeByX(int x)

Method Parameters

x The x-coordinate used to find a time value

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Find the timestamp of the bar at x-coordinate 100

 DateTime slotTime = chartControl.GetTimeByX(100);

 // Print the date of slotTime

 Print(slotTime);

}

11.6.2.6.2.21 GetXByBarIndex()

Definition
Returns the chart-canvas x-coordinate of the bar at a specified index of a specified ChartBars

object on the chart.

Note: Since the index is based upon bars that move across the chart canvas as new

bars are painted, the value returned by GetXByBarIndex() can be expected to change as

new bars are painted on the chart, or as the chart is scrolled backward or forward on the

x-axis.

Method Return Value
An int representing a chart-canvas x-coordinate

Syntax

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx

NinjaTrader 82056

© 2023 NinjaTrader, LLC

<ChartControl>.GetXByBarIndex(ChartBars chartBars, int barIndex)

Method Parameters

chartBar

s

The ChartBars object to check

barIndex The slot index used to determine an x-coordinate

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 double xCoordinate = chartControl.GetXByBarIndex(ChartBars,

100);

 // Print the x-coordinate value

 Print(xCoordinate);

}

11.6.2.6.2.22 GetXByTime()

Definition
Returns the chart-canvas x-coordinate of the slot index of the primary Bars object

corresponding to a specified time.

Note: Since the time correlates with a specific bar index, and since bars move on the

chart canvas as new bars are painted, the value returned by GetXByTime() can be

expected to change as new bars are painted on the chart, or as the chart is scrolled

backward or forward on the x-axis.

Method Return Value
An int representing a chart-canvas x-coordinate

Syntax
<ChartControl>.GetXByTime(DateTime time)

Method Parameters

time A DateTime object used to determine an x-coordinate

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx

NinjaScript 2057

© 2023 NinjaTrader, LLC

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 DateTime timeToCheck = new DateTime(2017, 8, 6, 11, 0, 0);

 // Find the chart-canvas x-coordinate of the bar at the

specified time

 int xCoordinate = chartControl.GetXByTime(timeToCheck);

 // Print the x-coordinate value

 Print(xCoordinate);

}

11.6.2.6.2.23 Indicators

Definition
Contains a collection of indicators currently configured on the chart.

Property Value
A ChartObjectCollection of NinjaTrader.Gui.NinjaScript.IndicatorRenderBase objects

representing the indicators on the chart

Syntax
<ChartControl>.Indicators

Examples

NinjaTrader 82058

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Instantiate a ChartObjectCollection to hold

chartControl.Indicators

 ChartObjectCollection<NinjaTrader.Gui.NinjaScript.IndicatorRend

erBase> indicatorCollection = chartControl.Indicators;

 // Print the Calculate setting for any configured indicators

not using Calculate.OnBarClose

 foreach (NinjaTrader.Gui.NinjaScript.IndicatorRenderBase

indicator in indicatorCollection)

 {

 if(indicator.Calculate != Calculate.OnBarClose)

 Print(String.Format("{0} is using Calculate.{1}",

indicator.Name, indicator.Calculate.ToString()));

 }

}

11.6.2.6.2.24 IsScrollArrow Visible

Definition
Indicates the time-axis scroll arrow is visible in the top-right corner of the chart.

Property Value
A bool value. When True, indicates that the scroll arrow is visible on the chart; otherwise

False.

Syntax
<ChartControl>.IsScrollArrowVisible

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print a message if the scroll arrow is visible on the chart

 if(chartControl.IsScrollArrowVisible);

 Print("The chart is currently not set to auto-scroll. Click

the scroll arrow to return to auto-scrolling");

}

Based on the image below, IsScrollArrowVisible confirms that the scroll arrow is currently

visible on the chart.

NinjaScript 2059

© 2023 NinjaTrader, LLC

11.6.2.6.2.25 IsStayInDraw Mode

Definition
Indicates Stay in Draw Mode is currently enabled on the chart.

Property Value
A bool value. When True, indicates that Stay in Draw Mode is enabled on the chart;

otherwise False.

Syntax
<ChartControl>.IsStayInDrawMode

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print a message if Stay in Draw Mode is enabled

 if(chartControl.IsStayInDrawMode);

 Print("Stay in Draw Mode is currently enabled");

}

NinjaTrader 82060

© 2023 NinjaTrader, LLC

11.6.2.6.2.26 IsYAxisDisplayedLeft

Definition
Indicates the y-axis displays (in any chart panel) to the left side of the chart.

Property Value
A boolean value. When True, indicates that the y-axis displays to the left of the chart canvas;

otherwise False.

Syntax
<ChartControl>.IsYAxisDisplayedLeft

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print the value of IsYAxisDisplayedLeft

 Print("Y-Axis visible to the left of the chart canvas? " +

chartControl.IsYAxisDisplayedLeft);

}

Based on the image below, IsYAxisDisplayedLeft confirms that the y-axis displays to the left

of the chart canvas.

NinjaScript 2061

© 2023 NinjaTrader, LLC

11.6.2.6.2.27 IsYAxisDisplayedOverlay

Definition
Indicates an object on the chart is using the Overlay scale justification.

Property Value
A boolean value. When True, indicates that one or more objects on the chart are using the

Overlay scale justification; otherwise False.

Syntax
<ChartControl>.IsYAxisDisplayedOverlay

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print the value of IsYAxisDisplayedOverlay

 Print("Is Overlay used? " +

chartControl.IsYAxisDisplayedOverlay);

}

NinjaTrader 82062

© 2023 NinjaTrader, LLC

Based on the image below, IsYAxisDisplayedOverlay confirms that the an object on the chart,

in this case an SMA indicator, is using the Overlay scale justification.

11.6.2.6.2.28 IsYAxisDisplayedRight

Definition
Indicates the y-axis displays (in any chart panel) to the right side of the chart.

Property Value
A boolean value. When True, indicates that the y-axis displays to the right of the chart

canvas; otherwise False.

Syntax
<ChartControl>.IsYAxisDisplayedRight

Examples

NinjaScript 2063

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print the value of IsYAxisDisplayedRight

 Print("Y-Axis visible to the right of the chart canvas? " +

chartControl.IsYAxisDisplayedRight);

}

Based on the image below, IsYAxisDisplayedRight confirms that the y-axis is not displayed to

the right of the chart canvas.

11.6.2.6.2.29 LastSlotPainted

Definition
Indicates the most recent (last) slot index of the Data Series on the chart, regardless if a bar

is actually painted in that slot.

Note: LastSlotPainted differs from ChartBars.ToIndex, which returns the last index

containing a bar painted in the visible area of the chart.

NinjaTrader 82064

© 2023 NinjaTrader, LLC

Property Value
A int representing the most recent (last) slot index on the chart

Syntax
<ChartControl>.LastSlotPainted

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 int lastSlot = chartControl.LastSlotPainted;

 // Print the index of the last slot on the chart

 Print(lastSlot);

}

11.6.2.6.2.30 LastTimePainted

Definition
Indicates the time of the most recently painted bar on the primary Bars object configured on

the chart.

Property Value
A DateTime object corresponding to the slot index of the most recently painted bar

Syntax
<ChartControl>.LastTimePainted

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 DateTime lastSlotTime = chartControl.LastTimePainted;

 // Print the index of the last slot painted on the chart

 Print(lastSlotTime);

}

In the image below, LastTimePainted reveals that the last index painted on the chart

corresponds to 8/12/17 at 2:10:00 PM.

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx

NinjaScript 2065

© 2023 NinjaTrader, LLC

11.6.2.6.2.31 MouseDow nPoint

Definition
Indicates the WPF x- and y-coordinates of the mouse cursor at the most recent

OnMouseDown() event.

Property Value
A Point object containing x- and y-coordinates of the mouse cursor when the left mouse

button is clicked or held

Syntax
<ChartControl>.MouseDownPoint

Examples

https://msdn.microsoft.com/en-us/library/system.drawing.point(v=vs.110).aspx

NinjaTrader 82066

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 Point cursorPoint = chartControl.MouseDownPoint;

 // Print the x- and y-coordinates of the mouse cursor when

clicked

 Print(String.Format("Mouse clicked at coordinates {0},{1}",

cursorPoint.X, cursorPoint.Y));

}

11.6.2.6.2.32 PresentationSource

Definition
Provides a reference to the base window in which the chart is rendered. PresentationSource

can be used when converting application pixels to/from device pixels via the helper methods

in the ChartingExtensions class.

Property Value
A PresentationSource object representing the base window in which the chart is rendered.

Syntax
ChartControl.PresentationSource

Example

int devicePixelX;

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Obtain the device-pixel coordinate corresponding to an

application-pixel X value of 500

 devicePixelX = ChartingExtensions.ConvertToHorizontalPixels(500,

 ChartControl.PresentationSource);

}

11.6.2.6.2.33 Properties

Definition
A collection of properties related to the configuration of the Chart

https://msdn.microsoft.com/en-us/library/system.windows.presentationsource(v=vs.110).aspx

NinjaScript 2067

© 2023 NinjaTrader, LLC

Warning: These are UI properties which are designed to be set by a user. Attempting to

modify these values through a custom script is NOT guaranteed to take effect.

Property Value
A ChartControlProperties object containing values for all properties configured on the

specified ChartBars object.

Property Return Type and Description

AllowSelecti

onDragging

A bool indicating selected chart objects can be moved

within a chart panel or dragged to a new chart panel

AlwaysOnT

op

A bool indicating "Always on Top" is enabled for the

chart window

AreHGridLin

esVisible

A bool indicating the horizontal grid lines are visible on

the chart

NinjaTrader 82068

© 2023 NinjaTrader, LLC

AreTabsVisi

ble

A bool indicating tabs are visible in the chart window

AreVGridLin

esVisible

A bool indicating the vertical grid lines are visible on the

chart

AxisPen A Stroke object used in painting the x- and y-axis

BarDistanc

e

A float measuring the distance (in pixels) between the

left or right edge of one bar and the corresponding edge

of the previous or subsequent bar

BarMarginR

ight

An int representing the "Right Margin" property value

configured on the chart

ChartBackg

round

A Brush object used to paint the chart background

ChartText A Brush object used to paint text on the chart

ChartTrader

Visibility

An enum indicating the visibility status of Chart Trader.

Possible values are Collapsed, Visible, and
VisibleCollapsed

CrosshairC

rosshairTyp

e

An enum indicating the type of Cross Hair enabled on

the chart. Possible values are Off, Local, Global, and
GlobalNoTimeScroll

CrosshairIs

Locked

A bool indicating the Cross Hair's vertical line is locked

in place

CrosshairL

abelBackgr

ound

A Brush object used to paint the Cross Hair's price and

time markers in the x- and y-axis

CrosshairL

abelForegro

und

A Brush object used to paint the text in the Cross Hair's

price and time markers

CrosshairP

en

A string representing the Pen used within the Stroke

that is used to draw the Cross Hair

NinjaScript 2069

© 2023 NinjaTrader, LLC

CrosshairSt

roke

A CrosshairStroke object containing information on the

Cross Hair's Stroke, CrosshairType, and isLocked

property

GridLineHP

en

A GridLine object containing information on the

horizontal grid lines' Stroke and isVisible property

GridLineVP

en

A GridLine object containing information on the vertical

grid lines' Stroke and isVisible property

InactivePric

eMarkersBa

ckground

A Brush object used to paint the background of inactive

price markers on the chart

InactivePric

eMarkersFo

reground

A Brush object used to paint the display text of inactive

price markers on the chart

LabelFont A NinjaTrader.Gui.Tools.SimpleFont object containing

information on the font used in text labels throughout the

chart

PanelSplitte

rPen

A Stroke object used to paint the lines between chart

panels

ShowDateR

ange

A bool indicating the date range of the bars painted on

the visible chart canvas will be displayed within the

chart

ShowScroll

Bar

A bool indicating the horizontal scroll bar is visible

beneath the x-axis

SnapMode An enum indicating the currently enabled Snap Mode.

Possible values are None, Bar, Price, and BarAndPrice

TabName A string representing the name of the current tab

Syntax
<ChartControl>.Properties

Example

NinjaTrader 82070

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Instantiate a ChartControlProperties object to hold a

reference to chartControl.Properties

 ChartControlProperties myProperties = chartControl.Properties;

 // Set the AllowSelectionDragging property to false

 myProperties.AllowSelectionDragging = false;

}

11.6.2.6.2.34 SlotsPainted

Definition
Indicates the number of index slots in which bars are painted within the chart canvas area.

This covers the visible portion of the chart only, and does not include historical painted bars

outside of the visible area.

Property Value
An int representing the number of index slots in which bars are painted

Syntax
<ChartControl>.SlotsPainted

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 int painted = chartControl.SlotsPainted;

 // Print the number of bars painted on the visible chart canvas

 Print(painted);

}

In the image below, SlotsPainted reveals that there are 17 bars painted on the chart canvas.

NinjaScript 2071

© 2023 NinjaTrader, LLC

11.6.2.6.2.35 Strategies

Definition
A collection of strategies configured on the chart.

Property Value
A ChartObjectCollection of StrategyRenderBase objects containing information on all

configured strategies on the chart.

Syntax
<ChartControl>.Strategies

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print the number of strategies configured on the chart

 if (chartControl.Strategies.Count > 0)

 Print(chartControl.Strategies[0].Name);

}

NinjaTrader 82072

© 2023 NinjaTrader, LLC

11.6.2.6.2.36 TimePainted

Definition
Indicates the range of time in which bars are painted on the visible chart canvas.

Property Value
A TimeSpan measuring the difference between the earliest and latest times at which bars are

painted on the chart

Syntax
<chartControl>.TimePainted

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Print a message if less than three hours' worth of data is

painted on the chart canvas

 if(chartControl.TimePainted.Hours < 3)

 Print(String.Format("It is recommended to view at least

three hours worth of data on your chart with this indicator. You

are currently viewing {0}", chartControl.TimePainted));

}

Note: TimePainted is intended to be used when Non-Equidistant (time-based) bar spacing

is enabled on the chart. Otherwise, it will have a value of 0.

11.6.2.6.3 ChartingExtensions

The ChartingExtensions class provides helper methods useful for converting a pixel

coordinate from application-specific pixels (i.e., WPF coordinates) to Device Independent

Pixels.

Note: More information about the differences between application pixels and device

pixels can be found on the Working with Pixel Coordinates page.

ChartingExtensions Helper Methods

ConvertFrom

HorizontalPix

els

Converts a horizontal coordinate (x) from device

pixels to application pixels

NinjaScript 2073

© 2023 NinjaTrader, LLC

ConvertFrom

VerticalPixels

Converts a vertical coordinate (y) from device pixels

to application pixels

ConvertToHor

izontalPixels

Converts a horizontal coordinate (x) in application

pixels to device pixels

ConvertToVer

ticalPixels

Converts a vertical coordinate (y) in application pixels

to device pixels

11.6.2.6.3.1 ConvertFromHorizontalPixels

Definition
Converts an x-axis pixel coordinate from device pixels to application pixels.

Note: For more information concerning the differences between application pixels and

device pixels, please see the Working with Pixel Coordinates educational resource.

Method Return Value
A double representing an x-coordinate value in terms of application pixels

Syntax
ChartingExtensions.ConvertFromHorizontalPixels(this int x, PresentationSource target)

<int>.ConvertFromHorizontalPixels(PresentationSource target)

Parameters

x The horizontal int coordinates in device pixels to

convert

target The PresenationSource representing the display

surface used for the conversion

Note: For Charts, see

ChartControl.PresentationSource

Example

https://msdn.microsoft.com/en-us/library/system.windows.presentationsource(v=vs.110).aspx

NinjaTrader 82074

© 2023 NinjaTrader, LLC

int applicationPixelX;

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Obtain the application-pixel coordinate corresponding to a

device-pixel X value of 500

 applicationPixelX =

ChartingExtensions.ConvertFromHorizontalPixels(500,

ChartControl.PresentationSource);

}

11.6.2.6.3.2 ConvertFromVerticalPixels

Definition
Converts a y-axis pixel coordinate from device pixels to application pixels.

Note: For more information concerning the differences between application pixels and

device pixels, please see the Working with Pixel Coordinates educational resource.

Method Return Value
A double representing a y-coordinate value in terms of application pixels

Syntax
ChartingExtensions.ConvertFromVerticalPixels(this int x, PresentationSource target)

<int>.ConvertFromVerticalPixels(PresentationSource target)

x The vertical int coordinates in device pixels to

convert

target The PresenationSource representing the display

surface used for the conversion

Note: For Charts, see

ChartControl.PresentationSource

Example

https://msdn.microsoft.com/en-us/library/system.windows.presentationsource(v=vs.110).aspx

NinjaScript 2075

© 2023 NinjaTrader, LLC

int applicationPixelY;

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Obtain the application-pixel coordinate corresponding to a

device-pixel Y value of 500

 applicationPixelY =

ChartingExtensions.ConvertFromVerticalPixels(500,

ChartControl.PresentationSource);

}

11.6.2.6.3.3 ConvertToHorizontalPixels

Definition
Converts an x-axis pixel coordinate from application pixels to device pixels.

Note: For more information concerning the differences between application pixels and

device pixels, please see the Working with Pixel Coordinates educational resource.

Method Return Value
An int representing an x-coordinate value in terms of device pixels

Syntax
ChartingExtensions.ConvertToHorizontalPixels(this double x, PresentationSource target)

<double>.ConvertToHorizontalPixels(PresentationSource target)

x The horizontal double coordinates in application

pixels to convert

target The PresenationSource representing the display

surface used for the conversion

Note: For Charts, see

ChartControl.PresentationSource

Example

https://msdn.microsoft.com/en-us/library/system.windows.presentationsource(v=vs.110).aspx

NinjaTrader 82076

© 2023 NinjaTrader, LLC

int devicePixelX;

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Obtain the device-pixel coordinate corresponding to an

application pixel X-value of 500

 devicePixelX = ChartingExtensions.ConvertToHorizontalPixels(500,

 ChartControl.PresentationSource);

}

11.6.2.6.3.4 ConvertToVerticalPixels

Definition
Converts a y-axis pixel coordinate from application pixels to device pixels.

Note: For more information concerning the differences between application pixels and

device pixels, please see the Working with Pixel Coordinates educational resource.

Method Return Value
An int representing a y-coordinate value in terms of device pixels

Syntax
ChartingExtensions.ConvertToVerticalPixels(this double x, PresentationSource target)

<double>.ConvertToVerticalPixels(PresentationSource target)

x The vertical double coordinates in application

pixels to convert

target The PresenationSource representing the display

surface used for the conversion

Note: For Charts, see

ChartControl.PresentationSource

Example

https://msdn.microsoft.com/en-us/library/system.windows.presentationsource(v=vs.110).aspx

NinjaScript 2077

© 2023 NinjaTrader, LLC

int devicePixelY;

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Obtain the device-pixel coordinate corresponding to an

application-pixel Y value of 500

 devicePixelY = ChartingExtensions.ConvertToVerticalPixels(500,

ChartControl.PresentationSource);

}

11.6.2.6.4 ChartPanel

The ChartPanel class includes a range of properties related to the panel on which the calling

script resides. Each Panel has 3 independent ChartScales: Left, Right, and Overlay.

NinjaTrader 82078

© 2023 NinjaTrader, LLC

Methods and Properties

ChartObje

cts

A collection of objects configured on the chart panel

H Indicates the height (in pixels) of the chart panel

IsFocused Indicates the chart panel is currently in focus in the

window

IsWaitingF

orBars

Indicates one or more objects in the chart panel are

waiting for Bars objects to load or refresh

IsYAxisDis

playedLeft

Indicates the y-axis is visible on the left side of the chart

panel

IsYAxisDis

playedOve

rlay

Indicates any objects configured in the panel are using

the Overlay scale justification

IsYAxisDis

playedRigh

t

Indicates the y-axis is visible on the right side of the chart

panel

MaxValue Indicates the maximum Y value of objects within the

chart panel

MinValue Indicates the minimum Y value of objects within the chart

panel

PanelIndex Indicates the index of the chart panel in the collection of

configured panels

Scales A collection of ChartScale objects corresponding to

objects within the chart panel

W Indicates the width (in pixels) of the chart panel

X Indicates the x-coordinate on the chart canvas at which

the chart panel begins

Y Indicates the y-coordinate on the chart canvas at which

the chart panel begins

NinjaScript 2079

© 2023 NinjaTrader, LLC

11.6.2.6.4.1 ChartObjects

Definition
A collection of objects configured on the chart panel

Property Value
An IList of Gui.NinjaScript.IChartObject instances containing references to the objects

configured on the panel

Syntax
ChartPanel.ChartObjects

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 IList<Gui.NinjaScript.IChartObject> myObjects =

ChartPanel.ChartObjects;

 foreach (Gui.NinjaScript.IChartObject thisObject in myObjects)

 {

 Print(String.Format("{0} is of type {1}", thisObject.Name,

thisObject.GetType()));

 }

}

The image below shows the output of the code example above, while applied in a chart panel

with three objects.

https://msdn.microsoft.com/en-us/library/system.collections.ilist(v=vs.110).aspx

NinjaTrader 82080

© 2023 NinjaTrader, LLC

11.6.2.6.4.2 H (Height)

Definition
Indicates the height (in pixels) of the rendered area of the chart panel.

Note: The paintable area does not extend all the way to the top edge of the panel itself, as

seen in the image below.

Property Value
A int representing the height of the panel in pixels

Syntax
ChartPanel.H

Example

NinjaScript 2081

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // Print the height of the panel

 Print(ChartPanel.H);

}

Based on the image below, H reveals that the paintable area of the chart panel is 69 pixels

high.

11.6.2.6.4.3 IsYAxisDisplayedLeft

Definition
Indicates the y-axis is visible on the left side of the chart panel.

Property Value
A bool indicating the y-axis is visible to the left

NinjaTrader 82082

© 2023 NinjaTrader, LLC

Syntax
ChartPanel.IsYAxisDisplayedLeft

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // Print a message if the y-axis is visible on the left

 if (ChartPanel.IsYAxisDisplayedLeft)

 Print("The y-axis is visible on the left");

}

Based on the image below, IsYAxisDisplayedLeft confirms that the y-axis displays to the left.

In this image, the property would be set to true when applied to either chart panel.

NinjaScript 2083

© 2023 NinjaTrader, LLC

11.6.2.6.4.4 IsYAxisDisplayedOverlay

Definition
Indicates any objects configured in the panel are using the Overlay scale justification.

Property Value
A bool indicating any objects use the Overlay scale justification

Syntax
ChartPanel.IsYAxisDisplayedOverlay

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // Trigger an alert when the Overlay scale justification is

used

 if (ChartPanel.IsYAxisDisplayedOverlay)

 Alert("overlayAlert", Priority.Low, "It is not recommended

to use 'Overlay' with this indicator", "", 300, Brushes.Yellow,

Brushes.Black);

}

Based on the image below, IsYAxisDisplayedOverlay is set to True, since the SMA indicator is

using the Overlay scale justification.

NinjaTrader 82084

© 2023 NinjaTrader, LLC

11.6.2.6.4.5 IsYAxisDisplayedRight

Definition
Indicates the y-axis is visible on the right side of the chart panel.

Property Value
A bool indicating the y-axis is visible to the right

Syntax
ChartPanel.IsYAxisDisplayedRight

Example

NinjaScript 2085

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // Print a message if the y-axis is visible on the right

 if (ChartPanel.IsYAxisDisplayedRight)

 Print("The y-axis is visible on the right");

}

Based on the image below, IsYAxisDisplayedRight confirms that the y-axis is not displayed on

the right. The property would be set to false when applied in either chart panel in this instance.

11.6.2.6.4.6 MaxValue

Definition
Indicates the maximum Y value of objects within the chart panel, based on the current y-axis

scale. The scale of the y-axis is dependent upon the values of objects in the panel which have

Auto Scale enabled.

NinjaTrader 82086

© 2023 NinjaTrader, LLC

Property Value
A double representing the maximum Y value in the panel's vertical scale

Syntax
ChartPanel.MaxValue

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // Print the minimum and maximum Y values for objects in the

panel

 Print(String.Format("Min value: {0}, Max value:

{1}",ChartPanel.MinValue, ChartPanel.MaxValue));

}

11.6.2.6.4.7 MinValue

Definition
Indicates the minimum Y value of objects within the chart panel, based on the current y-axis

scale. The scale of the y-axis is dependent upon the values of objects in the panel which have

Auto Scale enabled.

Property Value
A double representing the minimum Y value in the panel's vertical scale

Syntax
ChartPanel.MinValue

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // Print the minimum and maximum Y values for objects in the

panel

 Print(String.Format("Min value: {0}, Max value:

{1}",ChartPanel.MinValue, ChartPanel.MaxValue));

}

NinjaScript 2087

© 2023 NinjaTrader, LLC

11.6.2.6.4.8 PanelIndex

Definition
Indicates the index of the chart panel in the collection of configured panels.

Note: This property comes from a zero-based index, which is not the same as the panel

number displayed in the Indicators window opened from within the chart. The panel

number displayed in the Indicators window will equate to ChartPanel.PanelIndex + 1.

Property Value
A int representing the zero-based index of the panel

Syntax
ChartPanel.PanelIndex

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // Print the panel's zero-based index

 Print(String.Format("This panel sits at index

{0}",ChartPanel.PanelIndex));

}

Notice three things in the image below:

1) An indicator containing the example code above is configured on the second chart panel

2) In the Indicators window, the "Panel" property is set to 2

3) The output of the example code displays the zero-based index of Panel #2, which is at

index 1

NinjaTrader 82088

© 2023 NinjaTrader, LLC

11.6.2.6.4.9 Scales

Definition
A collection of ChartScale objects corresponding to objects within the chart panel.

Property Value
A ChartScaleCollection containing ChartScale objects

Syntax
ChartPanel.Scales

Example

NinjaScript 2089

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 // loop through each panel which is currently configured on

the hosting chart

 foreach (ChartPanel chartPanel in ChartControl.ChartPanels)

 {

 // there are multiple scale per panel

 // i.e., Right, Left, Overlay

 foreach (ChartScale scale in chartPanel.Scales)

 {

 // get the right scale margin type

 if (scale.ScaleJustification ==

ScaleJustification.Right)

 {

 Print(string.Format("The Right Scale of panel #{0}'s

margin type is {1}",

 scale.PanelIndex,

scale.Properties.AutoScaleMarginType));

 }

 }

 }

 }

}

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 // Shows us at which index in the Scales collection the

individual panel scales reside [0: Right, 1: Left, 2: Overlay]

 // The Scale collection gets accessed via passing the

ScaleJustification enum in as index

 Print("Scales index " + 0 + " " +

ChartPanel.Scales[ScaleJustification.Right]);

 Print("Scales index " + 1 + " " +

ChartPanel.Scales[ScaleJustification.Left]);

 Print("Scales index " + 2 + " " +

ChartPanel.Scales[ScaleJustification.Overlay]);

 }

}

NinjaTrader 82090

© 2023 NinjaTrader, LLC

11.6.2.6.4.10 W (Width)

Definition
Indicates the width (in pixels) of the paintable area of the chart panel.

Note: The paintable area does not extend all the way to the right edge of the panel itself,

as seen in the image below.

Property Value
A int representing the width of the panel in pixels

Syntax
ChartPanel.W

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // Print the width of the panel

 Print(ChartPanel.W);

}

Based on the image below, W reveals that the chart panel is 451 pixels wide.

NinjaScript 2091

© 2023 NinjaTrader, LLC

11.6.2.6.4.11 X (Coordinate)

Definition
Indicates the x-coordinate on the chart canvas at which the chart panel begins.

Property Value
A int representing the x-coordinate at which the panel begins. This property will only contain

a value greater than zero if the y-axis displays to the left of the paintable chart canvas area in

the panel (if an object in the panel is using the "Left" scale justification).

Syntax
ChartPanel.X

Example

NinjaTrader 82092

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // Print the coordinates of the top-left corner of the panel

 Print(String.Format("The panel begins at coordinates {0},

{1}",ChartPanel.X ,ChartPanel.Y));

}

Based on the image below, X reveals that the chart panel begins at x-coordinate 52.

11.6.2.6.4.12 Y (Coordinate)

Definition
Indicates the y-coordinate on the chart canvas at which the chart panel begins.

Property Value
A int representing the y-coordinate at which the panel begins.

NinjaScript 2093

© 2023 NinjaTrader, LLC

Syntax
ChartPanel.Y

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 base.OnRender(chartControl, chartScale);

 // Print the coordinates of the top-left corner of the panel

 Print(String.Format("The panel begins at coordinates {0},

{1}",ChartPanel.X ,ChartPanel.Y));

}

Based on the image below, Y reveals that the chart panel begins at y-coordinate 232.

NinjaTrader 82094

© 2023 NinjaTrader, LLC

11.6.2.6.5 ChartScale

The ChartScale class includes a range of properties related to the Y-Axis values of the

ChartPanel on which the calling script resides. The ChartScale can be configured to Right,

Left, or Overlay.

Methods and Properties

GetPixelsF

orDistance

()

Returns the number of device pixels between the value

passed to the method representing a series point value

on the chart scale

GetValueB

yY()

Returns the series value on the chart scale determined

by a y pixel coordinate on the chart

GetValueB

yYWpf()

Returns the series value on the chart scale determined

by a WPF coordinate on the chart

NinjaScript 2095

© 2023 NinjaTrader, LLC

GetYByVal

ue()

Returns the chart's y-pixel coordinate on the chart

determined by a series value represented on the chart

scale

GetYByVal

ueWpf()

Returns a WPF coordinate on the chart determined by a

series value represented on the chart scale

Height Indicates the overall distance (from top to bottom) of the

chart scale in device pixels

IsVisible Indicates if the chart scale is viewable on the UI

MaxMinus

Min

The difference between the chart scale's MaxValue and

MinValue represented as a y value

MaxValue The highest displayed value on the chart scale

MinValue The lowest rendered value on the chart scale

PanelIndex The panel on which the chart scale resides

Properties Represents a number of properties available to the Chart

Scale which can be configured to change the

appearance of the scale

ScaleJustifi

cation

Indicates the location of the chart scale relative to the

chart control

Width Indicates the overall distance (from left to right) of the

chart scale in device pixels

11.6.2.6.5.1 GetPixelsForDistance()

Definition
Returns the number of device pixels between the value passed to the method representing a

series point value on the chart scale.

Method Return Value
A float representing the number of pixels between a value.

Syntax
<chartScale>.GetPixelsForDistance(double distance)

Method Parameters

NinjaTrader 82096

© 2023 NinjaTrader, LLC

distance A double value representing the

distance in points to be

measured

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // the number of pixels between the point value passed as a

distance to the method

 float pixelForDistance =

chartScale.GetPixelsForDistance(0.25);

 Print("pixelForDistance: " + pixelForDistance); //20 pixels per

every 1 tick on the chart scale

}

In the image below, we pass a value of 1 for the distance, which tells us there are 76 pixels

for every 1 point on the ES 06-15 chart scale.

NinjaScript 2097

© 2023 NinjaTrader, LLC

11.6.2.6.5.2 GetValueByY()

Definition
Returns the series value on the chart scale determined by a y pixel coordinate on the chart.

Method Return Value
A double value representing a series value on the chart scale. This is normally a price value,

but can represent indicator plot values as well.

Syntax
<chartScale>.GetValueByY(float y)

Method Parameters

y A float value representing a pixel

coordinate on the chart scale

Examples

NinjaTrader 82098

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // the price value of the pixel coordinate passed in the method

 double valueByY = chartScale.GetValueByY(1);

 Print("valueByY: " + valueByY); //2106.19693333

}

In the image below, we pass a value of 1 for the y value, which tells us the pixel coordinate of

1 is located at a price of 2106.19 on the chart scale

11.6.2.6.5.3 GetValueByYWpf()

Definition
Returns the series value on the chart scale determined by a WPF coordinate on the chart.

Method Return Value
A double value representing a series value on the chart scale. This is normally a price value,

but can represent indicator plot values as well.

NinjaScript 2099

© 2023 NinjaTrader, LLC

Syntax
<chartScale>.GetValueByYWpf(double y)

Method Parameters

y A double value representing a

WPF coordinate on the chart

scale

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // store the y location the user clicked

 double wpfY = chartControl.MouseDownPoint.Y;

 // gets price value of the WPF coordinate passed to the method

 double valueByYWpf = chartScale.GetValueByYWpf(wpfY);

 Print("valueByYWpf: " + valueByYWpf); //2105.49995215

}

In the image below, we used the Chart Control property MouseDownPoint as the "wpfy"

variable, which in return tells us the user clicked on a Y value of 2105.499 on the chart scale.

NinjaTrader 82100

© 2023 NinjaTrader, LLC

11.6.2.6.5.4 GetYByValue()

Definition
Returns the chart's y-pixel coordinate on the chart determined by a series value represented

on the chart scale.

Method Return Value
An int value representing a y pixel coordinate on the chart scale.

Syntax
<chartScale>.GetYByValue(double val)

Method Parameters

val A double value which usually

represents a price or indicator

value

Examples

NinjaScript 2101

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // gets the pixel coordinate of the price value passed to the

method

 int yByValue =

chartScale.GetYByValue(Bars.GetClose(Bars.Count - 1));

 Print("yByValue: " + yByValue); // 207

}

 In the image below, we pass the last bar close as the value (example logic avoids using a

bars ago index, see also OnRender() note #5), which in return tells us the last price displayed

on the chart is at a y location of 207 pixels.

11.6.2.6.5.5 GetYByValueWpf()

Definition
Returns a WPF coordinate on the chart determined by a series value represented on the

chart scale.

NinjaTrader 82102

© 2023 NinjaTrader, LLC

Method Return Value
An double value representing a WPF coordinate on the chart scale

Syntax
<chartScale>.GetYByValueWpf(double val)

Method Parameters

val A double value which usually

represents a price or indicator

value

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // gets the wpf coordinate of the price value passed to the

method

 int valueByYWpf =

chartScale.GetYByValueWpf(Bars.GetClose(Bars.Count - 1));

 Print("valueByYWpf: " + valueByYWpf); // 207

}

 In the image below, we pass the last bar close as the value (example logic avoids using a

bars ago index, see also OnRender() note #5), which in return tells us the last price displayed

on the chart is at a WPF location of 207.30998 pixels.

NinjaScript 2103

© 2023 NinjaTrader, LLC

11.6.2.6.5.6 Height

Definition
Indicates the overall distance (from top to bottom) of the chart scale.

Note: Height does not return its value in terms of device pixels. However, using

Height.ConvertToVerticalPixels or Height.ConvertToHorizontalPixels will convert the Height

value to device pixels. Alternatively, RenderTarget.PixelSize.Height or ChartPanel.H will

also provide the height in terms of device pixels.

Property Value
A double value representing the height of the chart scale.

Syntax
<chartScale>.Height

Examples

NinjaTrader 82104

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // the height of the entire chart scale

 double height = chartScale.Height;

 Print("the height of the chart scale is: " + height);

}

In the image below, the entire of height of the chart scale is represented by the blue line which
is calculated at 300 pixels.

11.6.2.6.5.7 IsVisible

Definition
Indicates if the chart scale is viewable on the UI. If the bar series, indicator, or strategy which

uses the chart scale is not in view, the chart scale IsVisible property will return false.

Property Value

NinjaScript 2105

© 2023 NinjaTrader, LLC

A bool value, which when true the series used to build the scale is viewable; otherwise false.

 This property is read-only.

Syntax
<chartScale>.IsVisible

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // do not process render info chart scale is not visible

 if(!chartScale.IsVisible)

 return;

}

11.6.2.6.5.8 MaxMinusMin

Definition
The difference between the chart scale's MaxValue and MinValue represented as a y value.

Property Value
A double value representing the difference in scale as a y value.

Syntax
<chartScale>.MaxMinusMin

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // the difference between the scales maximum and minimum value

 double maxMinusMin = chartScale.MaxMinusMin;

 Print("maxMinusMin: " + maxMinusMin); // maxMinusMin: 3.92

}

In the image below, the highest calculated value on the chart scale is 2106.21, with the lowest

value being 2102.29; the MaxMinusMin property therefore provides us calculated value of

3.92.

NinjaTrader 82106

© 2023 NinjaTrader, LLC

11.6.2.6.5.9 MaxValue

Definition
The highest displayed value on the chart scale.

Property Value
A double value representing highest value on the chart scale as a y value.

Syntax
<chartScale>.MaxValue

Example

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // the maximum value of the chart scale

 double maxValue = chartScale.MaxValue;

 Print("maxValue: " + maxValue);

}

NinjaScript 2107

© 2023 NinjaTrader, LLC

In the image below, the highest value displayed as text on the y-axis reads 2106.00, however

as you can see, there are a few pixels on the chart scale above this tick. The absolute

rendered MaxValue on the chart scale is calculated as 2106.21

11.6.2.6.5.10 MinValue

Definition
The lowest rendered value on the chart scale.

Property Value
A double value representing lowest value on the chart scale as a y value.

Syntax
<chartScale>.MinValue

Examples

NinjaTrader 82108

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // the minimum value of the chart scale

 double minValue = chartScale.MinValue;

 Print("minValue: " + minValue);

}

In the image below, the lowest value displayed as text on the y-axis reads 2102.50, however

as you can see, there are a few pixels on the chart scale below this tick. The absolute

rendered MinValue on the chart scale is calculated as 2102.29.

11.6.2.6.5.11 PanelIndex

Definition
The panel on which the chart scale resides.

NinjaScript 2109

© 2023 NinjaTrader, LLC

Note: This value is NOT the same value as the indicator's PanelUI. PanelIndex will

provide the actual indexed value of the chart panel used for this chart scale.

Property Value
An int value representing the panel as an index value which starts at 0 and will increment for

each panel configured on the chart. This property is read-only.

Syntax
<chartScale>.PanelIndex

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // the index value of the panel (not the same as the panelUI)

 int panel = chartScale.PanelIndex;

 Print("panel: " + panel);

}

11.6.2.6.5.12 Properties

Definition
Represents a number of properties available to the Chart Scale which can be configured to

change the appearance of the scale.

NinjaTrader 82110

© 2023 NinjaTrader, LLC

Warning: These are UI properties which are designed to be set by a user. Attempting to

modify these values through a custom script is NOT guaranteed to take effect.

Property Values

YAxisRangeType An YAxisRangeType enum, possible

values are:

· Automatic

· Fixed

AutoScaleDateRangeType An AutoScaleDateRangeType enum,

possible values are:

· ScreenDateRange

· EntireDateRangeSeriesOnly

HorizontalGridlinesCalculation An YAxisRangeType enum, possible

values are:

NinjaScript 2111

© 2023 NinjaTrader, LLC

· Automatic

· Fixed

HorizontalGridlinesIntervalType A

HorizontalGridlinesIntervalType

enum, possible values are:

· Ticks

· Points

· Pips

HorizontalGridlinesInterval A double value representing the

vertical interval of the horizontal

axis

AutoScaleMarginType An AutoScaleMarginType enum,

possible values are:

· Percent

· Price

AutoScaleMarginLower A double value representing the

lowest margin used for the chart

scale

AutoScaleMarginUpper A double value representing the

highest margin used for the chart

scale

YAxisScalingType An YAxisScalingType enum, possible

values are:

· Linear

· Logarithmic

FixedScaleMax A double representing the highest

series value used for the chart

scale when the scale is fixed

FixedScaleMin A double representing the lowest

series value used for the chart

scale when the scale is fixed

Syntax
<chartScale>.Properties

NinjaTrader 82112

© 2023 NinjaTrader, LLC

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 if (chartScale.Properties.YAxisScalingType ==

YAxisScalingType.Linear)

 {

 // do something

 }

}

11.6.2.6.5.13 ScaleJustif ication

Definition
Indicates the location of the chart scale relative to the chart control.

Property Value
A ScaleJustification enum. Possible values are:

· Right

· Left

· Overlay

Syntax
ScaleJustification

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 if (chartScale.ScaleJustification == ScaleJustification.Right)

 {

 // do something

 }

}

11.6.2.6.5.14 Width

Definition
Indicates the overall distance (from left to right) of the chart scale.

Note: Width does not return its value in terms of device pixels. However, using

NinjaScript 2113

© 2023 NinjaTrader, LLC

Width.ConvertToVerticalPixels or Width.ConvertToHorizontalPixels will convert the Width

value to device pixels. Alternatively, RenderTarget.PixelSize.Width or ChartPanel.W will

also provide the width in terms of device pixels.

Property Value
A double value representing the width of the chart scale.

Syntax
<chartScale>.Width

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // the width of the entire chart scale

 double width = chartScale.Width;

 Print("the width of the chart scale is: " + Width);

}

In the image below, the entire of width of the chart scale is represented by the blue line which

is calculated at 450 pixels.

NinjaTrader 82114

© 2023 NinjaTrader, LLC

11.6.2.6.6 Rendering

Rendering methods and properties can be useful when carrying out custom drawing tasks for

chart objects. Event handlers such as OnCalculateMinMax() and OnRender() allow you to

override behavior at key points in the rendering process.

Notse:

1. Some rendering methods and properties make use of SharpDX libraries, which provide

a managed framework for working with DirectX technology. Please see the SharpDX

SDK Reference for more information.

2. For a walk through for using the SharpDX, please see the educational resource Using

SharpDX for Custom Chart Rendering

Methods and Properties

RenderTar

get

Creates objects and exposes methods used for drawing

in the chart area.

http://sharpdx.org/

NinjaScript 2115

© 2023 NinjaTrader, LLC

ForceRefre

sh()

Forces OnRender() to be called, which will re-paint the

chart

IsInHitTest Qualifies if object drawn in chart object should be
selectable in the hit test procedure

IsSelected Indicates a chart object is currently selected

IsVisibleOn

Chart()

Indicates a chart object is visible on the chart canvas

MaxValue The maximum value used for the automatic scaling of

the y axis

MinValue The minimum value used for the automatic scaling of

the y axis

OnCalculat

eMinMax()

An event driven method which is called while the chart

scale is being updated

OnRender(

)

Used to render custom drawing to a chart from various

chart objects

OnRenderT

argetChang

ed()

Used for efficient handling of SharpDX resources

PanelUI The chart panel that is configured on the chart's UI

ZOrder A unique identifier used to control the order in which
chart objects are drawn on the chart's Z-axis

11.6.2.6.6.1 D2DFactory

Definition
Provides a default Direct2D1 factory used for creating SharpDX.Direct2D1 components.

Property Value
A read-only SharpDX.Direct2D1.Factory to create Direct2D1 objects compatible with

NinjaTrader rendering

Syntax
NinjaTrader.Core.Globals.D2DFactory

NinjaTrader 82116

© 2023 NinjaTrader, LLC

Warning: Please ensure this property would only be accessed from OnRender() or

OnRenderTargetChanged() (which run in the UI thread), as access from other threads

outside those methods could cause a degradation in performance.

// create a Direct2D1 PathGeometry format object with default

NinjaTrader D2DFactory factory

SharpDX.Direct2D1.PathGeometry pathGeometry = new

SharpDX.Direct2D1.PathGeometry(NinjaTrader.Core.Globals.D2DFactory)

;

11.6.2.6.6.2 DirectWriteFactory

Definition
Provides an default DirectWrite factory used for creating SharpDX.DirectWrite components.

Property Value
A read-only SharpDX.DirectWrite.Factory used to create DirectWrite objects compatible

with NinjaTrader rendering

Syntax
NinjaTrader.Core.Globals.DirectWriteFactory

// create a text format object with default NinjaTrader DirectWrite

factory

SharpDX.DirectWrite.TextFormat textFormat = new

SharpDX.DirectWrite.TextFormat(NinjaTrader.Core.Globals.DirectWrite

Factory,

 "Arial", 12f);

// create a text layout object with default NinjaTrader DirectWrite

factory

SharpDX.DirectWrite.TextLayout textLayout = new

SharpDX.DirectWrite.TextLayout(NinjaTrader.Core.Globals.DirectWrite

Factory,

 "text to render", textFormat, ChartPanel.W, ChartPanel.H);

11.6.2.6.6.3 DxExtensions

The DxExtensions class provides helper methods useful for converting WPF resources to

SharpDX resources

NinjaScript 2117

© 2023 NinjaTrader, LLC

Note: For more information on SharpDX Resources, please see the educational resource

Using SharpDX for Custom Chart Rendering

DxExtensions Helper Methods

ToDxBrush() Converts a WPF Brush to a SharpDX Brush

ToVector2() Converts a System.Windows.Point structure to a

SharpDX.Vector2

Definition
Converts a WPF Brush to a SharpDX Brush used for SharpDX rendering. Supports

SolidColorBrush, LinearGradientBrush, and RadialGradientBrush types.

Note: If you are using a large number of brushes, and are not tied to WPF resources, you

should favor creating the SharpDX Brush directly since the ToDxBrush() method can

lead to performance issues if called too frequently during a single render pass.

Method Return Value
A new SharpDX.Direct2D1.Brush constructed colors and brush properties of the WPF brush

Syntax
DxExtensions.ToDxBrush(this System.Windows.Media.Brush brush, RenderTarget

renderTarget)

<WPFBrush>.ToDxBrush(RenderTarget renderTarget)

Parameters

brush The System.Windows.Media.Brush to convert

renderTarget The RenderTarget associated with the brush

resource

Example

https://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82118

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example ToDXBrush";

 // pushes the WPF brush to the UI for user to configure

 TextBrush = System.Windows.Media.Brushes.DodgerBlue;

 }

}

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // convert user WPF selection to a DX brush

 SharpDX.Direct2D1.Brush dxBrush =

TextBrush.ToDxBrush(RenderTarget);

 using (dxBrush)

 {

 RenderTarget.FillRectangle(new RectangleF(ChartPanel.X,

ChartPanel.Y, ChartPanel.W, ChartPanel.H), dxBrush);

 }

}

// the WPF exposed to the UI which the user defines

[XmlIgnore]

public System.Windows.Media.Brush TextBrush { get; set; }

[Browsable(false)]

public string TextBrushSerialize

{

 get { return Serialize.BrushToString(TextBrush); }

 set { TextBrush = Serialize.StringToBrush(value); }

}

Definition
Converts a System.Windows.Point structure to a SharpDX.Vector2 used for SharpDX

rendering.

Method Return Value
A new SharpDX.Vector2 constructed with the point parameters X and Y values

Syntax
DxExtensions.ToVector2(this System.Windows.Point point)

<point>.ToVector2()

NinjaScript 2119

© 2023 NinjaTrader, LLC

Parameters

point The System.Windows.Point point to convert

Example

// gets the application/user WPF point and converts to a SharpDX

Vector

System.Windows.Point wpfPoint = ChartControl.MouseDownPoint;

SharpDX.Vector2 dxVector2 = wpfPoint.ToVector2();

11.6.2.6.6.4 ForceRefresh()

Definition
Resets an internal marker used to determine if the chart visuals need to re-render.

ChartControl runs a timed event every 250ms to determine the chart needs to be updated. If it

does, the OnRender() method is called. Under normal circumstances, the marker used to call

OnRender() will be reset after the following conditions:

· OnBarUpdate() event

· OnConnectionStatusUpdate() event

· User clicks on the chart

· Drawing object(s) have been removed from the chart

· Strategy enabled/disabled on chart

· ChartTrader enabled/disabled

In most cases, the conditions listed above should be satisfactory for rendering standard and

custom chart objects; however for more advance programming concepts, there may be other

situations you run into which would NOT force the chart to refresh (e.g., a user interacting

with a custom control). In these special cases, you can use the ForceRefresh() method to

re-queue the render event.

Note: As the chart is optimized on a timer, calling ForceRefresh() will NOT immediately

trigger a render event. Calling ForceRefesh() simply re-queues the render event to

trigger during the next timed event. In other words, it may take up to 250ms for the render

event to function.

Method Return Value

https://msdn.microsoft.com/en-us/library/system.windows.point(v=vs.110).aspx

NinjaTrader 82120

© 2023 NinjaTrader, LLC

This method does not return a value

Syntax
ForceRefresh()

Warning: Excessive calls to ForceRefresh() and OnRender() can carry an impact on

general application performance. You should only call ForceRefresh() if the chart truly

needs to be visually updated. It is NOT recommended to invalidate the chart control

directly as this could cause issues with threading which result in dead locks.

Method Parameters
This method does not accept any parameters

Examples

DateTime lastTimeCalled = DateTime.MinValue;

private void MyCustomMethod()

{

 // if it has been longer than one second since the last time

 // this method was called update the chart visually

 if (Core.Globals.Now.Subtract(lastTimeCalled).Seconds >= 1)

 {

 ForceRefresh();

 lastTimeCalled = Core.Globals.Now;

 }

}

11.6.2.6.6.5 IsInHitTest

Definition
Indicates a user is currently clicking in the chart panel in which the calling script resides.

Note: In addition to the example below, IsInHitTest can also be tested directly on chart

objects (for example, myHorizontalLine.IsInHitTest). In this case, the IsInHitTest property

of a specific object will refer to the panel in which the calling script resides, even if the

calling script resides in a different panel than the object itself.

Property Value
This property returns true to indicate that the chart panel in which the script resides is being

clicked on; otherwise, false. Default set to false.

NinjaScript 2121

© 2023 NinjaTrader, LLC

Syntax
IsInHitTest

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 if(IsInHitTest)

 {

 Print("user clicked on object");

 // do something

 }

}

11.6.2.6.6.6 IsSelected

Definition
Indicates a chart object is currently selected. When this property is set to true in a

DrawingTool, the GetSelectionPoints() will be called.

Property Value
This property returns true to indicate that the chart object is selected; otherwise, false.

Default set to false.

Warning: This property value is ONLY guaranteed to be settable by the object to which it

belongs (e.g., from within a DrawingTool). Modifying its value from an external object

(such as attempting to set a DrawingTool.IsSelected from an indicator) can result in the

property automatically returning the value handled by its source. In other words, unless

you are working with a chart object type directly (e.g., building a custom drawing tool), the

IsSelected property should be considered read-only.

Syntax
IsSelected

Examples

NinjaTrader 82122

© 2023 NinjaTrader, LLC

 Reading the IsSelected property from an indicator

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 foreach(DrawingTool drawTool in DrawObjects)

 {

 // only apply logic below to types of "Rectangle")

 if(drawTool.GetType().ToString().Contains("Rectangle"))

 {

 // safely cast as dynamic type at run-time

 dynamic myRect = drawTool;

 // Changes the brush to pink to indicating selected

 if(drawTool.IsSelected)

 {

 myRect.AreaBrush = Brushes.Pink;

 }

 // otherwise, set back to default value on next render

pass

 else myRect.AreaBrush = Brushes.CornflowerBlue;

 }

 }

}

NinjaScript 2123

© 2023 NinjaTrader, LLC

 Explicitly setting the IsSelected property from a DrawingTool
type

public override void OnMouseDown(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 if(DrawingState == DrawingState.Building)

 {

 if(dataPoint.IsEditing)

 {

 // do something

 }

 // when done editing anchor, set the state to normal and

unselect the drawing object

 else if(dataPoint.IsEditing)

 {

 DrawingState = DrawingState.Normal;

 IsSelected = false;

 }

 }

}

11.6.2.6.6.7 IsVisibleOnChart()

Definition
Indicates a chart object is visible on the chart. When the IsVisibleOnChart() method

determines a chart object is not visible and returns false, the object will not be used in a

render pass, will not be considered in a hit test, and will not be used for alerting. The base

implementation is to always return true on all chart objects, however this behavior can be

overridden for your custom object if desired.

Method Return Value
A virtual bool value which when true, the object will be rendered and can be interacted with by

a user; otherwise false. Default value is true.

Syntax
You must override this method using the following syntax:

public override bool IsVisibleOnChart(ChartControl chartControl, ChartScale

chartScale, DateTime firstTimeOnChart, DateTime lastTimeOnChart)

{

 return true;

}

Method Parameters

NinjaTrader 82124

© 2023 NinjaTrader, LLC

chartControl A ChartControl representing the x-axis

chartScale A ChartScale representing the y-axis

firstTimeOnChart A DateTime representing the first painted bar

displayed on the chart

lastTimeOnChart A DateTime representing the last painted bar

displayed on the chart

Examples

public override bool IsVisibleOnChart(ChartControl chartControl,

ChartScale chartScale, DateTime firstTimeOnChart, DateTime

lastTimeOnChart)

{

 // check if any chart anchors are visible

 foreach (ChartAnchor anchor in Anchors)

 {

 if (anchor.Time >= firstTimeOnChart && anchor.Time <=

lastTimeOnChart)

 return true;

 }

 return false; // otherwise the object should not be displayed

}

11.6.2.6.6.8 MaxValue

Definition
The maximum value used for the automatic scaling of the y axis. This property will only be

used when the chart object is set to IsAutoScale

Property Value
A double value

Syntax
MaxValue

Examples

NinjaScript 2125

© 2023 NinjaTrader, LLC

public override void OnCalculateMinMax()

{

 if (DrawingState != DrawingState.Building)

 {

 //set the maximum value to the chart anchors price

 MaxValue = Anchor.Price;

 }

}

11.6.2.6.6.9 MinValue

Definition
The minimum value used for the automatic scaling of the y axis. This property will only be

used when the chart object is set to IsAutoScale

Property Value
A double value

Syntax
MinValue

Examples

public override void OnCalculateMinMax()

{

 if (DrawingState != DrawingState.Building)

 {

 //set the minimum value to the chart anchors price

 MinValue = Anchor.Price;

 }

}

11.6.2.6.6.10 OnCalculateMinMax()

Definition
An event driven method which is called while the chart scale is being updated. This method

is used to determine the highest and lowest value that can be used for the chart scale. It is

only called when the chart object is either set to IsAutoScale while there are multiple charts

objects rendered or only a single object would be rendered on the chart.

Note: The indexer used to look up a Series<T> value through barsAgo is NOT

guaranteed to be in sync when the OnCalculateMinMax() method is called. You will need

to use GetValueAt() to obtain a historical value at a specified absolute index.

NinjaTrader 82126

© 2023 NinjaTrader, LLC

Method Return Value
This method does not return a value.

Syntax
You must override the method in your NinjaScript object with the following syntax:

public override void OnCalculateMinMax()

{

}

Method Parameters
This method does not accept any parameters.

Examples

NinjaScript 2127

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example Indicator";

 IsOverlay = true;

 // set this to true to ensure CalculateMinMix() is called

 IsAutoScale = true;

 }

}

public override void OnCalculateMinMax()

{

 // make sure to always start fresh values to calculate new

min/max values

 double tmpMin = double.MaxValue;

 double tmpMax = double.MinValue;

 // For performance optimization, only loop through what is

viewable on the chart

 for (int index = ChartBars.FromIndex; index <=

ChartBars.ToIndex; index++)

 {

 // since using Close[0] is not guaranteed to be in sync

 // retrieve "Close" value at the current viewable range index

 double plotValue = Close.GetValueAt(index);

 // return min/max of close value

 tmpMin = Math.Min(tmpMin, plotValue);

 tmpMax = Math.Max(tmpMax, plotValue);

 }

 // Finally, set the minimum and maximum Y-Axis values to +/- 50

ticks from the primary close value

 MinValue = tmpMin - 50 * TickSize;

 MaxValue = tmpMax + 50 * TickSize;

}

11.6.2.6.6.11 OnRender()

Definition
Used to render custom drawing to a chart from various chart objects, such as an Indicator,

DrawingTool or Strategy.

Notes:

NinjaTrader 82128

© 2023 NinjaTrader, LLC

1. This method uses the 3rd party SharpDX library to render custom Direct2D Text and

Shapes. For a walk through for using the SharpDX, please see the educational

resource Using SharpDX for Custom Chart Rendering

2. The OnRender() method frequently runs once the State has reached State.Realtime

in response to market data updates or a user interacting with the chart (e.g., clicking,

resizing, rescaling, etc.)

3. For performance optimizations, the timing of the calls to OnRender() are buffered to at

least 250ms, and re-renders once internal logic determines that values may be out-of-

date. See also ForceRefresh() for more details

4. When using the Strategy Analyzer, OnRender() does NOT call until you switch to the

"Chart" display and renders from State.Terminated. As a result, this method should

NOT be relied on for historical Strategy backtesting logic and should ONLY be used for

rendering purposes

5. Unlike market data events and strategy order related events, there is NO guarantee

that the barsAgo indexer used for Series<T> objects are in sync with the current bars

in progress. As a result, you should favor using an absolute index method to look up

values (e.g., <series>.GetValueAt(), Bars.GetOpen(), etc)

6. While OnRender() is an excellent means for customizing and enhancing indicators

and strategies, its application can easily be abused, resulting in unforeseen

performance issues which you may not catch until the right conditions (e.g., in the

hands of your users during an FOMC event)

7. Please limit any calculations or algorithms you may be tempted run in OnRender()

simply to rendering. You should always favor precomputed values and store them for

rendering later as the preferred approach to working with the OnRender() method (e.g.,

reusing brushes, passing values from OnBarUpdate(), etc.). See also

OnRenderTargetChanged() method for more information on reusing Brushes

8. If you are using this method as an opportunity to "hook" onto a user related event, such

as when a user selects a 3rd party control, you should alternatively consider using the

events of that control independent of official NinjaScript events. See also

TriggerCustomEvent()

Method Return Value
This method does not return a value

Syntax
protected override void OnRender(ChartControl chartControl, ChartScale chartScale)

{

}

Warning: Each DirectX render target requires its own brushes. You must create a

NinjaScript 2129

© 2023 NinjaTrader, LLC

brushes directly in OnRender() or using OnRenderTargetChanged(). If you do not you

will receive an error at run time similar to:

"A direct X error has occured while rendering the chart: HRESULT: [0x88990015],

Module: [SharpDX.Direct2D1], ApiCode:

[D2DERR_WRONG_RESOURCE_DOMAIN/WrongResourceDomain], Message: The

resource was realized on the wrong render target. : Each DirectX render target

requires its own brushes. You must create brushes directly in OnRender() or using

OnRenderTargetChanged().

Please see OnRenderTargetChanged() for examples of a brush that needs to be

recalculated, or the example below of recreating a static brush.

Method Parameters

chartControl A ChartControl object (the chart's bar-related

properties and x-axis)

chartScale A ChartScale object (the chart's y-axis)

Tips:

· Please see the help guide topic on Working with Brushes for general information on

using brushes and advanced brush concepts

· If you are using standard Plots along with custom rendering from an indicator or

strategy, you will need to ensure to call the base.OnRender() method for those plots to

display.

Examples

NinjaTrader 82130

© 2023 NinjaTrader, LLC

 Using a static SharpDX Brush to render a rectangle on the
chart panel

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // implicitly recreate and dispose of brush on each render pass

 using (SharpDX.Direct2D1.SolidColorBrush dxBrush = new

SharpDX.Direct2D1.SolidColorBrush(RenderTarget,

SharpDX.Color.Blue))

 {

 RenderTarget.FillRectangle(new

SharpDX.RectangleF(ChartPanel.X, ChartPanel.Y, ChartPanel.W,

ChartPanel.H), dxBrush);

 }

}

 Calling the base.OnRender() method to ensure Plots are

rendered along with custom render logic

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // call the base.OnRender() to ensure standard Plots work as

designed

 base.OnRender(chartControl, chartScale);

 // custom render logic

}

NinjaScript 2131

© 2023 NinjaTrader, LLC

 Using multiple SharpDX objects to override the default plot

appearance

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // get the starting and ending bars from what is rendered on the

chart

 float startX = chartControl.GetXByBarIndex(ChartBars,

ChartBars.FromIndex);

 float endX = chartControl.GetXByBarIndex(ChartBars,

ChartBars.ToIndex);

 // Loop through each Plot Values on the chart

 for (int seriesCount = 0; seriesCount < Values.Length;

seriesCount++)

 {

 // get the value at the last bar on the chart (if it has been

set)

 if

(Values[seriesCount].IsValidDataPointAt(ChartBars.ToIndex))

 {

 double plotValue =

Values[seriesCount].GetValueAt(ChartBars.ToIndex);

 // convert the plot value to the charts "Y" axis point

 float chartScaleYValue =

chartScale.GetYByValue(plotValue);

 // calculate the x and y values for the line to start and

end

 SharpDX.Vector2 startPoint = new SharpDX.Vector2(startX,

chartScaleYValue);

 SharpDX.Vector2 endPoint = new SharpDX.Vector2(endX,

chartScaleYValue);

 // draw a line between the start and end point at each

plot using the plots SharpDX Brush color and style

 RenderTarget.DrawLine(startPoint, endPoint,

Plots[seriesCount].BrushDX,

 Plots[seriesCount].Width,

Plots[seriesCount].StrokeStyle);

 // use the chart control text form to draw plot values

along the line

 SharpDX.DirectWrite.TextFormat textFormat =

chartControl.Properties.LabelFont.ToDirectWriteTextFormat();

 // calculate the which will be rendered at each plot using

it the plot name and its price

 string textToRender = Plots[seriesCount].Name + ": " +

plotValue;

 // calculate the layout of the text to be drawn

 SharpDX.DirectWrite.TextLayout textLayout = new

SharpDX.DirectWrite.TextLayout(Core.Globals.DirectWriteFactory,

 textToRender, textFormat, 200, textFormat.FontSize);

 // draw a line at each plot using the plots SharpDX Brush

color at the calculated start point

 RenderTarget.DrawTextLayout(startPoint, textLayout,

Plots[seriesCount].BrushDX);

 // dipose of the unmanaged resources used

 textLayout.Dispose();

 textFormat.Dispose();

 }

 }

}

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "OnRender Example";

 IsOverlay = true;

 AddPlot(Brushes.DarkKhaki, "Open");

 AddPlot(Brushes.SeaGreen, "High");

 AddPlot(Brushes.Crimson, "Low");

 AddPlot(Brushes.DodgerBlue, "Close");

 }

}

protected override void OnBarUpdate()

{

 Values[0][0] = Open[0];

 Values[1][0] = High[0];

 Values[2][0] = Low[0];

 Values[3][0] = Close[0];

}

NinjaTrader 82132

© 2023 NinjaTrader, LLC

11.6.2.6.6.12 OnRenderTargetChanged()

Definition
Called whenever a Chart's RenderTarget is created or destroyed.

OnRenderTargetChanged() is used for creating / cleaning up resources such as a

SharpDX.Direct2D1.Brush used throughout your NinjaScript class.

Notes:

1. A RenderTarget will be created and destroyed several times during the lifetime of a

chart. For example, a user resizing the chart would cause the RenderTarget to be re-

created as the chart is rendered to reflect the new dimensions. Another example is when

a user clicks on the chart as a RenderTarget is used during hit testing. Since there are

multiple RenderTargets, you MUST ensure the resource being used belongs to the

destination target. In practice, all you need to understand is if you are using a device

resource (e.g., custom SharpDX Brush) throughout different event methods, you should

recreate these resource during OnRenderTargetChanged() which ensures the device

resource is updated correctly as the devices context changes.

2. During initialization your NinjaScript indicators and strategies are guaranteed to see

State.Configure before OnRenderTargetChanged() would be called.

Method Return Value
This method does not return a value.

Syntax
You may override the method in your indicator with the following syntax:

public override void OnRenderTargetChanged()

{

}

Warning: Each DirectX render target requires its own brushes. You must create a

brushes directly in OnRender() or using OnRenderTargetChanged(). If you do not you

will receive an error at run time similar to:

"A direct X error has occured while rendering the chart: HRESULT: [0x88990015],

Module: [SharpDX.Direct2D1], ApiCode:

[D2DERR_WRONG_RESOURCE_DOMAIN/WrongResourceDomain], Message: The

resource was realized on the wrong render target. : Each DirectX render target

requires its own brushes. You must create brushes directly in OnRender() or using

OnRenderTargetChanged().

NinjaScript 2133

© 2023 NinjaTrader, LLC

Please see the example below on using OnRenderTargetChanged() with brush that

needs to be recalculated, or OnRender() for an example of recreating a static brush.

Parameters
This method does not accept any parameters

Tips:

1. If you are exclusively using resources in OnRender() (e.g., not passing values from

OnStateChange() or other events) you only need to create and dispose of the

resource in OnRender(). The OnRenderTargetChanged() concepts illustrated

below would not need to be applied.

2. For a walk through for using the SharpDX RenderTarget, please see the educational

resource Using SharpDX for Custom Chart Rendering

Examples

NinjaTrader 82134

© 2023 NinjaTrader, LLC

 Recalculating a SharpDX Brush conditionally in OnBarUpdate()

private SharpDX.Direct2D1.Brush dxBrush = null; // the SharpDX

brush used for rendering

private System.Windows.Media.SolidColorBrush brushColor; // used to

determine the color of the brush conditionally

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "OnRenderTargetChanged Example";

 IsOverlay = false;

 }

}

protected override void OnBarUpdate()

{

 if (Close[0] > Open[0])

 {

 brushColor = Brushes.Green;

 }

 else if (Close[0] < Open[0])

 {

 brushColor = Brushes.Red;

 }

 else brushColor = Brushes.Blue;

}

public override void OnRenderTargetChanged()

{

 // if dxBrush exists on first render target change, dispose of

it

 if (dxBrush != null)

 {

 dxBrush.Dispose();

 }

 // recalculate dxBrush from value calculated in OnBarUpdated

when RenderTarget is recreated

 if (RenderTarget != null)

 dxBrush = brushColor.ToDxBrush(RenderTarget);

}

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // fill a custom SharpDX rectangle using the dx brush

 RenderTarget.FillRectangle(new SharpDX.RectangleF(ChartPanel.X,

ChartPanel.Y, ChartPanel.W, ChartPanel.H), dxBrush);

}

NinjaScript 2135

© 2023 NinjaTrader, LLC

NinjaTrader 82136

© 2023 NinjaTrader, LLC

 Recalculating a SharpDX Brush based on user input

private SharpDX.Direct2D1.Brush dxBrush = null; // the SharpDX

brush used for rendering

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "OnRenderTargetChanged Example";

 IsOverlay = false;

 UserBrush = Brushes.Red; // user selection pushed to the UI

 }

}

public override void OnRenderTargetChanged()

{

 // if dxBrush exists on first render target change, dispose of

it

 if (dxBrush != null)

 {

 dxBrush.Dispose();

 }

 // recalculate dxBrush from user defined brush when RenderTarget

is recreated

 if (RenderTarget != null)

 dxBrush = UserBrush.ToDxBrush(RenderTarget);

}

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // fill a custom SharpDX rectangle using the dx brush

 RenderTarget.FillRectangle(new SharpDX.RectangleF(ChartPanel.X,

ChartPanel.Y, ChartPanel.W, ChartPanel.H), dxBrush);

}

[XmlIgnore]

public Brush UserBrush { get; set; } // brush selection set by user

in UI

[Browsable(false)]

public string MyBrushSerialize // string used to serialize

selection set by user in UI

{

 get { return Serialize.BrushToString(UserBrush); }

 set { UserBrush = Serialize.StringToBrush(value); }

}

NinjaScript 2137

© 2023 NinjaTrader, LLC

11.6.2.6.6.13 PanelUI

Definition
The zero-based index of the chart panel in which the calling script is configured.

Note: The "Panel" property configured in the Indicators or Strategies window on a chart is

non-zero-based, while PanelUI is zero-based. For example, if an indicator is configured in

Panel # 1 in the Indicators window, PanelUI will return an index of 0. If the indicator were

configured in Panel # 4 in the Indicators window, PanelUI would return an index of 3.

Property Value
An int value representing the panel the object is configured. This property is read-only.

Syntax
PanelUI

Examples

protected override void OnBarUpdate()

{

 // Print the zero-based panel index on which the script is

configured

 Print("My object is on is on panel # " + PanelUI);

}

11.6.2.6.6.14 RenderTarget

Definition
A SharpDX Direct2D1 RenderTarget creates objects and exposes methods used for

drawing in the chart area.

Notes:

1. There are two RenderTarget's used in a chart. This is important to understand when

creating/destroying device resources. Please see the OnRenderTargetChanged()

page for more information

2. For a walk through for using the SharpDX RenderTarget, please see the educational

resource Using SharpDX for Custom Chart Rendering

Property Value
A SharpDX.Direct2D1.RenderTarget

NinjaTrader 82138

© 2023 NinjaTrader, LLC

SharpDX.Direct2D1.WindowR
enderTarget

Used to render the actual

contents of the chart to the

window

SharpDX.Direct2D1.WicRende
rTarget

Used to render a bitmap for a few

scenarios:

1. A user clicks on a chart area; a

bitmap is used to do any hit

detection to determine where the

user clicked

2. User clicks on the Windows

task bar; a bitmap is used to

rendered the preview the contents

of the chart display through a

thumbnail on the task bar

3. A user re-sizes the chart; a

bitmap is used to render the

current contents of the chart,

which is redrawn using the

WindowRenderTarget after the

desired changes have been set

Syntax
RenderTarget

Warning: Each DirectX render target requires its own brushes. You must create a

brushes directly in OnRender() or using OnRenderTargetChanged(). If you do not you will

receive an error at run time similar to:

"A direct X error has occured while rendering the chart: HRESULT: [0x88990015],

Module: [SharpDX.Direct2D1], ApiCode:

[D2DERR_WRONG_RESOURCE_DOMAIN/WrongResourceDomain], Message: The

resource was realized on the wrong render target. : Each DirectX render target

requires its own brushes. You must create brushes directly in OnRender() or using

OnRenderTargetChanged().

Please see OnRenderTargetChanged() for examples with brush that needs to be

recalculated, or OnRender() for an example of recreating a static brush.

NinjaScript 2139

© 2023 NinjaTrader, LLC

11.6.2.6.6.15 SetZOrder

Definition
Used to assign a unique identifier representing the index in which chart objects are drawn on

the chart's Z-axis (front to back ordering). Objects with a higher ZOrder are drawn first.

Note:

1. To check on which ZOrder index the object gets drawn use the ZOrder property.

2. Assigning specific ZOrder indices to draw at should be done once the State has

reached State.Historical

3. If you want to draw your object behind the bars, assign to use index -1 (like in the

example below)

4. If you want to draw your object topmost, assign to use index int.MaxValue

5. Any levels in between can be directly assigned, the starting / default levels used by

NinjaTrader can be seen here.

6. You can see the highest ZOrder currently in a chart with code such our second

example below - setting higher values than this value will result in the ZOrder to be set to

this value, so this can be thought of as the current 'top'.

Method Return Value
This method does not return a value

Syntax
SetZOrder(int DesiredZOrderLevel)

Examples

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 // Make sure our object plots behind the chart bars

 SetZOrder(-1);

 }

}

protected override void OnRender(ChartControl cc, ChartScale cs)

{

 Print(ChartPanel.ChartObjects.Max(co => co.ZOrder));

}

NinjaTrader 82140

© 2023 NinjaTrader, LLC

11.6.2.6.6.16 ZOrder

Definition
A unique identifier representing the index in which chart objects are drawn on the chart's Z-

axis (front to back ordering). Objects with a higher ZOrder are drawn first.

Note: The ZOrder index should NOT be set using this property. Please use the

dedicated SetZOrder() for this purpose.

Property Value
A int value representing the order that the object is drawn. Default value is categorized by

the type of object drawn, which will then increment for each instance of the chart object that is

drawn. Each type of object will have a different default starting value to keep these objects

separate:

Chart Bars 1

NinjaScript

Objects

10001

Global Draw

Objects

20001

Draw Objects 30001

Syntax
ZOrder

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // call the base.OnRender() to ensure standard Plots work as

designed

 base.OnRender(chartControl, chartScale);

 // Print the currently assigned ZOrder index for this

NinjaScript object

 Print("Current ZOrder level is: " + ZOrder);

}

NinjaScript 2141

© 2023 NinjaTrader, LLC

11.6.2.6.7 FormatPriceMarker()

Definition
Used to override the default string format of a NinjaScript's price marker values.

Method Return Value
A virtual string which is overridden from the default price marker value

Syntax
You must override the method in your indicator with the following syntax
public override string FormatPriceMarker(double price)

{

}

Parameters

price A double value representing the

value to be overridden.

Tip: Standard Numeric Format Strings examples can be found on Microsoft's Developer
Network (MSDN article)

Examples

// FormatPriceMarker method of a custom indicator

public override string FormatPriceMarker(double price)

{

 // Formats price marker values to 4 decimal places

 return price.ToString("N4");

}

protected override void OnBarUpdate()

{

 // overriding FormatPriceMarker will ensure display of 4 decimal

places

 MyPlot[0] = (Close[0] + Open[0] * .0025);

}

11.6.2.6.8 IsAutoScale

Definition
If true, the object will call CalculateMinMax() in order to determine the object's MinValue and

MaxValue value used to scale the Y-axis of the chart.

https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx
https://msdn.microsoft.com/en-us/library/dwhawy9k%28v=vs.110%29.aspx

NinjaTrader 82142

© 2023 NinjaTrader, LLC

Property Value
This property returns true if the object's are included in the y-scale; otherwise, false. Default

set to false for DrawingTools, but set to true for Indicators.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
IsAutoScale

Example

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example Indicator";

 // set this to true to call CalculateMinMix() to ensure

drawing tool is fully rendered in chart scale

 IsAutoScale = true;

 }

 else if (State == State.Configure)

 {

 }

}

11.6.2.6.9 IsOverlay

Definition
Determines if indicator plot(s) are drawn on the chart panel over top of price. Setting this

value to true will also allow an Indicator to be used as a SuperDOM Indicator.

Property Value
This property returns true if any indicator plot(s) are drawn on the chart panel; otherwise,

false. Default set to false.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults

Syntax
IsOverlay

NinjaScript 2143

© 2023 NinjaTrader, LLC

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsOverlay = true; // Indicator plots are drawn on the

chart panel on top of price

 AddPlot(Brushes.Orange, "SMA");

 }

}

11.6.2.6.10 IsSeparateZOrder

Definition
Determines the ZOrder of the drawing object will be different than the NinjaScript object that

drew it. When false the drawing object will share the same ZOrder.

Property Value
This property returns true if the object is drawn on a separate ZOrder; otherwise, false.

Default set to false.

Syntax
IsSeparateZOrder

Example

protected override void OnBarUpdate()

{

 // Instantiate a Dot object

 Dot myDot = Draw.Dot(this, "NewDot", true, 5, High[5],

Brushes.Black);

 // Set the Dot object to use a separate Z-Order than the

indicator that created it

 myDot.IsSeparateZOrder = true;

}

11.6.2.6.11 ScaleJustif ication

Definition
Determines which scale an indicator will be plotted on.

NinjaTrader 82144

© 2023 NinjaTrader, LLC

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Property Value
This property returns a ScaleJustification value of either:

NinjaTrader.Gui.Charts.ScaleJustification.Left;

NinjaTrader.Gui.Charts.ScaleJustification.Overlay;

NinjaTrader.Gui.Charts.ScaleJustification.Right;

Syntax
ScaleJustification

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 // force "My Plot" to be plotted on the left scale

 ScaleJustification = ScaleJustification.Left;

 }

 else if (State == State.Configure)

 {

 AddPlot(Brushes.Orange, "My Plot");

 }

}

11.6.2.6.12 Stroke Class

Definition
Objects derived from the Stroke class are used to characterize how a plot is visually

displayed (plotted) on a chart.

Syntax
Stroke(Stroke stroke)

Stroke(Brush brush)

Stroke(Brush brush, float width)

Stroke(Brush brush, DashStyle dashStyleHelper, float width)

Parameters

NinjaScript 2145

© 2023 NinjaTrader, LLC

brush The brush used to draw the plot (reference)

dashStyleHelper Possible values:

DashStyleHelper.Dash

DashStyleHelper.DashDot

DashStyleHelper.DashDotDot

DashStyleHelper.Dot

DashStyleHelper.Solid

stroke The stroke object

width The width of the stroke

Properties

Brush The

System.Windows.Media.Brush

used to construct the stroke

(reference)

BrushDX A SharpDX.Direct2D1.Brush used

to actually render the stroke

Note: To avoid and resolve

access violation exceptions,

please see Warning and examples

remarked below

DashStyleDX A SharpDX.Direct2D1.DashStyle

used to render the stroke style

Note: To avoid and resolve

access violation exceptions,

please see Warning and examples

remarked below

DashStyleHelper A dashstyle used to construct the

stroke. Possible values are:

· DashStyleHelper.Dash

http://msdn.microsoft.com/en-us/library/System.Windows.Media.Brush%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82146

© 2023 NinjaTrader, LLC

· DashStyleHelper.DashDot

· DashStyleHelper.DashDotDot

· DashStyleHelper.Dot

· DashStyleHelper.Solid

RenderTarget The RenderTarget drawing context

used for the stroke.

Note: This property must be set

before accessing a stroke's

BrushDX property. Please see

Warning and examples remarked

below

StrokeStyle A SharpDX.Direct2D1.StrokeStyle

Width A float representing the width in

pixels

Warning: There may be situations where a RenderTarget has not been set, and to
prevent access violation exception before accessing the BrushDX or DashStyleDX
properties, you should explicitly set the RenderTarget before attempting to access that
property. Please see the example below.

Examples
See the AddPlot() method for additional examples.

NinjaScript 2147

© 2023 NinjaTrader, LLC

 Using a Stroke SharpDX Brush for Custom Rendering

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsOverlay = true;

 // set the Stroke default to red brush

 MyStroke = new Stroke(Brushes.Red);

 }

 else if (State == State.Configure)

 {

 }

}

public override void OnRenderTargetChanged()

{

 // Explicitly set the Stroke RenderTarget

 if (RenderTarget != null)

 MyStroke.RenderTarget = RenderTarget;

}

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // create two points from the top left corner

 SharpDX.Vector2 pointA = new SharpDX.Vector2(0, 0);

 // to 300 pixels offset X and Y to create a diagonal line

 SharpDX.Vector2 pointB = new SharpDX.Vector2(300, 300);

 // Draw the line using the Stroke SharpDX brush

 RenderTarget.DrawLine(pointA, pointB, MyStroke.BrushDX,

MyStroke.Width, MyStroke.StrokeStyle);

}

[NinjaScriptProperty]

[Description("My Stroke")]

public Stroke MyStroke { get; set; }

NinjaTrader 82148

© 2023 NinjaTrader, LLC

 Convert the Windows Media Brush to a SharpDX Brush

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsOverlay = true;

 // set stroke default to blue brush

 MyStroke = new Stroke(Brushes.Blue);

 }

 else if (State == State.Configure)

 {

 }

}

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // create two points from the top left corner

 SharpDX.Vector2 pointA = new SharpDX.Vector2(0, 0);

 // to 300 pixels offset X and Y to create a diagonal line

 SharpDX.Vector2 pointB = new SharpDX.Vector2(300, 300);

 NinjaTrader.Gui.Stroke MyStroke = new Stroke(Brushes.Blue);

 // if BrushDX is null, convert the constructed brush to a DX

brush

 SharpDX.Direct2D1.Brush myBrush = MyStroke.BrushDX ??

MyStroke.Brush.ToDxBrush(RenderTarget);

 RenderTarget.DrawLine(pointA, pointB, myBrush, MyStroke.Width,

MyStroke.StrokeStyle);

 myBrush.Dispose();

}

[NinjaScriptProperty]

[Description("My Stroke")]

public Stroke MyStroke { get; set; }

11.6.2.6.13 UserControlCollection

Definition
An observable collection of 3rd party framework elements, the purpose of which is to allow

developers to add a custom control to the chart (e.g., add a button or create your own data

grid). This framework collection resides on top of the ChartControl in order to prevent 3rd

party custom controls from interfering with native NinjaTrader chart framework members. For

example, if you wish to add a button to a chart, it is recommended to add it to this

UserControlCollection rather than attempting to modify or add to any pre-existing NinjaTrader

chart elements.

https://msdn.microsoft.com/en-us/library/ms668604(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.frameworkelement(v=vs.110).aspx

NinjaScript 2149

© 2023 NinjaTrader, LLC

Notes:

1. This collection is provided "as-is" and does NOT contain any automatic layout options.

 By default, the last added framework element will reside on top of any previously

added controls. This means it is possible for a user to install two NinjaScript objects

which may be competing for an area of a chart.

2. Once the NinjaScript object is removed from the chart by the user, the custom control

will be automatically removed from the collection.

Warnings:

1. This property should ONLY be accessed once your NinjaScript object has reached

State.Historical or later

2. You MUST use a Dispatcher in order to account for any UI threading errors. Please

see the example below for proper usage

3. It is imperative that you dispose of any custom control resources in State.Terminated

to ensure there are no leaks between instances of the object

Property Value
ObservableCollection<System.Windows.FrameworkElement>

Syntax
UserControlCollection[int idx]

Examples

https://msdn.microsoft.com/en-us/library/system.windows.threading.dispatcher(v=vs.110).aspx

NinjaTrader 82150

© 2023 NinjaTrader, LLC

private System.Windows.Controls.Button myBuyButton;

private System.Windows.Controls.Button mySellButton;

private System.Windows.Controls.Grid myGrid;

// Define a custom event method to handle our custom task when the

button is clicked

private void OnMyButtonClick(object sender, RoutedEventArgs rea)

{

 System.Windows.Controls.Button button = sender as

System.Windows.Controls.Button;

 if (button != null)

 Print(button.Name + " Clicked");

}

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "SampleAddButton";

 Description = "Adds a custom control to the chart";

 IsOverlay = true;

 }

 else if (State == State.Configure)

 {

 }

 // Once the NinjaScript object has reached State.Historical, our

custom control can now be added to the chart

 else if (State == State.Historical)

 {

 // Because we're dealing with UI elements, we need to use the

Dispatcher which created the object

 // otherwise we will run into threading errors...

 // e.g, "Error on calling 'OnStateChange' method: You are

accessing an object which resides on another thread."

 // Furthermore, we will do this operation Asynchronously to

avoid conflicts with internal NT operations

 ChartControl.Dispatcher.InvokeAsync((() =>

 {

 // Grid already exists

 if (UserControlCollection.Contains(myGrid))

 return;

 // Add a control grid which will host our custom buttons

 myGrid = new System.Windows.Controls.Grid

 {

 Name = "MyCustomGrid",

 // Align the control to the top right corner of the

chart

 HorizontalAlignment = HorizontalAlignment.Right,

 VerticalAlignment = VerticalAlignment.Top,

 };

 // Define the two columns in the grid, one for each button

 System.Windows.Controls.ColumnDefinition column1 = new

System.Windows.Controls.ColumnDefinition();

 System.Windows.Controls.ColumnDefinition column2 = new

System.Windows.Controls.ColumnDefinition();

 // Add the columns to the Grid

 myGrid.ColumnDefinitions.Add(column1);

 myGrid.ColumnDefinitions.Add(column2);

 // Define the custom Buy Button control object

 myBuyButton = new System.Windows.Controls.Button

 {

 Name = "MyBuyButton",

 Content = "LONG",

 Foreground = Brushes.White,

 Background = Brushes.Green

 };

 // Define the custom Sell Button control object

 mySellButton = new System.Windows.Controls.Button

 {

 Name = "MySellButton",

 Content = "SHORT",

 Foreground = Brushes.White,

 Background = Brushes.Red

 };

 // Subscribe to each buttons click event to execute the

logic we defined in OnMyButtonClick()

 myBuyButton.Click += OnMyButtonClick;

 mySellButton.Click += OnMyButtonClick;

 // Define where the buttons should appear in the grid

 System.Windows.Controls.Grid.SetColumn(myBuyButton, 0);

 System.Windows.Controls.Grid.SetColumn(mySellButton, 1);

 // Add the buttons as children to the custom grid

 myGrid.Children.Add(myBuyButton);

 myGrid.Children.Add(mySellButton);

 // Finally, add the completed grid to the custom

NinjaTrader UserControlCollection

 UserControlCollection.Add(myGrid);

 }));

 }

 // When NinjaScript object is removed, make sure to unsubscribe

to button click events

 else if (State == State.Terminated)

 {

 if (ChartControl == null)

 return;

 // Again, we need to use a Dispatcher to interact with the UI

elements

 ChartControl.Dispatcher.InvokeAsync((() =>

 {

 if (myGrid != null)

 {

 if (myBuyButton != null)

 {

 myGrid.Children.Remove(myBuyButton);

 myBuyButton.Click -= OnMyButtonClick;

 myBuyButton = null;

 }

 if (mySellButton != null)

 {

 myGrid.Children.Remove(mySellButton);

 mySellButton.Click -= OnMyButtonClick;

 mySellButton = null;

 }

 }

 }));

 }

}

NinjaScript 2151

© 2023 NinjaTrader, LLC

11.6.2.7 Drawing

You can use NinjaScript to draw custom shapes, lines, text and colors on price and indicator

panels from both Indicators and Strategies.

Draw Methods and Associated Return Types

Draw Method Return Type

Draw.AndrewsPitc

hfork()

AndrewsPitchfork

Draw.Arc() Arc

Draw.ArrowDown(

)

ArrowDown

Draw.ArrowLine() ArrowLine

NinjaTrader 82152

© 2023 NinjaTrader, LLC

Draw.ArrowUp() ArrowUp

Draw.Diamond() Diamond

Draw.Dot() Dot

Draw.Ellipse() Ellipse

Draw.ExtendedLin

e()

ExtendedLine

Draw.FibonacciCir

cle()

FibonacciCircle

Draw.FibonacciEx

tensions()

FibonacciExtensions

Draw.FibonacciRe

tracements()

FibonacciRetracements

Draw.FibonacciTi

meExtensions()

FibonacciTimeExtensions

Draw.GannFan() GannFan

Draw.HorizontalLi

ne()

HorizontalLine

Draw.Line() Line

Draw.Pathtool() Pathtool

Draw.Polygon() Polygon

Draw.Ray() Ray

Draw.Rectangle() Rectangle

Draw.Region() Region

Draw.RegionHighli

ghtX()

RegionHighlightX

NinjaScript 2153

© 2023 NinjaTrader, LLC

Draw.RegionHighli

ghtY()

RegionHighlightY

Draw.Regression

Channel()

RegressionChannel

Draw.RiskReward

()

RiskReward

Draw.Ruler() Ruler

Draw.Square() Square

Draw.Text() Text

Draw.TextFixed() TextFixed

Draw.TimeCycles(

)

TimeCycles

Draw.TrendChann

el()

TrendChannel

Draw.Triangle() Triangle

Draw.TriangleDow

n()

TriangleDown

Draw.TriangleUp() TriangleUp

Draw.VerticalLine(

)

VerticalLine

Drawing Methods and Properties

Property Description

AllowRemovalOfD

rawObjects

Determines if programmatically drawn

DrawObjects can be manually removed from the

chart

NinjaTrader 82154

© 2023 NinjaTrader, LLC

BackBrush Sets the brush used for painting the chart panel's

background color for the current bar

BackBrushAll Sets the brush used for painting the chart's

background color for the current bar

BackBrushes A collection of historical brushes used for the

background colors for the chart panel

BackBrushesAll A collection of historical brushes used for the

background colors for all chart panels

BarBrush Sets the brush used for painting the color of a

price bar's body

BarBrushes A collection of historical brushes used for

painting the color of a price bar's body

Brushes A collection of static, predefined Brushes

supplied by the .NET Framework

CandleOutlineBru

sh

Sets the outline Brush of a candlestick

CandleOutlineBru

shes

A collection of historical outline brushes for

candlesticks

DrawObjects A collection holding all of the drawn chart objects
for the primary bar series

IDrawingTool Represents an interface that exposes information
regarding a drawn chart object

RemoveDrawObje

ct()

Removes a draw object from the chart based on
its tag value

RemoveDrawObje

cts()

Removes all draw objects originating from the
indicator or strategy from the chart

SimpleFont Class Defines a particular font configuration

NinjaScript 2155

© 2023 NinjaTrader, LLC

1. Custom graphics for custom indicators can be painted on either the price panel or

indicator panel. You could for example have a custom indicator displayed in an

indicator panel yet have associated custom graphics painted on the price panel. The

"DrawOnPricePanel" property is set to true by default, which means that custom

graphics will always be painted on the price panel, even if the indicator is plotted in a

separate panel. If you want your custom graphics to be plotted on the indicator panel,

set this property to false in the OnStateChange() method of your custom indicator.

2. Set unique tag values for each draw object, unless you intend for new draw objects to

replace existing objects with the same tag. A common trick is to incorporate the bar

number as part of the unique tag identifier. For example, if you wanted to draw a dot

that indicated a buying condition above a bar, you could express it:

Draw.Dot(this, CurrentBar.ToString() + "Buy", false, 0, High[0] + TickSize,

Brushes.ForestGreen);

3. Draw methods will not work if they are called from the OnStateChange() method.

11.6.2.7.1 Draw .Andrew sPitchfork()

Definition
Draws an Andrew's Pitchfork.

Method Return Value
An AndrewsPitchfork object that represents the draw object.

Syntax
Draw.AndrewsPitchfork(NinjaScriptBase owner, string tag, bool isAutoScale, int

anchor1BarsAgo, double anchor1Y, int anchor2BarsAgo, double anchor2Y, int

anchor3BarsAgo, double anchor3Y, Brush brush, DashStyleHelper dashStyle, int width)

Draw.AndrewsPitchfork(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

anchor1Time, double anchor1Y, DateTime anchor2Time, double anchor2Y, DateTime

anchor3Time, double anchor3Y, Brush brush, DashStyleHelper dashStyle, int width)

Draw.AndrewsPitchfork(NinjaScriptBase owner, string tag, bool isAutoScale, int

anchor1BarsAgo, double anchor1Y, int anchor2BarsAgo, double anchor2Y, int

anchor3BarsAgo, double anchor3Y, bool isGlobal, string templateName)

Draw.AndrewsPitchfork(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

anchor1Time, double anchor1Y, DateTime anchor2Time, double anchor2Y, DateTime

anchor3Time, double anchor3Y, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

NinjaTrader 82156

© 2023 NinjaTrader, LLC

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale

anchor1BarsAgo The number of bars ago (x value) of the 1st

anchor point

anchor1Time The time of the 1st anchor point

anchor1Y The y value of the 1st anchor point

anchor2BarsAgo The number of bars ago (x value) of the 2nd

anchor point

anchor2Time The time of the 2nd anchor point

anchor2Y The y value of the 2nd anchor point

anchor3BarsAgo The number of bars ago (x value) of the 3rd

anchor point

anchor3Time The time of the 3rd anchor point

anchor3Y The y value of the 3rd anchor point

brush The brush used to color draw object (reference)

dashStyle DashStyleHelper.Dash

DashStyleHelper.DashDot

DashStyleHelper.DashDotDot

DashStyleHelper.Dot

DashStyleHelper.Solid

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2157

© 2023 NinjaTrader, LLC

Note: Drawing objects with y values very far off

the visible canvas can lead to performance hits.

Fancier DashStyles like DashDotDot will also

require more resources than simple DashStyles

like Solid.

width The width of the draw object

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws an Andrew's Pitchfork

Draw.AndrewsPitchfork(this, "tag1", true, 4, Low[4], 3, High[3], 1,

 Low[1], Brushes.Blue, DashStyleHelper.Solid, 3);

11.6.2.7.1.1 Andrew sPitchfork

Definition
Represents an object that exposes information regarding an Andrews Pitchfork IDrawingTool.

The Standard Pitchfork creates a trend channel out of the 3 user defined extreme price

anchor points by connecting the first 2 points to form the anchor, and the next 2 points to form

the retracement handle. From the first point then a trendline is drawn through the 50%

midpoint of the retracement handle, parallel lines originating at the other 2 points forming the

channel, while multiple further price levels could be set to allow for finer analysis.

In contrast the Schiff Pitchfork variant is constructed then by shifting the first anchor of the

Standard Pitchfork one-half the vertical distance between the first 2 anchor points.

As further alternation the Modified Schiff Pitchfork variant is found by moving the first anchor

to the midpoint of the original pitchfork's anchor handle, the trend-line connecting our first 2

anchor points.

NinjaTrader 82158

© 2023 NinjaTrader, LLC

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

ExtensionAnchor An IDrawingTool's ChartAnchor representing the

extension point of the drawing object

PriceLevels A collection of prices calculated by the drawing

object

CalculationMethod The AndrewsPitchforkCalculationMethod

property determining which method is used to

calculate the pitchfork.

Possible values are:

· ModifiedSchiff

· Schiff

· StandardPitchfork

IsTextDisplayed A bool value determining if the draw object

should display text on the chart.

RetracementLineS

troke

A Stroke object used to draw the center

retracement line of the object

AnchorLineStroke A Stroke object used to draw the object

Example

// Instantiate an Andrews Pitchfork object

AndrewsPitchfork myFork = Draw.AndrewsPitchfork(this, "tag1",

false, 7, Low[7], 5, High[5], 1, Low[1], false, "ForkTemplate");

// Print the tag used to draw the object

Print(myFork.Tag);

NinjaScript 2159

© 2023 NinjaTrader, LLC

11.6.2.7.2 Draw .Arc()

Definition
Draws an arc.

Method Return Value
An Arc object that represents the draw object.

Syntax
Draw.Arc(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

endBarsAgo, double endY, Brush brush)

Draw.Arc(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, Brush brush)

Draw.Arc(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo, double

 startY, int endBarsAgo, double endY, Brush brush, DashStyleHelper dashStyle, int

width)

Draw.Arc(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

double startY, DateTime endTime, double endY, Brush brush, DashStyleHelper dashStyle,

int width)

Draw.Arc(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo, double

 startY, int endBarsAgo, double endY, Brush brush, DashStyleHelper dashStyle, int

width, bool drawOnPricePanel)

Draw.Arc(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

double startY, DateTime endTime, double endY, Brush brush, DashStyleHelper dashStyle,

int width, bool drawOnPricePanel)

Draw.Arc(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

endBarsAgo, double endY, bool isGlobal, string templateName)

Draw.Arc(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

NinjaTrader 82160

© 2023 NinjaTrader, LLC

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

startTime The starting time where the draw object will be

drawn.

startY The starting y value co-ordinate where the draw

object will be drawn

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

endY The end y value co-ordinate where the draw

object will terminate

brush The brush used to color draw object (reference)

dashStyle DashStyleHelper.Dash

DashStyleHelper.DashDot

DashStyleHelper.DashDotDot

DashStyleHelper.Dot

DashStyleHelper.Solid

Note: Drawing objects with y values very far off

the visible canvas can lead to performance hits.

Fancier DashStyles like DashDotDot will also

require more resources than simple DashStyles

like Solid.

width The width of the draw object

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2161

© 2023 NinjaTrader, LLC

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a dotted lime green arc

Draw.Arc(this, "tag1", false, 10, 1000, 0, 1001, Brushes.LimeGreen,

DashStyleHelper.Dot, 2);

11.6.2.7.2.1 Arc

Definition
Represents an interface that exposes information regarding an Arc IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

AreaBrush A Brush object representing the fill color of the

draw object

AreaOpacity An int value representing the opacity of the area

color

ArcStroke The Stroke object used to draw the arc line of the

object's outline

Stroke The Stroke object used to draw the straight line

of the object's outline

Example

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
https://ninjatrader.com/support/helpGuides/nt8/stroke_class.htm

NinjaTrader 82162

© 2023 NinjaTrader, LLC

// Draw an Arc object

Arc myArc = Draw.Arc(this, "myArc", Time[10], Close[10], Time[0],

Close[0], Brushes.Blue);

// Set the opacity of the shading between the arc and the chord

myArc.AreaOpacity = 100;

11.6.2.7.3 Draw .Arrow Dow n()

Definition
Draws an arrow pointing down.

Method Return Value
An ArrowDown object that represents the draw object.

Syntax
Draw.ArrowDown(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo,

double y, Brush brush)

Draw.ArrowDown(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, Brush brush)

Draw.ArrowDown(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo,

double y, Brush brush, bool drawOnPricePanel)

Draw.ArrowDown(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, Brush brush, bool drawOnPricePanel)

Draw.ArrowDown(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo,

double y, bool isGlobal, string templateName)

Draw.ArrowDown(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

NinjaScript 2163

© 2023 NinjaTrader, LLC

isAutoScale Determines if the draw object will be included in

the y-axis scale

barsAgo The bar the object will be drawn at. A value of 10

would be 10 bars ago.

time The time the object will be drawn at.

y The y value

brush The brush used to color draw object (reference)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

T

i

p

:

T

h

e

s

i

z

e

o

f

t

h

e

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82164

© 2023 NinjaTrader, LLC

a

r

r

o

w

i

s

t

i

e

d

t

o

t

h

e

c

h

a

r

t

'

s

B

a

r

W

i

d

t

h

a

n

d

t

h

u

s

w

i

l

l

s

NinjaScript 2165

© 2023 NinjaTrader, LLC

c

a

l

e

a

u

t

o

m

a

t

i

c

a

l

l

y

a

s

t

h

e

c

h

a

r

t

i

s

r

e

s

i

z

e

d

NinjaTrader 82166

© 2023 NinjaTrader, LLC

Examples

// Paints a red down arrow on the current bar 1 tick above the high

 Draw.ArrowDown(this, "tag1", true, 0, High[0] + TickSize,

Brushes.Red);

// Paints a blue down arrown on a three bar reversal pattern

if (High[2] > High[3] && High[1] > High[2] && Close[0] < Open[0])

 Draw.ArrowDown(this, CurrentBar.ToString(), true, 0, High[0] +

 TickSize, Brushes.Blue);

11.6.2.7.3.1 Arrow Dow n

Definition
Represents an interface that exposes information regarding an Arrow Down IDrawingTool.

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

point of the drawing object

AreaBrush A Brush object representing the fill color of the

draw object

OutlineBrush A Brush object representing the color of the draw

object's outline

Example

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2167

© 2023 NinjaTrader, LLC

// Instantiate an ArrowDown object

ArrowDown myArrow = Draw.ArrowDown(this, "tag1", true, Time[0],

High[0] + (2 * TickSize), Brushes.Green);

// Set the outline color of the Arrow

myArrow.OutlineBrush = Brushes.Black;

11.6.2.7.4 Draw .Arrow Line()

Definition
Draws an arrow line.

Method Return Value
An ArrowLine object that represents the draw object.

Syntax
Draw.ArrowLine(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

 endBarsAgo, double endY, Brush brush)

Draw.ArrowLine(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, Brush brush)

Draw.ArrowLine(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

 endBarsAgo, double endY, Brush brush, DashStyleHelper dashStyle, int width)

Draw.ArrowLine(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, Brush brush, DashStyleHelper dashStyle,

int width, bool drawOnPricePanel)

Draw.ArrowLine(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

startTime, double startY, DateTime endTime, double endY, Brush brush, DashStyleHelper

dashStyle, int width, bool drawOnPricePanel)

Draw.ArrowLine(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

 endBarsAgo, double endY, bool isGlobal, string templateName)

Draw.ArrowLine(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

NinjaTrader 82168

© 2023 NinjaTrader, LLC

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

startTime The starting time where the draw object will be

drawn.

startY The starting y value co-ordinate where the draw

object will be drawn

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

endY The end y value co-ordinate where the draw

object will terminate

brush The brush used to color draw object (reference)

dashStyle DashStyleHelper.Dash

DashStyleHelper.DashDot

DashStyleHelper.DashDotDot

DashStyleHelper.Dot

DashStyleHelper.Solid

Note: Drawing objects with y values very far off

the visible canvas can lead to performance hits.

Fancier DashStyles like DashDotDot will also

require more resources than simple DashStyles

like Solid.

width The width of the draw object

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2169

© 2023 NinjaTrader, LLC

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a dotted lime green arrow line

Draw.ArrowLine(this, "tag1", 10, 1000, 0, 1001, Brushes.LimeGreen,

DashStyleHelper.Dot, 2);

11.6.2.7.4.1 Arrow Line

Definition
Represents an interface that exposes information regarding an Arrow Line IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

Stroke A Stroke object used to draw the object

Example

// Draw an ArrowLine object

ArrowLine myArrow = Draw.ArrowLine(this, "myArrowLine", 3, High[3],

 1, High[1], Brushes.Blue, DashStyleHelper.DashDot, 3);

// Disable the arrow's visibility

myArrow.IsVisible = false;

NinjaTrader 82170

© 2023 NinjaTrader, LLC

11.6.2.7.5 Draw .Arrow Up()

Definition
Draws an arrow pointing up.

Method Return Value
An ArrowUp object that represents the draw object.

Syntax
Draw.ArrowUp(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double

y, Brush brush)

Draw.ArrowUp(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, Brush brush)

Draw.ArrowUp(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double

y, Brush brush, bool drawOnPricePanel)

Draw.ArrowUp(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, Brush brush, bool drawOnPricePanel)

Draw.ArrowUp(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double

y, bool isGlobal, string templateName)

Draw.ArrowUp(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale

barsAgo The bar the object will be drawn at. A value of 10

would be 10 bars ago.

time The time the object will be drawn at.

NinjaScript 2171

© 2023 NinjaTrader, LLC

y The y value

brush The brush used to color draw object (reference)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

T

i

p

:

T

h

e

s

i

z

e

o

f

t

h

e

a

r

r

o

w

i

s

t

i

e

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82172

© 2023 NinjaTrader, LLC

d

t

o

t

h

e

c

h

a

r

t

'

s

B

a

r

W

i

d

t

h

a

n

d

t

h

u

s

w

i

l

l

s

c

a

l

e

a

u

t

o

m

a

NinjaScript 2173

© 2023 NinjaTrader, LLC

t

i

c

a

l

l

y

a

s

t

h

e

c

h

a

r

t

i

s

r

e

s

i

z

e

d

Examples

NinjaTrader 82174

© 2023 NinjaTrader, LLC

// Paints a red up arrow on the current bar 1 tick below the low

Draw.ArrowUp(this, "tag1", true, 0, Low[0] - TickSize,

Brushes.Red);

11.6.2.7.5.1 Arrow Up

Definition
Represents an interface that exposes information regarding an Arrow Up IDrawingTool.

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

point of the drawing object

AreaBrush A Brush object representing the fill color of the

draw object

OutlineBrush A Brush object representing the color of the draw

object's outline

Example

// Instantiate an ArrowDown object

ArrowUp myArrow = Draw.ArrowUp(this, "tag1", true, Time[0], Low[0]

- (2 * TickSize), Brushes.Green);

// Set the outline color of the Arrow

myArrow.OutlineBrush = Brushes.Black;

11.6.2.7.6 Draw .Diamond()

Definition
Draws a diamond.

Method Return Value
A Diamond object that represents the draw object.

Syntax
Draw.Diamond(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double

y, Brush brush)

Draw.Diamond(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, Brush brush)

Draw.Diamond(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2175

© 2023 NinjaTrader, LLC

double y, Brush brush, bool drawOnPricePanel)

Draw.Diamond(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double

y, Brush brush, bool drawOnPricePanel)

Draw.Diamond(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double

y, bool isGlobal, string templateName)

Draw.Diamond(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale

barsAgo The bar the object will be drawn at. A value of 10

would be 10 bars ago.

time The time the object will be drawn at.

y The y value

brush The brush used to color draw object (reference)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82176

© 2023 NinjaTrader, LLC

(empty string could be used to just use the UI

default visuals instead)

T
i
p
:
T
h
e
s
i
z
e
o
f
t
h
e
d
i
a
m
o
n
d
i
s
t
i
e
d
t
o
t
h
e
c
h
a
r
t
'
s
B
a

NinjaScript 2177

© 2023 NinjaTrader, LLC

r
W
i
d
t
h
a
n
d
t
h
u
s
w
i
l
l
s
c
a
l
e
a
u
t
o
m
a
t
i
c
a
l
l
y
a
s
t
h
e
c
h
a
r
t
i
s
r
e

NinjaTrader 82178

© 2023 NinjaTrader, LLC

s
i
z
e
d

Examples

// Paints a red diamond on the current bar 1 tick below the low

Draw.Diamond(this, "tag1", true, 0, Low[0] - TickSize,

Brushes.Red);

11.6.2.7.6.1 Diamond

Definition
Represents an interface that exposes information regarding a Diamond IDrawingTool.

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

point of the drawing object

AreaBrush A Brush object representing the fill color of the

draw object

OutlineBrush A Brush object representing the color of the draw

object's outline

Example

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2179

© 2023 NinjaTrader, LLC

// Instantiates a red diamond on the current bar 1 tick below the

low

Diamond myDiamond = Draw.Diamond(this, "tag1", true, 0, Low[0] -

TickSize, Brushes.Red);

// Set the area fill color to Red

myDiamond.AreaBrush = Brushes.Red;

11.6.2.7.7 Draw .Dot()

Definition
Draws a dot.

Method Return Value
A Dot object that represents the draw object.

Syntax
Draw.Dot(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time, double y,

 Brush brush)

Draw.Dot(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double y,

Brush brush)

Draw.Dot(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time, double y,

 Brush brush, bool drawOnPricePanel)

Draw.Dot(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double y,

Brush brush, bool drawOnPricePanel)

Draw.Dot(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time, double y,

 bool isGlobal, string templateName)

Draw.Dot(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double y,

bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

NinjaTrader 82180

© 2023 NinjaTrader, LLC

isAutoScale Determines if the draw object will be included in

the y-axis scale

barsAgo The bar the object will be drawn at. A value of 10

would be 10 bars ago.

time The time the object will be drawn at.

y The y value

brush The brush used to color draw object (reference)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

T

i

p

:

T

h

e

s

i

z

e

o

f

t

h

e

d

o

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2181

© 2023 NinjaTrader, LLC

t

i

s

t

i

e

d

t

o

t

h

e

c

h

a

r

t

'

s

B

a

r

W

i

d

t

h

a

n

d

t

h

u

s

w

i

l

l

s

c

a

l

e

NinjaTrader 82182

© 2023 NinjaTrader, LLC

a

u

t

o

m

a

t

i

c

a

l

l

y

a

s

t

h

e

c

h

a

r

t

i

s

r

e

s

i

z

e

d

NinjaScript 2183

© 2023 NinjaTrader, LLC

Examples

// Paints a red dot on the current bar 1 tick below the low

Draw.Dot(this, "tag1", true, 0, Low[0] - TickSize, Brushes.Red);

11.6.2.7.7.1 Dot

Definition
Represents an interface that exposes information regarding a Dot IDrawingTool.

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

point of the drawing object

AreaBrush A Brush object representing the fill color of the

draw object

OutlineBrush A Brush object representing the color of the draw

object's outline

Example

// Instantiates a red dot on the current bar 1 tick below the low

Dot myDot = Draw.Dot(this, "tag1", true, 0, Low[0] - TickSize,

Brushes.Red);

// Disable the dot's Auto Scale property

myDot.IsAutoScale = false;

11.6.2.7.8 Draw .Ellipse()

Definition
Draws an ellipse.

Method Return Value

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82184

© 2023 NinjaTrader, LLC

An Ellipse object that represents the draw object.

Syntax
Draw.Ellipse(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

endBarsAgo, double endY, Brush brush)

Draw.Ellipse(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, Brush brush, Brush areaBrush, int

areaOpacity)

Draw.Ellipse(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, Brush brush)

Draw.Ellipse(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

double startY, DateTime endTime, double endY, Brush brush, Brush areaBrush, int

areaOpacity)

Draw.Ellipse(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

endBarsAgo, double endY, Brush brush, bool drawOnPricePanel)

Draw.Ellipse(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, Brush brush, Brush areaBrush, int

areaOpacity, bool drawOnPricePanel)

Draw.Ellipse(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, Brush brush, bool drawOnPricePanel)

Draw.Ellipse(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

double startY, DateTime endTime, double endY, Brush brush, Brush areaBrush, int

areaOpacity, bool drawOnPricePanel)

Draw.Ellipse(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

endBarsAgo, double endY, bool isGlobal, string templateName)

Draw.Ellipse(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

NinjaScript 2185

© 2023 NinjaTrader, LLC

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back

startTime The starting time where the draw object will be

drawn

startY The starting y value co-ordinate where the draw

object will be drawn

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

endY The end y value co-ordinate where the draw

object will terminate

brush The brush used to color the outline of draw

object (reference)

areaBrush The brush used to color the fill area of the draw

object (reference)

areaOpacity Sets the level of transparency for the fill color.

Valid values between 0 - 100. (0 = completely

transparent, 100 = no opacity)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobalDrawingTo

ol

Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82186

© 2023 NinjaTrader, LLC

// Paints a red ellipse on the current bar

Draw.Ellipse(this, "tag1", true, 5, Close[5], 0, Close[0],

Brushes.Red, Brushes.Red, 5);

11.6.2.7.8.1 Ellipse

Definition
Represents an interface that exposes information regarding an Ellipse IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

AreaBrush A Brush class representing the fill color of the

draw object

AreaOpacity An int value representing the opacity of the area

color

OutlineStroke The Stroke object used to draw the object's

outline

Example

// Paint a red ellipse on the current bar

Ellipse myEllipse = Draw.Ellipse(this, "tag1", true, 5, Close[5],

0, Close[0], Brushes.Red, Brushes.Red, 5);

// Change the AreaOpacity of the Ellipse

myEllipse.AreaOpacity = 0;

11.6.2.7.9 Draw .ExtendedLine()

Definition
Draws a line with infinite end points.

Method Return Value
An ExtendedLine object that represents the draw object.

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2187

© 2023 NinjaTrader, LLC

Syntax
Draw.ExtendedLine(NinjaScriptBase owner, string tag, int startBarsAgo, double startY,

int endBarsAgo, double endY, Brush brush)

Draw.ExtendedLine(NinjaScriptBase owner, string tag, DateTime startTime, double

startY, DateTime endTime, double endY, Brush brush)

Draw.ExtendedLine(NinjaScriptBase owner, string tag, bool isAutoScale, int

startBarsAgo, double startY, int endBarsAgo, double endY, Brush brush, DashStyleHelper

 dashStyle, int width)

Draw.ExtendedLine(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

startTime, double startY, DateTime endTime, double endY, Brush brush, DashStyleHelper

dashStyle, int width)

Draw.ExtendedLine(NinjaScriptBase owner, string tag, bool isAutoScale, int

startBarsAgo, double startY, int endBarsAgo, double endY, Brush brush, DashStyleHelper

 dashStyle, int width, bool drawOnPricePanel)

Draw.ExtendedLine(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

startTime, double startY, DateTime endTime, double endY, Brush brush, DashStyleHelper

dashStyle, int width, bool drawOnPricePanel)

Draw.ExtendedLine(NinjaScriptBase owner, string tag, int startBarsAgo, double startY,

int endBarsAgo, double endY, bool isGlobal, string templateName)

Draw.ExtendedLine(NinjaScriptBase owner, string tag, DateTime startTime, double

startY, DateTime endTime, double endY, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back

NinjaTrader 82188

© 2023 NinjaTrader, LLC

startTime The starting time where the draw object will be

drawn

startY The starting y value co-ordinate where the draw

object will be drawn

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

endY The end y value co-ordinate where the draw

object will terminate

brush The brush used to color draw object (reference)

dashStyle DashStyleHelper.Dash

DashStyleHelper.DashDot

DashStyleHelper.DashDotDot

DashStyleHelper.Dot

DashStyleHelper.Solid

Note: Drawing objects with y values very far off

the visible canvas can lead to performance hits.

Fancier DashStyles like DashDotDot will also

require more resources than simple DashStyles

like Solid.

width The width of the draw object

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2189

© 2023 NinjaTrader, LLC

Examples

// Draws a dotted lime green

Draw.ExtendedLine(this, "tag1", 10, Close[10], 0, Close[0],

Brushes.LimeGreen, DashStyleHelper.Dot, 2);

11.6.2.7.9.1 ExtendedLine

Definition
Represents an interface that exposes information regarding an Extended Line IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

Stroke A Stroke object used to draw the object

Example

// Instantiate a dotted lime green Extended Line

ExtendedLine myLine = Draw.ExtendedLine(this, "tag1", 10,

Close[10], 0, Close[0], Brushes.LimeGreen, DashStyleHelper.Dot, 2);

// Make the line a Global Drawing Object

myLine.IsGlobalDrawingTool = true;

11.6.2.7.10 Draw .FibonacciCircle()

Definition
Draws a fibonacci circle.

Method Return Value
A FibonacciCircle object that represents the draw object.

Syntax
Draw.FibonacciCircle(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

startTime, double startY, DateTime endTime, double endY)

Draw.FibonacciCircle(NinjaScriptBase owner, string tag, bool isAutoScale, int

startBarsAgo, double startY, int endBarsAgo, double endY)

NinjaTrader 82190

© 2023 NinjaTrader, LLC

Draw.FibonacciCircle(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

startTime, double startY, DateTime endTime, double endY, bool isGlobal, string

templateName)

Draw.FibonacciCircle(NinjaScriptBase owner, string tag, bool isAutoScale, int

startBarsAgo, double startY, int endBarsAgo, double endY, bool isGlobal, string

templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

startTime The starting time where the draw object will be

drawn

startY The starting y value co-ordinate where the draw

object will be drawn

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

NinjaScript 2191

© 2023 NinjaTrader, LLC

endY The end y value co-ordinate where the draw

object will terminate

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a Fibonacci circle

Draw.FibonacciCircle(this, "tag1", true, 10, Low[10], 0, High[0]);

11.6.2.7.10.1 FibonacciCircle

Definition
Represents an interface that exposes information regarding a Fibonacci Circle IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

PriceLevels A collection of prices calculated by the drawing

object

IsTimePriceDivide

dSeparately

A bool value which when true determines if the

time and price are calculated together as a ratio,

or independently

IsTextDisplayed A bool value determining if the draw object

should display text on the chart.

Example

NinjaTrader 82192

© 2023 NinjaTrader, LLC

// Instantiate a Fibonacci circle

FibonacciCircle myFibCirc = Draw.FibonacciCircle(this, "tag1",

true, 10, Low[10], 0, High[0]);

// Ensure that text is being displayed on the Drawing Object

myFibCirc.IsTextDisplayed = true;

11.6.2.7.11 Draw .FibonacciExtensions()

Definition
Draws a fibonacci extension.

Method Return Value
A FibonacciExtensions object that represents the draw object.

Syntax
Draw.FibonacciExtensions(NinjaScriptBase owner, string tag, bool isAutoScale, int

startBarsAgo, double startY, int endBarsAgo, double endY, int extensionBarsAgo, double

 extensionY)

Draw.FibonacciExtensions(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

 startTime, double startY, DateTime endTime, double endY, DateTime extensionTime,

double extensionY)

Draw.FibonacciExtensions(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

 startTime, double startY, DateTime endTime, double endY, DateTime extensionTime,

double extensionY, bool isGlobal, string templateName)

Draw.FibonacciExtensions(NinjaScriptBase owner, string tag, bool isAutoScale, int

startBarsAgo, double startY, int endBarsAgo, double endY, int extensionBarsAgo, double

 extensionY, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

NinjaScript 2193

© 2023 NinjaTrader, LLC

isAutoScale Determines if the draw object will be included in

the y-axis scale

startBarsAgo The number of bars ago (x value) of the 1st

anchor point

startTime The time of the 1st anchor point

startY The y value of the 1st anchor point

endBarsAgo The number of bars ago (x value) of the 2nd

anchor point

endTime The time of the 2nd anchor point

endY The y value of the 2nd anchor point

extensionBarsAgo The number of bars ago (x value) of the 3rd

anchor point

extensionTime The time of the 3rd anchor point

extensionY The y value of the 3rd anchor point

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a fibonnaci extension

Draw.FibonacciExtensions(this, "tag1", true, 4, Low[4], 3, High[3],

 1, Low[1]);

NinjaTrader 82194

© 2023 NinjaTrader, LLC

11.6.2.7.11.1 FibonacciExtensions

Definition
Represents an interface that exposes information regarding a Fibonacci Extensions

IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

ExtensionAnchor An IDrawingTool's ChartAnchor representing the

extension point of the drawing object

PriceLevels A collection of prices calculated by the drawing

object

TextLocation An enum determining the text location; can be set

to TextLocation.Off to remove text

IsExtendedLinesLe

ft

A bool value determining if the draw object

should draw lines to the far left side of the screen

IsExtendedLinesRi

ght

A bool value determining if the draw object

should draw lines to the far right side of the

screen

Example

// Instantiates a Fibonnaci Extension

FibonacciExtensions myFibExt = Draw.FibonacciExtensions(this,

"tag1", true, 4, Low[4], 3, High[3], 1, Low[1]);

// Extend the Fibonacci Extension oject's lines to the right

myFibExt.IsExtendedLinesRight = true;

11.6.2.7.12 Draw .FibonacciRetracements()

Definition
Draws a fibonacci retracement.

NinjaScript 2195

© 2023 NinjaTrader, LLC

Method Return Value
A FibonacciRetracements object that represents the draw object.

Syntax
Draw.FibonacciRetracements(NinjaScriptBase owner, string tag, bool isAutoScale, int

startBarsAgo, double startY, int endBarsAgo, double endY)

Draw.FibonacciRetracements(NinjaScriptBase owner, string tag, bool isAutoScale,

DateTime startTime, double startY, DateTime endTime, double endY)

Draw.FibonacciRetracements(NinjaScriptBase owner, string tag, bool isAutoScale,

DateTime startTime, double startY, DateTime endTime, double endY, bool isGlobal,

string templateName)

Draw.FibonacciRetracements(NinjaScriptBase owner, string tag, bool isAutoScale, int

startBarsAgo, double startY, int endBarsAgo, double endY, bool isGlobal, string

templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

startTime The starting time where the draw object will be

drawn.

startY The starting y value co-ordinate where the draw

object will be drawn

NinjaTrader 82196

© 2023 NinjaTrader, LLC

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

endY The end y value co-ordinate where the draw

object will terminate

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a fibonnaci retracement

Draw.FibonacciRetracements(this, "tag1", true, 10, Low[10], 0,

High[0]);

11.6.2.7.12.1 FibonacciRetracements

Definition
Represents an interface that exposes information regarding a Fibonacci Retracements

IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

PriceLevels A collection of prices calculated by the drawing

object

TextLocation An enum determining the text location; can be set

to TextLocation.Off to remove text

NinjaScript 2197

© 2023 NinjaTrader, LLC

IsExtendedLinesLe

ft

A bool value determining if the draw object

should draw lines to the far left side of the screen

IsExtendedLinesRi

ght

A bool value determining if the draw object

should draw lines to the far right side of the

screen

Example

// Instantiate a FibonacciRetracements object

FibonacciRetracements myFibRet = Draw.FibonacciRetracements(this,

"tag1", true, 10, Low[10], 0, High[0]);

// Set the object's lines to extend to the right

myFibRet.IsExtendedLinesRight = true;

11.6.2.7.13 Draw .FibonacciTimeExtensions()

Definition
Draws a fibonacci time extension.

Method Return Value
A FibonacciTimeExtensions object that represents the draw object.

Syntax
Draw.FibonacciTimeExtensions(NinjaScriptBase owner, string tag, bool isAutoScale,

DateTime startTime, double startY, DateTime endTime, double endY)

Draw.FibonacciTimeExtensions(NinjaScriptBase owner, string tag, bool isAutoScale, int

startBarsAgo, double startY, int endBarsAgo, double endY)

Draw.FibonacciTimeExtensions(NinjaScriptBase owner, string tag, bool isAutoScale,

DateTime startTime, double startY, DateTime endTime, double endY, bool isGlobal,

string templateName)

Draw.FibonacciTimeExtensions(NinjaScriptBase owner, string tag, bool isAutoScale, int

startBarsAgo, double startY, int endBarsAgo, double endY, bool isGlobal, string

templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

NinjaTrader 82198

© 2023 NinjaTrader, LLC

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

startTime The starting time where the draw object will be

drawn.

startY The starting y value co-ordinate where the draw

object will be drawn

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

endY The end y value co-ordinate where the draw

object will terminate

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

NinjaScript 2199

© 2023 NinjaTrader, LLC

// Draws a fibonacci time extension object

Draw.FibonacciTimeExtensions(this, "tag1", false, 10, Low[10], 0,

High[0]);

11.6.2.7.13.1 FibonacciTimeExtensions

Definition
Represents an interface that exposes information regarding a Fibonacci Time Extensions

IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

PriceLevels A collection of prices calculated by the drawing

object

IsTextDisplayed A bool value determining if the draw object

should display text on the chart.

IsExtendedLinesLe

ft

A bool value determining if the draw object

should draw lines to the far left side of the screen

IsExtendedLinesRi

ght

A bool value determining if the draw object

should draw lines to the far right side of the

screen

Example

NinjaTrader 82200

© 2023 NinjaTrader, LLC

// Instantiate a FibonacciTimeExtensions object

FibonacciTimeExtensions myFibTime =

Draw.FibonacciTimeExtensions(this, "tag1", false, 10, Low[10], 0,

High[0]);

// Instantiate a new PriceLevel to be used in the step below

PriceLevel myLevel = new PriceLevel(99, Brushes.Black);

// Change the object's price level at index 3

myFibTime.PriceLevels[3] = myLevel;

11.6.2.7.14 Draw .GannFan()

Definition
Draws a Gann Fan.

Method Return Value
A GannFan object that represents the draw object.

Syntax
Draw.GannFan(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double
y)
Draw.GannFan(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,
double y)
Draw.GannFan(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double
y, bool isGlobal, string templateName)
Draw.GannFan(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,
double y, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

NinjaScript 2201

© 2023 NinjaTrader, LLC

isAutoScale Determines if the draw object will be included in

the y-axis scale

barsAgo The bar the object will be drawn at. A value of 10

would be 10 bars ago.

time The time the object will be drawn at.

y The y value

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a Gann Fan at the current bar low

Draw.GannFan(this, "tag1", true, 0, Low[0]);

11.6.2.7.14.1 GannFan

Definition
Represents an interface that exposes information regarding a Gann Fan IDrawingTool.

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

PriceLevels A collection of prices calculated by the drawing

object

GannFanDirection Possible values:

GannFanDirection.DownLeft

GannFanDirection.DownRight

GannFanDirection.UpLeft

NinjaTrader 82202

© 2023 NinjaTrader, LLC

GannFanDirection.UpRight

PointsPerBar A double value representing the number of points

per bar

IsTextDisplayed A bool value representing if text will be drawn

along with the draw object

Example

// Instantiate a GannFan object

GannFan myFan = Draw.GannFan(this, "tag1", true, 0, Low[0]);

// Instantiate a new PriceLevel to be used in the step below

PriceLevel myLevel = new PriceLevel(99, Brushes.Black);

// Change the object's price level at index 3

myFan.PriceLevels[3] = myLevel;

11.6.2.7.15 Draw .HorizontalLine()

Definition
Draws a horizontal line.

Method Return Value
A HorizontalLine object that represents the draw object.

Syntax
Draw.HorizontalLine(NinjaScriptBase owner, string tag, double y, Brush brush)

Draw.HorizontalLine(NinjaScriptBase owner, string tag, bool isAutoScale, double y,

Brush brush, DashStyleHelper dashStyle, int width)

Draw.HorizontalLine(NinjaScriptBase owner, string tag, bool isAutoscale, double y,

Brush brush, bool drawOnPricePanel)

Draw.HorizontalLine(NinjaScriptBase owner, string tag, double y, Brush brush,

DashStyleHelper dashStyle, int width, bool drawOnPricePanel)

Draw.HorizontalLine(NinjaScriptBase owner, string tag, double y, bool isGlobal, string

 templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

NinjaScript 2203

© 2023 NinjaTrader, LLC

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

y The y value

brush The brush used to color draw object (reference)

dashStyle DashStyleHelper.Dash

DashStyleHelper.DashDot

DashStyleHelper.DashDotDot

DashStyleHelper.Dot

DashStyleHelper.Solid

Note: Fancier DashStyles like DashDotDot will

require more resources than simple DashStyles

like Solid.

width The width of the draw object

isDrawOnPricePa

nel

Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82204

© 2023 NinjaTrader, LLC

Examples

// Draws a horizontal line

Draw.HorizontalLine(this, "tag1", 1000, Brushes.Black);

11.6.2.7.15.1 HorizontalLine

Definition
Represents an interface that exposes information regarding a Horizontal Line IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

Stroke A Stroke object used to draw the object

Example

// Instantiate a HorizontalLine object

HorizontalLine myLine = Draw.HorizontalLine(this, "tag1", 1000,

Brushes.Black);

// Set a new Stroke for the object

myLine.Stroke = new Stroke(Brushes.Green, DashStyleHelper.Dash, 5);

11.6.2.7.16 Draw .Line()

Definition
Draws a line between two points.

Method Return Value
A Line object that represents the draw object.

Syntax
Draw.Line(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

endBarsAgo, double endY, Brush brush)

Draw.Line(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, Brush brush, DashStyleHelper dashStyle,

int width)

Draw.Line(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

double startY, DateTime endTime, double endY, Brush brush, DashStyleHelper dashStyle,

int width)

Draw.Line(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, Brush brush, DashStyleHelper dashStyle,

NinjaScript 2205

© 2023 NinjaTrader, LLC

int width, bool drawOnPricePanel)

Draw.Line(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

double startY, DateTime endTime, double endY, Brush brush, DashStyleHelper dashStyle,

int width, bool drawOnPricePanel)

Draw.Line(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

double startY, DateTime endTime, double endY, string templateName)

Draw.Line(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, string templateName)

Draw.Line(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, bool isGlobal, string templateName)

Draw.Line(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

double startY, DateTime endTime, double endY, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

startTime The starting time where the draw object will be

drawn

startY The starting y value co-ordinate where the draw

object will be drawn

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

NinjaTrader 82206

© 2023 NinjaTrader, LLC

endTime The end time where the draw object will

terminate

endY The end y value co-ordinate where the draw

object will terminate

brush The brush used to color draw object (reference)

dashStyle DashStyleHelper.Dash

DashStyleHelper.DashDot

DashStyleHelper.DashDotDot

DashStyleHelper.Dot

DashStyleHelper.Solid

Note: Drawing objects with y values very far off

the visible canvas can lead to performance hits.

Fancier DashStyles like DashDotDot will also

require more resources than simple DashStyles

like Solid.

width The width of the draw object

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a dotted lime green line from 10 bars back to the current

bar

// with a width of 2 pixels

Draw.Line(this, "tag1", false, 10, 1000, 0, 1001,

Brushes.LimeGreen, DashStyleHelper.Dot, 2);

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2207

© 2023 NinjaTrader, LLC

11.6.2.7.16.1 Line

Definition
Represents an interface that exposes information regarding a Line IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

Stroke A Stroke object used to draw the object

Example

// Instantiate a Line object

NinjaTrader.NinjaScript.DrawingTools.Line myLine = Draw.Line(this,

"tag1", false, 10, 1000, 0, 1001, Brushes.LimeGreen,

DashStyleHelper.Dot, 2);

// Set a new Stroke for the object

myLine.Stroke = new Stroke(Brushes.Green, DashStyleHelper.Dash, 5);

Note: To differentiate between NinjaTrader.NinjaScript.DrawingTools.Line and

NinjaTrader.Gui.Line when assigning a Line object, you will need to invoke the former path

explicitly, as seen in the example above.

11.6.2.7.17 Draw .PathTool()

Definition
Draws a path which can have a user defined set of anchors.

Method Return Value
A PathTool object that represents the draw object.

Syntax
Draw.PathTool(NinjaScriptBase owner, string tag, bool isAutoScale, int anchor1BarsAgo,

double anchor1Y, int anchor2BarsAgo, double anchor2Y, int anchor3BarsAgo, double

anchor3Y)

NinjaTrader 82208

© 2023 NinjaTrader, LLC

Draw.PathTool(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

Anchor1Time, double anchor1Y, DateTime Anchor2Time, double anchor2Y, DateTime

Anchor3Time, double anchor3Y)

Draw.PathTool(NinjaScriptBase owner, string tag, bool isAutoScale, int anchor1BarsAgo,

double anchor1Y, int anchor2BarsAgo, double anchor2Y, int anchor3BarsAgo, double

anchor3Y, int anchor4BarsAgo, double anchor4Y)

Draw.PathTool(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

Anchor1Time, double anchor1Y, DateTime Anchor2Time, double anchor2Y, DateTime

Anchor3Time, double anchor3Y, DateTime Anchor4Time, double anchor4Y)

Draw.PathTool(NinjaScriptBase owner, string tag, bool isAutoScale, int anchor1BarsAgo,

double anchor1Y, int anchor2BarsAgo, double anchor2Y, int anchor3BarsAgo, double

anchor3Y, int anchor4BarsAgo, double anchor4Y, int anchor5BarsAgo, double anchor5Y)

Draw.PathTool(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

Anchor1Time, double anchor1Y, DateTime Anchor2Time, double anchor2Y, DateTime

Anchor3Time, double anchor3Y, DateTime Anchor4Time, double anchor4Y, DateTime

Anchor5Time, double anchor5Y)

Draw.PathTool(NinjaScriptBase owner, string tag, bool isAutoScale, List<ChartAnchor>

chartAnchors, Brush brush, DashStyleHelper dashStyle)

Draw.PathTool(NinjaScriptBase owner, string tag, bool isAutoScale, List<ChartAnchor>

chartAnchors, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

chartAnchors A list of the chart anchors

anchor1BarsAgo The bar the first anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

NinjaScript 2209

© 2023 NinjaTrader, LLC

anchor2BarsAgo The bar the second anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

anchor3BarsAgo The bar the third anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

anchor4BarsAgo The bar the forth anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

anchor5BarsAgo The bar the fifth anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

anchor1Y The first anchor y value

anchor2Y The second anchor y value

anchor3Y The third anchor y value

anchor4Y The forth anchor y value

anchor5Y The fifth anchor y value

Anchor1Time The time the first anchor of the object will be

drawn at

Anchor2Time The time the second anchor of the object will be

drawn at

Anchor3Time The time the third anchor of the object will be

drawn at

Anchor4Time The time the forth anchor of the object will be

drawn at

Anchor5Time The time the fifth anchor of the object will be

drawn at

Brush The brush used to color draw object (reference)

templateName The name of the drawing tool template the object

will use to determine various visual properties

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82210

© 2023 NinjaTrader, LLC

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a PathTool object based on bars ago and y anchors

Draw.PathTool(this, "tag1", false, 20, 194, 10, 184, 13, 176, 25,

182);

// Draws a PathTool object based on a list of anchors with
specified times
List<ChartAnchor> anchors = new List<ChartAnchor>();

anchors.Add(new ChartAnchor(new DateTime(2018, 5, 25), 194,

ChartControl));

anchors.Add(new ChartAnchor(new DateTime(2018, 6, 12), 184,

ChartControl));

anchors.Add(new ChartAnchor(new DateTime(2018, 6, 7), 176,

ChartControl));

anchors.Add(new ChartAnchor(new DateTime(2018, 5, 21), 182,

ChartControl));

Draw.PathTool(this, "tag1", false, anchors, Brushes.CornflowerBlue,

DashStyleHelper.Solid);

11.6.2.7.17.1 PathTool

Definition
Represents an interface that exposes information regarding a PathTool IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

Stroke A Stroke object used to draw the object

Example

NinjaScript 2211

© 2023 NinjaTrader, LLC

// Instantiate a PathTool object

PathTool myPathTool = Draw.PathTool(this, "tag1", false, 20, 194,

10, 184, 13, 176, 25, 182);

11.6.2.7.18 Draw .Polygon()

Definition
Draws a polygon which can have a user defined set of anchors.

Method Return Value
A Polygon object that represents the draw object.

Syntax
Draw.Polygon(NinjaScriptBase owner, string tag, bool isAutoScale, List<ChartAnchor>

chartAnchors, bool isGlobal, string templateName)

Draw.Polygon(NinjaScriptBase owner, string tag, bool isAutoScale, List<ChartAnchor>

chartAnchors, Brush brush, DashStyleHelper dashStyle, Brush areaBrush, int

areaOpacity)

Draw.Polygon(NinjaScriptBase owner, string tag, bool isAutoScale, int anchor1BarsAgo,

double anchor1Y, int anchor2BarsAgo, double anchor2Y, int anchor3BarsAgo, double

anchor3Y, int anchor4BarsAgo, double anchor4Y)

Draw.Polygon(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

Anchor1Time, double anchor1Y, DateTime Anchor2Time, double anchor2Y, DateTime

Anchor3Time, double anchor3Y, DateTime Anchor4Time, double anchor4Y)

Draw.Polygon(NinjaScriptBase owner, string tag, bool isAutoScale, int anchor1BarsAgo,

double anchor1Y, int anchor2BarsAgo, double anchor2Y, int anchor3BarsAgo, double

anchor3Y, int anchor4BarsAgo, double anchor4Y, int anchor5BarsAgo, double anchor5Y)

Draw.Polygon(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

Anchor1Time, double anchor1Y, DateTime Anchor2Time, double anchor2Y, DateTime

Anchor3Time, double anchor3Y, DateTime Anchor4Time, double anchor4Y, DateTime

Anchor5Time, double anchor5Y)

Draw.Polygon(NinjaScriptBase owner, string tag, bool isAutoScale, int anchor1BarsAgo,

double anchor1Y, int anchor2BarsAgo, double anchor2Y, int anchor3BarsAgo, double

anchor3Y, int anchor4BarsAgo, double anchor4Y, int anchor5BarsAgo, double anchor5Y,

int anchor6BarsAgo, double anchor6Y)

Draw.Polygon(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

Anchor1Time, double anchor1Y, DateTime Anchor2Time, double anchor2Y, DateTime

Anchor3Time, double anchor3Y, DateTime Anchor4Time, double anchor4Y, DateTime

Anchor5Time, double anchor5Y, DateTime Anchor6Time, double anchor6Y)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

NinjaTrader 82212

© 2023 NinjaTrader, LLC

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

chartAnchors A list of the chart anchors

anchor1BarsAgo The bar the first anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

anchor2BarsAgo The bar the second anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

anchor3BarsAgo The bar the third anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

anchor4BarsAgo The bar the forth anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

anchor5BarsAgo The bar the fifth anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

anchor6BarsAgo The bar the sixth anchor of the object will be

drawn at. A value of 10 would be 10 bars ago.

anchor1Y The first anchor y value

anchor2Y The second anchor y value

anchor3Y The third anchor y value

anchor4Y The forth anchor y value

NinjaScript 2213

© 2023 NinjaTrader, LLC

anchor5Y The fifth anchor y value

anchor6Y The sixth anchor y value

Anchor1Time The time the first anchor of the object will be

drawn at

Anchor2Time The time the second anchor of the object will be

drawn at

Anchor3Time The time the third anchor of the object will be

drawn at

Anchor4Time The time the forth anchor of the object will be

drawn at

Anchor5Time The time the fifth anchor of the object will be

drawn at

Anchor6Time The time the sixth anchor of the object will be

drawn at

areaBrush The brush used to color draw object (reference)

areaOpacity Sets the level of transparency for the fill color.

Valid values between 0 - 100. (0 = completely

transparent, 100 = no opacity)

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82214

© 2023 NinjaTrader, LLC

// Draws a Polygon object based on bars ago and y anchors

Draw.Polygon(this, "tag1", false, 20, 194, 10, 184, 13, 176, 25,

182);

// Draws a Polygon object based on a list of anchors with specified
times
List<ChartAnchor> anchors = new List<ChartAnchor>();

anchors.Add(new ChartAnchor(new DateTime(2018, 5, 25), 194,

ChartControl));

anchors.Add(new ChartAnchor(new DateTime(2018, 6, 12), 184,

ChartControl));

anchors.Add(new ChartAnchor(new DateTime(2018, 6, 7), 176,

ChartControl));

anchors.Add(new ChartAnchor(new DateTime(2018, 5, 21), 182,

ChartControl));

Draw.Polygon(this, "tag1", false, anchors, Brushes.CornflowerBlue,

DashStyleHelper.Solid, Brushes.CornflowerBlue, 40);

11.6.2.7.18.1 Polygon

Definition
Represents an interface that exposes information regarding a Polyon IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

Stroke A Stroke object used to draw the object

Example

// Instantiate a Polygon object

Polygon myPolygon = Draw.Polygon(this, "tag1", false, 20, 194, 10,

184, 13, 176, 25, 182);

// Set a new area brush for the object

myPolygon.AreaBrush = Brushes.Green;

NinjaScript 2215

© 2023 NinjaTrader, LLC

11.6.2.7.19 Draw .Ray()

Definition
Draws a line which has an infinite end point in one direction.

Method Return Value
A Ray object that represents the draw object.

Syntax
Draw.Ray(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

endBarsAgo, double endY, Brush brush)

Draw.Ray(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo, double

 startY, int endBarsAgo, double endY, Brush brush, DashStyleHelper dashStyle, int

width)

Draw.Ray(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, Brush brush)

Draw.Ray(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, Brush brush, DashStyleHelper dashStyle, int width)

Draw.Ray(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo, double

 startY, int endBarsAgo, double endY, Brush brush, DashStyleHelper dashStyle, int

width, bool drawOnPricePanel)

Draw.Ray(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, Brush brush, DashStyleHelper dashStyle, int width, bool

 drawOnPricePanel)

Draw.Ray(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

endBarsAgo, double endY, bool isGlobal, string templateName)

Draw.Ray(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

NinjaTrader 82216

© 2023 NinjaTrader, LLC

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startBarsAgo The number of bars ago (x value) of the 1st

anchor point

startTime The time of the 1st anchor point

startY The y value of the 1st anchor point

endBarsAgo The number of bars ago (x value) of the 2nd

anchor point

endTime The time of the 2nd anchor point

endY The y value of the 2nd anchor point

brush The brush used to color draw object (reference)

dashStyle DashStyleHelper.Dash

DashStyleHelper.DashDot

DashStyleHelper.DashDotDot

DashStyleHelper.Dot

DashStyleHelper.Solid

Note: Drawing objects with y values very far off

the visible canvas can lead to performance hits.

Fancier DashStyles like DashDotDot will also

require more resources than simple DashStyles

like Solid.

width The width of the draw object

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2217

© 2023 NinjaTrader, LLC

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a lime green ray from 10 bars back through the current bar

Draw.Ray(this, "tag1", 10, 1000, 0, 1001, Brushes.LimeGreen);

11.6.2.7.19.1 Ray

Definition
Represents an interface that exposes information regarding a Ray IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

Stroke A Stroke object used to draw the object

Example

// Instantiate a Ray object

Ray myRay = Draw.Ray(this, "tag1", 10, 1000, 0, 1001,

Brushes.LimeGreen);

// Set a new Stroke for the object

myRay.Stroke = new Stroke(Brushes.Green, DashStyleHelper.DashDot,

3);

11.6.2.7.20 Draw .Rectangle()

Definition
Draws a rectangle.

Method Return Value
A Rectangle object that represents the draw object.

NinjaTrader 82218

© 2023 NinjaTrader, LLC

Syntax
Draw.Rectangle(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

 endBarsAgo, double endY, Brush brush)

Draw.Rectangle(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, Brush brush)

Draw.Rectangle(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, Brush brush, Brush areaBrush, int

areaOpacity)

Draw.Rectangle(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

startTime, double startY, DateTime endTime, double endY, Brush brush, Brush areaBrush,

 int areaOpacity)

Draw.Rectangle(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

 endBarsAgo, double endY, Brush brush, bool drawOnPricePanel)

Draw.Rectangle(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, Brush brush, Brush areaBrush, int

areaOpacity, bool drawOnPricePanel)

Draw.Rectangle(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

startTime, double startY, DateTime endTime, double endY, Brush brush, Brush areaBrush,

 int areaOpacity, bool drawOnPricePanel)

Draw.Rectangle(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

 endBarsAgo, double endY, bool isGlobal, string templateName)

Draw.Rectangle(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime endTime, double endY, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

NinjaScript 2219

© 2023 NinjaTrader, LLC

startTime The starting time where the draw object will be

drawn

startY The starting y value co-ordinate where the draw

object will be drawn

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

endY The end y value co-ordinate where the draw

object will terminate

brush The brush used to color the outline of draw

object (reference)

areaBrush The brush used to color the fill area of the draw

object (reference)

areaOpacity Sets the level of transparency for the fill color.

Valid values between 0 - 100. (0 = completely

transparent, 100 = no opacity)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82220

© 2023 NinjaTrader, LLC

// Draws a blue rectangle from the low 10 bars back to the high of

5 bars back

Draw.Rectangle(this, "tag1", 10, Low[10] - TickSize, 5, High[5] +

TickSize, Brushes.Blue);

// Draws a blue rectangle from the low 10 bars back to the high of

5 bars back with

// a fill color or pale green with a transparency level of 2

Draw.Rectangle(this, "tag1", false, 10, Low[10] - TickSize, 5,

High[5] + TickSize, Brushes.PaleGreen, Brushes.PaleGreen, 2);

11.6.2.7.20.1 Rectangle

Definition
Represents an interface that exposes information regarding a Rectangle IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

AreaBrush A Brush object representing the fill color of the

draw object

AreaOpacity An int value representing the opacity of the area

color

OutlineStroke The Stroke object used to draw the object's

outline

Example

// Instantiate a Rectangle object

Rectangle myRec = Draw.Rectangle(this, "tag1", 10, Low[10] -

TickSize, 5, High[5] + TickSize, Brushes.Blue);

// Set the object's AreaBrush to Blue

myRec.AreaBrush = Brushes.Blue;

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2221

© 2023 NinjaTrader, LLC

11.6.2.7.21 Draw .Region()

Definition
Draws a region on a chart.

Method Return Value
A Region object that represents the draw object.

Syntax
Draw.Region(NinjaScriptBase owner, string tag, int startBarsAgo,

 int endBarsAgo, ISeries<double> series, double price, Brush areaBrush, int

areaOpacity, int displacement = 0)

Draw.Region(NinjaScriptBase owner, string tag, int startBarsAgo,

 int endBarsAgo, ISeries<double> series1, ISeries<double> series2, Brush

outlineBrush,

 Brush areaBrush, int areaOpacity, [int displacement])

Draw.Region(NinjaScriptBase owner, string tag, DateTime startTime,

 DateTime endTime, ISeries<double> series, double price, Brush areaBrush, int

areaOpacity)

Draw.Region(NinjaScriptBase owner, string tag, DateTime startTime,

 DateTime endTime, ISeries<double> series1, ISeries<double> series2, Brush

outlineBrush, Brush areaBrush, int areaOpacity)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

startTime The starting time where the draw object will be

drawn.

NinjaTrader 82222

© 2023 NinjaTrader, LLC

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

series, series1,

series2

Any Series<double> type object such as an

indicator, Close, High, Low etc.. The value of the

object will represent a y value.

price Any double value

outlineBrush The brush used to color the region outline of

draw object (reference)

areaBrush The brush used to color the fill region area of the

draw object (reference)

areaOpacity Sets the level of transparency for the fill color.

Valid values between 0 - 100. (0 = completely

transparent, 100 = no opacity)

displacement An optional parameter which will offset the

barsAgo value for the Series<double> value

used to match the desired Displacement.

Default value is 0.

Example

// Draw a region between upper and lower Bollinger bands

Draw.Region(this, "tag1", CurrentBar, 0, Bollinger(2, 14).Upper,

Bollinger(2, 14).Lower, null, Brushes.Blue, 50);

Tips:

1. Pass in null to the "outlineColor" parameter if you do not want to have an outline color.

2. If you wanted to fill a region between a value (20 period simple moving average) and the

upper edge of the chart, pass in an extreme value to the "y" parameter such as 1000000.

3. Should you be drawing regions based on Series<double> objects instead of indicator

plots, be sure to create the Series<double> with the MaximumBarsLookBack.Infinite

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2223

© 2023 NinjaTrader, LLC

parameter if the region you are drawing would be maintained on the chart for more than

256 bars back.

11.6.2.7.21.1 Region

Definition
Represents an interface that exposes information regarding a Region IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

AreaOpacity An int value representing the opacity of the area

color

AreaBrush A Brush object representing the fill color of the

draw object

OutlineStroke A Stroke used for the outline of the region

Example

// Instantiate a Region object

Region myRegion = Draw.Region(this, "tag1", CurrentBar, 0,

Bollinger(2, 14).Upper, Bollinger(2, 14).Lower, null, Brushes.Blue,

 50);

// Set the object's OutlineStroke to a new Stroke

myRegion.OutlineStroke = new Stroke(Brushes.Red,

DashStyleHelper.Solid, 3);

11.6.2.7.22 Draw .RegionHighlightX()

Definition
Draws a region highlight x on a chart.

Method Return Value
A RegionHighlightX object that represents the draw object.

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82224

© 2023 NinjaTrader, LLC

Syntax
Draw.RegionHighlightX(NinjaScriptBase owner, string tag, DateTime startTime, DateTime

endTime, Brush brush)

Draw.RegionHighlightX(NinjaScriptBase owner, string tag, int startBarsAgo, int

endBarsAgo, Brush brush)

Draw.RegionHighlightX(NinjaScriptBase owner, string tag, DateTime startTime, DateTime

endTime, Brush brush, Brush areaBrush, int areaOpacity)

Draw.RegionHighlightX(NinjaScriptBase owner, string tag, int startBarsAgo, int

endBarsAgo, Brush brush, Brush areaBrush, int areaOpacity)

Draw.RegionHighlightX(NinjaScriptBase owner, string tag, DateTime startTime, DateTime

endTime, bool isGlobal, string templateName)

Draw.RegionHighlightX(NinjaScriptBase owner, string tag, int startBarsAgo, int

endBarsAgo, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

startTime The starting time where the draw object will be

drawn.

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

NinjaScript 2225

© 2023 NinjaTrader, LLC

brush The brush used to color the outline of draw

object (reference)

areaBrush The brush used to color the fill area of the draw

object (reference)

areaOpacity Sets the level of transparency for the fill color.

Valid values between 0 - 100. (0 = completely

transparent, 100 = no opacity)

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Fills in the region between the startBar and endBar

Draw.RegionHighlightX(this, "tag1", 10, 0, Brushes.Blue);

11.6.2.7.22.1 RegionHighlightX

Definition
Represents an interface that exposes information regarding a Region Highlight X

IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

AreaBrush A Brush class representing the fill color of the

draw object

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82226

© 2023 NinjaTrader, LLC

AreaOpacity An int value representing the opacity of the area

color

OutlineStroke The Stroke object used to draw the object's

outline

Example

// Instantiate a RegionHighlightX object

RegionHighlightX myReg = Draw.RegionHighlightX(this, "tag1", 10, 0,

 Brushes.Blue);

// Change the object's opacity

myReg.AreaOpacity = 25;

11.6.2.7.23 Draw .RegionHighlightY()

Definition
Draws a region highlight y on a chart.

Method Return Value
A RegionHighlightY object that represents the draw object.

Syntax
Draw.RegionHighlightY(NinjaScriptBase owner, string tag, double startY, double endY,

Brush brush)

Draw.RegionHighlightY(NinjaScriptBase owner, string tag, bool isAutoScale, double

startY, double endY, Brush brush, Brush areaBrush, int areaOpacity)

Draw.RegionHighlightY(NinjaScriptBase owner, string tag, double startY, double endY,

bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

NinjaScript 2227

© 2023 NinjaTrader, LLC

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startY The starting y value co-ordinate where the draw

object will be drawn

endY The ending y value co-ordinate where the draw

object will be drawn

brush The brush used to color the outline of draw

object (reference)

areaBrush The brush used to color the fill area of the draw

object (reference)

areaOpacity Sets the level of transparency for the fill color.

Valid values between 0 - 100. (0 = completely

transparent, 100 = no opacity)

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Fills in the region between the startY and endY

Draw.RegionHighlightY(this, "tag1",

true, High[0], Low[0], Brushes.Blue, Brushes.Green, 20);

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82228

© 2023 NinjaTrader, LLC

11.6.2.7.23.1 RegionHighlightY

Definition
Represents an interface that exposes information regarding a Region Highlight Y

IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

AreaBrush A Brush class representing the fill color of the

draw object

AreaOpacity An int value representing the opacity of the area

color

OutlineStroke The Stroke object used to draw the object's

outline

Example

// Instantiate a RegionHighlightX object

RegionHighlightY myReg = Draw.RegionHighlightY(this, "tag1", 10, 0,

 Brushes.Blue);

// Change the object's opacity

myReg.AreaOpacity = 25;

11.6.2.7.24 Draw .RegressionChannel()

Definition
Draws a regression channel.

Method Return Value
A RegressionChannel object that represents the draw object.

Syntax
Draw.RegressionChannel(NinjaScriptBase owner, string tag, int startBarsAgo, int
endBarsAgo, Brush brush)
Draw.RegressionChannel(NinjaScriptBase owner, string tag, DateTime startTime, DateTime
 endTime, Brush brush)

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2229

© 2023 NinjaTrader, LLC

Draw.RegressionChannel(NinjaScriptBase owner, string tag, bool isAutoScale, int
startBarsAgo, int endBarsAgo, Brush upperBrush, DashStyleHelper upperDashStyleHelper,
int upperWidth, Brush middleBrush, DashStyleHelper middleDashStyleHelper, int
middleWidth, Brush lowerBrush, DashStyleHelper lowerDashStyleHelper, int lowerWidth)
Draw.RegressionChannel(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime
startTime, DateTime endTime, Brush upperBrush, DashStyleHelper upperDashStyleHelper,
int upperWidth, Brush middleBrush, DashStyleHelper middleDashStyleHelper, int
middleWidth, Brush lowerBrush, DashStyleHelper lowerDashStyleHelper, int lowerWidth)
Draw.RegressionChannel(NinjaScriptBase owner, string tag, int startBarsAgo, int
endBarsAgo, bool isGlobal, string templateName)
Draw.RegressionChannel(NinjaScriptBase owner, string tag, DateTime startTime, DateTime
 endTime, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

startTime The starting time where the draw object will be

drawn.

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

NinjaTrader 82230

© 2023 NinjaTrader, LLC

brush The brush used to color the outline of draw

object (reference)

upperDashStyle,

middleDashStyle,

lowerDashStyle

DashStyleHelper.Dash

DashStyleHelper.DashDot

DashStyleHelper.DashDotDot

DashStyleHelper.Dot

DashStyleHelper.Solid

Note: Fancier DashStyles like DashDotDot will

require more resources than simple DashStyles

like Solid.

upperBrush,

middleBrush,

lowerBrush

The line colors (reference)

upperWidth,

middleWidth,

lowerWidth

The line width

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a regression channel from the low 10 bars back to the high

of 5 bars back

Draw.RegressionChannel(this, "tag1", 10, 0, Brushes.Blue);

11.6.2.7.24.1 RegressionChannel

Definition
Represents an interface that exposes information regarding a Regression Channel

IDrawingTool.

Methods and Properties

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2231

© 2023 NinjaTrader, LLC

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

RegressionStrok
e

The Stroke object used to draw the middle line of

the object

LowerChannelStr
oke

The Stroke object used to draw the lower line of

the object

UpperChannelStr
oke

The Stroke object used to draw the upper line of

the object

PriceType Possible values are:

PriceType.Close

PriceType.High

PriceType.Low

PriceType.Median

PriceType.Open

PriceType.Typical

ChannelType An enum value representing if the object will use

standard deviations calculations for the

upper/lower lines. Possible values are

· RegressionChannelType.Segment,

· RegressionChannelType.StandardDeviation

ExtendLeft A bool value representing if the object will extend

to the left

ExtendRight A bool value representing if the object will extend

to the right

StandardDeviatio
nLowerDistance

A double value representing the standard

deviation distance to the lower line

StandardDeviatio
nUpperDistance

A double value representing the standard

deviation distance to the upper line

NinjaTrader 82232

© 2023 NinjaTrader, LLC

Example

// Instantiate a RegressionChannel object

NinjaTrader.NinjaScript.DrawingTools.RegressionChannel myRegChan =

Draw.RegressionChannel(this, "tag1", 10, 0, Brushes.Blue);

// Change the object's PriceType

myRegChan.PriceType = PriceType.Median;

Note: To differentiate between DrawingTools.RegressionChannel and

Indicators.RegressionChannel when assigning a RegressionChannel object, you will need

to invoke the former path explicitly, as seen in the example above.

11.6.2.7.25 Draw .RiskRew ard()

Definition
Draws a risk/reward on a chart.

Method Return Value
A RiskReward object that represents the draw object.

Syntax
Draw.RiskReward(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

entryTime, double entryY, DateTime endTime, double endY, double ratio, bool isStop)

Draw.RiskReward(NinjaScriptBase owner, string tag, bool isAutoScale, int entryBarsAgo

, double entryY, int endBarsAgo, double endY, double ratio, bool isStop)

Draw.RiskReward(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

entryTime, double entryY, DateTime endTime, double endY, double ratio, bool isStop,

bool isGlobal, string templateName)

Draw.RiskReward(NinjaScriptBase owner, string tag, bool isAutoScale, int entryBarsAgo

, double entryY, int endBarsAgo, double endY, double ratio, bool isStop, bool

isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

NinjaScript 2233

© 2023 NinjaTrader, LLC

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

entryTime The time where the draw object's entry will be

drawn.

entryBarsAgo The starting bar (x axis co-ordinate) where the

draw object's entry will be drawn. For example, a

value of 10 would paint the draw object 10 bars

back.

entryY The y value co-ordinate where the draw object's

entry price will be drawn

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

endY The starting y value co-ordinate where the draw

object will be drawn

ratio An double value determining the calculated ratio

between the risk and reward based on the entry

point. Example: reward : risk is ratio of 1.0

isStop A bool value, when true will use the endTime /

endBarsAgo and endY to set the stop and will

automatically calculate the target based off the

ratio value. When false, will set the target and will

automatically calculate the stop based off the

ratio value.

NinjaTrader 82234

© 2023 NinjaTrader, LLC

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// draw a risk/reward tool starting from the current bar to 10 bars

ago

// with calcuate a ratio of 2 based on stop level

Draw.RiskReward(this, "tag1", false, 0, High[0], 10, Low[0], 2,

true);

11.6.2.7.25.1 RiskRew ard

Definition
Represents an interface that exposes information regarding a Risk Reward IDrawingTool.

Methods and Properties

EntryAnchor An IDrawingTool's ChartAnchor representing the

entry point of the drawing object

RiskAnchor An IDrawingTool's ChartAnchor representing the

stop loss point of the drawing object

RewardAnchor An IDrawingTool's ChartAnchor representing the

profit target point of the drawing object

Ratio An int value determining the calculated ratio

between the risk or reward based on the entry

point

Example

NinjaScript 2235

© 2023 NinjaTrader, LLC

// Instantiate a RiskReward object

RiskReward myRR = Draw.RiskReward(this, "tag1", false, 0, High[0],

10, Low[0], 2, true);

// Change the object's risk/reward ratio to 2:1

myRR.Ratio = 2;

11.6.2.7.26 Draw .Ruler()

Definition
Draws a ruler.

Method Return Value
A Ruler object that represents the draw object.

Syntax
Draw.Ruler(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, int textBarsAgo, double textY)

Draw.Ruler(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

double startY, DateTime endTime, double endY, DateTime textTime, double textY)

Draw.Ruler(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int endBarsAgo, double endY, int textBarsAgo, double textY, bool

isGlobal, string templateName)

Draw.Ruler(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

double startY, DateTime endTime, double endY, DateTime textTime, double textY, bool

isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

NinjaTrader 82236

© 2023 NinjaTrader, LLC

isAutoScale Determines if the draw object will be included in

the y-axis scale

startBarsAgo The number of bars ago (x value) of the 1st

anchor point

startTime The time of the 1st anchor point

startY The y value of the 1st anchor point

endBarsAgo The number of bars ago (x value) of the 2nd

anchor point

endTime The time of the 2nd anchor point

endY The y value of the 2nd anchor point

textBarsAgo The number of bars ago (x value) of the 3rd

anchor point

textTime The time of the 3rd anchor point

textY The y value of the 3rd anchor point

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Example

// Draws a ruler measuring the primary bar series

Draw.Ruler(this, "tag1", true, 4, Low[4], 3, High[3], 1,

Low[1]);

NinjaScript 2237

© 2023 NinjaTrader, LLC

11.6.2.7.26.1 Ruler

Definition
Represents an interface that exposes information regarding a Ruler IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

TextAnchor An IDrawingTool's ChartAnchor representing the

text point of the drawing object

TextColor A Brush class representing the fill color of the

draw object's text area

LineColor A Stroke object used to draw the object

Example

// Instantiate a Ruler object

Ruler myRuler = Draw.Ruler(this, "tag1", true, 4, Low[4], 3,

High[3], 1, Low[1]);

// Change the object's text color to white

myRuler.TextColor = Brushes.White;

11.6.2.7.27 Draw .Square()

Definition
Draws a square.

Method Return Value
A Square object that represents the draw object.

Syntax
Draw.Square(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time, double

 y, Brush brush)

Draw.Square(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double

y, Brush brush)

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82238

© 2023 NinjaTrader, LLC

Draw.Square(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time, double

 y, Brush brush, bool drawOnPricePanel)

Draw.Square(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double

y, Brush brush, bool drawOnPricePanel)

Draw.Square(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time, double

 y, bool isGlobal, string templateName)

Draw.Square(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo, double

y, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale

barsAgo The bar the object will be drawn at. A value of 10

would be 10 bars ago.

time The time the object will be drawn at.

y The y value

brush The brush used to color draw object (reference)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2239

© 2023 NinjaTrader, LLC

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

T

i

p

:

T

h

e

s

i

z

e

o

f

t

h

e

s

q

u

a

r

e

i

s

t

i

e

d

t

o

t

h

e

c

h

a

r

NinjaTrader 82240

© 2023 NinjaTrader, LLC

t

'

s

B

a

r

W

i

d

t

h

a

n

d

t

h

u

s

w

i

l

l

s

c

a

l

e

a

u

t

o

m

a

t

i

c

a

l

l

y

a

s

t

NinjaScript 2241

© 2023 NinjaTrader, LLC

h

e

c

h

a

r

t

i

s

r

e

s

i

z

e

d

Examples

// Paints a red square on the current bar 1 tick below the low

Draw.Square(this, "tag1", true, 0, Low[0] - TickSize, Brushes.Red);

11.6.2.7.27.1 Square

Definition
Represents an interface that exposes information regarding a Square IDrawingTool.

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

point of the drawing object

NinjaTrader 82242

© 2023 NinjaTrader, LLC

OutlineBrush A Brush used for the outline of the square

AreaBrush A Brush object representing the fill color of the

draw object

Example

// Instantiate a Square object

Square mySquare = Draw.Square(this, "tag1", true, 0, Low[0] -

TickSize, Brushes.Red);

// Change the object's OutlineBrush

mySquare.OutlineBrush = Brushes.Blue;

11.6.2.7.28 Draw .Text()

Definition
Draws text.

Method Return Value
A Text object that represents the draw object.

Syntax
Draw.Text(NinjaScriptBase owner, string tag, string text, int barsAgo, double y)

Draw.Text(NinjaScriptBase owner, string tag, string text, int barsAgo, double y, Brush

 textBrush)

Draw.Text(NinjaScriptBase owner, string tag, string text, int barsAgo, double y, bool

isGlobal, string templateName)

Draw.Text(NinjaScriptBase owner, string tag, bool isAutoScale, string text, int

barsAgo, double y, int yPixelOffset, Brush textBrush, SimpleFont font, TextAlignment

alignment, Brush outlineBrush, Brush areaBrush, int areaOpacity)

Draw.Text(NinjaScriptBase owner, string tag, bool isAutoScale, string text, DateTime

time, double y, int yPixelOffset, Brush textBrush, SimpleFont font, TextAlignment

alignment, Brush outlineBrush, Brush areaBrush, int areaOpacity)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2243

© 2023 NinjaTrader, LLC

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale. Default value is false.

text The text you wish to draw

barsAgo The bar (x axis co-ordinate) where the draw

object will be drawn. For example, a value of 10

would paint the draw object 10 bars back.

time The time where the draw object will be drawn.

y The y co-ordinate location the object will be

drawn

yPixelOffset The offset value in pixels from within the text box

area

textBrush The brush used to color the text of the draw

object (reference)

font A Simple Font object

alignment TextAlignment.Center,
TextAlignment.Left,
TextAlignment.Right,
TextAlignment.Justify
(reference)

outlineBrush The brush used to color the text box outline

(reference)

areaBrush The brush used to color the text box fill area

(reference)

https://msdn.microsoft.com/en-us/library/system.windows.textalignment%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.textalignment(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.drawing.color_members(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/system.drawing.color_members(v=vs.90).aspx

NinjaTrader 82244

© 2023 NinjaTrader, LLC

areaOpacity Sets the level of transparency for the fill color.

Valid values between 0 - 100. (0 = completely

transparent, 100 = no opacity)

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws text

Draw.Text(this, "tag1", "Text to draw", 10, 1000, Brushes.Black);

Tip: In some cases, it may be useful to pass in the ChartControl.Properties TextFont

brush as well as the LabelFont SimpleFont object to render your custom text . This will

help ensure that the text will be visible and match what a user has configured for their

chart label display settings.

// match the text brush to what the user has configured on their

chart

Draw.Text(this, "tag1", "Text to draw", 10, 1000,

ChartControl.Properties.ChartText);

11.6.2.7.28.1 Text

Definition
Represents an interface that exposes information regarding a Text IDrawingTool.

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

point of the drawing object

NinjaScript 2245

© 2023 NinjaTrader, LLC

YPixelOffset An int value representing the offset value in

pixels from within the text box area

Alignment Possible values are:

TextAlignment.Center,
TextAlignment.Left,
TextAlignment.Right,
TextAlignment.Justify
(reference)

AreaOpacity An int value representing the opacity of the area

color

AreaBrush A Brush class representing the fill color of the

text box

Text A string value representing the text to be drawn

TextBrush A Brush class representing the color of the text

Font A Font object representing the font for the text

OutlineStroke The Stroke object used to outline the text box

Example

// Instantiate a Text object

Text myText = Draw.Text(this, "tag1", "Text to draw", 10, High[10]

+ (5 * TickSize), Brushes.Black);

// Change the object's DisplayText

myText.DisplayText = "New Display Text";

11.6.2.7.29 Draw .TextFixed()

Definition
Draws text in one of 5 available pre-defined fixed locations on panel 1 (price panel) of a chart.

Please note the Z-Order is internally set for the method to always be drawn on top.

Method Return Value

https://msdn.microsoft.com/en-us/library/system.windows.textalignment(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.drawing.font_members(v=vs.90).aspx

NinjaTrader 82246

© 2023 NinjaTrader, LLC

A TextFixed object that represents the draw object.

Syntax
Draw.TextFixed(NinjaScriptBase owner, string tag, string text, TextPosition

textPosition, Brush textBrush, SimpleFont font, Brush outlineBrush, Brush areaBrush,

int areaOpacity)

Draw.TextFixed(NinjaScriptBase owner, string tag, string text, TextPosition

textPosition)

Draw.TextFixed(NinjaScriptBase owner, string tag, string text, TextPosition

textPosition, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

text The text you wish to draw

TextPosition TextPosition.BottomLeft

TextPosition.BottomRight

TextPosition.Center

TextPosition.TopLeft

TextPosition.TopRight

textBrush The brush used to color the text of the draw

object (reference)

font A Simple Font object

outlineBrush The brush used to color the text box outline

(reference)

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.color_members(v=vs.90).aspx

NinjaScript 2247

© 2023 NinjaTrader, LLC

areaBrush The brush used to color the text box fill area

(reference)

areaOpacity Sets the level of transparency for the fill color.

Valid values between 0 - 100. (0 = completely

transparent, 100 = no opacity)

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws text in the upper right corner of panel 1

Draw.TextFixed(this, "tag1", "Text to draw",

TextPosition.TopRight);

Tip: In some cases, it may be useful to pass in the ChartControl.Properties TextFont

brush as well as the LabelFont SimpleFont object to render your custom text . This will

help ensure that the text will be visible and match what a user has configured for their

chart label display settings.

// match the text brush to what the user has configured on their

chart

Draw.TextFixed(this, "myTextFixed", "Hello world!",

TextPosition.BottomRight, ChartControl.Properties.ChartText,

 ChartControl.Properties.LabelFont, Brushes.Blue,

Brushes.Transparent, 0);

11.6.2.7.29.1 TextFixed

Definition
Represents an interface that exposes information regarding a Text Fixed IDrawingTool.

http://msdn.microsoft.com/en-us/library/system.drawing.color_members(v=vs.90).aspx

NinjaTrader 82248

© 2023 NinjaTrader, LLC

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

point of the drawing object

YPixelOffset An int value representing the offset value in

pixels from within the text box area

Alignment Possible values are:

TextAlignment.Center

TextAlignment.Far

TextAlignment.Near

TextAlignment.Justify

(reference)

AreaOpacity An int value representing the opacity of the area

color

AreaBrush A Brush class representing the fill color of the

text box

DisplayText A string value representing the text to be drawn

TextBrush A Brush class representing the color of the text

Font A Font object representing the font for the text

OutlineStroke The Stroke object used to outline the text box

TextPosition Possible values are:

TextPosition.BottomLeft

TextPosition.BottomRight

TextPosition.Center

TextPosition.TopLeft

TextPosition.TopRight

Example

https://msdn.microsoft.com/en-us/library/system.windows.textalignment%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2249

© 2023 NinjaTrader, LLC

// Instantiate a TextFixed object

TextFixed myTF = Draw.TextFixed(this, "tag1", "Text to draw",

TextPosition.TopRight);

// Change the object's TextPosition

myTF.TextPosition = TextPosition.Center;

11.6.2.7.30 Draw .TimeCycles()

Definition
Draws a time cycle based on two points.

Method Return Value
A TimeCycles object that represents the draw object.

Syntax
Draw.TimeCycles(NinjaScriptBase owner, string tag, int startBarsAgo, int endBarsAgo,

double endY, Brush brush, bool drawOnPricePanel)

Draw.TimeCycles(NinjaScriptBase owner, string tag, int startBarsAgo, int endBarsAgo,

bool isGlobal, string templateName)

Draw.TimeCycles(NinjaScriptBase owner, string tag, DateTime startTime, DateTime

endTime, Brush brush, bool drawOnPricePanel)

Draw.TimeCycles(NinjaScriptBase owner, string tag, DateTime startTime, DateTime

endTime, bool isGlobal, string templateName)

Draw.TimeCycles(NinjaScriptBase owner, string tag, DateTime startTime, DateTime

endTime, Brush brush, Brush areaBrush, int areaOpacity)

Draw.TimeCycles(NinjaScriptBase owner, string tag, int startBarsAgo, int endBarsAgo,

Brush brush, Brush areaBrush, int areaOpacity)

Draw.TimeCycles(NinjaScriptBase owner, string tag, int startBarsAgo, int endBarsAgo,

Brush brush, Brush areaBrush, int areaOpacity, bool drawOnPricePanel)

Draw.TimeCycles(NinjaScriptBase owner, string tag, DateTime startTime, DateTime

endTime, Brush brush, Brush areaBrush, int areaOpacity, bool drawOnPricePanel)

Draw.TimeCycles(NinjaScriptBase owner, string tag, DateTime startTime, DateTime

endTime, Brush brush)

Draw.TimeCycles(NinjaScriptBase owner, string tag, int startBarsAgo, int endBarsAgo,

Brush brush)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

NinjaTrader 82250

© 2023 NinjaTrader, LLC

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

startBarsAgo The starting bar (x axis co-ordinate) where the

draw object will be drawn. For example, a value

of 10 would paint the draw object 10 bars back.

startTime The starting time where the draw object will be

drawn

endBarsAgo The end bar (x axis co-ordinate) where the draw

object will terminate

endTime The end time where the draw object will

terminate

brush The brush used to color draw object (reference)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a Time Cycles object based on 10 bars back to the current
bar that is cornflower blue with an opacity of 40
Draw.TimeCycles(this, "tag1", 0, 10, Brushes.CornflowerBlue,
Brushes.CornflowerBlue, 40);

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2251

© 2023 NinjaTrader, LLC

11.6.2.7.30.1 TimeCycles

Definition
Represents an interface that exposes information regarding a TimeCyles IDrawingTool.

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

point of the drawing object

OutlineStroke A Stroke used for the outline of the region

AreaBrush A Brush object representing the fill color of the

draw object

Example

// Instantiate a Time Cycles object

TimeCycles myTimeCycles = (this, "tag1", 0, 10,

Brushes.CornflowerBlue, Brushes.CornflowerBlue, 40);

// Change the object's OutlineBrush

myTimeCycles.OutlineStroke = newÂ Stroke(Brushes.Red);

11.6.2.7.31 Draw .TrendChannel()

Definition
Draws a trend channel.

Method Return Value
A TrendChannel object that represents the draw object.

Syntax
Draw.TrendChannel(NinjaScriptBase owner, string tag, bool isAutoScale, int

anchor1BarsAgo, double anchor1Y, int anchor2BarsAgo, double anchor2Y, int

anchor3BarsAgo, double anchor3Y)

Draw.TrendChannel(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

anchor1Time, double anchor1Y, DateTime anchor2Time, double anchor2Y, DateTime

anchor3Time, double anchor3Y)

Draw.TrendChannel(NinjaScriptBase owner, string tag, bool isAutoScale, int

anchor1BarsAgo, double anchor1Y, int anchor2BarsAgo, double anchor2Y, int

anchor3BarsAgo, double anchor3Y, bool isGlobal, string templateName)

Draw.TrendChannel(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82252

© 2023 NinjaTrader, LLC

anchor1Time, double anchor1Y, DateTime anchor2Time, double anchor2Y, DateTime

anchor3Time, double anchor3Y, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale

anchor1BarsAgo The number of bars ago (x value) of the 1st

anchor point

anchor1Time The time of the 1st anchor point

anchor1Y The y value of the 1st anchor point

anchor2BarsAgo The number of bars ago (x value) of the 2nd

anchor point

anchor2Time The time of the 2nd anchor point

anchor2Y The y value of the 2nd anchor point

anchor3BarsAgo The number of bars ago (x value) of the 3rd

anchor point

anchor3Time The time of the 3rd anchor point

anchor3Y The y value of the 3rd anchor point

NinjaScript 2253

© 2023 NinjaTrader, LLC

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a trend channel

Draw.TrendChannel(this, "tag1", true, 10, Low[10], 0, High[0], 10,

High[10] + 5 * TickSize);

11.6.2.7.31.1 TrendChannel

Definition
Represents an interface that exposes information regarding a Trend Channel IDrawingTool.

Methods and Properties

TrendStartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

TrendEndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

ParallelStartAncho

r

An IDrawingTool's ChartAnchor representing the

starting point of the second line used in the trend

channel

PriceLevels A collection of prices calculated by the drawing

object

Example

NinjaTrader 82254

© 2023 NinjaTrader, LLC

// Instantiate a TrendChannel object

TrendChannel myTC = Draw.TrendChannel(this, "tag1", true, 10,

Low[10], 0, High[0], 10, High[10] + 5 * TickSize);

// Increase the y-axis position of the object's TrendEndAnchor

myTC.TrendEndAnchor.Price += 15;

11.6.2.7.32 Draw .Triangle()

Definition
Draws a triangle.

Method Return Value
A Triangle object that represents the draw object.

Syntax
Draw.Triangle(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

middleBarsAgo, double middleY, int endBarsAgo, double endY, Brush brush)

Draw.Triangle(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime middleTime, double middleY, DateTime endTime, double endY, Brush brush)

Draw.Triangle(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int middleBarsAgo, double middleY, int endBarsAgo, double endY, Brush

brush, Brush areaBrush, int areaOpacity)

Draw.Triangle(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

 double startY, DateTime midTime, double middleY, DateTime endTime, double endY, Brush

 brush, Brush areaBrush, int areaOpacity)

Draw.Triangle(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

middleBarsAgo, double middleY, int endBarsAgo, double endY, Brush brush, bool

drawOnPricePanel)

Draw.Triangle(NinjaScriptBase owner, string tag, bool isAutoScale, int startBarsAgo,

double startY, int middleBarsAgo, double middleY, int endBarsAgo, double endY, Brush

brush, Brush areaBrush, int areaOpacity, bool drawOnPricePanel)

Draw.Triangle(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime startTime,

 double startY, DateTime midTime, double middleY, DateTime endTime, double endY, Brush

 brush, Brush areaBrush, int areaOpacity, bool drawOnPricePanel)

Draw.Triangle(NinjaScriptBase owner, string tag, int startBarsAgo, double startY, int

middleBarsAgo, double middleY, int endBarsAgo, double endY, bool isGlobal, string

templateName)

Draw.Triangle(NinjaScriptBase owner, string tag, DateTime startTime, double startY,

DateTime middleTime, double middleY, DateTime endTime, double endY, bool isGlobal,

string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

NinjaScript 2255

© 2023 NinjaTrader, LLC

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale

startBarsAgo The number of bars ago (x value) of the 1st

anchor point

startTime The time of the 1st anchor point

startY The y value of the 1st anchor point

middleBarsAgo The number of bars ago (x value) of the 2nd

anchor point

midTime The time of the 2nd anchor point

middleY The y value of the 2nd anchor point

endBarsAgo The number of bars ago (x value) of the 3rd

anchor point

endTime The time of the 3rd anchor point

endY The y value of the 3rd anchor point

brush The brush used to color the outline of draw

object (reference)

areaBrush The brush used to color the fill area of the draw

object (reference)

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82256

© 2023 NinjaTrader, LLC

areaOpacity Sets the level of transparency for the fill color.

Valid values between 0 - 100. (0 = completely

transparent, 100 = no opacity)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Paints a blue triangle on the chart

Draw.Triangle(this, "tag1", 4, Low[4], 3, High[3], 1, Low[1],

Brushes.Blue);

11.6.2.7.32.1 Triangle

Definition
Represents an interface that exposes information regarding a Triangle IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

MiddleAnchor An IDrawingTool's ChartAnchor representing the

middle point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

AreaBrush A Brush class representing the fill color of the

draw object

AreaOpacity An int value representing the opacity of the area

color

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2257

© 2023 NinjaTrader, LLC

OutlineStroke The Stroke object used to draw the object's

outline

Example

// Instantiate a Triangle object

Triangle myTri = Draw.Triangle(this, "tag1", 4, Low[4], 3, High[3],

 1, Low[1], Brushes.Blue);

// Change the object's AreaOpacity

myTri.AreaOpacity = 100;

11.6.2.7.33 Draw .TriangleDow n()

Definition
Draws a triangle pointing down.

Method Return Value
A TriangleDown object that represents the draw object.

Syntax
Draw.TriangleDown(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, Brush brush)

Draw.TriangleDown(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo,

double y, Brush brush)

Draw.TriangleDown(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, Brush brush, bool drawOnPricePanel)

Draw.TriangleDown(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo,

double y, Brush brush, bool drawOnPricePanel)

Draw.TriangleDown(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, bool isGlobal, string templateName)

Draw.TriangleDown(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo,

double y, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

NinjaTrader 82258

© 2023 NinjaTrader, LLC

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

isAutoScale Determines if the draw object will be included in

the y-axis scale

barsAgo The bar the object will be drawn at. A value of 10

would be 10 bars ago.

time The time the object will be drawn at.

y The y value

brush The brush used to color draw object (reference)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

T

i

p

:

T

h

e

s

i

z

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaScript 2259

© 2023 NinjaTrader, LLC

e

o

f

t

h

e

t

r

i

a

n

g

l

e

i

s

t

i

e

d

t

o

t

h

e

c

h

a

r

t

'

s

B

a

r

W

i

d

t

h

a

n

d

NinjaTrader 82260

© 2023 NinjaTrader, LLC

t

h

u

s

w

i

l

l

s

c

a

l

e

a

u

t

o

m

a

t

i

c

a

l

l

y

a

s

t

h

e

c

h

a

r

t

i

s

r

e

s

i

z

NinjaScript 2261

© 2023 NinjaTrader, LLC

e

d

Examples

// Paints a red triangle pointing down on the current bar 1 tick

below the low

Draw.TriangleDown(this, "tag1", true, 0, Low[0] - TickSize,

Brushes.Red);

11.6.2.7.33.1 TriangleDow n

Definition
Represents an interface that exposes information regarding a Triangle Down IDrawingTool.

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

point of the drawing object

AreaBrush A Brush class representing the fill color of the

draw object

OutlineBrush A Brush class representing the outline color of

the draw object

Example

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82262

© 2023 NinjaTrader, LLC

// Instantiate a TriangleDown object

TriangleDown myTri = Draw.TriangleDown(this, "tag1", true, 0,

Low[0] - TickSize, Brushes.Red);

// Change the object's AreaBrush

myTri.AreaBrush = Brushes.Beige;

11.6.2.7.34 Draw .TriangleUp()

Definition
Draws a triangle pointing up.

Method Return Value
A TriangleUp object that represents the draw object.

Syntax
Draw.TriangleUp(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, Brush brush)

Draw.TriangleUp(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo,

double y, Brush brush)

Draw.TriangleUp(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, Brush brush, bool drawOnPricePanel)

Draw.TriangleUp(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo,

double y, Brush brush, bool drawOnPricePanel)

Draw.TriangleUp(NinjaScriptBase owner, string tag, bool isAutoScale, DateTime time,

double y, bool isGlobal, string templateName)

Draw.TriangleUp(NinjaScriptBase owner, string tag, bool isAutoScale, int barsAgo,

double y, bool isGlobal, string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

NinjaScript 2263

© 2023 NinjaTrader, LLC

isAutoScale Determines if the draw object will be included in

the y-axis scale

barsAgo The bar the object will be drawn at. A value of 10

would be 10 bars ago.

time The time the object will be drawn at.

y The y value

brush The brush used to color draw object (reference)

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

T

i

p

:

T

h

e

s

i

z

e

o

f

t

h

e

t

r

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82264

© 2023 NinjaTrader, LLC

i

a

n

g

l

e

i

s

t

i

e

d

t

o

t

h

e

c

h

a

r

t

'

s

B

a

r

W

i

d

t

h

a

n

d

t

h

u

s

w

i

l

l

NinjaScript 2265

© 2023 NinjaTrader, LLC

s

c

a

l

e

a

u

t

o

m

a

t

i

c

a

l

l

y

a

s

t

h

e

c

h

a

r

t

i

s

r

e

s

i

z

e

d

NinjaTrader 82266

© 2023 NinjaTrader, LLC

Examples

// Paints a red triangle pointing up on the current bar 1 tick

below the low

Draw.TriangleUp(this, "tag1", true, 0, Low[0] - TickSize,

Brushes.Red);

11.6.2.7.34.1 TriangleUp

Definition
Represents an interface that exposes information regarding a Triangle Up IDrawingTool.

Methods and Properties

Anchor An IDrawingTool's ChartAnchor representing the

point of the drawing object

AreaBrush A Brush class representing the fill color of the

draw object

OutlineBrush A Brush class representing the outline color of

the draw object

Examples

// Instantiate a TriangleUp object

TriangleUp myTri = Draw.TriangleUp(this, "tag1", true, 0, Low[0] -

TickSize, Brushes.Red);

// Change the object's AreaBrush

myTri.AreaBrush = Brushes.Beige;

11.6.2.7.35 Draw .VerticalLine()

Definition
Draws a vertical line.

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2267

© 2023 NinjaTrader, LLC

Method Return Value
A VerticalLine object that represents the draw object.

Syntax
Draw.VerticalLine(NinjaScriptBase owner, string tag, DateTime time, Brush brush)

Draw.VerticalLine(NinjaScriptBase owner, string tag, DateTime time, Brush brush,

DashStyleHelper dashStyle, int width, bool drawOnPricePanel)

Draw.VerticalLine(NinjaScriptBase owner, string tag, int barsAgo, Brush brush)

Draw.VerticalLine(NinjaScriptBase owner, string tag, int barsAgo, Brush brush,

DashStyleHelper dashStyle, int width, bool drawOnPricePanel)

Draw.VerticalLine(NinjaScriptBase owner, string tag, int barsAgo, bool isGlobal,

string templateName)

Draw.VerticalLine(NinjaScriptBase owner, string tag, DateTime time, bool isGlobal,

string templateName)

Parameters

owner The hosting NinjaScript object which is calling

the draw method

Typically will be the object which is calling the

draw method (e.g., "this")

tag A user defined unique id used to reference the

draw object.

For example, if you pass in a value of "myTag",

each time this tag is used, the same draw object

is modified. If unique tags are used each time, a

new draw object will be created each time.

barsAgo The bar the object will be drawn at. A value of 10

would be 10 bars ago.

time The time the object will be drawn at.

brush The brush used to color draw object (reference)

dashStyle DashStyleHelper.Dash

DashStyleHelper.DashDot

DashStyleHelper.DashDotDot

DashStyleHelper.Dot

DashStyleHelper.Solid

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82268

© 2023 NinjaTrader, LLC

Note: Fancier DashStyles like DashDotDot will

require more resources than simple DashStyles

like Solid.

width The width of the draw object

drawOnPricePanel Determines if the draw-object should be on the

price panel or a separate panel

isGlobal Determines if the draw object will be global

across all charts which match the instrument

templateName The name of the drawing tool template the object

will use to determine various visual properties

(empty string could be used to just use the UI

default visuals instead)

Examples

// Draws a vertical line

Draw.VerticalLine(this, "tag1", 10, Brushes.Black);

11.6.2.7.35.1 VerticalLine

Definition
Represents an interface that exposes information regarding a Vertical Line IDrawingTool.

Methods and Properties

StartAnchor An IDrawingTool's ChartAnchor representing the

starting point of the drawing object

EndAnchor An IDrawingTool's ChartAnchor representing the

end point of the drawing object

Stroke A Stroke object used to draw the object

Examples

NinjaScript 2269

© 2023 NinjaTrader, LLC

// Instantiate a VerticalLine object

VerticalLine myLine = Draw.VerticalLine(this, "tag1", 10,

Brushes.Black);

// Change the object's Stroke

myLine.Stroke = new Stroke(Brushes.BlanchedAlmond,

DashStyleHelper.Dot, 5);

11.6.2.7.36 Brushes

For detailed information on using Brushes for Drawing please see the Working with Brushes

educational resource.

11.6.2.7.37 Allow RemovalOfDraw Objects

Definition
Determines if programmatically drawn DrawObjects are allowed to remove manually from the

chart

Property Value
When set to true, the draw objects from the indicator or strategy can be deleted from the

chart manually by a user. If false, draw objects from the indicator or strategy can only be

removed from the chart if the script removes the drawing object, or the script is terminates.

Default set to false.

Syntax
AllowRemovalOfDrawObjects

Examples

protected override void OnStateChange()

{

 Add(new Plot(Brushes.Orange, "SMA"));

 AllowRemovalOfDrawObjects = true; // Draw objects can be

removed separately from the script

}

11.6.2.7.38 BackBrush

Definition
Sets the brush used for painting the chart panel's background color for the current bar.

Note: This property will only set the back color for the panel the indicator is running. To

set background color for all panels, please see the BackBrushAll property.

NinjaTrader 82270

© 2023 NinjaTrader, LLC

Property Value
A Brush object that represents the color of the current chart bar.

Syntax
BackBrush

Warning: You may have up to 65,535 unique BackBrush instances, therefore, using

static predefined brushes should be favored. Alternatively, in order to use fewer brushes,

please try to cache your custom brushes until a new brush would actually need to be

created.

Examples

protected override void OnBarUpdate()

{

 // Sets the chart panel back color to pale green

 BackBrush = Brushes.PaleGreen;

 // Sets the back color to to null which will use the default

color set in the chart properties dialog window

 BackBrush = null;

 // Sets the back color to maroon when the closing price is

less than the 20 period SMA // and to lime green when above (see

image below)

 BackBrush = SMA(20)[0] >= Close[0] ? Brushes.Maroon :

Brushes.LimeGreen;

}

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2271

© 2023 NinjaTrader, LLC

11.6.2.7.39 BackBrushAll

Definition
A collection of prior back brushes used for the background colors for all chart panels.

Property Value
A Brush object that represents the color of the current chart bar.

Tip: To reset the Chart background color to the default background color property, set the

BackBrushAll to null for that bar.

Syntax
BackBrushAll

Warning: You may have up to 65,535 unique BackBrushAll instances, therefore, using

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82272

© 2023 NinjaTrader, LLC

static predefined brushes should be favored. Alternatively, in order to use fewer brushes,

please try to cache your custom brushes until a new brush would actually need to be

created.

Examples

protected override void OnBarUpdate()

{

 // Sets the back color to pale green

 BackBrushAll = Brushes.PaleGreen;

 // Sets the back color to null to use the default color set in

the chart properties dialog window

 BackBrushAll = null;

 // Sets the back color to pink when the closing price is less

than the 20 period SMA

 // and to lime green when above (see image below)

 BackBrushAll = SMA(20)[0] >= Close[0] ? Brushes.Pink :

Brushes.PaleGreen;

}

NinjaScript 2273

© 2023 NinjaTrader, LLC

11.6.2.7.40 BackBrushes

Definition
A collection of prior back brushes used for the background colors of the chart panel.

Property Value
A brush series type object. Accessing this property via an index value [int barsAgo] returns a

Brush object representing the color of the background color on the referenced bar.

Syntax
BackBrushes
BackBrushes[int barsAgo]

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82274

© 2023 NinjaTrader, LLC

Warning: You may have up to 65,535 unique BackBrushes instances, therefore, using

static predefined brushes should be favored. Alternatively, in order to use fewer brushes,

please try to cache your custom brushes until a new brush would actually need to be

created.

Examples

protected override void OnBarUpdate()

{

 if (CurrentBar < 1)

 return;

 // Sets the color of the background on the current bar as blue

 BackBrushes[0] = Brushes.Blue;

 // Sets the color of the background on the previous bar as

orange

 BackBrushes[1] = Brushes.Orange;

}

11.6.2.7.41 BackBrushesAll

Definition
A collection of historical brushes used for the background colors for all chart panels.

Property Value
A brush series type object. Accessing this property via an index value [int barsAgo] returns a

Brush object representing the color of the background color on the referenced bar for all chart

panels.

Syntax
BackBrushesAll

BackBrushesAll[int barsAgo]

Warning: You may have up to 65,535 unique BackBrushAll instances, therefore, using

static predefined brushes should be favored. Alternatively, in order to use fewer brushes,

please try to cache your custom brushes until a new brush would actually need to be

created.

Examples

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2275

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 1)

 return;

 // Sets the color of the background on the current bar as blue

on all chart panels.

 BackBrushesAll[0] = Brushes.Blue;

 // Sets the color of the background on the previous bar as

orange on all chart panels.

 BackBrushesAll[1] = Brushes.Orange;

}

11.6.2.7.42 BarBrush

Definition
Sets the brush used for painting the color of a price bar's body.

Property Value
A Brush object that represents the color of this price bar.

Tip: To set the price bar color to an empty color which uses the default bar color property,

set the BarBrush to null for that bar.

Syntax
BarBrush

Warning: You may have up to 65,535 unique BarBrush instances, therefore, using static

predefined brushes should be favored. Alternatively, in order to use fewer brushes,

please try to cache your custom brushes until a new brush would actually need to be

created.

Examples

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82276

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Sets the bar color to yellow

 BarBrush = Brushes.Yellow;

 // Sets the brush used for the bar color to its default color

as defined in the chart properties dialog

 BarBrush = null;

 // Sets the bar color to yellow if the 20 SMA is above the 50

SMA and the closing

 // price is above the 20 SMA (see image below)

 if (SMA(20)[0] > SMA(50)[0] && Close[0] > SMA(20)[0])

 BarBrush = Brushes.Yellow;

}

11.6.2.7.43 BarBrushes

Definition
A collection of historical brushes used for painting the color of a price bar's body.

Property Value
A brush series type object. Accessing this property via an index value [int barsAgo] returns a

Brush object representing the referenced bar's color.

Note: This will only return the color of a bar in which an explicit color overwrite was used.

Otherwise it will return null.

Syntax
BarBrushes

BarBrushes[int barsAgo]

Warning: You may have up to 65,535 unique BarBrushes instances, therefore, using

static predefined brushes should be favored. Alternatively, in order to use fewer brushes,

please try to cache your custom brushes until a new brush would actually need to be

created.

Examples

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2277

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 1)

 return;

 // Sets the color of the current bar to blue.

 BarBrushes[0] = Brushes.Blue;

 // Sets the color of the previous bar to orange.

 BarBrushes[1] = Brushes.Orange;

}

11.6.2.7.44 CandleOutlineBrush

Definition
Sets the outline Brush of a candlestick.

Property Value
A brush object that represents the color of this price bar.

Syntax
CandleOutlineBrush

Warning: You may have up to 65,535 unique CandleOutlineBrushes instances, therefore,

using static predefined brushes should be favored. Alternatively, in order to use fewer

brushes, please try to cache your custom brushes until a new brush would actually need

to be created.

Examples

// Sets the candle outline color to black

CandleOutlineBrush = Brushes.Black;

11.6.2.7.45 CandleOutlineBrushes

Definition
A collection of historical outline brushes for candlesticks.

Property Value
A brush series type object. Accessing this property via an index value [int barsAgo] returns a

 brush structure representing the referenced bar's outline color.

http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82278

© 2023 NinjaTrader, LLC

Note: This will only return the color of a candlestick outline in which an explicit color

overwrite was used. Otherwise it will return null.

Syntax
CandleOutlineBrushes

CandleOutlineBrushes[int barsAgo]

Warning: You may have up to 65,535 unique CandleOutlineBrushes instances, therefore,

using static predefined brushes should be favored. Alternatively, in order to use fewer

brushes, please try to cache your custom brushes until a new brush would actually need

to be created.

Examples

// Sets the outline color of the current bar to black.

CandleOutlineBrushes[0] = Brushes.Black;

// Sets the outline color of the previous bar to blue.

CandleOutlineBrushes[1] = Brushes.Blue;

11.6.2.7.46 Draw Objects

Definition
A collection holding all of the drawn chart objects on the chart, for all series. The draw objects

can be manually drawn or script generated objects.

Notes:

· When reloading NinjaScript, all objects (including manual drawing tools) are reloaded at

the same time. There is no guarantee a manually drawn object will be added to the

DrawObjects collection before an indicator starts processing data.

· DrawObjects.ToList() is thread safe. DrawObjects collection itself is still dynamic

(meaning it updates live) and as a result you can still run the risk of the collection being

modified while you try to read it (and thus would see the related C# log entry) However,

DrawObjects.ToList() is a snapshot of DrawObjects collection at the time the call is

made.

· Also please keep in mind that iterating over a large DrawObjects collection could have

an impact on performance

NinjaScript 2279

© 2023 NinjaTrader, LLC

· Draw objects are disposed (for example on chart closing) after State.Terminated is

seen for your custom NinjaScript studies potentially working with those

Property Value
A collection of IDrawingTool objects.

Syntax
DrawObjects

DrawObjects[string tag]

DrawObjects.Count

Examples

 Finding the draw object of a specific tag

protected override void OnBarUpdate()

{

 if (DrawObjects["someTag"] != null && DrawObjects["someTag"] is

DrawingTools.Line)

 {

 // Do something with the drawing tool line

 }

 // An alternative approach to find the draw object by a tag

 if (DrawObjects["someTag"] as DrawingTools.Line != null)

 {

 // Do something drawing tool line

 }

 // Yet another way to find a drawing tool by a tag

 if (DrawObjects["someTag"].GetType().Name == "Line")

 {

 // Do something drawing tool line

 }

}

NinjaTrader 82280

© 2023 NinjaTrader, LLC

 Get the number of draw objects on a chart

protected override void OnBarUpdate()

{

 if (DrawObjects.Count == 3)

 {

 // Do something

 }

}

 Looping through the collection to find specific draw objects

protected override void OnBarUpdate()

{

 // Loops through the DrawObjects collection via a threadsafe

list copy

 foreach (DrawingTool draw in DrawObjects.ToList())

 {

 // Finds line objects that are attached globally to all

charts of the same instrument

 if (draw.IsGlobalDrawingTool && draw is DrawingTools.Line)

 {

 DrawingTools.Line globalLine = draw as DrawingTools.Line;

 // Changes the line color and prints its starting and end

points

 globalLine.Stroke.Brush = Brushes.Black;

 Print("Start: " + globalLine.StartAnchor.SlotIndex + "

End: " + globalLine.EndAnchor.SlotIndex);

 }

 // Finds non-global line objects

 else if (draw is DrawingTools.Line)

 {

 // Indicates if this is a manually drawn or script

generated line

 Print("Line Object: " + draw.Tag + " Manually Drawn: " +

draw.IsUserDrawn);

 }

 }

}

Note: Typecasting as in the example above will not function the same way in a compiled

assembly (DLL). For an alternative approach, see the Considerations For Compiled

NinjaScript 2281

© 2023 NinjaTrader, LLC

Assemblies page.

11.6.2.7.47 IDraw ingTool

Definition
Represents an interface that exposes information regarding a drawn chart object.

IDrawingTool Properties are standard properties that are shared by all drawing tools.

Each specific IDrawingTool will have its own uniquely named ChartAnchor representing
where the object was drawn on the chart. The name and number of ChartAnchors will be
specific to that drawing tool (e.g., StartAnchor, EndAnchor, etc), however the fields available
will be the same (e.g., BarsAgo, DrawnOnBar, etc). Details on those shared fields are
outlined in the ChartAnchor Properties section toward the bottom of this topic.

Note: For implementing a custom Drawing Tool project, please see the DrawingTools

section of this help guide.

IDrawingTool Properties

Anchors A read-only collection of all of the

IDrawingTool's ChartAnchors

AttachedTo An enum determining where the

drawing tool is attached.

Possible values are:

· AttachedToType.Bars,

· AttachedToType.GlobalInstrume

nt,

· AttachedToType.Indicator,

· AttachedToType.Strategy

DrawingState The current DrawingState of the

drawing tool

DrawnBy An object value indicating which

type of NinjaScript the drawing tool

originated (null if user drawn)

IsAttachedToNinjaScript A read-only bool indicating if the

drawing tool is attached to an

NinjaTrader 82282

© 2023 NinjaTrader, LLC

indicator or strategy

IgnoresUserInput A read-only bool determining if the

drawing tool can be interacted with

by the user.

IsGlobalDrawingTool A bool determining if the drawing

tool displays on all charts of the

instrument

IsLocked A bool determining if the drawing

tool can be moved

IsSeparateZOrder A bool determining if the drawing

tool will reside on a different

ZOrder from the NinjaScript object

it was drawn

IsUserDrawn A read-only bool indicating if

drawing tool was manually drawn

by a user

PanelIndex An int value representing the

panel the drawing tool resides

SupportsAlerts A read-only bool indicating if the

drawing tool can be used for

creating an alert

Tag A string value representing the

unique ID of the draw object.

(Global draw objects will have an

"@" added as a prefix to the string)

ZOrderType An enum indicating the order in

which the drawing tool will be

drawn.

Possible values are:

· DrawingToolZOrder.Normal,

· DrawingToolZOrder.AlwaysDraw

nFirst,

NinjaScript 2283

© 2023 NinjaTrader, LLC

· DrawingToolZOrder.AlwaysDraw

nLast

ChartAnchor Properties

<ChartAnchor>.Ba

rsAgo

An int representing the "barsAgo" value that was

passed to the Draw method

Note: This value will NOT be set for objects

drawn manually

<ChartAnchor>.Di
splayName

A string representing name of the

DrawingTool's chart anchor that is displaying on

the UI

<ChartAnchor>.Dr
awingTool

The IDrawingTool object which created the

DrawingTool's chart anchor object

<ChartAnchor>.Dr
awnOnBar

An int representing the CurrentBar value that the

DrawingTool's chart anchor was drawn

<ChartAnchor>.Is
NinjaScriptDrawn

A bool indicating the object was drawn

programmatically

<ChartAnchor>.Pri
ce

A double representing the price the

DrawingTool's chart anchor was drawn

<ChartAnchor>.Sl
otIndex

A double representing the DrawingTool's chart

anchor index value the anchor was drawn

<ChartAnchor>.Ti
me

A DateTime representing the time value the

DrawingTool's chart anchor was drawn

Examples

NinjaTrader 82284

© 2023 NinjaTrader, LLC

Text myText;

protected override void OnBarUpdate()

{

 if(CurrentBar == 50)

 myText = Draw.Text(this, "tag", "test", 0, High[0]);

 if(myText != null)

 {

 Print(myText.Anchor.DrawnOnBar); // drawn on bar 50

 }

}

11.6.2.7.48 PriceLevels

Definition
A collection of PriceLevel objects defining lines for multi-price-level Drawing Tools (Fibonacci

tools, etc.). Each PriceLevel within the collection can be configured programmatically or

analyzed to obtain the parameters of user-drawn objects.

Note: PriceLevels is only used with the following pre-built Drawing Tools, but it can be

used with custom Drawing Tools, as well:

· AndrewsPitchfork

· FibonacciCircle

· FibonacciExtensions

· FibonacciRetracements

· FibonacciTimeExtensions

· GannFan

· TrendChannel

Syntax
PriceLevels[int idx]

PriceLevels[int idx].GetPrice(double startPrice, double totalPriceRange, bool

isInverted)

PriceLevels[int idx].GetY(ChartScale chartScale, double startPrice, double

totalPriceRange, bool isInverted)

Methods and Properties

GetP

rice()

Returns a double which repents the price value at the

specified price level

NinjaScript 2285

© 2023 NinjaTrader, LLC

GetY(

)

Returns a float representing the y-pixel coordinate at the

specified price level

Nam

e

The Name property of the specified PriceLevel. Set to a

formatted version of Value by default.

Strok

e

The Stroke used to draw the line associated with the specified

PriceLevel

Tag A tag used to identify the specified PriceLevel. Null by default.

Valu
e

The value of the PriceLevel in percentage terms

Examples

NinjaTrader 82286

© 2023 NinjaTrader, LLC

// Define a FibonacciRetracements object outside of OnBarUpdate(),

so the same object can be re-used

FibonacciRetracements myRetracements;

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Instantiate myRetracements

 myRetracements = Draw.FibonacciRetracements(this, "fib", true,

20, High[20], 2, Low[2]);

 // Print each price level and the corresponding value in the

PriceLevels collection contain in myRetracements

 // setting isInverted correctly is important for the Fibonacci

Retracements since it will define which starting point is used, as

it changes based // on the anchors, i.e. if the Fibonacci is

drawn from 100% to 0% (default) or the other inverted way (0% to

100%).

 foreach (PriceLevel p in myRetracements.PriceLevels)

 {

 Print(p.Value);

 Print(p.GetPrice(myRetracements.StartAnchor.Price,

myRetracements.EndAnchor.Price - myRetracements.StartAnchor.Price,

false));

 }

}

NinjaScript 2287

© 2023 NinjaTrader, LLC

// Define a TrendChannel object outside of OnBarUpdate(), so the

same object can be re-used

TrendChannel myTCh;

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Instantiate myTrendChannel

 myTCh = Draw.TrendChannel(this, "tc", true, 10, Low[10], 0,

High[0], 10, High[10] + 5 * TickSize);

 // Print each price level and the corresponding value in the

PriceLevels collection contain in myTrendChannel

 // For the TrendChannel the 0% is the Trend anchor, the 100% the

Parallel anchor

 foreach (PriceLevel p in myTCh.PriceLevels)

 {

 Print(p.Value);

 Print(p.GetPrice(myTCh.TrendStartAnchor.Price,

myTCh.ParallelStartAnchor.Price - myTCh.TrendStartAnchor.Price,

false));

 }

}

11.6.2.7.49 RemoveDraw Object()

Definition
Removes a draw object from the chart based on its tag value.

Note: This method will ONLY remove DrawObjects which were created by a NinjaScript

object. User drawn objects CANNOT be removed from via NinjaScript

Method Return Value
This method does not return a value

Syntax
RemoveDrawObject(string tag)

Parameters

NinjaTrader 82288

© 2023 NinjaTrader, LLC

tag A user defined unique id used to reference the

draw object. For example, if you pass in a value

of "myTag", each time this tag is used, the same

draw object is modified. If unique tags are used

each time, a new draw object will be created

each time.

Examples

// Removes a draw object with the tag "tag1"

RemoveDrawObject("tag1");

11.6.2.7.50 RemoveDraw Objects()

Definition
Removes all draw objects originating from the indicator or strategy from the chart.

Note: This method will ONLY remove DrawObjects which were created by a NinjaScript

object. User drawn objects CANNOT be removed from via NinjaScript

Method Return Value
This method does not return a value

Syntax
RemoveDrawObjects()

Examples

// Removes all draw objects

RemoveDrawObjects();

11.6.2.8 Instruments

Definition
A collection of Instrument objects currently used by a script.

Property Value
An array of Instrument objects

NinjaScript 2289

© 2023 NinjaTrader, LLC

Syntax
Instruments[]

Examples

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 // Print all instruments which have been loaded

 foreach (Instrument i in Instruments)

 {

 Print(i.FullName);

 }

 }

}

11.6.2.8.1 Instrument

Definition
A tradable symbol. Represents an instance of a Master Instrument

Warning: The properties in this class should NOT be accessed within the

OnStateChange() method before the State has reached State.DataLoaded

Methods and Properties

Exchange Exchange of the current

instrument

Expiry Expiration date of the futures

contract

FullName Full name of the instrument

GetInstrument() Returns an Instrument object by

the master instrument name

configured in the database.

MasterInstrument An instrument's configuration

settings. These are settings and

NinjaTrader 82290

© 2023 NinjaTrader, LLC

properties which are defined in

the Instrument window.

FundmentalData Instrument thread specific

FundamentalData events

MarketData Instrument thread specific

MarketData events

MarketDepth Instrument thread specific

MarketDepth events

Dispatcher A Dispatcher used for

subscribing to Instrument related

events See Multi-Threading

Considerations

11.6.2.8.1.1 Exchange

Definition
Indicates the current exchange of an instrument

Property Value
Represents the exchange which is selected for the current instrument.

Syntax
Instrument.Exchange

Examples

protected override void OnBarUpdate()

{

 // Print the exchange of the currently configured instrument

 Print(String.Format("Configured instrument is on the {0}

exchange", Instrument.Exchange));

}

Additional Access Information
This property can be accessed without a null reference check in the OnBarUpdate() event
handler. When the OnBarUpdate() event is triggered, there will always be an Instrument
object. Should you wish to access this property elsewhere, check for null reference first. e.g.
if (Instrument != null)

NinjaScript 2291

© 2023 NinjaTrader, LLC

11.6.2.8.1.2 Expiry

Definition
Indicates the expiration month of a futures contract.

Property Value
A DateTime structure representing the expiration month of a futures contract.

Syntax
Instrument.Expiry

Examples

protected override void OnBarUpdate()

{

 // Print the expiry of the currently configured futures

instrument

 Print(String.Format("You are viewing the {0} contract",

Instrument.Expiry));

}

Additional Access Information
This property can be accessed without a null reference check in the OnBarUpdate() event
handler. When the OnBarUpdate() event is triggered, there will always be an Instrument
object. Should you wish to access this property elsewhere, check for null reference first. e.g.
if (Instrument != null)

11.6.2.8.1.3 FullName

Definition
Indicates the full NinjaTrader name of an instrument. For futures, this would include the

expiration date. The September S&P 500 Emini contract full name is "ES 09-16".

Property Value
A string representing the full name of the instrument.

Syntax
Instrument.FullName

Examples

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaTrader 82292

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print the full name (including contract month) of the

configured instrument

 Print(String.Format("{0} is being used as the input series",

Instrument.FullName));

}

Additional Access Information
This property can be accessed without a null reference check in the OnBarUpdate() event
handler. When the OnBarUpdate() event is triggered, there will always be an Instrument
object. Should you wish to access this property elsewhere, check for null reference first. e.g.
if (Instrument != null)

11.6.2.8.1.4 GetInstrument()

Definition
Returns an Instrument object by the master instrument name configured in the database.

Note: This method does NOT add additional data for real-time or historical processing.

For adding an additional data to your script, please see the AddDataSeries() method.

Method Return Value
An Instrument object

Syntax
Instrument.GetInstrument(string instrumentName)

Parameters

instrumentName A string value representing a

name of an instrument

Examples

NinjaScript 2293

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 Instrument myInstrument = Instrument.GetInstrument("AAPL");

 Print("AAPL's tick size is " +

myInstrument.MasterInstrument.TickSize.ToString());

 }

}

11.6.2.8.1.5 MasterInstrument

Definition
An instrument's configuration settings. These are settings and properties which are defined

in the Instrument window.

Warning: The properties in this class should NOT be accessed within the

OnStateChange() method before the State has reached State.DataLoaded.

Methods and Properties

Compare() Returns an int value compares two price

values with respect to the Instrument tick

size

Currency The currency that the instrument traded

in

Description A written representation of a given

instrument

Dividends A collection of dividends for stock

instruments

Exchanges A collection of exchanges configured for

an instrument

FormatPrice() Returns a string representing the price

formatted to the nearest tick size

NinjaTrader 82294

© 2023 NinjaTrader, LLC

InstrumentType The type of instrument

MergePolicy The Merge Policy that is configured for

the current master instrument.

Name The name of the instrument.

GetNextExpiry() Returns a DateTime structure

representing the next futures expiry for a

given date

PointValue Currency value of 1 full point of

movement

RolloverCollection A collection of expiration dates and

offsets for futures instruments

RoundToTickSize() Rounds the value up to the nearest valid

value

RoundDownToTickSize() Rounds the value down to the nearest

valid value

Splits A collection of splits for stock instruments

TickSize The smallest movement in price

configured

Url A web url where contract details have

been collected

Definition
Compares two price values with respect to the Instrument TickSize to ensure accuracy when

dealing with floating point math.

Method Return Value
An int value.

A value of "1" is returned if price1 is greater than price2

A value of "-1" is returned if price1 is less than price2

A value of "0" if price1 is equal to price2

NinjaScript 2295

© 2023 NinjaTrader, LLC

Syntax
Instrument.MasterInstrument.Compare(double price1, double price2)

Parameters

pri

ce

1

A double value representing a price

pri

ce

2

A double value representing a price

Examples

double newPrice = Close[0] + High[0] + Open[0];

if (Instrument.MasterInstrument.Compare(newPrice, Close[1]) == 1)

 // Do something since price1 is greater than price2

Definition
Indicates the currency configured for the Master Instrument properties.

Property Value
A type of Currency which is configured for the current master instrument.

Syntax
Bars.Instrument.MasterInstrument.Currency

Examples

if (Bars.Instrument.MasterInstrument.Currency != Currency.UsDollar)

{

//Prints if the currency is not UsDollar and indicates what

currency it is

Print ("Warning: Instruments base currency is not UsDollar,

it is " + Bars.Instrument.MasterInstrument.Currency);

}

Definition
Indicates the description configured for the Master Instrument properties.

Property Value
A string value which is configured for the current master instrument.

NinjaTrader 82296

© 2023 NinjaTrader, LLC

Syntax
Bars.Instrument.MasterInstrument.Description

Examples

protected override void OnBarUpdate()

{

// Displays the master instrument's

description at the bottom right of the chart

Draw.TextFixed(this, "tag1",

Bars.Instrument.MasterInstrument.Description,

TextPosition.BottomRight);

}

Definition
An collection of Dividends configured for the Master Instrument properties used in for stocks.

Property Value
A collection of Dividends configured for the current instrument.

Possible values are:

Amount A double value representing the amount in dollars which was paid on

the date of the dividend

Date A DateTime structure representing the date of the dividend

Syntax
Bars.Instrument.MasterInstrument.Dividends

Examples

foreach(Dividend dividends in

Bars.Instrument.MasterInstrument.Dividends)

{

 Print(dividends.Amount);

 Print(dividends.Date);

}

Definition
A collection of exchange(s) configured for the Master Instrument properties.

Property Value

NinjaScript 2297

© 2023 NinjaTrader, LLC

A collection of Exchanges which represent the exchanges configured for the current

instrument.

Syntax
Bars.Instrument.MasterInstrument.Exchanges

Examples

foreach(Exchange exchange in

Bars.Instrument.MasterInstrument.Exchanges)

{

 Print(exchange); // Default, Nasdaq, NYSE

}

Definition
Returns a price value as a string which will be formatted to the nearest tick size.

Note: This is useful as the standard format specifier will only use the minimum number of

digits for a decimal by default; however you can use this method to ensure that your data

is always formatted per the instrument tick size for easier readability. For example, a

value of 1985.50 would Print() as 1985.5, while using FormatPrice(), we can expect the

value to be formatted as 1985.50.

Property Value
A string value which will ensure the price data is always formatted to the nearest tick size.

Syntax
Bars.Instrument.MasterInstrument.FormatPrice(double price, [bool round])

Parameters

pri

ce

A double value representing a price

ro

un

d

An optional bool when true (default) will round the price value to

the nearest tick size

Examples

NinjaTrader 82298

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // called without setting the optional bool parameter, which is

defaulted to true then

 Print(Bars.Instrument.MasterInstrument.FormatPrice(Close[0]));

}

protected

 override void OnMarketData(MarketDataEventArgs marketDataUpdate)

{

 Print(marketDataUpdate.Instrument.MasterInstrument.FormatPrice(m

arketDataUpdate.Price));

}

Definition
Returns the type of instrument.

Property Value
An InstrumentType representing the type of an instrument.

Possible values are:

InstrumentType.Future

InstrumentType.Stock

InstrumentType.Index

InstrumentType.Forex

InstrumentType.Cfd

InstrumentType.Cryptocurrency

Syntax
Instrument.MasterInstrument.InstrumentType

Examples

NinjaScript 2299

© 2023 NinjaTrader, LLC

if (Instrument.MasterInstrument.InstrumentType ==

InstrumentType.Future)

{

// Do something

}

else

{

// Do something else

}

Additional Access Information
This property can be accessed without a null reference check in the OnBarUpdate() event
handler. When the OnBarUpdate() event is triggered, there will always be an Instrument
object. Should you wish to access this property elsewhere, check for null reference first. e.g.
if (Instrument != null)

Definition
Indicates the Merge Policy configured for the Master Instrument properties.

Property Value
Represents the MergePolicy that is configured for the current master instrument.

Possible values are:

DoNotMerge No merge policy is applied

MergeBackAdjusted Merge policy is applied between contracts

along with rollover offsets

MergeNonBackAdjusted Merge policy is applied between contracts

without offsets

UseGlobalSettings Uses the value configured from Tools ->

Options -> Market Data

Syntax
Bars.Instrument.MasterInstrument.MergePolicy

Examples

NinjaTrader 82300

© 2023 NinjaTrader, LLC

//Prints a warning, indicating what merge policy is in use if not

using global settings

if (Bars.Instrument.MasterInstrument.MergePolicy !=

MergePolicy.UseGlobalSettings)

{

Print("Warning: Instrument has merge policy of " +

Bars.Instrument.MasterInstrument.MergePolicy);

}

Definition
Indicates the NinjaTrader database name of an instrument. For example, "MSFT", "ES", "NQ"

etc...

Property Value
A string representing the name of the instrument.

Syntax
Instrument.MasterInstrument.Name

Examples

protected override void OnBarUpdate()

{

// Displays the master instrument's name at

the bottom right of the chart

Draw.TextFixed(this, "tag1",

Bars.Instrument.MasterInstrument.Name, TextPosition.BottomRight);

}

Additional Access Information
This property can be accessed without a null reference check in the OnBarUpdate() event
handler. When the OnBarUpdate() event is triggered, there will always be an Instrument
object. Should you wish to access this property elsewhere, check for null reference first. e.g.
if (Instrument != null)

Definition
Returns the current futures expiry compared to the time of the input value used for the

method.

Method Return Value
A DateTime structure

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaScript 2301

© 2023 NinjaTrader, LLC

Syntax
Bars.Instrument.MasterInstrument.GetNextExpiry(DateTime afterDate)

Parameters

afterDate A DateTime value representing to be compared

Examples

// Indicates what the current expiry is in the bottom right of the

chart

Draw.TextFixed(this, "tag1", "The current expiry is " +

Bars.Instrument.MasterInstrument.GetNextExpiry(DateTime.Now).ToStri

ng("MM-yy"), TextPosition.BottomRight);

Definition
Indicates the currency value of 1 full point of movement. For example, 1 point in the S&P 500

Emini futures contract (ES) is $50 USD which is equal to $12.50 USD per tick.

Property Value
A double value representing the currency value of 1 point of movement.

Syntax
Instrument.MasterInstrument.PointValue

Examples

protected override void OnBarUpdate()

{

// Displays the master instrument's point

value at the bottom right of the chart

Draw.TextFixed(this, "Point value: ",

Bars.Instrument.MasterInstrument.PointValue.ToString(),

TextPosition.BottomRight);

}

Additional Access Information
This property can be accessed without a null reference check in the OnBarUpdate() event
handler. When the OnBarUpdate() event is triggered, there will always be an Instrument
object. Should you wish to access this property elsewhere, check for null reference first. e.g.
if (Instrument != null)

NinjaTrader 82302

© 2023 NinjaTrader, LLC

Definition
Indicates the rollovers that have been configured for the Master Instrument properties used in

for futures.

Property Value
A RolloversCollection configured for the current instrument.

Possible values are:

ContractMonth A DateTime structure representing the expiry month of a futures

contract

Date A DateTime structure representing the date of the rollover

Offset A double value representing the number of points between contracts

Syntax
Bars.Instrument.MasterInstrument.RolloverCollection

Examples

foreach(var rollover in

Bars.Instrument.MasterInstrument.RolloverCollection)

{

 Print(rollover.ContractMonth);

 Print(rollover.Date);

 Print(rollover.Offset);

}

Definition
Returns a value that is rounded up to the nearest valid value evenly divisible by the

instrument's tick size.

Method Return Value
A double value.

Syntax
Instrument.MasterInstrument.RoundToTickSize(double price)

Parameters

price A double value representing a price

Examples

NinjaScript 2303

© 2023 NinjaTrader, LLC

//Takes the last 3 closes, divides them by 3, and rounds the value

up to the nearest valid tick size

Value[0] = Instrument.MasterInstrument.RoundToTickSize((Close[0] +

Close[1] + Close[2]) / 3);

Definition
Returns a value that is rounded down to the nearest valid value evenly divisible by the

instrument's tick size.

Method Return Value
A double value.

Syntax
Instrument.MasterInstrument.RoundDownToTickSize(double price)

Parameters

price A double value representing a price

Examples

//Takes the last 3 closes, divides them by 3, and rounds the value

down to the nearest valid tick size

Value[0] =

Instrument.MasterInstrument.RoundDownToTickSize((Close[0] +

Close[1] + Close[2]) / 3);

Definition
Indicates the Splits that have been configured for the Master Instrument properties used in for

stocks.

Property Value
A collection of Splits configured for the current instrument.

Possible values are:

Date A DateTime structure representing the date of the split

Factor A double value representing the number of points the stock split

Syntax

NinjaTrader 82304

© 2023 NinjaTrader, LLC

Bars.Instrument.MasterInstrument.Splits

Examples

foreach (Split split in Bars.Instrument.MasterInstrument.Splits)

{

 Print(split.Date);

 Print(split.Factor);

}

Definition
Indicates the tick size configured for the Master Instrument properties.

Property Value
A double value representing the tick size configured for the current master instrument.

Syntax
Bars.Instrument.MasterInstrument.TickSize

Examples

protected override void OnBarUpdate()

{

// Displays the master instrument's tick size

at the bottom right of the chart

Draw.TextFixed(this, "tag1",

Bars.Instrument.MasterInstrument.TickSize.ToString(),

TextPosition.BottomRight);

}

Definition
Indicates the Url configured for the Master Instrument properties.

Property Value
A string value representing the Url that is configured for the current master instrument.

Syntax
Bars.Instrument.MasterInstrument.Url

Examples

NinjaScript 2305

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

// Displays the master instrument's URL at the bottom

right of the chart

Draw.TextFixed(this, "tag1", "Instruments URL is " +

Bars.Instrument.MasterInstrument.Url, TextPosition.BottomRight);

}

11.6.2.9 ISeries<T>

Definition
ISeries<T> is an interface that is implemented by all NinjaScript classes that manage

historical data as an ISeries<double> (Open, High, Low, Close, etc), used for indicator input,

and other object data. Please see the help guide article on Working with Price Series for a

basic overview on how to access this information.

Types of ISeries

Series<T> Represents a generic custom
data structure for custom
development

PriceSeries Historical price data structured as
an ISeries<double> interface
(Close[0], High[0], Low[0], etc)

TimeSeries Historical time stamps structured
as an ISeries<DateTime> interface
(Time[0])

VolumeSeries Historical volume data structured
as an ISeries<double> interface
(Volume[0])

Methods and Properties

GetValueAt() Returns the underlying input value

at a specified bar index value.

IsValidDataPoint() Indicates if the specified input is

set at a barsAgo value relative to

the current bar.

NinjaTrader 82306

© 2023 NinjaTrader, LLC

IsValidDataPointAt() Indicates if the specified input is

set at a specified bar index value.

Count Return the number total number

of values in the ISeries array

Tips: (see examples below)

1. By specifying a parameter of type ISeries<double>, you can then pass in an array

of closing prices, an indicator, or a user defined data series.

2. When working with ISeries<double> objects in your code you may come across

situations where you are not sure if the value being accessed is a valid value or just

a "placeholder" value. To check if you are using valid values for your logic

calculations that have been explicitly set, please use .IsValidDataPoint(int

barsAgo) to check.

Examples

 Using ISeries as a method parameter

//create custom a method named DoubleTheValue that accepts any

object that implements

// the ISeries<double> interface as a parameter

private double DoubleTheValue(ISeries<double> priceData)

{

 return priceData[0] * 2;

}

protected override void OnBarUpdate()

{

 // This custom method is then used twice,

 //the first time passing in an array of closing prices

 Print(DoubleTheValue(Close));

 //and the second time passing in a 20 period simple moving

average.

 Print(DoubleTheValue(SMA(20)));

}

NinjaScript 2307

© 2023 NinjaTrader, LLC

 Checking ISeries value before accessing

protected override void OnBarUpdate()

{

 // Only set our plot if the input is a valid value

 if (Input.IsValidDataPoint(0))

 Plot0[0] = Input[0];

}

11.6.2.9.1 Series<T>

Definition
A Series<T> is a special generic type of data structure that can be constructed with any

chosen data type and holds a series of values equal to the same number of elements as bars

in a chart. If you have 200 bars loaded in your chart with a moving average plotted, the moving

average itself holds a Series<double> object with 200 historical values of data, one for each

bar. Series<double> objects can be used as input data for all indicator methods. The

Series<T> class implements the ISeries<T> interface.

Note: By default NinjaTrader limits the number of values stored for Series<T> objects to

256 from the current bar being processed. This drastically improves memory performance

by not holding onto old values that are generally not needed. Should you need more values

than the last 256 please be sure to create the Series<T> object so that it stores all values

instead through the use of the MaximumBarsLookBack property.

Constructors

Series<T>(ninjaScriptBase) Creates a Series<T> object

synchronized to the primary data

series of the provided NinjaScript

Series<T>(ninjaScriptBase,

maximumBarsLookBack)
Creates a Series<T> object

synchronized to the primary data

series of the provided NinjaScript.

This constructor also allows

controlling the Series<T>'s

MaximumBarsLookBack

Series<T>(bars) Creates a Series<T> object

synchronized to the provided Bars

object, for Multi Time Frame

scripts, this could be given from

BarsArray

NinjaTrader 82308

© 2023 NinjaTrader, LLC

Series<T>(bars,

maximumBarsLookBack)
Creates a Series<T> object

synchronized to the provided Bars

object, for Multi Time Frame

scripts, this could be given from

BarsArray. While this constructor

allows controlling the Series<T>'s

MaximumBarsLookBack, it is

forced to

MaximumBarsLookBack.Infinit

e

Parameters

ninjaScriptBase The NinjaScript object used to

create the Series

bars The Bars object used to create

the Series

maximumBarsLookBack A MaximumBarsLookBack value

used for memory performance

Methods and Properties

GetValueAt() Returns the underlying input value

at a specified bar index value.

IsValidDataPoint() Determines if the specified input

is set at a barsAgo value relative

to the current bar.

Reset() Resets the internal marker which

is used for IsValidDataPoint()

back to false.

Count The total number of bars or data
points.

Creating Series<T> Objects
When creating custom indicators, Series<double> objects are automatically created for you

by calling the AddPlot() method and can be subsequently referenced by the Value and/or

NinjaScript 2309

© 2023 NinjaTrader, LLC

Values property. However, you may have a requirement to create a Series<T> object to store

values that are part of an overall indicator value calculation. This can be done within a custom

indicator or strategy.

Note: Custom Series<T> objects will hold the number of values specified by the

MaximumBarsLookBack property when the custom series object is instantiated.

To create a Series<T> object:

1. Determine the data type of the Series<T> object you wish to create. This could be double,

bool, int, string or any other object type you want.

2. Define a variable of type Series<T> that will hold a Series<T> object. This example will

create "myDoubleSeries" as a Series<double>.

3. In the OnStateChange() method, in the State.DataLoaded create a new Series<T> object

and assign it to the "myDoubleSeries" variable

NinjaTrader 82310

© 2023 NinjaTrader, LLC

private Series<double> myDoubleSeries; // Define a Series<T>

variable. In this instance we want it

 // as a double so we created

a Series<double> variable.

private Series<double> mySecondaryDoubleSeries; // Define a

Series<T> variable. In this instance we want it

 // as a double so

we created a Series<double> variable.

// Create a Series object and assign it to the variable

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Add a secondary data series to sync our Secondary

Series<double>

 AddDataSeries(BarsPeriodType.Minute, 1);

 }

 else if (State == State.DataLoaded)

 {

 // "this" refers to the NinjaScript object itself. This

syncs the Series object to historical data bars

 // MaximumBarsLookBack determines how many values the

Series<double> will have access to

 myDoubleSeries = new Series<double>(this,

MaximumBarsLookBack.Infinite);

 // "BarsArray[1]" refers to the first data series added

to the script with AddDataSeries.

 mySecondaryDoubleSeries = new

Series<double>(BarsArray[1]);

 }

}

Setting Values
You can set the value for the current bar being evaluated by choosing a "barsAgo" value of "0"

or, for historical bars, by choosing a "barsAgo" value that represents the number of bars ago

that you want the value to be stored at.

NinjaScript 2311

© 2023 NinjaTrader, LLC

 Setting Series<T> values

protected override void OnBarUpdate()

{

 myDoubleSeries[0] = Close[0];

}

Note: The "barsAgo" value is only guaranteed to be in sync with the recent current bar

during core data event methods, such as OnBarUpdate(), OnMarketUpdate(), and during

strategy related order events such as OnOrderUpdate(), OnExecutionUpdate(),

OnPositionUpdate(). For scenarios where you may need to set a value outside of a core

data/order event, such as OnRender() or a custom event, you must first synchronize the

"barsAgo" pointer via the TriggerCustomEvent() method.

Checking for Valid Values
It is possible that you may use a Series<T> object but decide not to set a value for a specific
bar. However, you should not try to access a Series<T>value that has not been set. Internally,
a dummy value does exists, but you want to check to see if it was a valid value that you set
before trying to access it for use in your calculations. Please see IsValidDataPoint() more
information.

Warning: Calling IsValidDataPoint() will only work a MaximumBarsLookBackInfinite

series. Attempting to check IsValidDataPoint() MaximumBarsLookBack256 series throw

an error. Please check the Log tab of the Control Center

Getting Values
You can access Series<T> object values using the syntax Series<T>[int barsAgo] where
barsAgo represents the data value n (number of bars ago).

 Accessing Series object values

protected override void OnBarUpdate()

{

 // Prints the current and last bar value

 Print("The values are " + myDoubleSeries[0] + " " +

myDoubleSeries[1]);

}

Alternatively, you can access a value at an absolute bar index using the GetValueAt() method.

NinjaTrader 82312

© 2023 NinjaTrader, LLC

Note: In most cases, you will access the historical price series using a core data event

handler such as OnBarUpdate(). For more advance developers, you may find situations

where you wish to access historical price series outside of the core data event methods,

such as OnRender(), or your own custom event. In these advanced scenarios, you may

run into situations where the "barsAgo" pointer is not in sync with the current bar, and may

result in errors when trying to obtain this information. In those cases, please use the

Bars.Get...() methods with the absolute bar index, e.g., GetValueAt().

Methods that Accept ISeries<T> as Arguments
All indicator methods accept ISeries<double> objects as arguments. Carrying from the prior
examples, let's print out the 10 period simple moving average of range.

 Using a custom Series object as indicator input

protected override void OnBarUpdate()

{

 // Calculate the range of the current bar and set the value

 myDoubleSeries[0] = (High[0] - Low[0]);

 // Print the current 10 period SMA of range

 Print("Value is " + SMA(myDoubleSeries, 10)[0]);

}

11.6.2.9.1.1 Reset()

Definition
Resets the internal marker which is used for IsValidDataPoint() back to false. Calling the

Reset() method is unique and can be very powerful for custom indicator development.

Series<T> objects will always contain a value which is assigned, however calling Reset()

simply means you effectively ignore the value of the current bar for plotting purposes. For

calculation purposes you will want to use IsValidDataPoint() to ensure you are not calculating

off of any reset values assigned by the Reset() method.

Series Type Value after Reset()

Series<bool> false

Series<double> 0.00

Series<DateTime> DateTime.MinValue

Series<float> 0

NinjaScript 2313

© 2023 NinjaTrader, LLC

Series<int> 0

Series<long> 0

Series<string> null

Method Return Value
This method does not return a value

Syntax
Reset()

Reset(int barsAgo)

Parameters

barsAgo An int representing from the

current bar the number of

historical bars the method will

check. If no barsAgo value is

supplied, the current bar value will

be reset instead (barsAgo 0)

Examples

protected override void OnBarUpdate()

{

 // set MyPlot to Low of current bar minus 1 tick

 MyPlot[0] = Low[0] - (1 * TickSize);

 //reset MyPlot every 10 bars

 if(CurrentBar % 10 == 0)

 MyPlot.Reset();

 // only calculate MyPlot value if it has not be reset

 if(MyPlot.IsValidDataPoint(0))

 Print(CurrentBar + " Value is: " + MyPlot[0]);

}

11.6.2.9.2 PriceSeries<double>

Definition
Represents historical data as an ISeries<double> interface which can be used for custom

NinjaScript object calculations.

NinjaTrader 82314

© 2023 NinjaTrader, LLC

Note: In most cases, you will access the historical price series using a core event

handler such as OnBarUpdate. For more advance developers, you may find situations

where you wish to access historical price series outside of the core event methods, such

as your own custom mouse click. In these advanced scenarios, you may run into

situations where the barsAgo pointer is not in sync with the current bar, which may cause

errors when trying to obtain this information. In those cases, please use the Bars.Get...()

methods with the absolute bar index, e.g., Bars.GetClose(), Bars.GetOpen(), etc.

Single ISeries<double>

Close A collection of historical bar close

prices.

High A collection of historical bar high

prices.

Input A collect of the the main historical

input values.

Low A collection of historical bar low

prices.

Median A collection of historical bar

median prices.

Open A collection of historical bar open

prices.

Typical A collection of historical bar

typical prices.

Value A collection of historical
references to the first object
(Values[0]) in the indicator

Weighted A collection of historical bar

weighted prices.

Multi-Time Frame ISeries<double>

NinjaScript 2315

© 2023 NinjaTrader, LLC

Closes Holds an array of ISeries<double>

objects holding historical bar

close prices.

Highs Holds an array of ISeries<double>

objects holding historical bar high

prices.

Inputs Holds an array of ISeries<double>

objects holding main historical

input values

Lows Holds an array of ISeries<double>

objects holding historical bar low

prices.

Medians Holds an array of

ISeries<double>objects holding

historical bar median prices.

Opens Holds an array of ISeries<double>

objects holding historical bar open

prices.

Typicals Holds an array of ISeries<double>

objects holding historical bar

typical prices.

Values Holds an array of ISeries<double>
objects holding hold the
indicator's underlying calculated
values.

Weighteds Holds an array of ISeries<double>

objects holding historical bar

weighted prices.

11.6.2.9.2.1 Close

Definition
A collection of historical bar close prices.

Property Value

NinjaTrader 82316

© 2023 NinjaTrader, LLC

A ISeries<double> type object. Accessing this property via an index value [int barsAgo]

returns a double value representing the price of the referenced bar.

Note: When an indicator uses another indicator as input series, Close will represent the

closing price of the input series' input series. For example, if MyCustomIndicator uses an

ADX as input series, then referencing Close[0] in MyCustomIndicator will provide the

Close price for the ADX's input series.

Syntax
Close

Close[int barsAgo]

Examples

// OnBarUpdate method

protected override void OnBarUpdate()

{

 // Evaluates if the current close is greater than the prior

bar close

 if (Close[0] > Close[1])

 Print("We had an up day");

}

11.6.2.9.2.2 Closes

Definition
Holds an array of ISeries<double> objects holding historical bar close prices. A

ISeries<double> object is added to this array when calling the AddDataSeries() method. Its

purpose is to provide access to the closing prices of all Bars objects in a multi-instrument or

multi-time frame script.

Property Value
An array of ISeries<double> objects.

Syntax
Closes[int barSeriesIndex][int barsAgo]

Examples

NinjaScript 2317

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Compares the primary bar's close price to the 5-minute

bar's close price

 if (Closes[0][0] > Closes[1][0])

 Print("The primary bar's close price is greater");

}

11.6.2.9.2.3 High

Definition
A collection of historical bar high prices.

Property Value
An ISeries<double> type object. Accessing this property via an index value [int barsAgo]

returns a double value representing the price of the referenced bar.

Syntax
High

High[int barsAgo]

Examples

NinjaTrader 82318

© 2023 NinjaTrader, LLC

// OnBarUpdate method

protected override void OnBarUpdate()

{

 // Make sure we have at least 20 bars

 if (CurrentBar < 20)

 return;

 // Evaluates for higher highs

 if (High[0] > High[1] && High[1] > High[2])

 Print("Two successive higher highs");

 // Gets the current value of a 20 period SMA of high prices

 double value = SMA(High, 20)[0];

 Print("The value is " + value.ToString());

}

11.6.2.9.2.4 Highs

Definition
Holds an array of ISeries<double> objects holding historical bar high prices. A

ISeries<double> object is added to this array when calling the AddDataSeries() method. Its

purpose is to provide access to the high prices of all Bars objects in a multi-instrument or

multi-time frame script.

Property Value
An array of ISeries<double> objects.

Syntax
Highs[int barSeriesIndex][int barsAgo]

Examples

NinjaScript 2319

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Compares the primary bar's high price to the 5-minute bar's

high price

 if (Highs[0][0] > Highs[1][0])

 Print("The primary bar's high price is greater");

}

11.6.2.9.2.5 Input

Definition
The main historical data input. If implemented in the NinjaScript object, it allows for more

flexibility as non bars based series such as plot series could be passed in and drive the

calculation outcomes - an example would be a custom moving average that should have the

ability to operate on another moving average (i.e. the SMA) as input series.

Property Value
An ISeries<double> type object that implements the Series<double> interface. Accessing this

property via an index value [int barsAgo] returns a double value representing the price of the

referenced bar.

Syntax
Input

Input[int barsAgo]

Examples

// Prints the the current value of input

Print(Input[0].ToString());

NinjaTrader 82320

© 2023 NinjaTrader, LLC

// Prints the the current type of input passed to the object, so we

can detect if we're working on a price based series such as OHLCV

or a derivative such as an SMA indicator

if (Input is PriceSeries)

Print("Price Series Input");

if (Input is Indicator)

Print("Indicator Input");

// Prints the the current selected price type for the input series

else if (State == State.DataLoaded)

{

 PriceSeries priceSeries = Inputs[0] as PriceSeries;

 if (priceSeries != null)

 Print("PriceType selected: " + priceSeries.PriceType);

}

Tip: When working with multi-series indicators, Input is not guaranteed to reference the

primary BarsInProgress. Please be mindful as to when you access Input[0] as you will

only be able to do so after the contextual BarsInProgress has bars. To check to ensure

BarsInProgress has some bars you can use CurrentBars to check.

11.6.2.9.2.6 Inputs

Definition
Holds an array of ISeries<double> objects holding the main data input. A ISeries<double>

object is added to this array when calling the AddDataSeries() method. Its purpose is to

provide access to the main input all Bars objects in a multi-instrument or multi-time frame

script.

Property Value
An array of ISeries<double> objects.

Syntax
Inputs[int barSeriesIndex][int barsAgo]

Examples

NinjaScript 2321

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Compares the primary bar's input price to the 5-minute

bar's input price

 if (Inputs[0][0] > Inputs[1][0])

 Print("The primary bar's input is greater");

}

11.6.2.9.2.7 Low

Definition
A collection of historical bar low prices.

Property Value
An ISeries<double> type object. Accessing this property via an index value [int barsAgo]

returns a double value representing the price of the referenced bar.

Syntax
Low

Low[int barsAgo]

Examples

NinjaTrader 82322

© 2023 NinjaTrader, LLC

// Current bar low price

double barLowPrice = Low[0];

// Low price of 10 bars ago

double barLowPrice = Low[10];

// Current bar value of a 20 period exponential moving average of

low prices

double value = EMA(Low, 20)[0];

11.6.2.9.2.8 Low s

Definition
Holds an array of ISeries<double> objects holding historical bar low prices. An

ISeries<double> object is added to this array when calling the AddDataSeries() method. Its

purpose is to provide access to the low prices of all Bars objects in a multi-instrument or

multi-time frame script.

Property Value
An array of ISeries<double> objects.

Syntax
Lows[int barSeriesIndex][int barsAgo]

Examples

NinjaScript 2323

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Compares the primary bar's low price to the 5-minute bar's

low price

 if (Lows[0][0] > Lows[1][0])

 Print("The primary bar's low price is greater");

}

11.6.2.9.2.9 Median

Definition
A collection of historical bar median prices. Median price = (High + Low) / 2.

Property Value
An ISeries<double> type object. Accessing this property via an index value [int barsAgo]

returns a double value representing the price of the referenced bar.

Syntax
Median

Median[int barsAgo]

Examples

NinjaTrader 82324

© 2023 NinjaTrader, LLC

// Current bar median price

double barMedianPrice = Median[0];

// Median price of 10 bars ago

double barMedianPrice = Median[10];

// Current bar value of a 20 period exponential moving average of

median prices

double value = EMA(Median, 20)[0];

11.6.2.9.2.10 Medians

Definition
Holds an array of ISeries<double> objects holding historical bar median prices. An

ISeries<double>> object is added to this array when calling the AddDataSeries() method. Its

purpose is to provide access to the median prices of all Bars objects in a multi-instrument or

multi-time frame script.

Property Value
An array of ISeries<double> objects.

Syntax
Medians[int barSeriesIndex][int barsAgo]

Examples

NinjaScript 2325

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Compares the primary bar's median price to the 5-minute

bar's median price

 if (Medians[0][0] > Medians[1][0])

 Print("The primary bar's median price is greater");

}

11.6.2.9.2.11 Open

Definition
A collection of historical bar opening prices.

Property Value
An ISeries<double> type object. Accessing this property via an index value [int barsAgo]

returns a double value representing the price of the referenced bar.

Syntax
Open

Open[int barsAgo]

Examples

NinjaTrader 82326

© 2023 NinjaTrader, LLC

// Current bar opening price

double barOpenPrice = Open[0];

// Opening price of 10 bars ago

double barOpenPrice = Open[10];

// Current bar value of a 20 period simple moving average of

opening prices

double value = SMA(Open, 20)[0];

11.6.2.9.2.12 Opens

Definition
Holds an array of ISeries<double> objects holding historical bar open prices. An

ISeries<double> object is added to this array when calling the AddDataSeries() method. Its

purpose is to provide access to the open prices of all Bars objects in a multi-instrument or

multi-time frame script.

Property Value
An array of ISeries<double> objects.

Syntax
Opens[int barSeriesIndex][int barsAgo]

Examples

NinjaScript 2327

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Compares the primary bar's open price to the 5-minute bar's

open price

 if (Opens[0][0] > Opens[1][0])

 Print("The primary bar's open price is greater");

}

11.6.2.9.2.13 Typical

Definition
A collection of historical bar typical prices. Typical price = (High + Low + Close) / 3.

Property Value
An ISeries<double> type object. Accessing this property via an index value [int barsAgo]

returns a double value representing the price of the referenced bar.

Syntax
Typical

Typical[int barsAgo]

Examples

NinjaTrader 82328

© 2023 NinjaTrader, LLC

// Current bar typical price

double barTypicalPrice = Typical[0];

// Typical price of 10 bars ago

double barTypicalPrice = Typical[10];

// Current bar value of a 20 period exponential moving average of

typical prices

double value = EMA(Typical, 20)[0];

11.6.2.9.2.14 Typicals

Definition
Holds an array of ISeries<double> objects holding historical bar typical prices. An

ISeries<double> object is added to this array when calling the AddDataSeries() method. Its

purpose is to provide access to the typical prices of all Bars objects in a multi-instrument or

multi-time frame script.

Property Value
An array of ISeries<double> objects.

Syntax
Typicals[int barSeriesIndex][int barsAgo]

Examples

NinjaScript 2329

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5 minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Compares the primary bar's typical price to the 5-minute

bar's typical price

 if (Typicals[0][0] > Typicals[1][0])

 Print("The primary bar's typical price is greater");

}

11.6.2.9.2.15 Value

Definition
A collection of historical references to the first ISeries object Values[0] in the indicator. This is

the primary indicator value (synched to the primary series in case of a MultiSeries indicator)

Property Value
An ISeries<double> object.

Syntax
Value

Examples

NinjaTrader 82330

© 2023 NinjaTrader, LLC

// OnBarUpdate method of a custom indicator

protected override void OnBarUpdate()

{

 // Ensures we have enough bars loaded for our indicator

 if (CurrentBar < 1)

 return;

 // Evaluates the indicator primary value 1 bar ago and sets

the value of the indicator

 // for the current bar being evaluated

 if (Value[1] < High[0] - Low[0])

 Value[0] = High[0] - Low[0];

 else

 Value[0] = High[0] - Close[0];

}

11.6.2.9.2.16 Values

Definition
Holds an array of ISeries<double> objects holding hold the indicator's underlying calculated

values. ISeries<double> values are added to this array when calling the AddPlot() method. In

case of a MultiSeries indicator synched to the primary series.

Property Value
A collection of ISeries<double> objects.

Syntax
Values[int index]

Examples

NinjaScript 2331

© 2023 NinjaTrader, LLC

// OnBarUpdate method of a custom indicator

protected override void OnBarUpdate()

{

 // Ensures we have enough bars loaded for our indicator

 if (CurrentBar < 1)

 return;

 // Evaluates the indicator's secondary value 1 bar ago and

sets the value of the indicator

 // for the current bar being evaluated

 if (Values[1][1] < High[0] - Low[0])

 Value[0] = High[0] - Low[0];

 else

 Value[0] = High[0] - Close[0];

}

11.6.2.9.2.17 Weighted

Definition
A collection of historical bar weighted prices. Weighted price = (High + Low + Close +

Close) / 4.

Property Value
An ISeries<double> type object. Accessing this property via an index value [int barsAgo]

returns a double value representing the price of the referenced bar.

Syntax
Weighted

Weighted[int barsAgo]

Examples

// Current bar weighted price

double barWeigthedPrice = Weighted[0];

// Weighted price of 10 bars ago

double barWeigthedPrice = Weighted[10];

// Current bar value of a 20 period exponential moving average of

weighted prices

double value = EMA(Weighted, 20)[0];

NinjaTrader 82332

© 2023 NinjaTrader, LLC

11.6.2.9.2.18 Weighteds

Definition
Holds an array of ISeries<double> objects holding historical bar weighted prices. An

ISeries<double> object is added to this array when calling the AddDataSeries() method. Its

purpose is to provide access to the weighted prices of all Bars objects in a multi-instrument

or multi-time frame script.

Property Value
An array of ISeries<double> objects.

Syntax
Weighteds[int barSeriesIndex][int barsAgo]

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Compares the primary bar's weighted price to the 5-minute

bar's weighted price

 if (Weighteds[0][0] > Weighteds[1][0])

 Print("The primary bar's weighted price is greater");

}

11.6.2.9.3 TimeSeries<DateTime>

Definition
Represents historical time stamps as an ISeries<DateTime> interface which can be used for

custom NinjaScript object calculations.

Note: In most cases, you will access the historical time series using a core event handler

such as OnBarUpdate. For more advance developers, you may find situations where you

NinjaScript 2333

© 2023 NinjaTrader, LLC

wish to access historical time series outside of the core event methods, such as your own

custom mouse click. In these advanced scenarios, you may run into situations where the

barsAgo pointer is not in sync with the current bar, which may cause errors when trying to

obtain this information. In those cases, use the Bars.Get...() methods with the absolute

bar index, e.g., Bars.GetTime(), etc.

Single ISeries<DateTime>

Time A collection of historical bar time

stamp values.

Multi-Time Frame ISeries<DateTime>

Times Holds an array of

ISeries<DateTime> objects holding

historical bar times

11.6.2.9.3.1 Time

Definition
A collection of historical bar time stamp values.

Property Value
An ISeries<DateTime> object.

Syntax
Time

Time[int barsAgo] (returns a DateTime structure)

Examples

// Prints the current bar time stamp

Print(Time[0].ToString());

// Checks if current time is greater than the bar time stamp

if (DateTime.Now.Ticks > Time[0].Ticks)

 Print("Do something");

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaTrader 82334

© 2023 NinjaTrader, LLC

11.6.2.9.3.2 Times

Definition
Holds an array of ISeries<DateTime> objects holding historical bar times. A

ISeries<DateTime> object is added to this array when calling the AddDataSeries() method. Its

purpose is to provide access to the times of all Bars objects in a multi-instrument or multi-

time frame script.

Property Value
An array of ISeries<DateTime> objects.

Syntax
Times[int barSeriesIndex][int barsAgo]

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Compares the primary bar's time to the 5-minute bar's time

 if (Times[0][0].Ticks > Times[1][0].Ticks)

 Print("The current bar's time is greater");

}

11.6.2.9.4 VolumeSeries<double>

Definition
Represents historical volume data as ISeries<double> interface which can be used for

custom NinjaScript object calculations

Note: In most cases, you will access the historical volume series using a core event

handler such as OnBarUpdate. For more advance developers, you may find situations

where you wish to access historical volume series outside of the core event methods,

NinjaScript 2335

© 2023 NinjaTrader, LLC

such as your own custom mouse click. In these advanced scenarios, you may run into

situations where the barsAgo pointer is not in sync with the current bar, which may cause

errors when trying to obtain this information. In those cases, use the Bars.Get...()

methods with the absolute bar index, e.g., Bars.GetVolume().

Single ISeries<double>

Volume A collection of historical bar

volume values.

Multi-Time Frame ISeries<double>

Volumes Holds an array of ISeries<double>

 objects holding historical bar

volume.

11.6.2.9.4.1 Volume

Definition
A collection of historical bar volume values.

Note: For working with Cryptocurrency instruments which report volume fractional,

please use the VOL() indicator series, or store the volume for your script in a custom

variable and convert alongside our VOL() indicator

(Instrument.MasterInstrument.InstrumentType == InstrumentType.CryptoCurrency ?

Core.Globals.ToCryptocurrencyVolume((long)Volume[0]) : Volume[0]).

Property Value
An ISeries<double> object. Accessing this property via an index [int barsAgo] returns a

double value representing the volume of the referenced bar.

Syntax
Volume

Volume[int barsAgo]

Examples

NinjaTrader 82336

© 2023 NinjaTrader, LLC

// OnBarUpdate method

protected override void OnBarUpdate()

{

 // Is current volume greater than twice the prior bar's volume

 if (Volume[0] > Volume[1] * 2)

 Print("We have increased volume");

 // Is the current volume greater than the 20 period moving

average of volume

 if (Volume[0] > SMA(Volume, 20)[0])

 Print("Increasing volume");

}

11.6.2.9.4.2 Volumes

Definition
Holds an array of ISeries<double> objects holding historical bar volumes. An ISeries<double>

object is added to this array when calling the AddDataSeries() method. Its purpose is to

provide access to the volumes of all Bars objects in a multi-instrument or multi-time frame

script.

Note: For working with Cryptocurrency instruments which report volume fractional,

please use the VOL() indicator series, or store the volume for your script in a custom

variable and convert alongside our VOL() indicator

(Instrument.MasterInstrument.InstrumentType == InstrumentType.CryptoCurrency ?

Core.Globals.ToCryptocurrencyVolume((long)Volume[0]) : Volume[0]).

Property Value
An array of ISeries<double> objects.

Syntax
Volumes[int barSeriesIndex][int barsAgo]

Examples

NinjaScript 2337

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 // Compares the primary bar's volume to the 5-minute bar's

volume

 if (Volumes[0][0] > Volumes[1][0])

 Print("The primary bar's volume is greater");

}

11.6.2.9.5 Count

Definition
Indicates the number total number of values in the ISeries<T> array. This value should

always be in sync with the CurrentBars array for that series.

Method Return Value
A int representing the total size of the series

Syntax
Count

Examples

protected override void OnBarUpdate()

{

 Print("Input count: " + Input.Count);

}

11.6.2.9.6 GetValueAt()

Definition
Returns the underlying input value at a specified bar index value.

NinjaTrader 82338

© 2023 NinjaTrader, LLC

Method Return Value
A double value representing the value at a specified bar.

Syntax
GetValueAt(int barIndex)

ISeries<T>.GetValueAt(int barIndex)

Tip: If called directly from the instance of the NinjaScript object, the value which is

returned corresponds to the input series the object is running. (e.g., Close, High, Low,

SMA, etc.). If you're attempting to obtain another indicator value, you will need to pull this

from the calculated indicator Value or Plot:

SMA(20).GetValueAt(123); // bar value

SMA(20).Values[0].GetValueAt(123); // indicator value

(Input as Indicator).Values[0].GetValueAt(123) // passed in indicator value

Parameters

barIndex An int representing an absolute

bar index value

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // make sure there are bars displayed on the chart and the chart

control is ready before running

 if (Bars == null || chartControl == null)

 return;

 // loop through all the visable bars on the chart

 for (int i = ChartBars.FromIndex - 1; i >= BarsRequiredToPlot;

i--)

 {

 double value = GetValueAt(i);

 Print(string.Format("The value at bar {0} is {1}", i,

value));

 }

}

NinjaScript 2339

© 2023 NinjaTrader, LLC

11.6.2.9.7 IsValidDataPoint()

Definition
Indicates if the specified input is set at a barsAgo value relative to the current bar. Please

also see the Reset() method for more information.

Notes:

· If called directly from the instance of the NinjaScript object, the value returned

corresponds to the Input Series (e.g., Close, High, Low, SMA, etc.)

· When checking a Bar or PriceSeries, IsValidDataPoint() returns true as long as the

barAgo value falls between 0 and the total count for that series. These are special

series which always contain a value set at every slot index for multi-series scripting

purposes (e.g., comparing two price series with various session templates, or one

series has more ticks than the other)

· For a Value series or custom Series<T>, IsValidDataPoint() returns true or false

depending on if you have set a value at that index location

Method Return Value
A bool value, when true indicates that specified data point is set; otherwise false.

Syntax
IsValidDataPoint(int barsAgo)

ISeries<T>.IsValidDataPoint(int barsAgo)

Warning: Calling IsValidDataPoint() will only work a MaximumBarsLookBackInfinite

series. Attempting to check IsValidDataPoint() MaximumBarsLookBack256 series throw

an error. Please check the Log tab of the Control Center. In addition since this method

references BarsAgo data, and therefore cannot be used during OnRender (see note 5).-

instead please use the IsValidDataPointAt during OnRender.

Parameters

barsAgo An int representing from the

current bar the number of

historical bars the method will

check.

Examples

NinjaTrader 82340

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // only set plot value if hosted indicator is not reset

 if(SMA(20).IsValidDataPoint(0))

 MyPlot[0] = SMA(20)[0];

}

11.6.2.9.8 IsValidDataPointAt()

Definition
Indicates if the specified input is set at a specified bar index value. Please also see the

Reset() method for more information.

Notes:

· If called directly from the instance of the NinjaScript object, the value returned

corresponds to the Inputs Series (e.g., Close, High, Low, SMA, etc.)

· When checking a Bar or PriceSeries, IsValidDataPoint() returns true as long as the

barIndex value falls between 0 and the total count for that series. These are special

series which always contain a value set at every slot index for multi-series scripting

purposes (e.g., comparing two price series with various session templates, or one

series has more ticks than the other)

· For a Value series or custom Series<T>, IsValidDataPoint() returns true or false

depending on if you have set a value at that index location

Method Return Value
A bool value, when true indicates that specified data point is set; otherwise false.

Warning: Calling IsValidDataPointAt() will only work a MaximumBarsLookBackInfinite

series. Attempting to check IsValidDataPointAt() MaximumBarsLookBack256 series throw

an error. Please check the Log tab of the Control Center

Syntax
IsValidDataPointAt(int barIndex)

ISeries<T>.IsValidDataPointAt(int barIndex)

Parameters

barIndex An int representing an absolute

bar index value

NinjaScript 2341

© 2023 NinjaTrader, LLC

Examples

protected override void OnBarUpdate()

{

 // only set plot value if hosted indicator is not reset

 if(SMA(20).IsValidDataPointAt(CurrentBar))

 MyPlot[0] = SMA(20)[0];

}

11.6.2.9.9 MaximumBarsLookBack

Definition
Determines memory performance of custom Series<T> objects (such as Series<double>,

Series<long>, etc.). When using MaximumBarsLookBack.TwoHundredFiftySix, only the

last 256 values of the series object will be stored in memory and be accessible for reference.

This results in significant memory savings when using multiple series objects. In the rare

case should you need older values you can use MaximumBarsLookBack.Infinite to allow

full access of the series.

Notes:

· ISeries<T> objects that hold bar data (such as Close, High, Volume, Time, etc) always

use MaximumBarsLookBack.Infinite which ensures all data points are always

accessible during the lifetime of your NinjaScript indicator or strategy.

· Series<double> objects that hold indicator plot values always use

MaximumBarsLookBack.Infinite which ensures that charts always display the entire

indicator's calculated values.

Property Value
A MaximumBarsLookBack enum value. Default value is

MaximumBarsLookBack.TwoHundredFiftySix

 Possible values are:

MaximumBarsLookBack.TwoHun

dredFiftySix

Only the last 256 values of the

series object will be stored in

memory and accessible for

reference (improves memory

performance)

NinjaTrader 82342

© 2023 NinjaTrader, LLC

MaximumBarsLookBack.Infinite Allow full access of the series, but

you will then not be able to utilize

the benefits of memory

optimization

Tip: A MaximumBarsLookBack.TwoHundredFiftySix series works as a circular ring

buffer, which will "loop" when the series reaches full capacity. Specifically, once there are

256 entries in the series, new data added to the series overwrite the oldest data.

Syntax
MaximumBarsLookBack

Examples

 Setting all custom series to use the default
MaximumBarsLookBack

Series<double> myDoubleSeries = null;

Series<string> myStringSeries = null;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example Indicator";

 // Store all series values instead of only the last 256

values

 MaximumBarsLookBack = MaximumBarsLookBack.Infinite;

 }

 else if (State == State.DataLoaded)

 {

 // The custom Series<t> below are all constructed using only

the NinjaScriptBase object (i.e., "this")

 // therefore, the Series<T> MaximumBarsLookBack is taken from

the NinjaScript's configured MaximumBarsLookBack property

 myDoubleSeries = new Series<double>(this);

 myStringSeries = new Series<string>(this);

 }

}

NinjaScript 2343

© 2023 NinjaTrader, LLC

 Optimizing custom series to use unique
MaximumBarsLookBack behavior

Series<double> myDoubleSeries = null;

Series<string> myStringSeries = null;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example Indicator";

 }

 else if (State == State.DataLoaded)

 {

 // The custom Series<t> below are constructed using

MaximumBarsLookBack parameter

 // therefore, each Series<t> will use their uniquely

specified MaximumBarsLookBack properites

 myDoubleSeries = new Series<double>(this,

MaximumBarsLookBack.Infinite); // stores all values

 myStringSeries = new Series<string>(this,

MaximumBarsLookBack.TwoHundredFiftySix); // only the last 256

values (better performance)

 }

}

11.6.2.10 OnBarUpdate()

Definition
An event driven method which is called whenever a bar is updated. The frequency in which

OnBarUpdate is called will be determined by the "Calculate" property. OnBarUpdate() is the

method where all of your script's core bar based calculation logic should be contained.

Notes:

· For multi-timeframe and instrument scripts, the OnBarUpdate method is called for each

Bars object of a strategy. You MUST filter for the exact bar update events using the

"BarsInProgress" property you want your system logic to execute against.

· Hosted indicators will need to be accessed by the hosting script to ensure OnBarUpdate

functionality. This can be done by: 1) Calling Update on the hosted indicator within the

host script, 2) Including a plot in the hosted indicator and accessing the plot in the host

script, 3) Including a plot in the hosted indicator and adding the indicator to the chart with

AddChartIndicator (strategies only)

Related Methods and Properties

NinjaTrader 82344

© 2023 NinjaTrader, LLC

BarsPeriod The primary Bars object time frame (period type

and interval).

Calculate Determines how often OnBarUpdate() is called

for each bar.

Count The total number of bars or data points.

CurrentBar A number representing the current bar in a Bars

object that the OnBarUpdate() method in an

indicator or strategy is currently processing.

IsDataSeriesRequi

red

Determines if a Data Series is required for

calculating this NinjaScript object.

IsFirstTickOfBar Indicates if the incoming tick is the first tick of a

new bar.

IsResetOnNewTra

dingDays

Determines if the specified bar series is using

Break at EOD.

IsTickReplays Indicates the specified bar series is using Tick

Replay.

Update() Forces the OnBarUpdate() method to be called

so that indicator values are updated to the

current bar.

Method Return Value
This method does not return a value.

Syntax
You must override this method with the following syntax:

protected override void OnBarUpdate()

{

}

Tip: The NinjaScript code wizards automatically generates the method syntax for you.

NinjaScript 2345

© 2023 NinjaTrader, LLC

Parameters
This method does not take any parameters

Examples

protected override void OnBarUpdate()

{

 if (CurrentBar < 1)

 return;

 // Compares the primary bar's low price to the 5-minute bar's

low price

 if (Low[0] > Lows[1])

 Print("The current bar's low price is greater");

}

11.6.2.10.1 BarsPeriod

Definition
The primary Bars object time frame (period type and interval).

Warning: This property should NOT be accessed within the OnStateChange() method

before the State has reached State.DataLoaded

Property Value
A Bars series object representing the time frame of the Bars.

Syntax

BarsPeriod.Bars

PeriodType

The type of bars used for the period, as well as the

enumeration value under which the any of the 14

default NinjaTrader types are registered. Possible

values include:

B

a

r

s

0

NinjaTrader 82346

© 2023 NinjaTrader, LLC

P

e

r

i

o

d

T

y

p

e

.

T

i

c

k

B

a

r

s

P

e

r

i

o

d

T

y

p

e

.

V

o

l

u

m

e

1

B

a

r

s

P

e

r

i

o

2

NinjaScript 2347

© 2023 NinjaTrader, LLC

d

T

y

p

e

.

R

a

n

g

e

B

a

r

s

P

e

r

i

o

d

T

y

p

e

.

S

e

c

o

n

d

3

B

a

r

s

P

e

r

i

o

d

T

y

p

4

NinjaTrader 82348

© 2023 NinjaTrader, LLC

e

.

M

i

n

u

t

e

B

a

r

s

P

e

r

i

o

d

T

y

p

e

.

D

a

y

5

B

a

r

s

P

e

r

i

o

d

T

y

p

e

.

W

e

e

k

6

NinjaScript 2349

© 2023 NinjaTrader, LLC

B

a

r

s

P

e

r

i

o

d

T

y

p

e

.

M

o

n

t

h

7

B

a

r

s

P

e

r

i

o

d

T

y

p

e

.

Y

e

a

r

8

B

a

r

s

P

e

9

NinjaTrader 82350

© 2023 NinjaTrader, LLC

r

i

o

d

T

y

p

e

.

H

e

i

k

e

n

A

s

h

i

B

a

r

s

P

e

r

i

o

d

T

y

p

e

.

K

a

g

i

10

B

a

r

s

P

e

r

11

NinjaScript 2351

© 2023 NinjaTrader, LLC

i

o

d

T

y

p

e

.

R

e

n

k

o

B

a

r

s

P

e

r

i

o

d

T

y

p

e

.

P

o

i

n

t

A

n

d

F

i

g

u

r

e

12

B

a

r

13

NinjaTrader 82352

© 2023 NinjaTrader, LLC

s

P

e

r

i

o

d

T

y

p

e

.

L

i

n

e

B

r

e

a

k

B

a

r

s

P

e

r

i

o

d

T

y

p

e

.

V

o

l

u

m

e

t

r

i

c

14

NinjaScript 2353

© 2023 NinjaTrader, LLC

Tip: When creating custom BarsTypes, it is

recommended to pick high, unique enumeration

value to avoid conflict from other BarsTypes

that may be used by a single installation.

BarsPeriod = new BarsPeriod { BarsPeriodType

 = (BarsPeriodType)123456,

BarsPeriodTypeName = "MyCustomBars", Value =

 1 };

BarsPeriod.Bas

eBarsPeriodTyp

e

Only relevant for HeikenAshi, Kagi, LineBreak,

PointAndFigure and Volumetric Bars objects.

Same possible values as

BarsPeriod.BarsPeriodType

BarsPeriod.Bas

eBarsPeriodValu

e

Only relevant for HeikenAshi, Kagi, LineBreak,

PointAndFigure and Volumetric Bars objects.

Determines an integer value representing the

basePeriodTypeValue parameter

BarsPeriod.Mark

etDataType

The data type used to build the bars. Possible

values:
MarketDataType.Ask

MarketDataType.Bid

MarketDataType.Last

BarsPeriod.Poin

tAndFigurePrice

Type

Only relevant for PointAndFigure Bars objects.

Possible values:
PointAndFigurePriceType.Close

PointAndFigurePriceType.HighsAndLows

BarsPeriod.Rev

ersalType

Only relevant for Kagi Bars objects. Possible

values:
ReversalType.Percent

ReversalType.Tick

BarsPeriod.Valu

e

Determines an integer value representing the

period parameter.

· When using Kagi Bars objects this represents

the "reversal" parameter

NinjaTrader 82354

© 2023 NinjaTrader, LLC

· When using LineBreak Bars objects this

represents the "lineBreakCount" parameter

· When using PointAndFigure Bars objects this

represents the "boxSize" parameter

· When using Renko Bars objects this represents

the "brickSize" parameter

BarsPeriod.Valu

e2

Only relevant for PointAndFigure Bars objects.

Determines an integer value representing the

"reversal" parameter.

Examples

 Checking BarsPeriod values

// Calculate only if there is a 100 tick chart or greater

protected override void OnBarUpdate()

{

 if (BarsPeriod.BarsPeriodType == BarsPeriodType.Tick &&

BarsPeriod.Value >= 100)

 {

 // Indicator calculation logic here

 }

}

NinjaScript 2355

© 2023 NinjaTrader, LLC

 Creating a new BarsPeriod object

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // add a 1440 minute apple bars object using the RTH

session template

 AddDataSeries("AAPL", new BarsPeriod { BarsPeriodType =

 BarsPeriodType.Minute, Value = 1440 }, "US Equities RTH");

 }

 else if (State == State.DataLoaded)

 {

 // Print out the loaded bars period

 Print(Instrument.FullName + " " + BarsPeriod); // MSFT

1 Minute

 Print(BarsArray[1].Instrument.FullName + " " +

BarsArray[1].BarsPeriod); // AAPL 1440 Minute

 }

}

11.6.2.10.2 Calculate

Definition
Determines how often OnBarUpdate() is called for each bar. OnBarClose means once at the

close of the bar. OnEachTick means on every single tick. OnPriceChange means once for

each price change. If there were two ticks in a row with the same price, the second tick would

not trigger OnBarUpdate(). This can improve performance if calculations are only needed

when new values are possible.

Notes:

1. On a historical data set, only the OHLCVT of the bar is known and not each tick that

made up the bar. As a result, State.Historical data processes OnBarUpdate() only on

the close of each historical bar even if this property is set to OnEachTick or

OnPriceChange. You can use TickReplay or a Multi-time frame script to obtain

intrabar data.

2. When set to Calculate OnPriceChange, the OnBarUpdate() method is ONLY called

when the price has changed intrabar OR when the bar has closed

Property Value
An enum value determining the how frequently OnBarUpdate() will be called. Default value is

set to Calculate.OnBarClose

NinjaTrader 82356

© 2023 NinjaTrader, LLC

Warning:

· This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

· If your script relies on volume updates OnPriceChange should NOT be used since it

can potentially miss volume updates if they occur at the same price

Syntax
Calculate.OnBarClose

Calculate.OnEachTick

Calculate.OnPriceChange

Tips:

1. Calculating indicators or systems for each incoming tick can be CPU intensive. Only

calculate indicators on each incoming tick if you have a requirement to calculate it intra-

bar.

2. For an example of how to separate some logic to be Calculate =

Calculate.OnBarClose and other logic to be .OnEachTick please see this reference

sample.

3. Embedded scripts within a calling parent script should not use a different Calculate

property since it is already utilizing the Calculate property of the parent script (i.e. the

strategy your indicator is called from).

4. Since the parent NinjaScript therefore governs this setting, it should be set to the

highest needed setting satisfying all its childs.

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Calculate on the close of each bar

 Calculate = Calculate.OnBarClose;

 }

}

11.6.2.10.3 Count

Definition
The total number of bars or data points.

Property Value

http://www.ninjatrader.com/support/forum/showthread.php?t=19387
http://www.ninjatrader.com/support/forum/showthread.php?t=19387

NinjaScript 2357

© 2023 NinjaTrader, LLC

An int value representing the the total number of bars.

Syntax
Count

Examples

//If there are less than 365 bars on the chart, text indicates how

many bars are on the chart

if (Count < 365)

{

Draw.TextFixed(this, "tag1", "There are " + Count + " bars

on the chart", TextPosition.BottomRight);

}

Tip: CurrentBar value is guaranteed to be <= Count - 1. This is because of the

NinjaTrader multi-threaded architecture, the Count value can have additional bars as

inflight ticks come in to the system.

11.6.2.10.4 CurrentBar

Definition
A number representing the current bar in a Bars object that the OnBarUpdate() method in an

indicator or strategy is currently processing. For example, if a chart has 100 bars of data, the

very first bar of the chart (left most bar) will be number 0 (zero) and each subsequent bar

from left to right is incremented by 1.

Note: In multi series processing, the CurrentBars starting value will be -1 until all series

have processed the first bar.

Property Value
An int value that represents the current bar.

Syntax
CurrentBar

Examples

NinjaTrader 82358

© 2023 NinjaTrader, LLC

// OnBarUpdate method

protected override void OnBarUpdate()

{

 // Evaluates to make sure we have at least 20 or more bars

 if (CurrentBar < 20)

 return;

 // Indicator logic calculation code...

}

11.6.2.10.5 IsDataSeriesRequired

Definition
Determines if a Data Series is required for calculating this NinjaScript object. When set to

false, data series related properties will not be displayed on the UI when configuring.

Note: When set to false, methods and properties which are dependent on Bars will NOT

be used. This means you will not receive any calls to OnBarUpdate() or be able to access

historical bar prices.

Property Value
This property returns true if the NinjaScript requires a Data Series; otherwise, false. Default

value is true.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
IsDataSeriesRequired

Examples

NinjaScript 2359

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsDataSeriesRequired = false;

 }

}

11.6.2.10.6 IsFirstTickOfBar

Definition
Indicates if the incoming tick is the first tick of a new bar. This property is only of value in

scripts that run tick by tick which is when the Calculate property is set to

Calculate.OnEachTick or Calculate.OnPriceChange.

Warning: This property should NOT be accessed outside of the OnBarUpdate() method.

Note: If a bar type is set up to remove the last bar on a chart, IsFirstTickOfBar will

automatically be set to True.

Property Value
This property returns true if the incoming tick is the first tick of a new bar; otherwise, false.

Syntax
IsFirstTickOfBar

Tip:

In NinjaTrader's event driven framework, bar closures are signaled by the tick that opens

the next bar. The price of the last tick of a bar can be referenced by checking Close[1] on

IsFirstTickOfBar. For volume and tick based bars, Bars.TickCount and Volume[0] can be

referenced to see if the number of ticks / volume meet the criteria to build a new bar.

Examples

NinjaTrader 82360

© 2023 NinjaTrader, LLC

// On a tick by tick strategy the only way you know when a bar is

closed is when

// the IsFirsTickOfBar is true.

protected override void OnBarUpdate()

{

 // Only process entry signals on a bar by bar basis (not tick

by tick)

 if (IsFirstTickOfBar)

 {

 if (CCI(20)[1] < -250)

 EnterLong();

 return;

 }

 // Process exit signals tick by tick

 if (CCI(20)[0] > 250)

 ExitLong();

}

11.6.2.10.7 IsResetOnNew TradingDays

Definition
Determines if the specified bar series is using Break at EOD

Note: The property available on the UI will override any values set in code. Please see the

help guide topic on using Break at EOD for more information

Property Value
A bool[] when true, indicates the specified BarsArray is setup to run Break at EOD;

otherwise false. Default value is false

Syntax
IsResetOnNewTradingDays[int idx]

Warning: This property should NOT be accessed within the OnStateChange() method

before the State has reached State.DataLoaded

Examples

NinjaScript 2361

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 }

 else if (State == State.Configure)

 {

 //Add AAPL 1 minute with RTH trading hours, set to break EOD

 AddDataSeries("AAPL", new BarsPeriod() { BarsPeriodType =

BarsPeriodType.Minute, Value = 1 }, 50, "US Equities RTH", true);

 }

}

protected override void OnBarUpdate()

{

 //Print out the current bars series name and break EOD setting on

start up

 // IsResetOnNewTradingDays[0] Primary

 // IsResetOnNewTradingDays[1] AAPL

 if (CurrentBar == 0)

 Print(BarsArray[BarsInProgress].ToChartString() + " " +

IsResetOnNewTradingDays[BarsInProgress]);

 //Output:

 //ES 03-15 (1 Minute) True

 //AAPL (1 Minute) False

}

11.6.2.10.8 IsTickReplays

Definition
Indicates the specified bar series is using Tick Replay. Please see the help guide topic on

using Tick Replay for general information on this mode.

Note: For a primary series, the Tick Replay option must be configured from the UI before

a NinjaScript object can take use of this property. The setting on the Chart's Data Series

menu will always take precedence for an object series which already exists on the user's

chart.

NinjaTrader 82362

© 2023 NinjaTrader, LLC

Warning: This property should NOT be accessed within the OnStateChange() method

before the State has reached State.DataLoaded

Property Value
A bool[] when true, indicates the specified BarsArray is setup to run Tick Replay; otherwise

false. Default value is false

Syntax
IsTickReplays[int idx]

Examples

NinjaScript 2363

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if(State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 }

 else if (State == State.Configure)

 {

 AddDataSeries("AAPL", BarsPeriodType.Minute, 1);

 }

 else if (State == Data.Loaded)

 {

 // IsTickReplays[0] = true;

 // Programmatically setting this option here for Primary [0]

does not have any effect

 // Primary series must be configured from UI

 // It is not possible to combine Tick Replay series and non

Tick Replay series in a single chart or script

 // The assignment below would not be necessary if the primary

series were set to True via the UI

 // IsTickReplays[1] = true;

 }

}

protected override void OnBarUpdate()

{

 //Print out the current bars series name and tick replays

setting on start up

 if (CurrentBar == 0)

 Print(BarsArray[BarsInProgress].ToChartString() + " " +

IsTickReplays[BarsInProgress]);

}

11.6.2.10.9 Update()

Definition
Forces the OnBarUpdate() method to be called for all data series so that indicator values are

updated to the current bar index. If the values are already up to date, the Update() method will

not be run.

Notes:

· This method is only relevant in specific use cases and should only used by advanced

programmers

NinjaTrader 82364

© 2023 NinjaTrader, LLC

· The additional overload where a bar index and BarsInProgress are specified should only

be used when an indicator needs to be updated to a bar index that is not the CurrentBar

index. For example, updating an indicator's secondary 1 tick data series to

indicator.BarsArray[1].Count - 1, which is not the CurrentBar index. This is required for

the proper function of Order Flow Cumulative Delta and Order Flow VWAP

When indicators are embedded (called) within a NinjaScript strategy, they are optimized to

calculate only when they are called upon in a historical backtest. Since the NinjaTrader

indicator model is very flexible, it is possible to create public properties on a custom indicator

that return values of internal user defined variables. If these properties require that the

OnBarUpdate() method is called before returning a value, include a call to this Update()

method in the property getter.

Syntax
Update()

Update(int idx, int bip)

Parameters

idx The current bar index value to

update to

bip The BarsInProgress to update

Examples

NinjaScript 2365

© 2023 NinjaTrader, LLC

private double tripleValue = 0;

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 tripleValue = SMA(20)[0] * 3;

 Value[0] = SMA(20)[0];

}

public double TripleValue

{

 get

 {

 //call OnBarUpdate before returning tripleValue

 Update();

 return tripleValue;

 }

}

11.6.2.11 OnConnectionStatusUpdate()

Definition
An event driven method used which is called for every change in connection status.

Method Return Value
This method does not return a value.

Syntax
You must override the method in your indicator with the following syntax:

protected override void OnConnectionStatusUpdate(ConnectionStatusEventArgs

connectionStatusUpdate)

{

}

Method Parameters

connectionStatusUp

date

A ConnectionStatusEventArgs object

representing the most recent update in

connection.

NinjaTrader 82366

© 2023 NinjaTrader, LLC

Status Represents the status of the key adapter

functionality. If the adapter supports live orders

it will set Status to Disconnected when its

order system is not connected.

PriceStatus Represents the status of the price feed.

Examples

//Prints the status of the order system

protected override void

OnConnectionStatusUpdate(ConnectionStatusEventArgs

connectionStatusUpdate)

{

 if(connectionStatusUpdate.Status == ConnectionStatus.Connected)

 {

 Print("Connected for orders at " + DateTime.Now);

 }

 else if(connectionStatusUpdate.Status ==

ConnectionStatus.ConnectionLost)

 {

 Print("Connection for orders lost at: " + DateTime.Now);

 }

}

//Prints the status of the price feed

protected override void

OnConnectionStatusUpdate(ConnectionStatusEventArgs

connectionStatusUpdate)

{

 if(connectionStatusUpdate.PriceStatus ==

ConnectionStatus.Connected)

 {

 Print("Connected to price feed at " + DateTime.Now);

 }

 else if(connectionStatusUpdate.PriceStatus ==

ConnectionStatus.ConnectionLost)

 {

 Print("Connection to price feed lost at: " + DateTime.Now);

 }

}

NinjaScript 2367

© 2023 NinjaTrader, LLC

11.6.2.11.1 ConnectionStatusEventArgs

Definition
ConnectionStatusEventArgs contains Connection-related information to be passed as an

argument to the OnConnectionStatusUpdate() event.

Note: For a complete, working example of this class in use, download framework

example located on our Developing AddOns Overview

The properties listed below are accessible from an instance of ConnectionStatusEventArgs:

Connectio

n

The Connection object for which

OnConnectionStatusUpdate() was called

Error An ErrorCode thrown by the Connection object in

question

NativeErro

r

A string representing an error thrown by the connectivity

provider

PreviousS

tatus

A ConnectionStatus object representing the status of the

connection before this call to

OnConnectionStatusUpdate()

Status A ConnectionStatus object representing the new status of

the connection

PreviousP

riceStatus

A ConnectionStatus object representing the status of the

connection's price feed before this call to

OnConnectionStatusUpdate()

PriceStatu

s

A ConnectionStatus object representing the new status of

the connection's price feed

Examples

NinjaTrader 82368

© 2023 NinjaTrader, LLC

// This method is fired on connection status events

private void OnConnectionStatusUpdate(object sender,

ConnectionStatusEventArgs e)

{

 // For multi-threading reasons, work with a copy of the

ConnectionStatusEventArgs to prevent situations in which the

EventArgs may already be ahead of us while in the middle processing

it.

 // This accomplishes the same goal as locking a collection to

prevent in-flight changes from affecting outcomes

 ConnectionStatusEventArgs eCopy = e;

 /* Dispatcher.InvokeAsync() is needed for multi-threading

considerations. When processing events outside of the UI thread,

and we want to

 influence the UI .InvokeAsync() allows us to do so. It can also

help prevent the UI thread from locking up on long operations. */

 Dispatcher.InvokeAsync(() =>

 {

 outputBox.AppendText(string.Format("{1} Status: {2}",

 Environment.NewLine,

 eCopy.Connection.Options.Name,

 eCopy.Status));

 });

}

11.6.2.12 OnFundamentalData()

Definition
An event driven method which is called for every change in fundamental data for the

underlying instrument.

Note: This method is NOT called on historical data (backtest)

Method Return Value
This method does not return a value.

Syntax
You must override the method in your strategy or indicator with the following syntax.

protected override void OnFundamentalData(FundamentalDataEventArgs

fundamentalDataUpdate)

{

NinjaScript 2369

© 2023 NinjaTrader, LLC

}

Tip: The NinjaScript code wizards can automatically generate the method syntax for you
when creating a new script.

Parameters

fundamentalDataUpdate FundamentalDataEventArgs

representing the recent change in

fundamental data

Examples

protected override void

OnFundamentalData(FundamentalDataEventArgs

fundamentalDataUpdate)

{

 // Print some data to the Output window

 if (fundamentalDataUpdate.FundamentalDataType ==

FundamentalDataType.AverageDailyVolume)

 Print("The current ADV is " +

fundamentalDataUpdate.LongValue);

}

Tips

1. With multi-time frame and instrument strategies, OnFundamentalData() will be called

for all unique instruments in your strategy. Use the BarsInProgress to filter the

OnFundamentalData() method for a specific instrument.

2. Do not leave an unused OnFundamentalData() method declared in your NinjaScript

object. This will unnecessarily attach a data stream to your script which uses

unnecessary CPU cycles.

11.6.2.12.1 FundamentalDataEventArgs

Definition
Represents a change in fundamental data and is passed as a parameter in the

OnFundamentalData() method.

Methods and Parameters

NinjaTrader 82370

© 2023 NinjaTrader, LLC

DateTimeValue A DateTime value representing the time

DoubleValue A double value representing fundamental data

FundamentalData

Type

Possible values:

AverageDailyVolume

Beta

CalendarYearHigh

CalendarYearHighDate

CalendarYearLow

CalendarYearLowDate

CurrentRatio

DividendAmount

DividendPayDate

DividendYield

EarningsPerShare

FiveYearsGrowthPercentage

High52Weeks

High52WeeksDate

HistoricalVolatility

Low52Weeks

Low52WeeksDate

MarketCap

NextYearsEarningsPerShare

PercentHeldByInstitutions

PriceEarningsRatio

RevenuePerShare

SharesOutstanding

ShortInterest

ShortInterestRatio

VWAP

IsReset A bool value representing if an UI reset is needed

after a manual disconnect.

Note: This is only relevant for columns.

Whenever this property is true, the UI needs to

be reset.

LongValue A long value representing fundamental data

ToString() A string representation of the

FundamentalDataEventArgs object

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaScript 2371

© 2023 NinjaTrader, LLC

Examples

protected override void OnFundamentalData(FundamentalDataEventArgs

fundamentalDataUpdate)

{

 // Print some data to the Output window

 if (fundamentalDataUpdate.FundamentalDataType ==

FundamentalDataType.AverageDailyVolume)

 Print("Average Daily Volume = " +

fundamentalDataUpdate.LongValue);

 else if (fundamentalDataUpdate.FundamentalDataType ==

FundamentalDataType.PriceEarningsRatio)

 Print("P/E Ratio = " +

fundamentalDataUpdate.DoubleValue);

}

Tips
1. Not all connectivity providers support all FundamentalDataTypes.

2. EarningsPerShare on eSignal is a trailing twelve months value. On IQFeed it is the last

quarter's value.

3. RevenuePerShare is a trailing twelve months value.

11.6.2.13 OnMarketData()

Definition
An event driven method which is called and guaranteed to be in the correct sequence for

every change in level one market data for the underlying instrument. OnMarketData() can

include but is not limited to the bid, ask, last price and volume.

Notes

1. This is a real-time data stream and can be CPU intensive if your program code is

compute intensive (not optimal)

2. By default, this method is not called on historical data (backtest), however it can be

called historically by using TickReplay

3. If used with TickReplay, please keep in mind Tick Replay ONLY replays the Last
market data event, and only stores the best inside bid/ask price at the time of the last
trade event. You can think of this as the equivalent of the bid/ask price at the time a
trade was reported. As such, historical bid/ask market data events (i..e, bid/ask
volume) DO NOT work with Tick Replay. To obtain those values, you need to use a
historical bid/ask series separately from TickReplay through OnBarUpdate(). More
information can be found under Developing for Tick Replay.

4. With multi-time frame and instrument strategies, a subscription will be created on all

bars series added in your indicator or strategy strategy (even if the instrument is the

NinjaTrader 82372

© 2023 NinjaTrader, LLC

same). The market data subscription behavior occurs both in real-time and during

TickReplay historical

5. Do not leave an unused OnMarketData() method declared in your NinjaScript object.

This will unnecessarily attach a data stream to your strategy which uses unnecessary

CPU cycles.

6. Should you wish to run comparisons against prior values you will need to store and

update local variables to track the relevant values.

7. The OnMarketData() method is expected to be called after OnBarUpdate()

Method Return Value
This method does not return a value.

Syntax
You must override the method in your strategy or indicator with the following syntax.

protected override void OnMarketData(MarketDataEventArgs marketDataUpdate)

{

}

Tip: The NinjaScript code wizards can automatically generate the method syntax for you
when creating a new script.

Parameters

marketDataUpdate MarketDataEventArgs

representing the recent change in

market data

Examples

NinjaScript 2373

© 2023 NinjaTrader, LLC

protected override void OnMarketData(MarketDataEventArgs

marketDataUpdate)

{

 // Print some data to the Output window

 if (marketDataUpdate.MarketDataType == MarketDataType.Last)

 Print(string.Format("Last = {0} {1} ",

marketDataUpdate.Price, marketDataUpdate.Volume));

 else if (marketDataUpdate.MarketDataType ==

MarketDataType.Ask)

 Print(string.Format("Ask = {0} {1} ",

marketDataUpdate.Price, marketDataUpdate.Volume));

 else if (marketDataUpdate.MarketDataType ==

MarketDataType.Bid)

 Print(string.Format("Bid = {0} {1}",

marketDataUpdate.Price, marketDataUpdate.Volume));

}

11.6.2.13.1 MarketDataEventArgs

Definition
Represents a change in level one market data and is passed as a parameter in the

OnMarketData() method.

Methods and Parameters

Ask A double value representing the ask price

Bid A double value representing the bid price

Instrument A Instrument object representing the instrument

of the market data

IsReset A bool value representing if a UI reset is needed

after a manual disconnect.

Note: This is only relevant for columns.

Whenever this property is true, the UI needs to

be reset.

MarketDataType Possible values are:

MarketDataType.Ask

MarketDataType.Bid

MarketDataType.DailyHigh

MarketDataType.DailyLow

NinjaTrader 82374

© 2023 NinjaTrader, LLC

MarketDataType.DailyVolume

MarketDataType.Last

MarketDataType.LastClose (prior session close)

MarketDataType.Opening

MarketDataType.OpenInterest (supported by

IQFeed, Kinetick)

MarketDataType.Settlement

Price A double value representing the price

Time A DateTime structure representing the time

ToString() A string representation of the

MarketDataEventArgs object

Volume A long value representing volume

Critical: If used with TickReplay, please keep in mind Tick Replay ONLY replays the Last

market data event, and only stores the best inside bid/ask price at the time of the last trade

event. You can think of this as the equivalent of the bid/ask price at the time a trade was

reported. Please also see Developing for Tick Replay.

Tips

· Not all connectivity providers support all MarketDataTypes.

· For an example of how to use IsReset please see \MarketAnalyzerColumns\AskPrice.cs

Examples

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaScript 2375

© 2023 NinjaTrader, LLC

protected override void OnMarketData(MarketDataEventArgs

marketDataUpdate)

{

 // Print some data to the Output window

 if (marketDataUpdate.MarketDataType == MarketDataType.Last)

 Print("Last = " + marketDataUpdate.Price + " " +

marketDataUpdate.Volume);

 else if (marketDataUpdate.MarketDataType ==

MarketDataType.Ask)

 Print("Ask = " + marketDataUpdate.Price + " " +

marketDataUpdate.Volume);

 else if (marketDataUpdate.MarketDataType ==

MarketDataType.Bid)

 Print("Bid = " + marketDataUpdate.Price + " " +

marketDataUpdate.Volume);

}

11.6.2.14 OnMarketDepth()

Definition
An event driven method which is called and guaranteed to be in the correct sequence for

every change in level two market data (market depth) for the underlying instrument. The

OnMarketDepth() method can be used to build your own level two book.

Notes

1. This is a real-time data stream and can be CPU intensive if your program code is

compute intensive (not optimal)

2. This method is not called on historical data (backtest)

Method Return Value
This method does not return a value.

Syntax
You must override the method in your strategy or indicator with the following syntax:

protected override void OnMarketDepth(MarketDepthEventArgs marketDepthUpdate)

{

}

Tip: The NinjaScript code wizards can automatically generate the method syntax for you

NinjaTrader 82376

© 2023 NinjaTrader, LLC

when creating a new script.

Parameters

marketDepthUpdate MarketDepthEventArgs

representing the recent change in

market data

Examples

protected override void OnMarketDepth(MarketDepthEventArgs

marketDepthUpdate)

{

 // Print some data to the Output window

 if (marketDepthUpdate.MarketDataType == MarketDataType.Ask &&

marketDepthUpdate.Operation == Operation.Update)

 Print(string.Format("The most recent ask change is {0}

{1}", marketDepthUpdate.Price, marketDepthUpdate.Volume));

}

Tips

1. With multi-time frame and instrument strategies, OnMarketDepth will be called for

all unique instruments in your strategy. Use the BarsInProgress to filter the

OnMarketDepth() method for a specific instrument. (BarsInProgress will return the

first BarsInProgress series that matches the instrument for the event)

2. Do not leave an unused OnMarketDepth() method declared in your NinjaScript

object. This will unnecessarily attach a data stream to your strategy which uses

unnecessary CPU cycles.

3. Should you wish to run comparisons against prior values you will need to store and

update local variables to track the relevant values.

4. With NinjaTrader being multi-threaded, you should not rely on any particular

sequence of events like OnMarketDepth() always being called before

OnMarketData() or vice versa.

11.6.2.14.1 MarketDepthEventArgs

Definition
Represents a change in level two market data also known as market depth and is passed as

a parameter in the OnMarketDepth() method.

NinjaScript 2377

© 2023 NinjaTrader, LLC

Methods and Parameters

Instrument A Instrument object representing the instrument

of the market data

IsReset A bool value representing if a UI reset is needed

after a manual disconnect.

Note: This is only relevant for columns.

Whenever this property is true, the UI needs to

be reset.

MarketDataType Possible values are:

MarketDataType.Ask

MarketDataType.Bid

MarketMaker A string representing the market maker id

Operation Represents the action you should take when

building a level two book.

Possible values are:

Operation.Add

Operation.Update

Operation.Remove

Position An int value representing the zero based

position in the depth ladder.

Price A double value representing the price

Time A DateTime structure representing the time

ToString() A string representation of the

MarketDataEventArgs object

Volume A long value representing volume

Examples

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaTrader 82378

© 2023 NinjaTrader, LLC

protected override void OnMarketDepth(MarketDepthEventArgs

marketDepthUpdate)

{

 // Print some data to the Output window

 if (marketDepthUpdate.MarketDataType == MarketDataType.Ask &&

marketDepthUpdate.Operation == Operation.Update)

 Print("The most recent ask change is " +

marketDepthUpdate.Price + " " + marketDepthUpdate.Volume);

}

Tip: For an example of how to use IsReset please see

\MarketAnalyzerColumns\AskPrice.cs

11.6.2.15 OnStateChange()

Definition
An event driven method which is called whenever the script enters a new State. The

OnStateChange() method can be used to configure script properties, create one-time

behavior when going from historical to real-time, as well as manage clean up resources on

termination.

Notes:

· Viewing any UI element which lists NinjaScript classes (such as the Indicators or

Strategies window, a chart's Chart Style dropdown menu, etc.) will initialize all classes

of that Type when it is opened, which causes each script to enter State.SetDefaults,

even if it is not actively configured or running in any window. It is important to keep this in

mind when adding logic within State.SetDefaults in OnStateChange(), as this logic

will be processed each time the script is initialized. For example, opening the Indicators

window will trigger State.SetDefaults for all indicators in the system, and closing the

Indicators window will trigger State.Terminated for all Indicators. In addition,

disconnecting or connecting to a data provider can cause State transitions for any

currently active scripts. Further discussion of this aspect of the state change model can

be found via Understanding the lifecycle of your NinjaScript objects.

· When an indicator is configured on a chart while a Compile is taking place in the

NinjaScript Editor, it can appear that the script passes through State.Terminated.

However, this is the result of a copy of the script being initialized at compile-time, NOT

the result of the indicator on the chart being disabled and re-initialized.

Related Methods and Properties

NinjaScript 2379

© 2023 NinjaTrader, LLC

SetState() Method is used for changing the

State of any running NinjaScript

object.

State Represents the current

progression of the object as it

advances from setup, processing

data, to termination.

Method Return Value
This method does not return a value.

Syntax
See example below. The NinjaScript wizards automatically generate the method syntax for
you.

Possible states are:

State

Name

This state is called when This state is where you should

State.Set

Defaults

SetDefaults is always called

when displaying objects in a UI

list such as the Indicators

dialogue window since temporary

objects are created for the

purpose of UI display

· Keep as lean as possible

· Set default values (pushed to UI)

State.Con

figure

Configure is called after a user

adds an object to the applied list

of objects and presses the OK or

Apply button. This state is called

only once for the life of the object.

· Add additional data series via

AddDataSeries()

· Declare custom resources

· Override and configure values set by

the UI

State.Acti

ve

Active is called once after the

object is configured and is ready

to process data (DrawingTools

could see multiple calls as

internally an object for hit testing

is cloned)

· Used for objects such as Share

Service which do not process price

series data

· Indicate the object is ready to being

processing information

NinjaTrader 82380

© 2023 NinjaTrader, LLC

State.Dat

aLoaded

DataLoaded is called only once

after all data series have been

loaded.

· Use for logic that needs to access

data related objects like Bars,

Instruments, BarsPeriod,

TradingHours or instantiating

indicators

· Notify that all data series have been

loaded

· Initialize any class level variables

(including custom Series<T> objects)

State.Hist

orical

Historical is called once the

object begins to process

historical data. This state is

called once when running an

object in real-time. This object is

called multiple times when

running a backtest optimization

and the property

IsInstantiatedOnEachOptimizatio

nIteration is true (default

behavior)

· Notify that the object is processing

historical data

State.Tra

nsition

Transition is called once as the

object has finished processing

historical data but before it starts

to process realtime data.

· Notify that the indicator or strategy is

is transitioning to realtime data

· Prepare realtime related resources

State.Rea

ltime

Realtime is called once when

the object begins to process

realtime data.

· Notify that the indicator or strategy is

processing realtime data

· Execute realtime related logic

State.Ter

minated

Terminated is called once when

the object terminates.

· Notify the object is shutting down

· Use to clean up/dispose of resources

Active States vs Data Processing States
After State.Configure, each type of NinjaScript type has its own state management system

which can be classified under two categories:

· Active state: State.Active

· Data Processing states: State.DataLoaded, State.Historical, State.Transition,

State.Realtime

NinjaScript 2381

© 2023 NinjaTrader, LLC

The table below lists each NinjaScript type and it's designed state management system:

NinjaScript Type State Management System

AddOns* Active state

BarTypes Active state

ChartStyles Active state

DrawingTools Active state

Indicators Data Processing states

ImportTypes Active state

Market Analyzer Columns Data Processing states

OptimizationFitnesses Active state

Optimizers Active state

PerformanceMetrics Active state

ShareServices Active state

Strategies Data Processing states

SuperDOM Columns Active state

Tips:

· Resources created in State.Configure and not disposed of immediately will be kept

and utilized if the NinjaScript object resides in grids (e.g. Strategy tab on Control

Center), even if it is not enabled. Try to create resources in State.Historical or

State.DataLoaded instead, if possible.

· State.Historical is called multiple times when running a backtest optimization on a

strategy and the property "IsInstantiatedOnEachOptimizationIteration" is true (default

behavior).

NinjaTrader 82382

© 2023 NinjaTrader, LLC

· Embedded scripts within a calling parent script should not use a different Calculate

property since it is already utilizing the Calculate property of the parent script (i.e. the

strategy your indicator is called from).

· Since the parent NinjaScript therefore governs this setting, it should be set to the highest

needed setting satisfying all its childs.

· When instantiating indicators in a Multi-Series script in OnStateChange, the input any

hosted indicator is running on should be explicitly stated (since a specific

BarsInProgress is not guaranteed)

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Calculate once at the end of every single bar

 Calculate = Calculate.OnBarClose;

 // Add two plots

 AddPlot(Brushes.Blue, "Upper"));

 AddPlot(Brushes.Orange, "Lower"));

 }

 else if (State == State.Configure)

 {

 // Adds a 5-minute Bars object to the strategy and is

automatically assigned

 // a Bars object index of 1 since the primary data the

strategy is run against

 // set by the UI takes the index of 0.

 AddDataSeries("AAPL", BarsPeriodType.Minute, 5);

 }

}

11.6.2.15.1 SetState()

Definition
This method is used for changing the State of any running NinjaScript object.

Notes:

· Attempting to set a State earlier than the current State will be ignored

· Calling SetState() multiple times will be ignored to prevent the object from erroneously

setting states unexpectedly

NinjaScript 2383

© 2023 NinjaTrader, LLC

· Setting State to State.Terminated is meant as a way to abort the strategy as it is

running. Doing this in a Strategy Analyzer backtest will abort the backtest entirely, and

no partial backtest results will be shown.

· After setting State.Terminated, you should return from the calling method to help

ensure subsequent logic is not processed asynchronously to OnStateChange()

Method Return Value
This method does not return a value.

Syntax
SetState(State state)

Warning: This method should only be call after the State reaches State.DataLoaded

Parameters

state The State to be set

Examples

protected override void OnBarUpdate()

{

 // Terminate strategy at 2PM

 if (ToTime(Time[0]) == 140000)

 {

 SetState(State.Terminated);

 return;

 }

}

11.6.2.15.2 State

Definition
Represents the current progression of the object as it advances from setup, processing data,

to termination. These states can be used for setting up or declaring various resources and

properties.

NinjaTrader 82384

© 2023 NinjaTrader, LLC

Note: More detailed explanation of various states along with examples can be found in the

OnStateChange() method section of this help guide. You can also attempt to set a new

State using the SetState() method.

Property Value
An enum value representing the current state of the object. Possible values are:

SetDefaults Default values are set (pushed to

UI).

Configure User the presses the OK or Apply

button.

Active Object is configured and is ready

to receive instructions

DataLoaded All data series have been loaded

Historical Begins to process historical data

Transition Finished processing historical

data

Realtime Begins to process realtime data.

Terminated Begins to shut down

Syntax
State

Examples

 Understanding the sequence of States

protected override void OnStateChange()

{

 Print(DateTime.Now + ": Current State is State."+State);

}

NinjaScript 2385

© 2023 NinjaTrader, LLC

 Using State to only process real-time data

protected override void OnBarUpdate()

{

 // only process real-time OnBarUpdate events

 if (State == State.Historical)

 return;

 //rest of logic

}

11.6.2.16 SessionIterator

Definition
Allows you to traverse through various trading hours data elements which apply to a segment

of bars.

Note: Should you wish to obtain trading hours information for historical bar values, you

need to construct and store your own session iterator object based of the desired bars

series array.

Parameters

bars The Bars object used to create

the SessionIterator

Warning: The properties in this class should NOT be accessed within the

OnStateChange() method before the State has reached State.DataLoaded

Methods and Properties

ActualSessionBegi

n

Obtains the sessions start day and start time

converted to the PC's local time zone

ActualSessionEnd Obtains the sessions end day and end time

converted to the PC's local time zone

ActualTradingDay

EndLocal

Returns the sessions End-Of-Day (EOD) in the

local timezone

NinjaTrader 82386

© 2023 NinjaTrader, LLC

ActualTradingDay

Exchange

Obtains the date of a session representing the

trading date of the exchange

CalculateTradingD

ay()

Calculates the current trading date of a specified

date

GetNextSession() Calculates the next available session relative to a

specified date

GetTradingDay() Returns the actual trading date based on the

exchange

GetTradingDayBeg

inLocal()

Converts the trading day begin time from the

exchange timezone to local time

GetTradingDayEnd

Local()

Converts the trading day end time from the

exchange timezone to local time

IsInSession() Indicates if a specified date is within the bounds

of the current session

IsNewSession() Indicates if a specified time is greater than the

actual session end of the current session

IsTradingDayDefin

ed()

Indicates if a trading day is defined for a specific

date

Tip: In order to calculate a session information for another multi-instrument or multi-
time frame script, you can pass in the desired BarsArray array value as the
SessionIterator bars object.

Examples

NinjaScript 2387

© 2023 NinjaTrader, LLC

private SessionIterator sessionIterator;

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 //stores the sessions once bars are ready, but before

OnBarUpdate is called

 sessionIterator = new SessionIterator(Bars);

 }

}

protected override void OnBarUpdate()

{

 // on new bars session, find the next trading session

 if (Bars.IsFirstBarOfSession)

 {

 Print("Calculating trading day for " + Time[0]);

 // use the current bar time to calculate the next session

 sessionIterator.GetNextSession(Time[0], true);

 // store the desired session information

 DateTime tradingDay =

sessionIterator.ActualTradingDayExchange;

 DateTime beginTime =

sessionIterator.ActualSessionBegin;

 DateTime endTime = sessionIterator.ActualSessionEnd;

 Print(string.Format("The Current Trading Day {0} starts at

{1} and ends at {2}",

 tradingDay.ToShortDateString(),

beginTime, endTime));

 // Output:

 // Calculating trading day from 9/30/2015 4:01:00 PM

 //The Current Trading Day 10/1/2015 starts at 9/30/2015

4:00:00 PM and ends at 10/1/2015 3:00:00 PM

 }

}

11.6.2.16.1 ActualSessionBegin

Definition
Obtains the sessions start date and start time converted to the user's configured Time Zone.

Note: In order to obtain historical ActualSessionBegin information, you must call

GetNextSession() from a stored SessionIterator object.

NinjaTrader 82388

© 2023 NinjaTrader, LLC

Property Value
A DateTime structure that represents beginning of a trading session.

Syntax
<sessionIterator>.ActualSessionBegin

Example

SessionIterator sessionIterator;

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 sessionIterator = new SessionIterator(Bars);

 }

}

protected override void OnBarUpdate()

{

 // on new bars session, find the next trading session

 if (Bars.IsFirstBarOfSession)

 {

 // use the current bar time to calculate the next session

 sessionIterator.GetNextSession(Time[0], true);

 Print("The current session start time is " +

sessionIterator.ActualSessionBegin);

 }

}

11.6.2.16.2 ActualSessionEnd

Definition
Obtains the session's end date and end time converted to the user's configured Time Zone.

Note: In order to obtain historical ActualSessionEnd information, you must call

GetNextSession() from a stored SessionIterator object.

Property Value
A DateTime structure that represents end of a trading session.

NinjaScript 2389

© 2023 NinjaTrader, LLC

Syntax
<sessionIterator>.ActualSessionEnd

Example

SessionIterator sessionIterator;

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 sessionIterator = new SessionIterator(Bars);

 }

}

protected override void OnBarUpdate()

{

 // on new bars session, find the next trading session

 if (Bars.IsFirstBarOfSession)

 {

 // use the current bar time to calculate the next session

 sessionIterator.GetNextSession(Time[0], true);

 Print("The current session end time is " +

sessionIterator.ActualSessionEnd);

 }

}

11.6.2.16.3 ActualTradingDayEndLocal

Definition
Returns the session's End-Of-Day (EOD) in the user's configured timezone.

Note: In order to obtain historical ActualTradingDayEndLocal information, you must call

GetNextSession() from a stored SessionIterator object.

Property Value
A DateTime structure that represents end of a trading day (EOD).

Syntax
<sessionIterator>.ActualTradingDayEndLocal

Example

NinjaTrader 82390

© 2023 NinjaTrader, LLC

SessionIterator sessionIterator;

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 sessionIterator = new SessionIterator(Bars);

 }

}

protected override void OnBarUpdate()

{

 // on new bars session, find the next trading session

 if (Bars.IsFirstBarOfSession)

 {

 // use the current bar time to calculate the next session

 sessionIterator.GetNextSession(Time[0], true);

 Print("The current session end of day is " +

sessionIterator.ActualTradingDayEndLocal);

 }

}

11.6.2.16.4 ActualTradingDayExchange

Definition
Obtains the date of a trading session defined by the exchange.

Notes:

1. In order to obtain historical ActualTradingDayExchange information, you must call

GetNextSession() from a stored SessionIterator object.

2. The calculated value may differ from the current date as some trading sessions will

begin before the actual calender date changes. For example, the "CME US Index

Futures ETH" actual session started on 3/30/2015 at 5:00PM Central Time, however

the actual exchange trading day would be considered 3/31/2015 12:00:00AM

Property Value
A DateTime structure that represents the trading day.

Syntax
<sessionIterator>.ActualTradingDayExchange

Example

NinjaScript 2391

© 2023 NinjaTrader, LLC

SessionIterator sessionIterator;

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 sessionIterator = new SessionIterator(Bars);

 }

}

protected override void OnBarUpdate()

{

 // on new bars session, find the next trading session

 if (Bars.IsFirstBarOfSession)

 {

 // use the current bar time to calculate the next session

 sessionIterator.GetNextSession(Time[0], true);

 Print("The current exchange trading day is " +

sessionIterator.ActualTradingDayExchange);

 }

}

11.6.2.16.5 CalculateTradingDay()

Definition
Calculates the trading date of the time value passed in as the timeLocal argument. This

method may need to be used before you can accurately determine various session properties

such as ActualSessionBegin or ActualTradingDayEndLocal, etc. CalculateTradingDay()

also checks the local date/time against the exchange's current date/time to ensure that the

script is in sync with the exchange's current day.

Warning: This method is resource intensive and should ONLY be reserved for situations

when calculations would be limited to a few specific use cases.

Property Value
This method does not return a value.

Parameters

timeLocal The DateTime value used to calculate the trading

day.

NinjaTrader 82392

© 2023 NinjaTrader, LLC

includesEndTimeS

tamp

A bool determining if a timestamp of <n>:00

should fall into the current session. (e.g., used

for time based intraday series such as minute or

second).

Syntax
<sessionIterator>.CalculateTradingDay(DateTime timeLocal, bool includesEndTimeStamp)

Example

protected override void OnDataPoint(Bars bars, double open, double

high, double low, double close, DateTime time, long volume, bool

isBar, double bid, double ask)

{

 // build the bars type session iterator from the bars object

provided

 if (SessionIterator == null)

 SessionIterator = new SessionIterator(bars);

 // calculate the trading day of the time value provided

 SessionIterator.CalculateTradingDay(time, false);

 // add a new bar using the sessions exchanges date

 AddBar(bars, open, high, low, close,

SessionIterator.ActualTradingDayExchange, volume);

}

11.6.2.16.6 GetNextSession()

Definition
Calculates the next available session relative to the "timeLocal" value used in the method's

input.

Note: This method needs to be used before you can accurately determine various

session properties such as ActualSessionBegin or ActualTradingDayEndLocal, etc.

Property Value
A bool value when true indicates the method was able to successfully calculate the next

trading session; otherwise false.

Warning: This method is resource intensive and should ONLY be reserved for situations

NinjaScript 2393

© 2023 NinjaTrader, LLC

when calculations would be limited to a few specific use cases. For example, calling this

method for each bar in the OnBarUpdate() method would NOT be recommended.

Parameters

timeLocal The DateTime value used to calculate the next

trading day.

includesEndTimeS

tamp

A bool determining if a timestamp of <n>:00

should fall into the current session. (e.g., used

for time based intraday series such as minute or

second).

Syntax
<sessionIterator>.GetNextSession(DateTime timeLocal, bool includesEndTimeStamp);

Example

 Getting Next Session of the Primary Bars Object

SessionIterator sessionIterator;

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 sessionIterator = new SessionIterator(Bars);

 }

}

protected override void OnBarUpdate()

{

 // on new bars session, find the next trading session

 if (Bars.IsFirstBarOfSession)

 {

 // use the current bar time to calculate the next session

 sessionIterator.GetNextSession(Time[0], true);

 }

}

NinjaTrader 82394

© 2023 NinjaTrader, LLC

 Getting Next Session of a Secondary Time Series

SessionIterator rthSessionIterator;

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // add a 1440 minute bar using the RTH hours

 AddDataSeries(Instrument.FullName, new BarsPeriod

{ BarsPeriodType = BarsPeriodType.Minute, Value = 1440 }, "CME US

Index Futures RTH");

 }

 else if (State == State.Historical)

 {

 // store a session iterator built from the secondary (RTH)

bars

 rthSessionIterator = new SessionIterator(BarsArray[1]);

 }

}

protected override void OnBarUpdate()

{

 // on the primary bars session, find the next trading session

for the RTH bars

 if (Bars.IsFirstBarOfSession)

 {

 // use the current bar time to calculate the next RTH session

 rthSessionIterator.GetNextSession(Time[0], true);

 }

}

11.6.2.16.7 GetTradingDay()

Definition
Returns the actual trading date based on the exchange, calculated from a DateTime object

passed with with the local time. GetTradingDay() calls CalculateTradingDay() on a custom

SessionIterator object created by passing in a Bars object as an argument.

Warning: This method can ONLY be called when a SessionIterator was created with a

'Bars' parameter.

Property Value
A DateTime object representing the ActualTradingDayExchange property.

NinjaScript 2395

© 2023 NinjaTrader, LLC

Syntax
<SessionIterator>.GetTradingDay(DateTime timeLocal)

Parameters

timeLocal The DateTime value used to calculate the next

trading day.

Example

// Declare a new custom SessionIterator

SessionIterator mySessionIterator;

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 // Instantiate mySessionIterator once in State.Configure

 mySessionIterator = new SessionIterator(BarsArray[0]);

 }

}

protected override void OnBarUpdate()

{

 // Obtain the ActualTradingDayExchange value for

mySessionIterator, based on today's date

 Print(mySessionIterator.GetTradingDay(DateTime.Now).ToString())

;

}

11.6.2.16.8 GetTradingDayBeginLocal()

Definition
Converts the trading day begin time from the exchange timezone to local time, and returns a

DateTime object in the local timezone. The ActualTradingDayExchange property can be

passed into GetTradingDayBeginLocal() for a quick timezone conversion.

Property Value
A DateTime object representing the exchange-based trading day begin time converted to local

time.

Syntax
<SessionIterator>.GetTradingDayBeginLocal(DateTime tradingDayExchange)

Parameters

NinjaTrader 82396

© 2023 NinjaTrader, LLC

tradingDayExchang

e
The DateTime value used to calculate the trading

day.

Example

private SessionIterator sessionIterator;

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 //stores the sessions once bars are ready, but before

OnBarUpdate is called

 sessionIterator = new SessionIterator(Bars);

 }

}

protected override void OnBarUpdate()

{

 // Only process strategy logic starting three hours after

trading begins at the exchange

 if (Core.Globals.Now >=

sessionIterator.GetTradingDayBeginLocal(sessionIterator.ActualTradi

ngDayExchange).AddHours(3))

 {

 // Strategy logic here

 }

}

11.6.2.16.9 GetTradingDayEndLocal()

Definition
Converts the trading day end time from the exchange timezone to local time, and returns a

DateTime object in the local timezone. The ActualTradingDayExchange property can be

passed into GetTradingDayEndLocal() for a quick timezone conversion.

Property Value
A DateTime object representing the exchange-based trading day end time converted to local

time.

Syntax
<SessionIterator>.GetTradingDayEndLocal(DateTime tradingDayExchange)

Parameters

NinjaScript 2397

© 2023 NinjaTrader, LLC

tradingDayExchang

e
The DateTime value used to calculate the trading

day.

Example

private SessionIterator sessionIterator;

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 //stores the sessions once bars are ready, but before

OnBarUpdate is called

 sessionIterator = new SessionIterator(Bars);

 }

}

protected override void OnBarUpdate()

{

 // Only process strategy logic up until three hours prior to

the end of the trading day at the exchange

 if (Core.Globals.Now <=

sessionIterator.GetTradingDayEndLocal(sessionIterator.ActualTrading

DayExchange).AddHours(-3))

 {

 // Strategy logic here

 }

}

11.6.2.16.10 IsInSession()

Definition
Indicates a specified date is within the bounds of the current session, according to the

configured Trading Hours template.

Note: Additionally this method will internally trigger a GetNextSession() call to calculate

the next available session relative to the "timeLocal" value used in the method's input.

Property Value
A bool value when true indicates the specified time is within the current trading session;

otherwise false.

Parameters

NinjaTrader 82398

© 2023 NinjaTrader, LLC

timeLocal The DateTime value used to calculate the next

trading day.

includesEndTimeS

tamp

A bool determining if a timestamp of <n>:00

should fall into the current session. (e.g., used

for time based intraday series such as minute or

second).

isIntraDay A bool determining if IsInSession() considers the

time of day (when true) or only the date (when

false)

Syntax
<SessionIterator>.IsInSession(DateTime timeLocal, bool includesEndTimeStamp, bool
isIntraDay)

Example

private SessionIterator sessionIterator;

protected override void OnStateChange()

{

 if (State == State.Historical)

 {

 //stores the sessions once bars are ready, but before

OnBarUpdate is called

 sessionIterator = new SessionIterator(Bars);

 }

}

protected override void OnBarUpdate()

{

 // Only place an order if the time three hours from now will

still be within the current session

 if (sessionIterator.IsInSession(DateTime.Now.AddHours(3), true,

 true) /* && additional conditions here */)

 EnterLongStopMarket(CurrentDayOHL().High[0] + TickSize);

}

NinjaScript 2399

© 2023 NinjaTrader, LLC

11.6.2.16.11 IsNew Session()

Definition
Indicates a specified time is greater than the ActualSessionEnd property on the configured

Trading Hours template.

Property Value
A bool value when true indicates the specified time is later than ActualSessionEnd;

otherwise false.

Parameters

time The DateTime value used to compare

includesEndTimeS

tamp

A bool determining if a timestamp of <n>:00

should fall into the current session. (e.g., used

for time based intraday series such as minute or

second).

Syntax
<SessionIterator>.IsNewSession(DateTime time, bool includesEndTimeStamp)

Example

bool takeTrades;

protected override void OnBarUpdate()

{

 // Switch a bool named takeTrades to false when IsNewSession()

returns true.

 if (Bars.SessionIterator.IsNewSession(DateTime.Now, true)) ;

 {

 Alert("EOS", Priority.Medium, String.Format("New session

beginning. Waiting until {0} to begin trading again"), " ", 5,

Brushes.Black, Brushes.White);

 takeTrades = false;

 }

 // Set the bool back to true on the first bar of the new

session

 if (Bars.IsFirstBarOfSession)

 takeTrades = true;

}

NinjaTrader 82400

© 2023 NinjaTrader, LLC

11.6.2.16.12 IsTradingDayDefined()

Definition
Indicates a trading day is defined for a specific date.

Property Value
A bool value when true indicates that the date passed in as an argument is defined as a full

or partial trading day in the configured Trading Hours template; otherwise false. Also returns

false if the specified date is marked as a full-day exchange holiday.

Parameters

date The DateTime value representing the date to

check

Syntax
<SessionIterator>.IsTradingDayDefined(DateTime time);

Example

DateTime thanksGivingDay = new DateTime(2017, 11, 23);

// Determine if the current instrument's exchange is open for

trading on Thanksgiving day in 2017

if(Bars.SessionIterator.IsTradingDayDefined(thanksGivingDay))

 Print(String.Format("{0} will be open for trading on

Thanksgiving day, {1}", Instrument.MasterInstrument.Name,

thanksGivingDay.Date));

11.6.2.17 SimpleFont

Definition
Defines a particular font configuration.

Note: SimpleFont objects are used for various Drawing methods, and can be used

when defining UI element for Add-ons.

Constructors

SimpleFont() Creates a SimpleFont object

NinjaScript 2401

© 2023 NinjaTrader, LLC

using a family name of "Arial" and

a size of "12"

SimpleFont(string familyName,

int size)
Creates a SimpleFont object

using the specified family name

and size

Methods and Properties

Bold A bool value determining if the the Font is bold

style

Family A FontFamily representing a family of Fonts

Italic A bool value determining if the the Font is italic

style

Size A double value determining the size of font in

WPF units (please see the tip below)

Typeface A Typeface used to represent the variation of the

font used

ApplyTo() Applies a custom SimpleFont object's properties

(family, size, and style) to a Windows Control

ToDirectWriteText

Format()

Converts a SimpleFont object to a SharpDX

compatible font which can be used for chart

rendering.

Tip: The WPF unit used is the default px one, so device independent pixels. With a default

system DPI setting of 96, the physical pixel on the screen would be identical in size, but

can vary if a custom DPI is employed. Both should not be confused with the points based

font sizing known from other familiar Windows applications like Word, the advantage here

is that the non points based size measurement will increase / decrease in size if the

system DPI is changed - a more detailed discussion is located here.

Examples

https://msdn.microsoft.com/en-us/library/system.windows.media.fontfamily(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.typeface%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.control(v=vs.110).aspx
https://blogs.msdn.microsoft.com/text/2009/12/11/wpf-text-measurement-units/

NinjaTrader 82402

© 2023 NinjaTrader, LLC

// create custom Courier New, make it big and bold

NinjaTrader.Gui.Tools.SimpleFont myFont = new

NinjaTrader.Gui.Tools.SimpleFont("Courier New", 12) { Size = 50,

Bold = true };

Draw.Text(this, "myTag", false, "Hi There!", 0, Low[0], 5,

Brushes.Blue, myFont, TextAlignment.Center, Brushes.Black, null,

1);

11.6.2.17.1 ApplyTo()

Definition
Applies a custom SimpleFont object's properties (family, size, and style) to a Windows

Control

Method Return Value
This method does not return a value.

Syntax
<SimpleFont>.ApplyTo(DependencyObject target)

target The DependencyObject to apply

the SimpleFont object

Examples

// Define the custom button control object

System.Windows.Controls.Button myButton = new

System.Windows.Controls.Button

{

 Name = "myButton",

 Content = "Buy",

 Foreground = Brushes.White,

 Background = Brushes.Green,

};

// Create a custom SimpleFont object and then apply it to the

button

SimpleFont myFont = new SimpleFont("Consolas", 22);

myFont.ApplyTo(myButton);

https://msdn.microsoft.com/en-us/library/system.windows.controls.control(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.control(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.dependencyobject(v=vs.110).aspx

NinjaScript 2403

© 2023 NinjaTrader, LLC

11.6.2.17.2 ToDirectWriteTextFormat()

Definition
Converts a SimpleFont object to a SharpDX compatible font which can be used for chart

rendering.

Note: For more information please see the educational resource on Using SharpDX for

Custom Chart Rendering

Method Return Value
A DirectWrite.TextFormat object

Warning: The returned DirectWrite.TextFormat object should be disposed of

immediately when finished drawing text.

Syntax
<SimpleFont>.ToDirectWriteTextFormat()

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // Set text to chart label simple font object

 SharpDX.DirectWrite.TextFormat textFormat =

chartControl.Properties.LabelFont.ToDirectWriteTextFormat();

 // use the textFormat in a RenderTarget.DrawText() or

DrawTextLayout() method

 // do not forget to dispose text format when finished

 textFormat.Dispose();

}

11.6.2.18 System Indicator Methods

The "Indicators" reference provides definitions, syntax, parameter definitions and examples

for NinjaTrader system indicator methods.

› Valid Input Data for Indicator Methods

› Accumulation/Distribution (ADL)

NinjaTrader 82404

© 2023 NinjaTrader, LLC

› Adaptive Price Zone (APZ)

› Aroon

› Aroon Oscillator

› Average Directional Index (ADX)

› Average Directional Movement Rating (ADXR)

› Average True Range (ATR)

› Balance of Power (BOP)

› Block Volume

› Bollinger Bands

› BuySell Pressure

› BuySell Volume

› Camarilla Pivots

› CandleStickPattern

› Chaikin Money Flow

› Chaikin Oscillator

› Chaikin Volatility

› Chande Momentum Oscillator (CMO)

› Choppiness Index

› Commodity Channel Index (CCI)

› Correlation

› Current Day OHL

› Darvas

› Directional Movement (DM)

› Directional Movement Index (DMI)

› Disparity Index

› Donchian Channel

› Double Stochastics

› Dynamic Momentum Index (DMIndex)

› Ease of Movement

› Fibonacci Pivots

› Fisher Transform

› Forecast Oscillator (FOSC)

› Keltner Channel

› KeyReversalDown

› KeyReversalUp

› Linear Regression

› Linear Regression Intercept

› Linear Regression Slope

› MA Envelopes

› Maximum (MAX)

› Minimum (MIN)

› Momentum

NinjaScript 2405

© 2023 NinjaTrader, LLC

› Money Flow Index (MFI)

› Moving Average - Double Exponential (DEMA)

› Moving Average - Exponential (EMA)

› Moving Average - Hull (HMA)

› Moving Average - Kaufman's Adaptive (KAMA)

› Moving Average - Mesa Adaptive (MAMA)

› Moving Average - Simple (SMA)

› Moving Average - T3 (T3)

› Moving Average - Triangular (TMA)

› Moving Average - Triple Exponential (TEMA)

› Moving Average - Triple Exponential (TRIX)

› Moving Average - Variable (VMA)

› Moving Average - Volume Weighted (VWMA)

› Moving Average - Weighted (WMA)

› Moving Average - Zero Lag Exponential (ZLEMA)

› Moving Average Convergence-Divergence (MACD)

› Moving Average Ribbon

› Net Change Display

› n Bars Down

› n Bars Up

› On Balance Volume (OBV)

› Order Flow Cumulative Delta

› Order Flow Volumetric Bars

› Order Flow VWAP

› Parabolic SAR

› Percentage Price Oscillator (PPO)

› Pivots

› Polarized Fractal Efficiency (PFE)

› Price Oscillator

› Prior Day OHLC

› Psychological Line

› Range

› Range Indicator (RIND)

› Rate of Change (ROC)

› Regression Channel

› Relative Spread Strength (RSS)

› Relative Strength Index (RSI)

› Relative Vigor Index

› Relative Volatility Index (RVI)

› R-squared

› Standard Deviation (StdDev)

› Standard Error (StdError)

NinjaTrader 82406

© 2023 NinjaTrader, LLC

› Stochastics

› Stochastics Fast

› Stochastics RSI (StochRSI)

› Summation (SUM)

› Swing

› Time Series Forecast (TSF)

› Trend Lines

› True Strength Index (TSI)

› Ultimate Oscillator

› Volume (VOL)

› Volume Moving Average (VOLMA)

› Volume Oscillator

› Volume Rate of Change (VROC)

› Volume Up Down

› Vortex

› Williams %R

› Wiseman Alligator

› Wiseman Awesom Oscillator

› Woodies CCI

› Woodies Pivots

› ZigZag

11.6.2.18.1 Valid Input Data for Indicator Methods

System indicator methods require valid input data to function property. Indicator methods can

accept the following forms of input data:

Default Input
The default input (Inputs[BarsInProgress]) of the custom indicator, Market Analyzer row or
strategy is used if input is not specified.

// Printing the current value of the 10 period SMA of closing

prices

// using the default input.

double value = SMA(10)[0];
Print("The current SMA value is " + value.ToString());

Price Series
Open, High, Low, Close and Volume can all be used as input for an indicator method.

NinjaScript 2407

© 2023 NinjaTrader, LLC

// Passing in the a price series of High prices and printing out

the current value of the

// 14 period simple moving average

double value = SMA(High, 14)[0];

Print("The current SMA value is " + value.ToString());

Indicator
Indicators can be used as input for other indicators.

// Printing the current value of the 20 period simple moving

average of a 14 period RSI

// using a data series of closing prices

double value = SMA(RSI(Close, 14, 3), 20)[0];

Print("The current SMA value is " + value.ToString());

Series<double>
Series<double> can be used as input for indicators.

// Instantiating a new Series<double> object and passing it in as

input to calculate

// a simple moving average

Series<double> myDataSeries = new Series<double>(this);

double value = SMA(myDataSeries, 20)[0];

Bars Object
A Bars object (which holds a series that contains OHLC data) can be used as input for
indicators.

// Passing in the second Bars object held in a multi-instrument and

timeframe strategy

// The default value used for the SMA calculation is the close

price

double value = SMA(BarsArray[1], 20)[0];

Print("The current SMA value is " + value.ToString());;

NinjaTrader 82408

© 2023 NinjaTrader, LLC

Tip: The input series of an indicator cannot be the hosting indicator itself, as this will

cause recursive loops.

// Using the hosting indicator in this way will cause errors

with recursive loops

double value = SMA(this, 20)[0];

11.6.2.18.2 Accumulation/Distribution (ADL)

Description
There are many indicators available to measure volume and the flow of money for a particular

stock, index or security. One of the most popular volume indicators over the years has been

the Accumulation/Distribution Line. The basic premise behind volume indicators, including the

Accumulation/Distribution Line, is that volume precedes price. Volume reflects the amount of

shares traded in a particular stock, and is a direct reflection of the money flowing into and out

of a stock. Many times before a stock advances, there will be period of increased volume just

prior to the move. Most volume or money flow indicators are designed to identify early

increases in positive or negative volume flow to gain an edge before the price moves. (Note:

the terms "money flow" and "volume flow" are essentially interchangeable.)

Syntax
ADL()

ADL(ISeries<double> input)

Returns default value

ADL()[int barsAgo]

ADL(ISeries<double> input)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

Example

NinjaScript 2409

© 2023 NinjaTrader, LLC

// Evaluates if ADL is rising

bool isRising = IsRising(ADL());

Print("Is ADL rising? " + isRising);

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.3 Adaptive Price Zone (APZ)

Description
The Adaptive Price Zone indicator from the S&C, September 2006 article "Trading With An

Adpative Price Zone" by Lee Leibfarth is a set of bands based on a short term double smooth

exponential moving average. The bands form a channel that surrounds the average price and

tracks price fluctuations quickly, especially in volatile markets. As price crosses above the

zone it can signal an opportunity to sell in anticipation of a reversal. As price crosses below

the zone it can signal an opportunity to buy in anticipation of a reversal.

Syntax
APZ(double bandPct, int period)

APZ(ISeries<double> input, double bandPct, int period)

Returns upper band value

APZ(double bandPct, int period).Upper[int barsAgo]

APZ(ISeries<double> input, double bandPct, int period).Upper[int barsAgo]

Returns lower band value

APZ(double bandPct, int period).Lower[int barsAgo]

APZ(ISeries<double> input, double bandPct, int period).Lower[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

bandPct The number of standard deviations

input Indicator source data (?)

NinjaTrader 82410

© 2023 NinjaTrader, LLC

period Number of bars used in the calculation

Example

// Prints the current upper band value of a 20 period APZ

double upperValue = APZ(2, 20).Upper[0];

Print("The current APZ upper value is " + upperValue.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.4 Aroon

Description
Developed by Tushar Chande in 1995, Aroon is an indicator system that can be used to
determine whether a stock is trending or not and how strong the trend is. "Aroon" means
"Dawn's Early Light" in Sanskrit and Chande chose that name for this indicator since it is
designed to reveal the beginning of a new trend.

The Aroon indicator system consists of two lines, 'Aroon(up)' and 'Aroon(down)'. It takes a

single parameter which is the number of time periods to use in the calculation. Aroon(up) is

the amount of time (on a percentage basis) that has elapsed between the start of the time

period and the point at which the highest price during that time period occurred. If the stock

closes at a new high for the given period, Aroon(up) will be +100. For each subsequent period

that passes without another new high, Aroon(up) moves down by an amount equal to (1 / # of

periods) x 100.

Syntax
Aroon(int period)

Aroon(ISeries<double> input, int period)

Returns up value

Aroon(int period).Up[int barsAgo]

Aroon(ISeries<double> input, int period).Up[int barsAgo]

Returns down value

Aroon(int period).Down[int barsAgo]

Aroon(ISeries<double> input, int period).Down[int barsAgo]

Return Value

NinjaScript 2411

© 2023 NinjaTrader, LLC

double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current up/down values of a 20 period Aroon indicator

double upValue = Aroon(20).Up[0];

double downValue = Aroon(20).Down[0];

Print("The current Aroon up value is " + upValue);

Print("The current Aroon down value is " + downValue);

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.5 Aroon Oscillator

Description
A trend-following indicator that uses aspects of the Aroon indicator ("Aroon up" and "Aroon

down") to gauge the strength of a current trend and the likelihood that it will continue. The

Aroon oscillator is calculated by subtracting Aroon down from Aroon up. Readings above zero

indicate that an uptrend is present, while readings below zero indicate that a downtrend is

present.

... Courtesy of Investopedia

Syntax
AroonOscillator(int period)

AroonOscillator(ISeries<double> input, int period)

Returns default value

AroonOscillator(int period)[int barsAgo]

AroonOscillator(ISeries<double> input, int period)[int barsAgo]

http://investopedia.com/terms/a/aroonoscillator.asp

NinjaTrader 82412

© 2023 NinjaTrader, LLC

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current values of a 20 period AroonOscillator using

default price type

double upValue = AroonOscillator(20)[0];

Print("The current AroonOscillator value is " +

upValue.ToString());

// Prints the current values of a 20 period AroonOscillator using

high price type

double upValue = AroonOscillator(High, 20)[0];

Print("The current AroonOscillator value is " +

upValue.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.6 Average Directional Index (ADX)

Description
An indicator used in technical analysis as an objective value for the strength of trend. ADX is

non-directional so it will quantify a trend's strength regardless of whether it is up or down. ADX

is usually plotted in a chart window along with two lines known as the DMI (Directional

Movement Indicators). ADX is derived from the relationship of the DMI lines.

... Courtesy of Investopedia

Syntax
ADX(int period)

ADX(ISeries<double> input, int period)

http://investopedia.com/terms/a/adx.asp

NinjaScript 2413

© 2023 NinjaTrader, LLC

Returns default value

ADX(int period)[int barsAgo]

ADX(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period ADX

double value = ADX(20)[0];

Print("The current ADX value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.7 Average Directional Movement Rating (ADXR)

Description
The ADXR is equal to the current ADX plus the ADX from n bars ago divided by two.

Syntax
ADXR(int interval, int period)

ADXR(ISeries<double> input, int interval, int period)

Returns default value

ADXR(int interval, int period)[int barsAgo]

ADXR(ISeries<double> input, int interval, int period)[int barsAgo]

Return Value

NinjaTrader 82414

© 2023 NinjaTrader, LLC

double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

interval The interval between the first ADX value and the

current ADX value

period Number of bars used in the calculation

Example

// Prints the current value of a 20 period ADXR using default price

type

double value = ADXR(10, 20)[0];

Print("The current ADXR value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.8 Average True Range (ATR)

Description
A measure of volatility introduced by Welles Wilder in his book: New Concepts in Technical

Trading Systems.

The True Range indicator is the greatest of the following:

-current high less the current low.

-the absolute value of the current high less the previous close.

-the absolute value of the current low less the previous close.

The Average True Range is a moving average (generally 14-days) of the True Ranges.

... Courtesy of Investopedia

The original Wilder formula for an exponential moving average with a smoothing constant (k =

1/ Period) is used to calculate the ATR.

http://www.investopedia.com/terms/a/atr.asp

NinjaScript 2415

© 2023 NinjaTrader, LLC

Syntax
ATR(int period)

ATR(ISeries<double> input, int period)

Returns default value

ATR(int period)[int barsAgo]

ATR(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

// Prints the current value of a 20 period ATR using default price

type

double value = ATR(20)[0];

Print("The current ATR value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.9 Balance of Pow er (BOP)

Description
The balance of power (BOP) indicator measures the strength of the bulls vs. bears by

assessing the ability of each to push price to an extreme level.

Syntax
BOP(int smooth)

BOP(ISeries<double> input, int smooth)

NinjaTrader 82416

© 2023 NinjaTrader, LLC

Returns default value

BOP(int smooth)[int barsAgo]

BOP(ISeries<double> input, int smooth)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

smooth The smoothing period

Example

// Prints the current value of BOP using default price type and 3

period smoothing

double value = BOP(3)[0];

Print("The current BOP value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.10 Block Volume

Description
Block volume detects block trades and display how many occurred per bar. This can be

displayed either as trades or volume. Historical tick data is required to plot historically.

Syntax
BlockVolume(int blockSize, CountType countType)

BlockVolume(ISeries<double> input, int blockSize, CountType countType)

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

NinjaScript 2417

© 2023 NinjaTrader, LLC

input Indicator source data (?)

blockSize The minimum volume a trade must be to be

considered a block trade

countType The format to count the block trades. By number

of block trades that occurred or total block trade

volume

Examples

// A 1 tick data series must be added to OnStateChange() as this

indicator runs off of tick data

else if (State == State.Configure)

{

 AddDataSeries(Data.BarsPeriodType.Tick, 1);

}

// Prints the current value of an 80 block trade size counted in

volume for the Block Volume

if (BarsInProgress == 0)

{

double value = BlockVolume(80, CountType.Volume)[0];

Print("The current Block Volume value is " + value.ToString());

}

11.6.2.18.11 Bollinger Bands

Description
Developed by John Bollinger, Bollinger Bands are an indicator that allows users to compare

volatility and relative price levels over a period time. The indicator consists of three bands

designed to encompass the majority of a security's price action.

1. A simple moving average in the middle

2. An upper band (SMA plus 2 standard deviations)

3. A lower band (SMA minus 2 standard deviations)

Standard deviation is a statistical unit of measure that provides a good assessment of a price

plot's volatility. Using the standard deviation ensures that the bands will react quickly to price

movements and reflect periods of high and low volatility. Sharp price increases (or

decreases), and hence volatility, will lead to a widening of the bands.

... Courtesy of StockCharts

http://stockcharts.com/education/IndicatorAnalysis/indic_Bbands.html

NinjaTrader 82418

© 2023 NinjaTrader, LLC

Syntax
Bollinger(double numStdDev, int period)

Bollinger(ISeries<double> input, double numStdDev, int period)

Returns upper band value

Bollinger(double numStdDev, int period).Upper[int barsAgo]

Bollinger(ISeries<double> input, double numStdDev, int period).Upper[int barsAgo]

Returns lower band value

Bollinger(double numStdDev, int period).Lower[int barsAgo]

Bollinger(ISeries<double> input, double numStdDev, int period).Lower[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current upper band value of a 20 period Bollinger

using default price type

double upperValue = Bollinger(2, 20).Upper[0];

Print("The current Bollinger upper value is " +

upperValue.ToString());

// Prints the current upper band value of a 20 period Bollinger

using low price type

double upperValue = Bollinger(Low, 2, 20).Upper[0];

Print("The current Bollinger upper value is " +

upperValue.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

NinjaScript 2419

© 2023 NinjaTrader, LLC

11.6.2.18.12 BuySell Pressure

Description
The BuySellPressure indicator displays both the current bar's buying and selling pressure as

percentage values based on the categorization of trades as buy or sell trades. Trades are

categorized in real-time as a buy (at the ask or above) or as a sell (at the bid or below)....

Trades in between the market are ignored.

Note: For historical calculations, Tick Replay must be enabled

Syntax
BuySellPressure()

BuySellPressure(ISeries<double> input)

Returns buy pressure value

BuySellPressure().BuyPressure[int barsAgo]

BuySellPressure(ISeries<double> input).BuyPressure[int barsAgo]

Returns sell pressure value

BuySellPressure().SellPressure[int barsAgo]

BuySellPressure(ISeries<double> input).SellPressure[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

Examples

NinjaTrader 82420

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Indicators will inherit the Calculate mode from the

hosting script.

 // Since BuySellPressure requires the use of

Calculate.OnEachTick, we must ensure the hosting script has this

Calculate mode set

 Calculate = Calculate.OnEachTick;

 }

}

protected override void OnBarUpdate()

{

 // This checks that 70% or more of the volume hit the ask or

higher

 if (State == State.Historical ||

BuySellPressure().BuyPressure[0] > 70)

 {

 EnterLong();

 }

}

Tip: Since this indicator operates in a real-time environment, remember to check for

State.Realtime, or enable Tick Replay on the associated Data Series. In the above

example we check that 50% or more of the volume hit the ask or higher. Our statement

checks if the data is being calculated on historical data first, if true, we enter long, if not

true (live), the the statement then checks for the Buy Volume condition.

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.13 BuySell Volume

Description
The BuySellVolume indicator displays a real-time horizontal histogram of volume categorized

as buy or sell trades. Trades are categorized in real-time as a buy (at the ask or above) or as

a sell (at the bid or below) and then color coded Trades in between the market are

ignored.

Note: For historical calculations, Tick Replay must be enabled

NinjaScript 2421

© 2023 NinjaTrader, LLC

Syntax
BuySellVolume()

BuySellVolume(ISeries<double> input)

Returns buy volume

BuySellVolume().Buys[int barsAgo]

BuySellVolume(ISeries<double> input).Buys[int barsAgo]

Returns sell volume

BuySellVolume().Sells[int barsAgo]

BuySellVolume(ISeries<double> input).Sells[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

Example

NinjaTrader 82422

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Indicators will inherit the Calculate mode from the

hosting script.

 // Since BuySellVolume requires the use of

Calculate.OnEachTick, we must ensure the hosting script has this

Calculate mode set

 Calculate = Calculate.OnEachTick;

 }

}

protected override void OnBarUpdate()

{

 // This checks that 5,000 or more of the volume hit the bid or

lower

 if (State == State.Historical || BuySellVolume().Sells[0] >

5000)

 {

 EnterLong();

 }

}

Tip: Since this indicator operates in a real-time environment, remember to check for

State.Realtime, or enable Tick Replay on the associated Data Series. In the above

example we check that 5,000 or more of the volume hit the bid or lower. Our statement

checks if the data is being calculated on historical data first, if true, we enter long, if not

true (live), the the statement then checks for the Buy Volume condition.

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.14 Camarilla Pivots

Description
Camarilla pivots are a price analysis tool that generates potential support and resistance

levels by multiplying the prior range then adding or subtracting it from the close.

Syntax
Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width)

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

NinjaScript 2423

© 2023 NinjaTrader, LLC

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width)

Returns R1 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).R1[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).R1[int barsAgo]

Returns R2 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).R2[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).R2[int barsAgo]

Returns R3 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).R3[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).R3[int barsAgo]

Returns R4 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).R3[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).R4[int barsAgo]

Returns S1 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).S1[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).S1[int barsAgo]

Returns S2 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).S2[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).S2[int barsAgo]

NinjaTrader 82424

© 2023 NinjaTrader, LLC

Returns S3 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).S3[int

barsAgo]

Pivots(ISeries<double>input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).S3[int barsAgo]

Returns S4 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).S3[int

barsAgo]

Pivots(ISeries<double>input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).S4[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

pivotRangeType Sets the range for the type of pivot calculated.

Possible values are:

PivotRange.Daily

PivotRange.Weekly

PivotRange.Monthly

priorDayHLC Sets how the prior range High, Low, Close

values are calculated. Possible values are:

HLCCalculationMode.CalcFromIntradayData

HLCCalculationMode.DailyBars

HLCCalculationMode.UserDefinedValues

userDefinedClose Sets the close for Pivots calculations when using

HLCCalculationMode.UserDefinedValues.

userDefinedHigh Sets the high for Pivots calculations when using

HLCCalculationMode.UserDefinedValues.

NinjaScript 2425

© 2023 NinjaTrader, LLC

userDefinedLow Sets the low for Pivots calculations when using

HLCCalculationMode.UserDefinedValues.

width Sets how long the Pivots lines will be drawn

Examples

// Prints the current R1 pivotvalue

double valueR1 = CamarillaPivots(PivotRange.Daily,

HLCCalculationMode.CalcFromIntradayData, 0, 0, 0, 20).R1[0];

Print("The current Camarilla Pivots' R1 value is " +

valueR1.ToString());

// Prints the current S2 pivot value

double valueS2 = CamarillaPivots(PivotRange.Daily,

HLCCalculationMode.CalcFromIntradayData, 0, 0, 0, 20).S2[0];

Print("The current Camarilla Pivots' S2 pivot value is " +

valueS2.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

Tip: When using HLCCalculationMode.DailyBars it can be expected that a value of 0 is

returned when the daily bars have not been loaded yet. Due to the asynchronous nature of

this indicator calling daily bars you should only access the pivot values when the indicator

has loaded all required Bars objects. To ensure you are accessing accurate values you

can use .IsValidDataPoint() as a check:

NinjaTrader 82426

© 2023 NinjaTrader, LLC

// Evaluates that this is a valid pivot point value

if (CamarillaPivots(PivotRange.Daily,

HLCCalculationMode.DailyBars, 0, 0, 0,

20).Pp.IsValidDataPoint(0))

{

 // Prints the current pivot point value

 double valuePp = CamarillaPivots(PivotRange.Daily,

HLCCalculationMode.DailyBars, 0, 0, 0, 20).Pp[0];

 Print("The current Camarilla Pivots' pivot value is " +

valuePp.ToString());

}

11.6.2.18.15 CandleStickPattern

Description
Detects the specified candle stick pattern.

Syntax
CandleStickPattern(ChartPattern pattern, int trendStrength)

CandleStickPattern(ISeries<double> input, ChartPattern pattern, int trendStrength)

Returns a value indicating if the specified pattern was detected

CandleStickPattern(ChartPattern pattern, int trendStrength)[int barsAgo]

CandleStickPattern(ISeries<double> input, ChartPattern pattern, int trendStrength)[int

 barsAgo]

Return Value
A double value representing pattern found. Returns a value of 1 if the pattern is found; returns

a value of 0 if no pattern was found.

Accessing this method via an index value [int barsAgo] returns the indicator value of the

referenced bar.

Parameters

input Indicator source data (?)

pattern Possible values are:

ChartPattern.BearishBeltHold

ChartPattern.BearishEngulfing

ChartPattern.BearishHarami

NinjaScript 2427

© 2023 NinjaTrader, LLC

ChartPattern.BearishHaramiCross

ChartPattern.BullishBeltHold

ChartPattern.BullishEngulfing

ChartPattern.BullishHarami

ChartPattern.BullishHaramiCross

ChartPattern.DarkCloudCover

ChartPattern.Doji

ChartPattern.DownsideTasukiGap

ChartPattern.EveningStar

ChartPattern.FallingThreeMethods

ChartPattern.Hammer

ChartPattern.HangingMan

ChartPattern.InvertedHammer

ChartPattern.MorningStart

ChartPattern.PiercingLine

ChartPattern.RisingThreeMethods

ChartPattern.ShootingStar

ChartPattern.StickSandwich

ChartPattern.ThreeBlackCrows

ChartPattern.ThreeWhiteSoldiers

ChartPattern.UpsideGapTwoCrows

ChartPattern.UpsideTasukiGap

trendStrength The number of required bars to the left and right

of the swing point used to determine trend. A

value of zero will exclude the requirement of a

trend and only detect based on the candles

themselves.

Example

// Go long if the current bar is a bullish engulfing pattern

if (CandlestickPattern(ChartPattern.BullishEngulfing, 4)[0] == 1)

 EnterLong();

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

NinjaTrader 82428

© 2023 NinjaTrader, LLC

11.6.2.18.16 Chaikin Money Flow

Description
The formula for Chaikin Money Flow is the cumulative total of the Accumulation/Distribution

Values for 21 periods divided by the cumulative total of volume for 21 periods.

... Courtesy of StockCharts

Syntax
ChaikinMoneyFlow(int period)

ChaikinMoneyFlow(ISeries<double> input, int period)

Returns default value

ChaikinMoneyFlow(int period)[int barsAgo]

ChaikinMoneyFlow(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

// Prints the current value of a 20 period ChaikinMoneyFlow using

default price type

double value = ChaikinMoneyFlow(20)[0];

Print("The current ChaikinMoneyFlow value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

http://stockcharts.com/education/IndicatorAnalysis/indic_ChaikinMoneyFlow1.html

NinjaScript 2429

© 2023 NinjaTrader, LLC

11.6.2.18.17 Chaikin Oscillator

Description
The Chaikin Oscillator is simply the Moving Average Convergence Divergence indicator

(MACD) applied to the Accumulation/Distribution Line. The formula is the difference between

the 3-day exponential moving average and the 10-day exponential moving average of the

Accumulation/Distribution Line. Just as the MACD-Histogram is an indicator to predict moving

average crossovers in MACD, the Chaikin Oscillator is an indicator to predict changes in the

Accumulation/Distribution Line.

... Courtesy of StockCharts

Syntax
ChaikinOscillator(int fast, int slow)

ChaikinOscillator(ISeries<double> input, int fast, int slow)

Returns default value

ChaikinOscillator(int fast, int slow)[int barsAgo]

ChaikinOscillator(ISeries<double> input, int fast, int slow)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

fast The number of bars to calculate the fast EMA

input Indicator source data (?)

slow The number of bars to calculate the slow EMA

Example

// Prints the current value of a ChaikinOscillator using default

price type

double value = ChaikinOscillator(3, 10)[0];

Print("The current ChaikinOscillator value is " +

value.ToString());

http://stockcharts.com/education/IndicatorAnalysis/indic_ChaikinOscillator.html

NinjaTrader 82430

© 2023 NinjaTrader, LLC

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.18 Chaikin Volatility

Description
The Chaikin Volatility Indicator is the difference between two moving averages of a volume

weighted accumulation-distribution line. By comparing the spread between a security's high

and low prices, it quantifies volatility as a widening of the range between the high and the low

price.

Syntax
ChaikinVolatility(int mAPeriod, int rOCPeriod)

ChaikinVolatility(ISeries<double> input, int mAPeriod, int rOCPeriod)

Returns default value

ChaikinVolatility(int mAPeriod, int rOCPeriod)[int barsAgo]

ChaikinVolatility(ISeries<double> input, int mAPeriod, int rOCPeriod)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

mAPeriod Number of bars used in the moving average

calculation

rOCPeriod Number of bars used in the rate of change

calculation

Example

// Prints the current value of the 20 period Chaikin Volatility

double value = ChaikinVolatility(20, 20)[0];

Print("The current Chaikin Volatility value is " +

value.ToString());

NinjaScript 2431

© 2023 NinjaTrader, LLC

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.19 Chande Momentum Oscillator (CMO)

Description
The Chande Momentum Oscillator was developed by Tushar S. Chande and is described in

the 1994 book The New Technical Trader by Tushar S. Chande and Stanley Kroll. This

indicator is a modified RSI. Where the RSI divides the upward movement by the net

movement (up / (up + down)), the CMO divides the total movement by the net movement ((up

- down) / (up + down)). Values under -50 indicate oversold conditions while values over 50

indicate overbought conditions.

Syntax
CMO(int period)

CMO(ISeries<double> input, int period)

Returns default value

CMO(int period)[int barsAgo]

CMO(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period The number of bars to include in the calculation

Examples

NinjaTrader 82432

© 2023 NinjaTrader, LLC

// Prints the current value of a 20 period CMO using default price

type

double value = CMO(20)[0];

Print("The current CMO value is " + value.ToString());

// Prints the current value of a 20 period CMO using high price

type

double value = CMO(High, 20)[0];

Print("The current CMO value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.20 Choppiness Index

Description
The Choppiness Index is designed to determine if the market is choppy (trading sideways) or

not choppy (trading within a trend in either direction)

Syntax
ChoppinessIndex(int period)

ChoppinessIndex(ISeries<double> input, int period)

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 14 period Choppiness Index

double value = ChoppinessIndex(14)[0];

Print("The current Choppiness Index value is " + value.ToString());

NinjaScript 2433

© 2023 NinjaTrader, LLC

11.6.2.18.21 Commitment Of Traders (COT)

Description
The COT indicator plots weekly data from the Commitment Of Traders report, indicating

holdings of different participants in the U.S. futures market.

Notes:

1. Since the underlying COT reports are a weekly figure updated every Friday, it would not

be meaningful to run this study outside Calculate.OnBarClose

2. Default values of the 5 hard-coded plots are : 1 - Futures Non Commercial Net, 2 -

Futures Commercial Net, 3 - Futures Non Reportable Positions Net, 4 - Futures Open

Interest, 5 - Futures Total Net

3. To access other reports and report fields, please see the 2nd example below. All fields

available could be seen via Intelliprompt in the NinjaScript editor.

4. In the CotReportField enum, "Pmpu" represents :

"Producer/merchant/processor/user" where CotReportField.PmpuNet would represent :

"Producer/merchant/processor/user Net"

5. If a CotReportField enum is used that is not supported by the ReportType,

OpenInterest will be seen.

Syntax
COT(int number)

Returns Cot1 value

COT(int number).Cot1[int barsAgo]

Returns Cot2 value

COT(int number).Cot2[int barsAgo]

Returns Cot3 value

COT(int number).Cot3[int barsAgo]

Returns Cot4 value

COT(int number).Cot4[int barsAgo]

Returns Cot5 value

COT(int number).Cot5[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

NinjaTrader 82434

© 2023 NinjaTrader, LLC

Parameters

number Sets the number of plots enabled

Examples

// Prints the current value of COT 4th plot (default Futures Open

Interest), the COT(4) would allow us to access the Cot1, Cot2, Cot3

and Cot4 plots, but not Cot5 (since not enabled)

double value = COT(4).Cot4[0];

Print("The current COT Futures Open Interest value is " +

value.ToString());

// Advanced example where two plots in total are enabled (COT(2)).

Next, the ReportType and Field are custom set per each plot.

else if (State == State.DataLoaded)

{

 cot1 = COT(2);

 cot1.CotReport1.ReportType = CotReportType.Combined;

 cot1.CotReport2.ReportType = CotReportType.Combined;

 cot1.CotReport1.Field = CotReportField.OpenInterest;

 cot1.CotReport2.Field = CotReportField.TotalNet;

}

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.22 Commodity Channel Index (CCI)

Description
Developed by Donald Lambert, the Commodity Channel Index (CCI) was designed to identify

cyclical turns in commodities. The assumption behind the indicator is that commodities (or

stocks or bonds) move in cycles, with highs and lows coming at periodic intervals.

... Courtesy of StockCharts

Syntax

http://stockcharts.com/education/IndicatorAnalysis/indic_CCI.html

NinjaScript 2435

© 2023 NinjaTrader, LLC

CCI(int period)

CCI(ISeries<double> input, int period)

Returns default value

CCI(int period)[int barsAgo]

CCI(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period CCI using default price

type

double value = CCI(20)[0];

Print("The current CCI value is " + value.ToString());

// Prints the current value of a 20 period CCI using high price

type

double value = CCI(High, 20)[0];

Print("The current CCI value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.23 Correlation

Description
The correlation indicator will plot the correlation of the data series to a desired instrument.
Values close to 1 indicate movement in the same direction. Values close to -1 indicate movement
in opposite directions. Values near 0 indicate no correlation.

Syntax

NinjaTrader 82436

© 2023 NinjaTrader, LLC

Correlation(int period, string correlationSeries)

string correlationSeies(ISeries<double> input, int period, string correlationSeies)

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

correlationSeries The data series to compare to

Examples

// The correlation data series must be added to OnStateChange() as

this indicator runs off the correlation data series data

else if (State == State.Configure)

{

 AddDataSeries("SPY");

}

// Checks the bars in progress and prints the current correlation

to the SPY

if (BarsInProgress == 0)

{

 double value = Correlation(20, "SPY")[0];

 Print("The current correlation to the SPY is " +

value.ToString());

}

Note: If the correlation series does not plot during a time the input series plots, a value of

zero would plot in the above example. You may consider ignroing zero values.

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

NinjaScript 2437

© 2023 NinjaTrader, LLC

11.6.2.18.24 Current Day OHL

Description
The current day (session) open, high and low values.

Note: Only use this indicator on intraday series.

Syntax
CurrentDayOHL()

CurrentDayOHL(ISeries<double> input)

Returns current session open value

CurrentDayOHL().CurrentOpen[int barsAgo]

CurrentDayOHL(ISeries<double> input).CurrentOpen[int barsAgo]

Returns current session high value

CurrentDayOHL().CurrentHigh[int barsAgo]

CurrentDayOHL(ISeries<double> input).CurrentHigh[int barsAgo]

Returns current session low value

CurrentDayOHL().CurrentLow[int barsAgo]

CurrentDayOHL(ISeries<double> input).CurrentLow[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

Example

// Prints the current value of the session low

double value = CurrentDayOHL().CurrentLow[0];

Print("The current session low value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

NinjaTrader 82438

© 2023 NinjaTrader, LLC

11.6.2.18.25 Darvas

Description
A trading strategy that was developed in 1956 by former ballroom dancer Nicolas Darvas.

Darvas' trading technique involved buying into stocks that were trading at new 52-week highs

with correspondingly high volumes.

... Courtesy of Investopedia

Syntax
Darvas()

Darvas(ISeries<double> input)

Returns the upper value

Darvas().Upper[int barsAgo]

Darvas(ISeries<double> input).Upper[int barsAgo]

Returns the lower value

Darvas().Lower[int barsAgo]

Darvas(ISeries<double> input).Lower[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

Example

// Prints the current upper Darvas value

double value = Darvas().Upper[0];

Print("The current upper Darvas value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

http://www.investopedia.com/terms/d/darvasboxtheory.asp

NinjaScript 2439

© 2023 NinjaTrader, LLC

11.6.2.18.26 Directional Movement (DM)

Description
Same as the ADX indicator with the addition of the +DI and -DI values.

... Courtesy of Investopedia

Syntax
DM(int period)

DM(ISeries<double> input, int period)

Returns default ADX value

DM(int period)[int barsAgo]

DM(ISeries<double> input, int period)[int barsAgo]

Returns +DI value

DM(int period).DiPlus[int barsAgo]

DM(ISeries<double> input, int period).DiPlus[int barsAgo]

Returns -DI value

DM(int period).DiMinus[int barsAgo]

DM(ISeries<double> input, int period).DiMinus[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

// Prints the current value of a 20 period +DI using default price

type

double value = DM(20).DiPlus[0];

Print("The current +DI value is " + value.ToString());

Source Code

http://www.investopedia.com/terms/d/dmi.asp

NinjaTrader 82440

© 2023 NinjaTrader, LLC

You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.27 Directional Movement Index (DMI)

Description
An indicator developed by J. Welles Wilder for identifying when a definable trend is present in

an instrument. That is, the DMI tells whether an instrument is trending or not.

...Courtesy of FMLabs

Syntax
DMI(int period)

DMI(ISeries<double> input, int period)

Returns default value

DMI(int period)[int barsAgo]

DMI(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

// Prints the current value of a 20 period DMI using default price

type

double value = DMI(20)[0];

Print("The current DMI value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

http://www.fmlabs.com/reference/default.htm?url=DX.htm

NinjaScript 2441

© 2023 NinjaTrader, LLC

11.6.2.18.28 Disparity Index

Description
The Disparity Index that measures the difference between the price and an exponential

moving average. A value greater could suggest bullish momentum, while a value less than

zero could suggest bearish momentum.

Syntax
DisparityIndex(int period)

DisparityIndex(ISeries<double> input, int period)

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 15 period Disparity Index

double value = DisparityIndex(15)[0];

Print("The current Disparity Index value is " + value.ToString());

11.6.2.18.29 Donchian Channel

Description
A moving average indicator developed by Richard Donchian. It plots the highest high and

lowest low over a specific period.

Syntax
DonchianChannel(int period)

DonchianChannel(ISeries<double> input, int period)

Returns mean value (middle band) at a specified bar index

DonchianChannel(int period)[int barsAgo]

DonchianChannel(ISeries<double> input, int period)[int barsAgo]

Returns upper band value at a specified bar index

DonchianChannel(int period).Upper[int barsAgo]

DonchianChannel(ISeries<double> input, int period).Upper[int barsAgo]

NinjaTrader 82442

© 2023 NinjaTrader, LLC

Returns lower band value at a specified bar index

DonchianChannel(int period).Lower[int barsAgo]

DonchianChannel(ISeries<double> input, int period).Lower[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current upper value of a 20 period DonchianChannel

using default price type

double value = DonchianChannel(20).Upper[0];

Print("The current DonchianChannel upper value is " +

value.ToString());

// Note the above call with a barsAgo of 0 includes the current

Upper channel in the value. If we want to check for example for a

break of this value, storing the last bar's channel value would be

needed.

double value = DonchianChannel(20).Upper[1];

if (High[0] > value)

 Draw.ArrowUp(this, CurrentBar.ToString(), true, 0, Low[0] -

TickSize, Brushes.Blue);

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.30 Double Stochastics

Description
Double Stochastics is a variation of the Stochastics indicator developed by William Blau.

NinjaScript 2443

© 2023 NinjaTrader, LLC

Syntax
DoubleStochastics(int period)

DoubleStochastics(ISeries<double> input, int period)

Returns default value

DoubleStochastics(int period)[int barsAgo]

DoubleStochastics(ISeries<double> input, int period)[int barsAgo]

Returns %K value

DoubleStochastics(int period).K[int barsAgo]

DoubleStochastics(ISeries<double> input, int period).K[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value

double value = DoubleStochastics(10)[0];

Print("The current Double Stochastics value is " +

value.ToString());

// Prints the current %K value

double value = DoubleStochastics(10).K[0];

Print("The current Double Stochastics %K value is " +

value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

NinjaTrader 82444

© 2023 NinjaTrader, LLC

11.6.2.18.31 Dynamic Momentum Index (DMIndex)

Description
An indicator used in technical analysis that determines overbought and oversold conditions of

a particular asset. This indicator is very similar to the relative strength index (RSI). The main

difference between the two is that the RSI uses a fixed number of time periods (usually 14),

while the dynamic momentum index uses different time periods as volatility changes.

... Courtesy of Investopedia

Syntax
DMIndex(int smooth)

DMIndex(ISeries<double> input, int smooth)

Returns default value

DMIndex(int period)[int barsAgo]

DMIndex(ISeries<double> input, int smooth)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

smooth The number of bars to include in the calculation

Example

// Prints the current value of DMIndex using default price type

double value = DMIndex(3)[0];

Print("The current DMIndex value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

http://www.investopedia.com/terms/d/dynamicmomentumindex.asp

NinjaScript 2445

© 2023 NinjaTrader, LLC

11.6.2.18.32 Ease of Movement

Description
The Ease of Movement indicator was designed to illustrate the relationship between volume

and price change. It shows how much volume is required to move prices.

High Ease of Movement values occur when prices are moving upward with light volume. Low

values occur when prices are moving downward on light volume. If prices are not moving or if

heavy volume is required to move prices then the indicator will read near zero. A buy signal is

produced when it crosses above zero. A sell signal is produced when the indicator crosses

below zero (prices are moving downward more easily).

Syntax
EaseOfMovement(int smoothing, int volumeDivisor)

EaseOfMovement(ISeries<double> input, int smoothing, int volumeDivisor)

Returns default value

EaseOfMovement(int smoothing, int volumeDivisor)[int barsAgo]

EaseOfMovement(ISeries<double> input, int smoothing, int volumeDivisor)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

smoothing The number of bars used to smooth the signal

volumeDivisor The value used to calculate the box ratio

Example

// Prints the current value of Ease of Movement using default price

type

double value = EaseOfMovement(14, 10000)[0];

Print("The current Ease of Movement value is " + value.ToString());

Source Code

NinjaTrader 82446

© 2023 NinjaTrader, LLC

You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.33 Fibonacci Pivots

Description
Fibonacci pivots are a price analysis tool that generates potential support and resistance

levels by multiplying the prior range against Fibonacci values then adding or subtracting it

from the average of the prior high, low, and close.

Syntax
FibonacciPivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width)

FibonacciPivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width)

Returns pivot point value

FibonacciPivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).Pp[int

barsAgo]

FibonacciPivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).PP[int barsAgo]

Returns R1 value

FibonacciPivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).R1[int

barsAgo]

FibonacciPivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).R1[int barsAgo]

Returns R2 value

FibonacciPivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).R2[int

barsAgo]

FibonacciPivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).R2[int barsAgo]

Returns R3 value

FibonacciPivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).R3[int

barsAgo]

FibonacciPivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).R3[int barsAgo]

NinjaScript 2447

© 2023 NinjaTrader, LLC

Returns S1 value

FibonacciPivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).S1[int

barsAgo]

FibonacciPivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).S1[int barsAgo]

Returns S2 value

FibonacciPivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).S2[int

barsAgo]

FibonacciPivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).S2[int barsAgo]

Returns S3 value

FibonacciPivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).S3[int

barsAgo]

FibonacciPivots(ISeries<double>input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).S3[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

pivotRangeType Sets the range for the type of pivot calculated.

Possible values are:

PivotRange.Daily

PivotRange.Weekly

PivotRange.Monthly

priorDayHLC Sets how the prior range High, Low, Close

values are calculated. Possible values are:

HLCCalculationMode.CalcFromIntradayData

HLCCalculationMode.DailyBars

HLCCalculationMode.UserDefinedValues

NinjaTrader 82448

© 2023 NinjaTrader, LLC

userDefinedClose Sets the close for Pivots calculations when using

HLCCalculationMode.UserDefinedValues.

userDefinedHigh Sets the high for Pivots calculations when using

HLCCalculationMode.UserDefinedValues.

userDefinedLow Sets the low for Pivots calculations when using

HLCCalculationMode.UserDefinedValues.

width Sets how long the Pivots lines will be drawn

Examples

// Prints the current pivot point value

double valuePp = FFibonacciPivots(PivotRange.Daily,

HLCCalculationMode.CalcFromIntradayData, 0, 0, 0, 20).Pp[0];

Print("The current Fibonacci Pivots' pivot value is " +

valuePp.ToString());

// Prints the current S2 pivot value

double valueS2 = FibonacciPivots(PivotRange.Daily,

HLCCalculationMode.CalcFromIntradayData, 0, 0, 0, 20).S2[0];

Print("The current Fibonacci Pivots' S2 pivot value is " +

valueS2.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

Tip: When using HLCCalculationMode.DailyBars it can be expected that a value of 0 is

returned when the daily bars have not been loaded yet. Due to the asynchronous nature of

this indicator calling daily bars you should only access the pivot values when the indicator

has loaded all required Bars objects. To ensure you are accessing accurate values you

can use .IsValidDataPoint() as a check:

NinjaScript 2449

© 2023 NinjaTrader, LLC

// Evaluates that this is a valid pivot point value

if (FibonacciPivots(PivotRange.Daily,

HLCCalculationMode.DailyBars, 0, 0, 0,

20).Pp.IsValidDataPoint(0))

{

 // Prints the current pivot point value

 double valuePp = FibonacciPivots(PivotRange.Daily,

HLCCalculationMode.DailyBars, 0, 0, 0, 20).Pp[0];

 Print("The current Pivots' pivot value is " +

valuePp.ToString());

}

11.6.2.18.34 Fisher Transform

Description
With distinct turning points and a rapid response time, the Fisher Transform uses the

assumption that while prices do not have a normal or Gaussian probability density function

(that familiar bell-shaped curve), you can create a nearly Gaussian probability density function

by normalizing price (or an indicator such as RSI) and applying the Fisher Transform. Use the

resulting peak swings to clearly identify price reversals.

Syntax
FisherTransform(int period)

FisherTransform(ISeries<double> input, int period)

Returns default value

FisherTransform(int period)[int barsAgo]

FisherTransform(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

NinjaTrader 82450

© 2023 NinjaTrader, LLC

// Prints the current value of a 10 period using default (median)

price type

double value = FisherTransform(10)[0];

Print("The current Fisher Transform value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.35 Forecast Oscillator (FOSC)

Description
The Forecast Oscillator calculates the percentage difference between the actual price and

the Time Series Forecast (the endpoint of a linear regression line). When the price and the

forecast are equal, the Oscillator is zero. When the price is greater than the forecast, the

Oscillator is greater than zero. When the price is less than the forecast, the Oscillator is less

than zero.

... Courtesy of FM Labs

Syntax
FOSC(int period)

FOSC(ISeries<double> input, int period)

Returns default value

FOSC(int period)[int barsAgo]

FOSC(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

http://www.fmlabs.com/reference/default.htm?url=ForecastOscillator.htm

NinjaScript 2451

© 2023 NinjaTrader, LLC

// Evaluates if the current bar FOCS is above zero

if (FOSC(14)[0] > 0)

 Print("FOSC is above zero indicating prices may rise");

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.36 Keltner Channel

Description
Keltner Channel indicator is based on volatility using a pair of values placed as an "envelope"

around the data field.

Syntax
KeltnerChannel(double offsetMultiplier, int period)

KeltnerChannel(ISeries<double> input, double offsetMultiplier, int period)

Returns midline value

KeltnerChannel(double offsetMultiplier, int period)[int barsAgo]

KeltnerChannel(ISeries<double> input, double offsetMultiplier, int period)[int

barsAgo]

Returns upper band value

KeltnerChannel(double offsetMultiplier, int period).Upper[int barsAgo]

KeltnerChannel(ISeries<double> input, double offsetMultiplier, int period).Upper[int

barsAgo]

Returns lower band value

KeltnerChannel(double offsetMultiplier, int period).Lower[int barsAgo]

KeltnerChannel(ISeries<double> input, double offsetMultiplier, int period).Lower[int

barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

NinjaTrader 82452

© 2023 NinjaTrader, LLC

period Number of bars used in the calculation

Examples

// Prints the current upper value of a 20 period KeltnerChannel

using default price type

double value = KeltnerChannel(1.5, 20).Upper[0];

Print("The current KeltnerChannel upper value is " +

value.ToString());

// Prints the current lower value of a 20 period KeltnerChannel

using high price type

double value = KeltnerChannel(High, 1.5, 20).Lower[0];

Print("The current KeltnerChannel lower value is " +

value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.37 KeyReversalDow n

Description
Returns a value of 1 when the current close is less than the prior close and the current high

has penetrated the highest high of the last n bars.

Syntax
KeyReversalDown(int period)

KeyReversalDown(ISeries<double> input, int period)

Returns default value

KeyReversalDown(int period)[int barsAgo]

KeyReversalDown(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

NinjaScript 2453

© 2023 NinjaTrader, LLC

input Indicator source data (?)

period Number of bars used in the calculation

Example

// If we get a reversal over the past 10 bars go short

if (KeyReversalDown(10)[0] == 1)

 EnterShort();

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.38 KeyReversalUp

Description
Returns a value of 1 when the current close is greater than the prior close and the current low

has penetrated the lowest low of the last n bars.

Syntax
KeyReversalUp(int period)

KeyReversalUp(ISeries<double> input, int period)

Returns default value

KeyReversalUp(int period)[int barsAgo]

KeyReversalUp(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

NinjaTrader 82454

© 2023 NinjaTrader, LLC

Example

// If we get a reversal over the past 10 bars go long

if (KeyReversalUp(10)[0] == 1)

 EnterLong();

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.39 Linear Regression

Description
The Linear Regression Indicator plots the trend of a security's price over time. That trend is

determined by calculating a Linear Regression Trendline using the least squares method.

This ensures the minimum distance between the data points and a Linear Regression

Trendline.

Syntax
LinReg(int period)

LinReg(ISeries<double> input, int period)

Returns default value

LinReg(int period)[int barsAgo]

LinReg(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

NinjaScript 2455

© 2023 NinjaTrader, LLC

// Prints the current value of a 20 period LinReg using default

price type

double value = LinReg(20)[0];

Print("The current LinReg value is " + value.ToString());

// Prints the current value of a 20 period LinReg using high price

type

double value = LinReg(High, 20)[0];

Print("The current LinReg value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.40 Linear Regression Intercept

Description
The Linear Regression Intercept provides the intercept value of the Linear Regression

trendline.

Syntax
LinRegIntercept(int period)

LinRegIntercept(ISeries<double> input, int period)

Returns default value

LinRegIntercept(int period)[int barsAgo]

LinRegIntercept(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

NinjaTrader 82456

© 2023 NinjaTrader, LLC

// Prints the current intercept value of a 20 period LinReg using

default price type

double value = LinRegIntercept(20)[0];

Print("The current intercept value is " + value.ToString());

// Prints the current intercept value of a 20 period LinReg using

high price type

double value = LinRegIntercept(High, 20)[0];

Print("The current intercept value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.41 Linear Regression Slope

Description
The Linear Regression Slope provides the slope value of the Linear Regression trendline.

Syntax
LinRegSlope(int period)

LinRegSlope(ISeries<double> input, int period)

Returns default value

LinRegSlope(int period)[int barsAgo]

LinRegSlope(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

NinjaScript 2457

© 2023 NinjaTrader, LLC

// Prints the current slope value of a 20 period LinReg using

default price type

double value = LinRegSlope(20)[0];

Print("The current slope value is " + value.ToString());

// Prints the current slope value of a 20 period LinReg using high

price type

double value = LinRegSlope(High, 20)[0];

Print("The current slope value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.42 MA Envelopes

Description
The Moving Average Envelope consists of moving averages calculated from the underling

price, shifted up and down by a fixed percentage.

Syntax
MAEnvelopes(double envelopePercentage, int mAType, int period)

MAEnvelopes(ISeries<double> input, double envelopePercentage, int mAType, int period)

Returns upper band levels

MAEnvelopes(double envelopePercentage, int mAType, int period).Upper[int barsAgo]

MAEnvelopes(ISeries<double> input, double envelopePercentage, int mAType, int

period).Upper[int barsAgo]

Returns moving average value

MAEnvelopes(double envelopePercentage, int mAType, int period).Middle[int barsAgo]

MAEnvelopes(ISeries<double> input, double envelopePercentage, int mAType, int

period).Middle[int barsAgo]

Returns lower band levels

MAEnvelopes(double envelopePercentage, int mAType, int period).Lower[int barsAgo]

MAEnvelopes(ISeries<double> input, double envelopePercentage, int mAType, int

period).Lower[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

NinjaTrader 82458

© 2023 NinjaTrader, LLC

Parameters

envelopePercenta

ge

Percentage around MA that envelopes will be

drawn

input Indicator source data (?)

mAType Moving average type:

1 = EMA

2 = HMA

3 = SMA

4 = TMA

5 = TEMA

6 = WMA

period Number of bars used in the calculation

Examples

// Prints the current upper band value of a 20 period SMA envelope

using default price type

double upperValue = MAEnvelopes(0.2, 3, 20).Upper[0];

Print("The current SMA envelope upper value is " +

upperValue.ToString());

// Prints the current lower band value of a 20 period SMA envelope

using low price type

double lowerValue = MAEnvelopes(Low, 0.2, 3, 20).Lower[0];

Print("The current SMA envelope lower value is " +

lowerValue.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.43 Maximum (MAX)

Description
Returns the highest value over the specified period.

Syntax

NinjaScript 2459

© 2023 NinjaTrader, LLC

MAX(int period)

MAX(ISeries<double> input, int period)

Returns default value

MAX(int period)[int barsAgo]

MAX(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

// Prints the highest high value over the last 20 periods

double value = MAX(High, 20)[0];

Print("The current MAX value is " + value.ToString());

// Note the above call with a barsAgo of 0 includes the current MAX

of the input high series in the value. If we want to check for

example for a break of this value, storing the last bar's MAX would

be needed.

double value = MAX(High, 20)[1];

if (High[0] > value)

 Draw.ArrowUp(this, CurrentBar.ToString(), true, 0, Low[0] -

TickSize, Brushes.Blue);

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.44 McClellan Oscillator

Description
McClellan Oscillator is the difference between two exponential moving averages of the NYSE

advance decline spread. This indicator require ADV and DECL index data.

NinjaTrader 82460

© 2023 NinjaTrader, LLC

Syntax
McClellanOscillator(int fastPeriod, int slowPeriod)
McClellanOsillator(ISeries<double> input, int fastPeriod, int slowPeriod)

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

fastPeriod Number of bars used in the fast moving average

calculation

slowPeriod Number of bars used in the slow moving average

calculation

Examples

// An ADV and DECL data series must be added to OnStateChange()

else if (State == State.Configure)
{

AddDataSeries("^ADV");

AddDataSeries("^DECL");
}

// Prints the current value of the McClellan Oscillator with a 19
fast period moving average & 39 slow period
double value = McClellanOscillator(19, 39)[0];
Print("The current McClellan Oscillator value is " +
value.ToString());

11.6.2.18.45 Minimum (MIN)

Description
Returns the lowest value over the specified period.

Syntax
MIN(int period)

MIN(ISeries<double> input, int period)

NinjaScript 2461

© 2023 NinjaTrader, LLC

Returns default value

MIN(int period)[int barsAgo]

MIN(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

// Prints the lowest low value over the last 20 periods

double value = MIN(Low, 20)[0];

Print("The current MIN value is " + value.ToString());

// Note the above call with a barsAgo of 0 includes the current MIN

of the input low series in the value. If we want to check for

example for a break of this value, storing the last bar's MIN would

be needed.

double value = MIN(Low, 20)[1];

if (Low[0] < value)

 Draw.ArrowDown(this, CurrentBar.ToString(), true, 0, High[0] +

TickSize, Brushes.Red);

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.46 Momentum

Description
By measuring the amount that a security's price has changed over a given time span, the

Momentum indicator provides an indication of a market's velocity and to some degree, a

measure of the extent to which a trend still holds true. It can also be helpful in spotting likely

reversal points.

NinjaTrader 82462

© 2023 NinjaTrader, LLC

Syntax
Momentum(int period)

Momentum(ISeries<double> input, int period)

Returns default value

Momentum(int period)[int barsAgo]

Momentum(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period Momentum using default

price type

double value = Momentum(20)[0];

Print("The current Momentum value is " + value.ToString());

// Prints the current value of a 20 period Momentum using high

price type

double value = Momentum(High, 20)[0];

Print("The current Momentum value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.47 Money Flow Index (MFI)

Description
The Money Flow Index (MFI) is a momentum indicator that is similar to the Relative Strength

Index (RSI) in both interpretation and calculation. However, MFI is a more rigid indicator in that

it is volume-weighted, and is therefore a good measure of the strength of money flowing in

and out of a security.

NinjaScript 2463

© 2023 NinjaTrader, LLC

... Courtesy of StockCharts

Syntax
MFI(int period)

MFI(ISeries<double> input, int period)

Returns default value

MFI(int period)[int barsAgo]

MFI(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

// Prints the current value of a 20 period MFI using default price

type

double value = MFI(20)[0];

Print("The current MFI value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.48 Money Flow Oscillator

Description
The Money Flow Oscillator measures the amount of money flow volume over a specific

period. A move into positive territory indicates buying pressure while a move into negative

territory indicates selling pressure.

Syntax

http://stockcharts.com/education/IndicatorAnalysis/indic_MFI.htm

NinjaTrader 82464

© 2023 NinjaTrader, LLC

MoneyFlowOscillator(int period)

MoneyFlowOscillator(ISeries<double> input, int period)

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 10 period Money Flow Oscillator

double value = MoneyFlowOscillator(10)[0];

Print("The current Money Flow Oscillator value is " +

value.ToString());

11.6.2.18.49 Moving Average - Double Exponential (DEMA)

Description
The Double Exponential Moving Average (DEMA) is a combination of a single exponential

moving average and a double exponential moving average. The advantage is that gives a

reduced amount of lag time than either of the two separate moving averages alone.

Syntax
DEMA(int period)

DEMA(ISeries<double> input, int period)

Returns default value

DEMA(int period)[int barsAgo]

DEMA(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

NinjaScript 2465

© 2023 NinjaTrader, LLC

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period DEMA using default price

type

double value = DEMA(20)[0];

Print("The current DEMA value is " + value.ToString());

// Prints the current value of a 20 period DEMA using high price

type

double value = DEMA(High, 20)[0];

Print("The current DEMA value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.50 Moving Average - Exponential (EMA)

Description
The exponential moving average is but one type of a moving average. In a simple moving

average, all price data has an equal weight in the computation of the average with the oldest

value removed as each new value is added. In the exponential moving average equation the

most recent market action is assigned greater importance as the average is calculated. The

oldest pricing data in the exponential moving average is however never removed.

Syntax
EMA(int period)

EMA(ISeries<double> input, int period)

Returns default value

EMA(int period)[int barsAgo]

EMA(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

NinjaTrader 82466

© 2023 NinjaTrader, LLC

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period EMA using default price

type

double value = EMA(20)[0];

Print("The current EMA value is " + value.ToString());

// Prints the current value of a 20 period EMA using high price

type

double value = EMA(High, 20)[0];

Print("The current EMA value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.51 Moving Average - Hull (HMA)

Description
The HMA manages to keep up with rapid changes in price activity whilst having superior

smoothing over an SMA of the same period. The HMA employs weighted moving averages

and dampens the smoothing effect (and resulting lag) by using the square root of the period

instead of the actual period itself. Developed by Alan Hull.

Syntax
HMA(int period)

HMA(ISeries<double> input, int period)

Returns default value

HMA(int period)[int barsAgo]

HMA(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

NinjaScript 2467

© 2023 NinjaTrader, LLC

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period HMA using default price

type

double value = HMA(20)[0];

Print("The current HMA value is " + value.ToString());

// Prints the current value of a 20 period HMA using high price

type

double value = HMA(High, 20)[0];

Print("The current HMA value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.52 Moving Average - Kaufman's Adaptive (KAMA)

Description
Developed by Perry Kaufman, this indicator is an EMA using an Efficiency Ratio to modify the

smoothing constant, which ranges from a minimum of Fast Length to a maximum of Slow

Length.

Syntax
KAMA(int fast, int period, int slow)

KAMA(ISeries<double> input, int fast, int period, int slow)

Returns default value

KAMA(int fast, int period, int slow)[int barsAgo]

KAMA(ISeries<double> input, int fast, int period, int slow)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

NinjaTrader 82468

© 2023 NinjaTrader, LLC

Parameters

fast Fast length

input Indicator source data (?)

period Number of bars used in the calculation

slow Slow length

Examples

// Prints the current value of a 20 period KAMA using default price

type

double value = KAMA(2, 20, 30)[0];

Print("The current KAMA value is " + value.ToString());

// Prints the current value of a 20 period KAMA using high price

type

double value = KAMA(High, 2, 20, 30)[0];

Print("The current KAMA value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.53 Moving Average - Mesa Adaptive (MAMA)

Description
The MESA Adaptive Moving Average (MAMA) adapts to price movement in an entirely new and

unique way. The adaptation is based on the rate change of phase as measured by the Hilbert

Transform Discriminator. The advantage of this method of adaptation is that it features a fast

attack average and a slow decay average so that composite average rapidly ratchets behind

price changes and holds the average value until the next ratchet occurs.

Syntax
MAMA(double fastLimit, double slowLimit)

MAMA(ISeries<double> input, double fastLimit, double slowLimit)

Returns MAMA value

MAMA(double fastLimit, double slowLimit)[int barsAgo]

MAMA(ISeries<double> input, double fastLimit, double slowLimit)[int barsAgo]

NinjaScript 2469

© 2023 NinjaTrader, LLC

Returns Fama (Following Adaptive Moving Average) value

MAMA(double fastLimit, double slowLimit).Fama[int barsAgo]

MAMA(ISeries<double> input, double fastLimit, double slowLimit).Fama[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

fastLimit Upper limit of the alpha value

input Indicator source data (?)

slowLimit Lower limit of the alpha value

Examples

// Prints the current value of a 20 period MAMA using default price

type

double value = MAMA(0.5, 0.05).Default[0];

Print("The current MAMA value is " + value.ToString());

// Prints the current value of a 20 period Fama using high price

type

double value = MAMA(High, 0.5, 0.05).Fama[0];

Print("The current Fama value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.54 Moving Average - Simple (SMA)

Description
The Simple Moving Average is calculated by summing the closing prices of the security for a

period of time and then dividing this total by the number of time periods. Sometimes called an

arithmetic moving average, the SMA is basically the average stock price over time.

Syntax

NinjaTrader 82470

© 2023 NinjaTrader, LLC

SMA(int period)

SMA(ISeries<double> input, int period)

Returns default value

SMA(int period)[int barsAgo]

SMA(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period SMA using default price

type

double value = SMA(20)[0];

Print("The current SMA value is " + value.ToString());

// Prints the current value of a 20 period SMA using high price

type

double value = SMA(High, 20)[0];

Print("The current SMA value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.55 Moving Average - T3 (T3)

Description
The T3 is a type of moving average, or smoothing function. It is based on the DEMA. The T3

takes the DEMA calculation and adds a vfactor which is between zero and 1. The resultant

function is called the GD, or Generalized DEMA. A GD with vfactor of 1 is the same as the

DEMA. A GD with a vfactor of zero is the same as an Exponential Moving Average. The T3

typically uses a vfactor of 0.7.

NinjaScript 2471

© 2023 NinjaTrader, LLC

... Courtesy of FMLabs

Syntax
T3(int period, int tCount, double vFactor)

T3(ISeries<double> input, int period, int tCount, double vFactor)

Returns default value

T3(int period, int tCount, double vFactor)[int barsAgo]

T3(ISeries<double> input, int period, int tCount, double vFactor)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

tCount Number of smooth iterations

vFactor A multiplier fudge factor

Examples

// Prints the current value of a 20 period T3 using default price

type

double value = T3(20, 3, 0.7)[0];

Print("The current T3 value is " + value.ToString());

// Prints the current value of a 20 period T3 using high price type

double value = T3(High, 20, 3, 0.7)[0];

Print("The current T3 value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

http://www.fmlabs.com/reference/default.htm?url=T3.htm

NinjaTrader 82472

© 2023 NinjaTrader, LLC

11.6.2.18.56 Moving Average - Triangular (TMA)

Description
The Triangular Moving Average is a form of Weighted Moving Average wherein the weights

are assigned in a triangular pattern. For example, the weights for a 7 period Triangular Moving

Average would be 1, 2, 3, 4, 3, 2, 1. This gives more weight to the middle of the time series

and less weight to the oldest and newest data.

Syntax
TMA(int period)

TMA(ISeries<double> input, int period)

Returns default value

TMA(int period)[int barsAgo]

TMA(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period TMA using default price

type

double value = TMA(20)[0];

Print("The current TMA value is " + value.ToString());

// Prints the current value of a 20 period TMA using high price

type

double value = TMA(High, 20)[0];

Print("The current TMA value is " + value.ToString());

Source Code

NinjaScript 2473

© 2023 NinjaTrader, LLC

You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.57 Moving Average - Triple Exponential (TEMA)

Description
The TEMA is a smoothing indicator. It was developed by Patrick Mulloy and is described in his

article in the January, 1994 issue of Technical Analysis of Stocks and Commodities

magazine.

Syntax
TEMA(int period)

TEMA(ISeries<double> input, int period)

Returns default value

TEMA(int period)[int barsAgo]

TEMA(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period TEMA using default price

type

double value = TEMA(20)[0];

Print("The current TEMA value is " + value.ToString());

// Prints the current value of a 20 period TEMA using high price

type

double value = TEMA(High, 20)[0];

Print("The current TEMA value is " + value.ToString());

Source Code

NinjaTrader 82474

© 2023 NinjaTrader, LLC

You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.58 Moving Average - Triple Exponential (TRIX)

Description
The triple exponential average (TRIX) indicator is an oscillator used to identify oversold and

overbought markets, and it can also be used as a momentum indicator.

... Courtesy of Investopedia

Syntax
TRIX(int period, int signalPeriod)

TRIX(ISeries<double> input, int period, int signalPeriod)

Returns trix value

TRIX(int period, int signalPeriod)[int barsAgo]

TRIX(ISeries<double> input, int period, int signalPeriod)[int barsAgo]

Returns signal value

TRIX(int period, int signalPeriod).Signal[int barsAgo]

TRIX(ISeries<double> input, int period, int signalPeriod).Signal[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

signalPeriod Period for signal line

Examples

http://www.investopedia.com/articles/technical/02/092402.asp

NinjaScript 2475

© 2023 NinjaTrader, LLC

// Prints the current value of a 20 period TRIX using default price

type

double value = TRIX(20, 3).Default[0];

Print("The current TRIX value is " + value.ToString());

// Prints the current signal value of a 20 period TRIX using high

price type

double value = TRIX(High, 20, 3).Signal[0];

Print("The current TRIX signal value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.59 Moving Average - Variable (VMA)

Description
A Variable Moving Average is an exponential moving average that automatically adjusts its

smoothing percentage based on market volatility. Giving more weight to the current data

increases sensitivity thus making it a better signal indicator for short and long term markets.

Syntax
VMA(int period, int volatilityPeriod)

VMA(ISeries<double> input, int period, int volatilityPeriod)

Returns default value

VMA(int period, int volatilityPeriod)[int barsAgo]

VMA(ISeries<double> input, int period, int volatilityPeriod)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

volatilityPeriod The number of bars used to calculate the CMO

based volatility index

NinjaTrader 82476

© 2023 NinjaTrader, LLC

Examples

// OnBarUpdate method of a strategy

protected override void OnBarUpdate()

{

 // Print out the VMA value of lows 3 bars ago for fun

 double value = VMA(Low, 9, 9)[3];

 Print("The value is " + value.ToString());

 // Go long if price closes above the current VMA value

 if (Close[0] > VMA(9, 9)[0])

 EnterLong();

}

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.60 Moving Average - Volume Weighted (VWMA)

Description
The Volume Weighted Moving Average is a weighted moving average that uses the volume as

the weighting factor, so that higher volume days have more weight. It is a non-cumulative

moving average, in that only data within the time period is used in the calculation.

Syntax
VWMA(int period)

VWMA(ISeries<double> input, int period)

Returns default value

VWMA(int period)[int barsAgo]

VWMA(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

NinjaScript 2477

© 2023 NinjaTrader, LLC

period Number of bars used in the calculation

Examples

// OnBarUpdate method

protected override void OnBarUpdate()

{

 // Evaluates for a VWMA cross over to the long side

 if (CrossAbove(VWMA(14), VWMA(40), 1))

 Print("We have a moving average cross over long");

 // Prints the current 14 period VWMA of high prices to the

output window

 double value = VWMA(High, 14)[0];

 Print("The current VWMA value of high prices is " +

value.ToString());

}

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.61 Moving Average - Weighted (WMA)

Description
The Weighted Moving Average gives the latest price more weight than prior prices. Each prior

price in the period gets progressively less weight as they become older.

Syntax
WMA(int period)

WMA(ISeries<double> input, int period)

Returns default value

WMA(int period)[int barsAgo]

WMA(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

NinjaTrader 82478

© 2023 NinjaTrader, LLC

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period WMA using default price

type

double value = WMA(20)[0];

Print("The current WMA value is " + value.ToString());

// Prints the current value of a 20 period WMA using high price

type

double value = WMA(High, 20)[0];

Print("The current WMA value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.62 Moving Average - Zero Lag Exponential (ZLEMA)

Description
The Zero-Lag Exponential Moving Average is a variation on the Exponential Moving Average.

The Zero-Lag keeps the benefit of the heavier weighting of recent values, but attempts to

remove lag by subtracting older data to minimize the cumulative effect.

... Courtesy of FMLabs

Syntax
ZLEMA(int period)

ZLEMA(ISeries<double> input, int period)

Returns default value

ZLEMA(int period)[int barsAgo]

ZLEMA(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

http://www.fmlabs.com/reference/default.htm?url=ZeroLagExpMA.htm

NinjaScript 2479

© 2023 NinjaTrader, LLC

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period ZLEMA using default

price type

double value = ZLEMA(20)[0];

Print("The current SMA value is " + value.ToString());

// Prints the current value of a 20 period ZLEMA using high price

type

double value = ZLEMA(High, 20)[0];

Print("The current ZLEMA value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.63 Moving Average Convergence-Divergence (MACD)

Description
MACD uses moving averages, which are lagging indicators, to include some trend-following

characteristics. These lagging indicators are turned into a momentum oscillator by

subtracting the longer moving average from the shorter moving average.

... Courtesy of StockCharts

Syntax
MACD(int fast, int slow, int smooth)

MACD(ISeries<double> input, int fast, int slow, int smooth)

Returns MACD value

MACD(int fast, int slow, int smooth)[int barsAgo]

MACD(ISeries<double> input, int fast, int slow, int smooth)[int barsAgo]

http://stockcharts.com/education/IndicatorAnalysis/indic_MACD1.html

NinjaTrader 82480

© 2023 NinjaTrader, LLC

Returns average value

MACD(int fast, int slow, int smooth).Avg[int barsAgo]

MACD(ISeries<double> input, int fast, int slow, int smooth).Avg[int barsAgo]

Returns difference value

MACD(int fast, int slow, int smooth).Diff[int barsAgo]

MACD(ISeries<double> input, int fast, int slow, int smooth).Diff[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

fast The number of bars to calculate the fast EMA

input Indicator source data (?)

slow The numbers of bars to calculate the slow EMA

smooth The number of bars to calculate the EMA signal

line

Examples

// Prints the current MACD value

double value = MACD(12, 26, 9)[0];

Print("The current MACD value is " + value.ToString());

// Prints the current MACD average value

double value = MACD(12, 26, 9).Avg[0];

Print("The current MACD average value is " + value.ToString());

// Prints the current MACD difference value

double value = MACD(12, 26, 9).Diff[0];

Print("The current MACD difference value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

NinjaScript 2481

© 2023 NinjaTrader, LLC

11.6.2.18.64 Moving Average Ribbon

Description
The Moving Average Ribbon is a series of incrementing moving averages.

Syntax
MovingAverageribbon(RibbonMAType movingAverage, int basePeriod, int incrementalPeriod)

MovingAverageribbon(ISeries<double> input, RibbonMAType movingAverage, int basePeriod,

int incrementalPeriod)

Returns the MovingAverage1 value (Replace the 1 with the desired moving average you

want the value to return)

MovingAverageribbon(RibbonMAType movingAverage, int basePeriod, int

incrementalPeriod).MovingAverage1[int barsAgo]

MovingAverageribbon(ISeries<double> input, RibbonMAType movingAverage, int basePeriod,

int incrementalPeriod).MovingAverage1[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

RibbonMAType Moving average to use for calculations

basePeriod Number of bars used in the calculation for the

fastest moving average

incrementalPeriod Number of bars to increase for the calculation in

each additional moving average

Examples

// Prints the current value of the 3rd moving average

double value = MovingAverageRibbon(RibbonMAType.Exponential, 10,

10).MovingAverage3[0];

Print("The current 3rd moving average's value is " +

value.ToString());

11.6.2.18.65 Net Change Display

Description
Displays net change on the chart.

NinjaTrader 82482

© 2023 NinjaTrader, LLC

Syntax
NetChangeDisplay(PerformanceUnit, NetChangePosition location)

NetChangeDisplay(ISeries<double> input, PerformanceUnit, NetChangePosition location)

Return Value
double

Parameters

input Indicator source data (?)

PerformanceUnit Format of the calculation of net change

NetChangePositio

n

Location to display net change on the chart

Examples

// Runs on realtime since there is no historical data for this

indicator

if (State == State.Historical)

return;

else if (State >= State.Realtime)

{

// Prints the current tick value of the net change

var ncd = NetChangeDisplay(PerformanceUnit.Ticks,

NetChangePosition.BottomRight);

Print("The current Net Change value is " + ncd.NetChange);

}

Note: This indicator only plots real-time. Historical values will print as 0.

11.6.2.18.66 n Bars Dow n

Description
Evaluates for n number of consecutive lower closes. Returns a value of 1 when the condition

is true or 0 when false.

Syntax

NinjaScript 2483

© 2023 NinjaTrader, LLC

NBarsDown(int barCount, bool barDown, bool lowerHigh, bool lowerLow)

NBarsDown(ISeries<double> input, int barCount, bool barDown, bool lowerHigh, bool

lowerLow)

Returns default value

NBarsDown(int barCount, bool barDown, bool lowerHigh, bool lowerLow)[int barsAgo]

NBarsDown(ISeries<double> input, bool barCount, int barDown, bool lowerHigh, bool

lowerLow)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

barCount The number of required consecutive lower

closes

barDown Each bar's open must be less than the close;

true or false

lowerHigh Consecutive lower highs required; true or false

lowerLow Consecutive lower lows required; true or false

Example

// OnBarUpdate method

protected override void OnBarUpdate()

{

 // Evaluates if we have 3 consecutive lower closes

 double value = NBarsDown(3, true, true, true)[0];

 if (value == 1)

 Print("We have three consecutive lower closes");

}

Source Code

NinjaTrader 82484

© 2023 NinjaTrader, LLC

You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.67 n Bars Up

Description
Evaluates for n number of consecutive higher closes. Returns a value of 1 when the condition

is true or 0 when false.

Syntax
NBarsUp(int barCount, bool barUp, bool higherHigh, bool higherLow)

NBarsUp(ISeries<double> input, int barCount, bool barUp, bool higherHigh, bool

higherLow)

Returns default value

NBarsUp(int barCount, bool barUp, bool higherHigh, bool higherLow)[int barsAgo]

NBarsUp(ISeries<double> input, int barCount, bool barUp, bool higherHigh, bool

higherLow)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

barCount The number of required consecutive higher

closes

barUp Each bar's close must be higher than the open;

true or false

higherHigh Consecutive higher highs required; true or false

higherLow Consecutive higher lows required; true or false

Example

NinjaScript 2485

© 2023 NinjaTrader, LLC

// OnBarUpdate method

protected override void OnBarUpdate()

{

 // Evaluates if we have 3 consecutive higher closes

 double value = NBarsUp(3, true, true, true)[0];

 if (value == 1)

 Print("We have three consecutive higher closes");

}

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.68 On Balance Volume (OBV)

Description
OBV is a simple indicator that adds a period's volume when the close is up and subtracts the

period's volume when the close is down. A cumulative total of the volume additions and

subtractions forms the OBV line. This line can then be compared with the price chart of the

underlying security to look for divergences or confirmation.

... Courtesy of StockCharts

Syntax
OBV()

OBV(ISeries<double> input)

Returns default value

OBV()[int barsAgo]

OBV(ISeries<double> input)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

Example

http://stockcharts.com/education/IndicatorAnalysis/indic-obv.htm

NinjaTrader 82486

© 2023 NinjaTrader, LLC

// Prints the current value of OBV

double value = OBV()[0];

Print("The current OBV value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.69 Order Flow Cumulative Delta

Description
An indicator that accumulates the volume of orders filled at bid and ask prices or up and down

ticks throughout the session and compares them to determine buy/sell pressure.

Syntax
OrderFlowCumulativeDelta(CumulativeDeltaType deltaType, CumulativeDeltaPeriod period,

int sizeFilter)

OrderFlowCumulativeDelta(ISeries<double> input, CumulativeDeltaType deltaType,

CumulativeDeltaPeriod period, int sizeFilter)

Returns Open value

OrderFlowCumulativeDelta(CumulativeDeltaType deltaType, CumulativeDeltaPeriod period,

int sizeFilter).DeltaOpen[int barsAgo]

OrderFlowCumulativeDelta(ISeries<double> input, CumulativeDeltaType deltaType,

CumulativeDeltaPeriod period, int sizeFilter).DeltaOpen[int barsAgo]

Returns High value

OrderFlowCumulativeDelta(CumulativeDeltaType deltaType, CumulativeDeltaPeriod period,

int sizeFilter).DeltaHigh[int barsAgo]

OrderFlowCumulativeDelta(ISeries<double> input, CumulativeDeltaType deltaType,

CumulativeDeltaPeriod period, int sizeFilter).DeltaHigh[int barsAgo]

Returns Low value

OrderFlowCumulativeDelta(CumulativeDeltaType deltaType, CumulativeDeltaPeriod period,

int sizeFilter).DeltaLow[int barsAgo]

OrderFlowCumulativeDelta(ISeries<double> input, CumulativeDeltaType deltaType,

CumulativeDeltaPeriod period, int sizeFilter).DeltaLow[int barsAgo]

Returns Close value

OrderFlowCumulativeDelta(CumulativeDeltaType deltaType, CumulativeDeltaPeriod period,

int sizeFilter).DeltaClose[int barsAgo]

OrderFlowCumulativeDelta(ISeries<double> input, CumulativeDeltaType deltaType,

CumulativeDeltaPeriod period, int sizeFilter).DeltaClose[int barsAgo]

Return Value

NinjaScript 2487

© 2023 NinjaTrader, LLC

double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

deltaType The type of data to delta calculates on:

BidAsk

UpDownTick

period The period in which the delta accumulates:

Session

Bar

sizeFilter Input to exclude volume less than the selected

value

Examples

NinjaTrader 82488

© 2023 NinjaTrader, LLC

Calling the OrderFlowCumulativeDelta() method directly

// A 1 tick data series must be added to the OnStateChange() as

this indicator runs off of tick data

else if (State == State.Configure)

{

 AddDataSeries(Data.BarsPeriodType.Tick, 1);

}

// OnBarUpdate() logic

if (BarsInProgress == 0)

{

// Print the close of the cumulative delta bar with a delta type of

Bid Ask and with a Session period

Print("Delta Close: " + OrderFlowCumulativeDelta(BarsArray[0],

CumulativeDeltaType.BidAsk, CumulativeDeltaPeriod.Session,

0).DeltaClose[0]);

}

else if (BarsInProgress == 1)

{

// We have to update the secondary series of the cached indicator

to make sure the values we get in BarsInProgress == 0 are in sync

OrderFlowCumulativeDelta(BarsArray[0], CumulativeDeltaType.BidAsk,

CumulativeDeltaPeriod.Session,

0).Update(OrderFlowCumulativeDelta(BarsArray[0],

CumulativeDeltaType.BidAsk, CumulativeDeltaPeriod.Session,

0).BarsArray[1].Count - 1, 1);

}

NinjaScript 2489

© 2023 NinjaTrader, LLC

Calling the OrderFlowCumulativeDelta() method by reference

private OrderFlowCumulativeDelta cumulativeDelta;

// A 1 tick data series must be added to OnStateChange() as this

indicator runs off of tick data

else if (State == State.Configure)
{

AddDataSeries(Data.BarsPeriodType.Tick, 1);
}
else if (State == State.DataLoaded)
{
 // Instantiate the indicator
 cumulativeDelta =
OrderFlowCumulativeDelta(CumulativeDeltaType.BidAsk,
CumulativeDeltaPeriod.Session, 0);
}

if (BarsInProgress == 0)
{
 // Print the close of the cumulative delta bar with a delta
type of Bid Ask and with a Session period
 Print("Delta Close: " + cumulativeDelta.DeltaClose[0]);
}
else if (BarsInProgress == 1)
{
 // We have to update the secondary series of the hosted
indicator to make sure the values we get in BarsInProgress == 0 are
in sync
 cumulativeDelta.Update(cumulativeDelta.BarsArray[1].Count -
1, 1);
}

11.6.2.18.70 Order Flow Volumetric Bars

Description
NinjaTrader Order Flow Volumetric bars provide a detailed ‘x-ray’ view into each price bar’s

aggressive buying and selling activity. This technique primarily attempts to answer the

question which side was the most aggressive at each price level. This is done by calculating

the delta (greek for difference) between buying and selling volume.

Many of the NinjaTrader Order Flow Volumetric Bar and Bar Statistics values could be

accessed from your custom NinjaScript objects further leveraging the power of these analysis

techniques.

Methods and Properties the VolumetricBarsType exposes

BarDelta Gets a long value with the total bar's delta

NinjaTrader 82490

© 2023 NinjaTrader, LLC

CumulativeDelta Gets a long value with the cumulative delta

(Note: the accumulation is reset at the

session break)

DeltaSh The delta since last time price touched the

high of the bar, usually negative

DeltaSl The delta since last time price touched the

low of the bar, usually positive.

GetAskVolumeForPrice(do

uble price)
Gets the ask volume (long value) for the

passed in price

GetBidVolumeForPrice(do

uble price)
Gets the sell volume (long value) for the

passed in price

GetDeltaForPrice(double

 price)
Gets the horizontal delta (long value) for

the passed in price

GetDeltaPercent() Gets a double value with the delta % of

volume for the bar

GetMaximumPositiveDelta

()
Gets the highest positive delta (long value)

for the bar (if there is no positive delta in

the bar, it will get the lowest negative

delta)

GetMaximumNegativeDelta

()
Gets the highest negative delta (long value)

for the bar (if there is no negative delta in

the bar, it will get the lowest positive delta)

GetMaximumVolume(bool?

askVolume, out double

price)

Gets the highest Ask, Bid or combined

volume (long value) for the bar and returns

the price at which it occurred.

- pass in true for getting the highest Ask

volume

- pass in false for getting the highest Bid

volume

- pass in null for getting the highest

combined volume

NinjaScript 2491

© 2023 NinjaTrader, LLC

For scenarios where Ticks per level is

greater than 1, this method will return the

lowest price - with Ticks per level known,

the remaining prices in the result cell could

be custom calculated if desired.

GetTotalVolumeForPrice(

double price)
Gets the total volume (long value) for the

passed in price

MaxSeenDelta Gets the highest delta (long value) seen

intrabar

MinSeenDelta Gets the lowest delta (long value) seen

intrabar

TotalBuyingVolume Gets the total buying volume (long value)

for the bar

TotalSellingVolume Gets the total selling volume (long value)

for the bar

Trades Gets to total number of trades (long value)

for the bar

Example

NinjaTrader 82492

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (Bars == null)

 return;

 // This sample assumes the Volumetric series is the primary

DataSeries on the chart, if you would want to add a Volumetric

series to a

 // script, you could call AddVolumetric() in

State.Configure and then for example use

 // NinjaTrader.NinjaScript.BarsTypes.VolumetricBarsType

barsType = BarsArray[1].BarsType as

 // NinjaTrader.NinjaScript.BarsTypes.VolumetricBarsType;

 NinjaTrader.NinjaScript.BarsTypes.VolumetricBarsType

barsType = Bars.BarsSeries.BarsType as

 NinjaTrader.NinjaScript.BarsTypes.VolumetricBarsType;

 if (barsType == null)

 return;

 try

 {

 double price;

 Print("==

=========================");

 Print("Bar: " + CurrentBar);

 Print("Trades: " +

barsType.Volumes[CurrentBar].Trades);

 Print("Total Volume: " +

barsType.Volumes[CurrentBar].TotalVolume);

 Print("Total Buying Volume: " +

barsType.Volumes[CurrentBar].TotalBuyingVolume);

 Print("Total Selling Volume: " +

barsType.Volumes[CurrentBar].TotalSellingVolume);

 Print("Delta for bar: " +

barsType.Volumes[CurrentBar].BarDelta);

 Print("Delta for bar (%): " +

barsType.Volumes[CurrentBar].GetDeltaPercent());

 Print("Delta for Close: " +

barsType.Volumes[CurrentBar].GetDeltaForPrice(Close[0]));

 Print("Ask for Close: " +

barsType.Volumes[CurrentBar].GetAskVolumeForPrice(Close[0]));

 Print("Bid for Close: " +

barsType.Volumes[CurrentBar].GetBidVolumeForPrice(Close[0]));

 Print("Volume for Close: " +

barsType.Volumes[CurrentBar].GetTotalVolumeForPrice(Close[0]));

 Print("Maximum Ask: " +

barsType.Volumes[CurrentBar].GetMaximumVolume(true, out price) + "

at price: " + price);

 Print("Maximum Bid: " +

barsType.Volumes[CurrentBar].GetMaximumVolume(false, out price) + "

at price: " + price);

 Print("Maximum Combined: " +

barsType.Volumes[CurrentBar].GetMaximumVolume(null, out price) + "

at price: " + price);

 Print("Maximum Positive Delta: " +

barsType.Volumes[CurrentBar].GetMaximumPositiveDelta());

 Print("Maximum Negative Delta: " +

barsType.Volumes[CurrentBar].GetMaximumNegativeDelta());

 Print("Max seen delta (bar): " +

barsType.Volumes[CurrentBar].MaxSeenDelta);

 Print("Min seen delta (bar): " +

barsType.Volumes[CurrentBar].MinSeenDelta);

 Print("Cumulative delta (bar): " +

barsType.Volumes[CurrentBar].CumulativeDelta);

 Print("Delta Since High (bar): " +

barsType.Volumes[CurrentBar].DeltaSh);

 Print("Delta Since Low (bar): " +

barsType.Volumes[CurrentBar].DeltaSl);

 }

 catch{}

}

NinjaScript 2493

© 2023 NinjaTrader, LLC

Note: Please note in the example above a CurrentBar reference is used as index, and not

a BarsAgo reference.

11.6.2.18.71 Order Flow VWAP

Description
Volume Weighted Average Price. A total of the dollars traded for every transaction (price

multiplied by number of shares traded) and then divided by the total shares traded for the day.

Also included are standard deviation bands.

Syntax
OrderFlowVWAP(VWAPResolution resolution, TradingHours tradingHoursInstance,

VWAPStandardDeviations numStandardDeviations, double sD1Multiplier, double

sD2Multiplier, double sD3Multiplier)

OrderFlowVWAP(ISeries<double> input, VWAPResolution resolution, TradingHours

tradingHoursInstance, VWAPStandardDeviations numStandardDeviations, double

sD1Multiplier, double sD2Multiplier, double sD3Multiplier)

Returns the VWAP value

OrderFlowVWAP(VWAPResolution resolution, TradingHours tradingHoursInstance,

VWAPStandardDeviations numStandardDeviations, double sD1Multiplier, double

sD2Multiplier, double sD3Multiplier).VWAP[int barsAgo]

OrderFlowVWAP(ISeries<double> input, VWAPResolution resolution, TradingHours

tradingHoursInstance, VWAPStandardDeviations numStandardDeviations, double

sD1Multiplier, double sD2Multiplier, double sD3Multiplier).VWAP[int barsAgo]

Returns the StdDev1Upper value

OrderFlowVWAP(VWAPResolution resolution, TradingHours tradingHoursInstance,

VWAPStandardDeviations numStandardDeviations, double sD1Multiplier, double

sD2Multiplier, double sD3Multiplier).StdDev1Upper[int barsAgo]

OrderFlowVWAP(ISeries<double> input, VWAPResolution resolution, TradingHours

tradingHoursInstance, VWAPStandardDeviations numStandardDeviations, double

sD1Multiplier, double sD2Multiplier, double sD3Multiplier).StdDev1Upper[int barsAgo]

Returns the StdDev1Lower value

OrderFlowVWAP(VWAPResolution resolution, TradingHours tradingHoursInstance,

VWAPStandardDeviations numStandardDeviations, double sD1Multiplier, double

sD2Multiplier, double sD3Multiplier).StdDev1Lower[int barsAgo]

OrderFlowVWAP(ISeries<double> input, VWAPResolution resolution, TradingHours

tradingHoursInstance, VWAPStandardDeviations numStandardDeviations, double

sD1Multiplier, double sD2Multiplier, double sD3Multiplier).StdDev1Lower[int barsAgo]

Returns the StdDev2Upper value

OrderFlowVWAP(VWAPResolution resolution, TradingHours tradingHoursInstance,

VWAPStandardDeviations numStandardDeviations, double sD1Multiplier, double

sD2Multiplier, double sD3Multiplier).StdDev2Upper[int barsAgo]

NinjaTrader 82494

© 2023 NinjaTrader, LLC

OrderFlowVWAP(ISeries<double> input, VWAPResolution resolution, TradingHours

tradingHoursInstance, VWAPStandardDeviations numStandardDeviations, double

sD1Multiplier, double sD2Multiplier, double sD3Multiplier).StdDev2Upper[int barsAgo]

Returns the StdDev2Lower value

OrderFlowVWAP(VWAPResolution resolution, TradingHours tradingHoursInstance,

VWAPStandardDeviations numStandardDeviations, double sD1Multiplier, double

sD2Multiplier, double sD3Multiplier).StdDev2Lower[int barsAgo]

OrderFlowVWAP(ISeries<double> input, VWAPResolution resolution, TradingHours

tradingHoursInstance, VWAPStandardDeviations numStandardDeviations, double

sD1Multiplier, double sD2Multiplier, double sD3Multiplier).StdDev2Lower[int barsAgo]

Returns the StdDev3Upper value

OrderFlowVWAP(VWAPResolution resolution, TradingHours tradingHoursInstance,

VWAPStandardDeviations numStandardDeviations, double sD1Multiplier, double

sD2Multiplier, double sD3Multiplier).StdDev3Upper[int barsAgo]

OrderFlowVWAP(ISeries<double> input, VWAPResolution resolution, TradingHours

tradingHoursInstance, VWAPStandardDeviations numStandardDeviations, double

sD1Multiplier, double sD2Multiplier, double sD3Multiplier).StdDev3Upper[int barsAgo]

Returns the StdDev3Lower value

OrderFlowVWAP(VWAPResolution resolution, TradingHours tradingHoursInstance,

VWAPStandardDeviations numStandardDeviations, double sD1Multiplier, double

sD2Multiplier, double sD3Multiplier).StdDev3Lower[int barsAgo]

OrderFlowVWAP(ISeries<double> input, VWAPResolution resolution, TradingHours

tradingHoursInstance, VWAPStandardDeviations numStandardDeviations, double

sD1Multiplier, double sD2Multiplier, double sD3Multiplier).StdDev3Lower[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

resolution The data the indicator will run off of:

Standard

Tick

tradingHoursInstan

ce

The trading hour template that will indicate when

the VWAP resets

numStandardDevi

ations

The number of standard deviations of the VWAP

NinjaScript 2495

© 2023 NinjaTrader, LLC

sD1Multiplier The multiplier for the first standard deviation

sD2Multiplier The multiplier for the second standard deviation

sD3Multiplier The multiplier for the third standard deviation

Examples

NinjaTrader 82496

© 2023 NinjaTrader, LLC

// A 1 tick data series must be added to the OnStateChange() if

using a Tick Resolution (our second example call below in

OnBarUpdate())

else if (State == State.Configure)
{

AddDataSeries(Data.BarsPeriodType.Tick, 1);
}

// OnBarUpdate() logic

if (BarsInProgress == 0)

{

// Prints the VWAP value using a standard resolution off of RTH

trading hours

double VWAPValue = OrderFlowVWAP(VWAPResolution.Standard,

TradingHours.String2TradingHours("CME US Index Futures RTH"),

VWAPStandardDeviations.Three, 1, 2, 3).VWAP[0];

Print("The current VWAP with a standard resolution on CME US Index

Futures RTH is " + VWAPValue.ToString());

// Prints the first upper standard deviation value using a tick

resolution off of trading hours of the Data Series

double VWAPStdDevUp1 = OrderFlowVWAP(VWAPResolution.Tick,

Bars.TradingHours, VWAPStandardDeviations.Three, 1, 2,

3).StdDev1Upper[0];

Print("The current VWAP with a tick resolution on " +

Bars.TradingHours.ToString() + " is " + VWAPStdDevUp1.ToString());

}

else if (BarsInProgress == 1)

{

// We have to update the secondary tick series of the cached

indicator using Tick Resolution to make sure the values we get in

BarsInProgress == 0 are in sync

OrderFlowVWAP(BarsArray[0], VWAPResolution.Tick,

BarsArray[0].TradingHours, VWAPStandardDeviations.Three, 1, 2,

3).Update(OrderFlowVWAP(BarsArray[0], VWAPResolution.Tick,

BarsArray[0].TradingHours, VWAPStandardDeviations.Three, 1, 2,

3).BarsArray[1].Count - 1, 1);

}

Notes:

1. Referencing multiple OrderFlowVWAP's with different ResetInterval’s in a single

NinjaScript Indicator / Strategy is not supported by default. Please contact

platformsupport@ninjatrader.com for a workaround.

mailto:platformsupport@ninjatrader.com

NinjaScript 2497

© 2023 NinjaTrader, LLC

2. Referencing OrderFlowVWAP in a NinjaScript indicator or strategy which runs on either

Calcuate.OnEachTick or .OnPriceChange, historical data is needed for accurate

calculations.

11.6.2.18.72 Parabolic SAR

Description
The parabolic SAR is a technical indicator that is used by many traders to determine the

direction of an asset's momentum and the point in time when this momentum has a higher-

than-normal probability of switching directions.

... Courtesy of Investopedia

Syntax
ParabolicSAR(double acceleration, double accelerationMax, double accelerationStep)

ParabolicSAR(ISeries<double> input, double acceleration, double accelerationMax,

double accelerationStep)

Returns default value

ParabolicSAR(double acceleration, double accelerationMax, double accelerationStep)[int

 barsAgo]

ParabolicSAR(ISeries<double> input, double acceleration, double accelerationStep,

double accelerationMax)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

acceleration Acceleration value

accelerationStep Step value used to increment acceleration value

accelerationMax Max acceleration value

input Indicator source data (?)

Example

http://www.investopedia.com/articles/technical/02/042202.asp

NinjaTrader 82498

© 2023 NinjaTrader, LLC

// Prints the current value of ParabolicSAR using default price

type

double value = ParabolicSAR(0.02, 0.2, 0.02)[0];

Print("The current ParabolicSAR value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.73 Percentage Price Oscillator (PPO)

Description
The Percentage Price Oscillator shows the percentage difference between two exponential

moving averages.

Syntax
PPO(int fast, int slow, int smooth)

PPO(ISeries<double> input, int fast, int slow, int smooth)

Returns default value

PPO(int fast, int slow, int smooth)[int barsAgo]

PPO(ISeries<double> input, int fast, int slow, int smooth)[int barsAgo]

Returns smoothed value

PPO(int fast, int slow, int smooth).Smoothed[int barsAgo]

PPO(ISeries<double> input, int fast, int slow, int smooth).Smoothed[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

fast The number of bars to calculate the fast EMA

input Indicator source data (?)

slow The number of bars to calculate the slow EMA

NinjaScript 2499

© 2023 NinjaTrader, LLC

smooth The number of bars to calculate the EMA signal

line

Example

// Prints the current value of a 20 period Percentage Price

Oscillator

double value = PPO(12, 26, 9)[0];

Print("The current Percentage Price Oscillator value is " +

value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.74 Pivots

Description
The pivot point is used as a predictive indicator. If the following day's market price falls below

the pivot point, it may be used as a new resistance level. Conversely, if the market price rises

above the pivot point, it may act as the new support level.

... Courtesy of Investopedia

Syntax
Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width)

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width)

Returns pivot point value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).Pp[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).PP[int barsAgo]

Returns R1 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).R1[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

http://www.investopedia.com/articles/technical/04/041404.asp

NinjaTrader 82500

© 2023 NinjaTrader, LLC

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).R1[int barsAgo]

Returns R2 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).R2[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).R2[int barsAgo]

Returns R3 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).R3[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).R3[int barsAgo]

Returns S1 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).S1[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).S1[int barsAgo]

Returns S2 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).S2[int

barsAgo]

Pivots(ISeries<double> input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).S2[int barsAgo]

Returns S3 value

Pivots(PivotRange pivotRangeType, HLCCalculationMode priorDayHLC, double

userDefinedClose, double userDefinedHigh, double userDefinedLow, int width).S3[int

barsAgo]

Pivots(ISeries<double>input, PivotRange pivotRangeType, HLCCalculationMode

priorDayHLC, double userDefinedClose, double userDefinedHigh, double userDefinedLow,

int width).S3[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

NinjaScript 2501

© 2023 NinjaTrader, LLC

Parameters

input Indicator source data (?)

pivotRangeType Sets the range for the type of pivot calculated.

Possible values are:

PivotRange.Daily

PivotRange.Weekly

PivotRange.Monthly

priorDayHLC Sets how the prior range High, Low, Close

values are calculated. Possible values are:

HLCCalculationMode.CalcFromIntradayData

HLCCalculationMode.DailyBars

HLCCalculationMode.UserDefinedValues

userDefinedClose Sets the close for Pivots calculations when using

HLCCalculationMode.UserDefinedValues.

userDefinedHigh Sets the high for Pivots calculations when using

HLCCalculationMode.UserDefinedValues.

userDefinedLow Sets the low for Pivots calculations when using

HLCCalculationMode.UserDefinedValues.

width Sets how long the Pivots lines will be drawn

Examples

// Prints the current pivot point value

double value = Pivots(PivotRange.Daily,

HLCCalculationMode.CalcFromIntradayData, 0, 0, 0, 20).Pp[0];

Print("The current Pivots' pivot value is " + value.ToString());

// Prints the current S2 pivot value

double value = Pivots(PivotRange.Daily,

HLCCalculationMode.CalcFromIntradayData, 0, 0, 0, 20).S2[0];

Print("The current Pivots' S2 pivot value is " + value.ToString());

Source Code

NinjaTrader 82502

© 2023 NinjaTrader, LLC

You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

Tip: When using HLCCalculationMode.DailyBars it can be expected that a value of 0 is

returned when the daily bars have not been loaded yet. Due to the asynchronous nature of

this indicator calling daily bars you should only access the pivot values when the indicator

has loaded all required Bars objects. To ensure you are accessing accurate values you

can use .IsValidDataPoint() as a check:

// Evaluates that this is a valid pivot point value

if (Pivots(PivotRange.Daily, HLCCalculationMode.DailyBars, 0, 0,

 0, 20).Pp.IsValidDataPoint(0))

{

 // Prints the current pivot point value

 double value = Pivots(PivotRange.Daily,

HLCCalculationMode.DailyBars, 0, 0, 0, 20).Pp[0];

 Print("The current Pivots' pivot value is " +

value.ToString());

}

11.6.2.18.75 Polarized Fractal Eff iciency (PFE)

Description
The Polarized Fractal Efficiency indicator uses fractal geometry to determine how efficiently

the price is moving. When the PFE is zigzagging around zero, then the price is congested

and not trending. When the PFE is smooth and above/below zero, then the price is in an

up/down trend. The higher/lower the PFE value, the stronger the trend is.

... Courtesy of FMLabs

Syntax
PFE(int period, int smooth)

PFE(ISeries<double> input, int period, int smooth)

Returns default value

PFE(int period, int smooth)[int barsAgo]

PFE(ISeries<double> input, int period, int smooth)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

http://www.fmlabs.com/reference/default.htm?url=PFE.htm

NinjaScript 2503

© 2023 NinjaTrader, LLC

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

smooth The smoothing factor to be applied

Examples

// Prints the current value of a 20 period PFE using default price

type

double value = PFE(20, 2)[0];

Print("The current PFE value is " + value.ToString());

// Prints the current value of a 20 period PFE using high price

type

double value = PFE(High, 20, 2)[0];

Print("The current PFE value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.76 Price Oscillator

Description
The Price Oscillator is an indicator based on the difference between two moving averages,

and is expressed as either a percentage or in absolute terms.

... Courtesy of StockCharts

Syntax
PriceOscillator(int fast, int slow, int smooth)

PriceOscillator(ISeries<double> input, int fast, int slow, int smooth)

Returns default value

PriceOscillator(int fast, int slow, int smooth)[int barsAgo]

PriceOscillator(ISeries<double> input, int fast, int slow, int smooth)[int barsAgo]

http://stockcharts.com/education/IndicatorAnalysis/indic_priceOscillator.html

NinjaTrader 82504

© 2023 NinjaTrader, LLC

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

fast The number of bars to calculate the fast EMA

input Indicator source data (?)

slow The number of bars to calculate the slow EMA

smooth The number of bars to calculate the EMA signal

line

Example

// Prints the current value of a 20 period PriceOscillator using

default price type

double value = PriceOscillator(12, 26, 9)[0];

Print("The current PriceOscillator value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.77 Prior Day OHLC

Description
The prior day (session) open, high, low and close values.

Note: Only use this indicator on intraday series.

Syntax
PriorDayOHLC()

PriorDayOHLC(ISeries<double> input)

Returns prior session open value

PriorDayOHLC().PriorOpen[int barsAgo]

PriorDayOHLC(ISeries<double> input).PriorOpen[int barsAgo]

NinjaScript 2505

© 2023 NinjaTrader, LLC

Returns prior session high value

PriorDayOHLC().PriorHigh[int barsAgo]

PriorDayOHLC(ISeries<double> input).PriorHigh[int barsAgo]

Returns prior session low value

PriorDayOHLC().PriorLow[int barsAgo]

PriorDayOHLC(ISeries<double> input).PriorLow[int barsAgo]

Returns prior session close value

PriorDayOHLC().PriorClose[int barsAgo]

PriorDayOHLC(ISeries<double> input).PriorClose[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

Example

// Prints the value of the prior session low

double value = PriorDayOHLC().PriorLow[0];

Print("The prior session low value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.78 Psychological Line

Description
The Psychological Line is the ratio of the number of rising bars over the specified number of

bars.

Syntax
PsychologicalLine(int period)

PsychologicalLine(ISeries<double> input, int period)

Return Value

NinjaTrader 82506

© 2023 NinjaTrader, LLC

double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 10 period Psychological Line

double value = PsychologicalLine(10)[0];

Print("The current Psychological Line value is " +

value.ToString());

11.6.2.18.79 Range

Description
Returns the range of a bar.

Syntax
Range()

Range(ISeries<double> input)

Returns default value

Range()[int barsAgo]

Range(ISeries<double> input)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

NinjaScript 2507

© 2023 NinjaTrader, LLC

// Prints the range of the current bar

double value = Range()[0];

Print("The current bar's range is " + value.ToString());

// Prints the 20 period simple moving average of range

double value = SMA(Range(), 20)[0];

Print("The 20 period average of range is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.80 Range Indicator (RIND)

Description
The Range indicator compares the intraday range (high - low) to the inter-day (close -

previous close) range. When the inter-day range is less than the intraday range, the Range

Indicator will be a high value. This signals an end to the current trend. When the Range

Indicator is at a low level, a new trend is about to start.

The Range Indicator was developed by Jack Weinberg and was introduced in his article in the

June, 1995 issue of Technical Analysis of Stocks & Commodities magazine.

Syntax
RIND(int periodQ, int smooth)

RIND(ISeries<double> input, int periodQ, int smooth)

Returns default value

RIND(int periodQ, int smooth)[int barsAgo]

RIND(ISeries<double> input, int periodQ, int smooth)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

NinjaTrader 82508

© 2023 NinjaTrader, LLC

periodQ The number of bars to include in the calculation

for the short term stochastic range lookback

smooth The number of bars to include for the EMA

smoothing of the indicator

Example

// Prints out a historical RIND value

double value = RIND(3, 10)[5];

Print("RIND value of 5 bars ago is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.81 Rate of Change (ROC)

Description
The Rate of Change (ROC) indicator is a very simple yet effective momentum oscillator that

measures the percent change in price from one period to the next. The ROC calculation

compares the current price with the price n periods ago.

... Courtesy of StockCharts

Syntax
ROC(int period)

ROC(ISeries<double> input, int period)

Returns default value

ROC(int period)[int barsAgo]

ROC(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

http://stockcharts.com/education/IndicatorAnalysis/indic_ROC.htm

NinjaScript 2509

© 2023 NinjaTrader, LLC

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period ROC using default price

type

double value = ROC(20)[0];

Print("The current ROC value is " + value.ToString());

// Prints the current value of a 20 period ROC using high price

type

double value = ROC(High, 20)[0];

Print("The current ROC value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.82 Regression Channel

Description
A Regression Channel is created by drawing parallel lines above and below the Linear

Regression line.

Parallel and equidistant lines are drawn n standard deviations (width parameter) above and

below a Linear Regression trendline. The distance between the channel lines and the

regression line is the greatest distance that any one closing price is from the regression line.

Regression Channels contain price movement, the top channel line provides resistance and

the bottom channel line provides support. A reversal in trend may be indicated when prices

remain outside the channel for a longer period of time.

A Linear Regression trendline shows where equilibrium exists but Linear Regression

Channels show the range prices can be expected to deviate from a trendline.

Syntax
RegressionChannel(int period, double width)

RegressionChannel(ISeries<double> input, int period, double width)

Returns default midline value

RegressionChannel(int period, double width)[int barsAgo]

NinjaTrader 82510

© 2023 NinjaTrader, LLC

RegressionChannel(ISeries<double> input, int period, double width)[int barsAgo]

Returns upper channel value

RegressionChannel(int period, double width).Upper[int barsAgo]

RegressionChannel(ISeries<double> input, int period, double width).Upper[int barsAgo]

Returns lower channel value

RegressionChannel(int period, double width).Lower[int barsAgo]

RegressionChannel(ISeries<double> input, int period, double width).Lower[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

width Number of std deviations to calculate the

channel lines

Tip: You should not access historical values of this indicator since the values can change

from bar to bar. The values from n bars ago does not reflect what the values of the current

bar really are. It is suggested that you only access the current bar value for this indicator.

Example

// Prints the current value of a 20 period channel using default

price type

double value = RegressionChannel(20, 2).Upper[0];

Print("The current upper channel value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

NinjaScript 2511

© 2023 NinjaTrader, LLC

11.6.2.18.83 Relative Spread Strength (RSS)

Description
Developed by Ian Copsey, Relative Spread Strength is a variation to the Relative Strength

Index.

Syntax
RSS(int eMA1, int eMA2, int length)

RSS(ISeries<double> input, int eMA1, int eMA2, int length)

Returns default value

RSS(int eMA1, int eMA2, int length)[int barsAgo]

RSS(ISeries<double> input, int eMA1, int eMA2, int length)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

eMA1 First EMA's period

eMA2 Second EMA's period

input Indicator source data (?)

length Number of bars used in the calculation

Examples

// Prints the current value of the RSS using default price type

double value = RSS(10, 40, 5)[0];

Print("The current RSS value is " + value.ToString());

// Prints the current value of the RSS using high price type

double value = RSS(High, 10, 40, 5)[0];

Print("The current RSS value is " + value.ToString());

Source Code

NinjaTrader 82512

© 2023 NinjaTrader, LLC

You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.84 Relative Strength Index (RSI)

Description
Developed by J. Welles Wilder and introduced in his 1978 book, New Concepts in Technical

Trading Systems, the Relative Strength Index (RSI) is an extremely useful and popular

momentum oscillator. The RSI compares the magnitude of a stock's recent gains to the

magnitude of its recent losses and turns that information into a number that ranges from 0 to

100.

... Courtesy of StockCharts

The original Wilder formula for an exponential moving average with a smoothing constant (k =

1/ Period) is used to calculate the RSI.

Syntax
RSI(int period, int smooth)

RSI(ISeries<double> input, int period, int smooth)

Returns default value

RSI(int period, int smooth)[int barsAgo]

RSI(ISeries<double> input, int period, int smooth)[int barsAgo]

Returns avg value

RSI(int period, int smooth).Avg[int barsAgo]

RSI(ISeries<double> input, int period, int smooth).Avg[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

smooth Smoothing period

Examples

http://stockcharts.com/education/IndicatorAnalysis/indic_RSI.html

NinjaScript 2513

© 2023 NinjaTrader, LLC

// Prints the current value of a 20 period RSI using default price

type

double value = RSI(20, 3)[0];

Print("The current RSI value is " + value.ToString());

// Prints the current value of a 20 period RSI using high price

type

double value = RSI(High, 20, 3)[0];

Print("The current RSI value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.85 Relative Vigor Index

Description
The Relative Vigor Index measures the strength of a trend by comparing an instruments

closing price to its price range. It's based on the fact that prices tend to close higher than they

open in up trends, and closer lower than they open in downtrends.

Syntax
RelativeVigorIndex(int period)

RelativeVigorIndex(ISeries<double> input, int period)

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 10 period Relative Vigor Index

double value = RelativeVigorIndex(10)[0];

Print("The current Relative Vigor Index value is " +

value.ToString());

NinjaTrader 82514

© 2023 NinjaTrader, LLC

11.6.2.18.86 Relative Volatility Index (RVI)

Description
Developed by Donald Dorsey, the Relative Volatility Index is the RSI using the standard

deviation over the indicator period in place of the daily price change. The RVI measures the

direction of volatility on a scale from 0 to 100. Readings below 50 indicate that the direction of

volatility is to the downside and that you should be looking to sell, readings above 50 indicate

that the direction of volatilty is to the upside and that you should be looking to buy.

Syntax
RVI(int period)

RVI(ISeries<double> input, int period)

Returns default value

RVI(int period)[int barsAgo]

RVI(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

// OnBarUpdate method

protected override void OnBarUpdate()

{

 // Check for buy condition

 if (RVI(14)[0] > 50 && CrossAbove(SMA(9), SMA(14), 1))

 {

 EnterLong();

 }

}

Source Code

NinjaScript 2515

© 2023 NinjaTrader, LLC

You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.87 R-squared

Description
The r-squared indicator calculates how well the price approximates a linear regression line.

The indicator gets its name from the calculation, which is, the square of the correlation

coefficient (referred to in mathematics by the Greek letter rho, or r). The range of the r-

squared is from zero to one.

... Courtesy of FMLabs

Syntax
RSquared(int period)

RSquared(ISeries<double> input, int period)

Returns default value

RSquared(int period)[int barsAgo]

RSquared(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period R-squared using default

price type

double value = RSquared(20)[0];

Print("The current R-squared value is " + value.ToString());

// Prints the current value of a 20 period R-squared using high

price type

double value = RSquared(High, 20)[0];

Print("The current R-squared value is " + value.ToString());

http://www.fmlabs.com/reference/default.htm?url=rsquared.htm

NinjaTrader 82516

© 2023 NinjaTrader, LLC

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.88 Standard Deviation (StdDev)

Description
In probability theory and statistics, standard deviation is a measure of the variability or

dispersion of a population, a data set, or a probability distribution. A low standard deviation

indicates that the data points tend to be very close to the same value (the mean), while high

standard deviation indicates that the data are “spread out” over a large range of values.

... Courtesy of Wikipedia

Syntax
StdDev(int period)

StdDev(ISeries<double> input, int period)

Returns default value

StdDev(int period)[int barsAgo]

StdDev(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

http://en.wikipedia.org/wiki/Standard_deviation

NinjaScript 2517

© 2023 NinjaTrader, LLC

// Prints the current value of a 20 period StdDev using default

price type

double value = StdDev(20)[0];

Print("The current StdDev value is " + value.ToString());

// Prints the current value of a 20 period StdDev using high price

type

double value = StdDev(High, 20)[0];

Print("The current StdDev value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.89 Standard Error (StdError)

Description
The standard error of a method of measurement or estimation is the standard deviation of the

sampling distribution associated with the estimation method. The term may also be used to

refer to an estimate of that standard deviation, derived from a particular sample used to

compute the estimate.

... Courtesy of Wikipedia

Syntax
StdError(int period)

StdError(ISeries<double> input, int period)

Returns default value which is the mid line (also known as linear regression)

StdError(int period)[int barsAgo]

StdError(ISeries<double> input, int period)[int barsAgo]

Returns upper value

StdError(int period).Upper[int barsAgo]

StdError(ISeries<double> input, int period).Upper[int barsAgo]

Returns lower value

StdError(int period).Lower[int barsAgo]

StdError(ISeries<double> input, int period).Lower[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

http://en.wikipedia.org/wiki/Standard_error_(statistics)

NinjaTrader 82518

© 2023 NinjaTrader, LLC

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current upper value of a 20 period StdError using

default price type

double value = StdError(20).Upper[0];

Print("The current upper Standard Error value is " +

value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.90 Stochastics

Description
Developed by George C. Lane in the late 1950s, the Stochastic Oscillator is a momentum

indicator that shows the location of the current close relative to the high/low range over a set

number of periods. Closing levels that are consistently near the top of the range indicate

accumulation (buying pressure) and those near the bottom of the range indicate distribution

(selling pressure).

... Courtesy of StockCharts

Syntax
Stochastics(int periodD, int periodK, int smooth)

Stochastics(ISeries<double> input, int periodD, int periodK, int smooth)

Returns %D value

Stochastics(int periodD, int periodK, int smooth).D[int barsAgo]

Stochastics(ISeries<double> input, int periodD, int periodK, int smooth).D[int

barsAgo]

Returns %K value

Stochastics(int periodD, int periodK, int smooth).K[int barsAgo]

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:stochastic_oscillator_fast_slow_and_full

NinjaScript 2519

© 2023 NinjaTrader, LLC

Stochastics(ISeries<double> input, int periodD, int periodK, int smooth).K[int

barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

periodD The period for the moving average of periodD

periodK The period for the moving average of periodK

smooth The smoothing value to be used

Examples

// Prints the current %D value

double value = Stochastics(7, 14, 3).D[0];

Print("The current Stochastics %D value is " + value.ToString());

// Prints the current %K value

double value = Stochastics(7, 14, 3).K[0];

Print("The current Stochastics %K value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.91 Stochastics Fast

Description
Developed by George C. Lane in the late 1950s, the Stochastic Oscillator is a momentum

indicator that shows the location of the current close relative to the high/low range over a set

number of periods. Closing levels that are consistently near the top of the range indicate

accumulation (buying pressure) and those near the bottom of the range indicate distribution

(selling pressure).

... Courtesy of StockCharts

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:stochastic_oscillator_fast_slow_and_full

NinjaTrader 82520

© 2023 NinjaTrader, LLC

Syntax
StochasticsFast(int periodD, int periodK)

StochasticsFast(ISeries<double> input, int periodD, int periodK)

Returns %D value

StochasticsFast(int periodD, int periodK).D[int barsAgo]

StochasticsFast(ISeries<double> input, int periodD, int periodK).D[int barsAgo]

Returns %K value

StochasticsFast(int periodD, int periodK).K[int barsAgo]

StochasticsFast(ISeries<double> input, int periodD, int periodK).K[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

periodD The period for the moving average of periodD

periodK The period for the moving average of periodK

Examples

// Prints the current %D value

double value = StochasticsFast(3, 14).D[0];

Print("The current StochasticsFast %D value is " +

value.ToString());

// Prints the current %K value

double value = StochasticsFast(3, 14).K[0];

Print("The current StochasticsFast %K value is " +

value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

NinjaScript 2521

© 2023 NinjaTrader, LLC

11.6.2.18.92 Stochastics RSI (StochRSI)

Description
This is an indicator on indicator implementation. It is simply a Stochastics indicator applied on

RSI.

Syntax
StochRSI(int period)

StochRSI(ISeries<double> input, int period)

Returns default value

StochRSI(int period)[int barsAgo]

StochRSI(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

// Evaluates if the current bar StochRSI value is greater than the

value one bar ago

if (StochRSI(14)[0] > StochRSI(14)[1])

 Print("Stochastics RSI is rising");

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.93 Summation (SUM)

Description
Returns the sum of the values taken over a specified period.

NinjaTrader 82522

© 2023 NinjaTrader, LLC

Syntax
SUM(int period)

SUM(ISeries<double> input, int period)

Returns default value

SUM(int period)[int barsAgo]

SUM(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

// Prints the current value of a 20 period SUM using default price

type

double value = SUM(20)[0];

Print("The current SUM value is " + value.ToString());

// Prints the current value of a 20 period SUM using high price

type

double value = SUM(High, 20)[0];

Print("The current SUM value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.94 Sw ing

Description
The Swing indicator will plot lines that represent the swing points based on the strength

(number of bars to the left and right of the swing point) parameter provided, it's mostly a visual

tool and not meant to be predictive in nature. Only after the strength number of bars has

passed since the extreme point, the swing return value could be definitely set, thus the

indicator updates it's calculations as new incoming data warrants so.

NinjaScript 2523

© 2023 NinjaTrader, LLC

You can access methods within this indicator to determine the number of bars ago a swing

point occurred or the current swing value.

Tip: To workaround the situation, where the indicator has to recalculate - you could only

access the SwingHigh / Low values the number of swing strength bars ago - those values

are calculated in their final state.

Syntax - Bars Ago
High Bar

Swing(int strength).SwingHighBar(int barsAgo, int instance, int lookBackPeriod)

Swing(ISeries<double> input, int strength).SwingHighBar(int barsAgo, int instance, int

 lookBackPeriod)

Low Bar

Swing(int strength).SwingLowBar(int barsAgo, int instance, int lookBackPeriod)

Swing(ISeries<double> input, int strength).SwingLowBar(int barsAgo, int instance, int

lookBackPeriod)

Return Value
An int value representing the number of bars ago. Returns a value of -1 if a swing point is not

found within the look back period.

Syntax - Value
High Value

Swing(int strength).SwingHigh[int barsAgo]

Swing(ISeries<double> input, int strength).SwingHigh[int barsAgo]

Low Value

Swing(int strength).SwingLow[int barsAgo]

Swing(ISeries<double> input, int strength).SwingLow[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

* A return value of 0 (zero) will be returned if the CurrentBar number is less than the

"strength" value, or a swing pivot has not yet been found.

Parameters

barsAgo The number of bars ago that serves as the

starting bar from which to work backwards

NinjaTrader 82524

© 2023 NinjaTrader, LLC

input Indicator source data (?)

instance The occurrence to check for (1 is the most

recent, 2 is the 2nd most recent, etc...)

lookBackPeriod Number of bars to look back to check for the test

condition, which is evaluated on the current bar

and the bars in the look back period.

strength The number of required bars to the left and right

of the swing point

Example

// Prints the high price of the most recent swing high

Print("The high of the swing bar is " + High[Math.Max(0,

Swing(5).SwingHighBar(0, 1, 10))]);

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.95 Time Series Forecast (TSF)

Description
The Time Series Forecast function displays the statistical trend of a security's price over a

specified time period based on linear regression analysis. Instead of a straight linear

regression trendline, the Time Series Forecast plots the last point of multiple linear regression

trendlines. This is why this indicator may sometimes referred to as the "moving linear

regression" indicator or the "regression oscillator."

Syntax
TSF(int forecast, int period)

TSF(ISeries<double> input, int forecast, int period)

Returns default value

TSF(int forecast, int period)[int barsAgo]

TSF(ISeries<double> input, int forecast, int period)[int barsAgo]

Return Value

NinjaScript 2525

© 2023 NinjaTrader, LLC

double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

forecast Forecast period

input Indicator source data (?)

period Number of bars used in the calculation

Example

// Prints the current value of a 20 period TSF using default price

type

double value = TSF(3, 20)[0];

Print("The current TSF value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.96 Trend Lines

Description
When a high swing is followed by a lower high swing, a trend line high is automatically plotted.

When a low swing is followed by a higher low swing, a trend line low is automatically plotted.

Syntax

TrendLines(int strength, int numberOfTrendLines, int oldTrendsOpacity, bool

alertOnBreak)

TrendLines(ISeries<double> input, int strength, int numberOfTrendLines, int

oldTrendsOpacity, bool alertOnBreak)

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

NinjaTrader 82526

© 2023 NinjaTrader, LLC

strength The number of required bars to the left and right

of the swing point

numberOfTrendLin

es

The number of recent trend lines to plot

oldTrendOpacity The opacity to apply to old trend lines

alertOnBreak Sets if there should be an alert when the price

breaks the current trend line

Examples

// Prints the current value of a 5 strength Trend Lines

double value = TrendLines(5, 4, 25, true)[0];

Print("The current Trend Lines value is " + value.ToString());

11.6.2.18.97 True Strength Index (TSI)

Description
The True Strength Index (TSI) is a momentum-based indicator, developed by William Blau.

Designed to determine both trend and overbought/oversold conditions, the TSI is applicable to

intraday time frames as well as long term trading.

Syntax
TSI(int fast, int slow)

TSI(ISeries<double> input, int fast, int slow)

Returns default value

TSI(int fast, int slow)[int barsAgo]

TSI(ISeries<double> input, int fast, int slow)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

fast Period of the fast smoothing factor

NinjaScript 2527

© 2023 NinjaTrader, LLC

input Indicator source data (?)

slow Period of the slow smoothing factor

Examples

// Prints the current value of a 20 period TSI using default price

type

double value = TSI(20, 10)[0];

Print("The current TSI value is " + value.ToString());

// Prints the current value of a 20 period TSI using high price

type

double value = TSI(High, 20, 10)[0];

Print("The current TSI value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.98 Ultimate Oscillator

Description
Developed by Larry Williams and introduced in his article in the April, 1985 issue of Technical

Analysis of Stocks and Commodities magazine, this indicator is the weighted sum of three

oscillators of different time periods. The there time periods represent short, intermediate and

long term market cycles. Typical periods are 7, 14 and 28. The values of the Ultimate

Oscillator range from zero to 100. Values over 70 indicate overbought conditions, and values

under 30 indicate oversold conditions.

Syntax
UltimateOscillator(int fast, int intermediate, int slow)

UltimateOscillator(ISeries<double> input, int fast, int intermediate, int slow)

Returns default value

UltimateOscillator(int fast, int intermediate, int slow)[int barsAgo]

UltimateOscillator(ISeries<double> input, int fast, int intermediate, int slow)[int

barsAgo]

Return Value

NinjaTrader 82528

© 2023 NinjaTrader, LLC

double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

fast The number of bars to include in the short term

period

input Indicator source data (?)

intermediate The number of bars to include in the intermediate

term period

slow The number of bars to include in the long term

period

Example

// Prints the current value of a typical Ultimate Oscillator using

default price type

double value = UltimateOscillator(7, 14, 28)[0];

Print("The current Ultimate Oscillator value is " +

value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.99 Volume (VOL)

Description
Volume is simply the number of shares (or contracts) traded during a specified time frame

(e.g., hour, day, week, month, etc). The analysis of volume is a basic yet very important

element of technical analysis. Volume provides clues as to the intensity of a given price move.

... Courtesy of Market In Out

Syntax
VOL()

VOL(ISeries<double> input)

http://www.marketinout.com/technical_analysis.php?id=114

NinjaScript 2529

© 2023 NinjaTrader, LLC

Returns default value

VOL()[int barsAgo]

VOL(ISeries<double> input)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

Example

// Prints the current value VOL

double value = VOL()[0];

Print("The current VOL value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.100 Volume Moving Average (VOLMA)

Description
The Volume Moving Average indicator is an indicator on indicator implementation. It calculates

and returns the value of an exponential moving average of volume.

Syntax
VOLMA(int period)

VOLMA(ISeries<double> input, int period)

Returns default value

VOLMA(int period)[int barsAgo]

VOLMA(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

NinjaTrader 82530

© 2023 NinjaTrader, LLC

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Example

// Evaluates if the current volume is greater than the 20 period

EMA of volume

if (Volume[0] > VOLMA(20)[0])

 Print("Volume has risen above its 20 period average");

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.101 Volume Oscillator

Description
The Volume Oscillator uses the difference between two moving averages of volume to

determine if the trend is increasing or decreasing. A value above zero indicates that the

shorter term volume moving average has risen above the longer term volume moving

average. This indicates that the shorter term trend is higher than the longer term trend. Rising

prices with with increased short term volume is bullish as is falling prices with decreased

volume. Falling prices with increased volume or rising prices with decreased volume indicate

market weakness.

Syntax
VolumeOscillator(int fast, int slow)

VolumeOscillator(ISeries<double> input, int fast, int slow)

Returns default value

VolumeOscillator(int fast, int slow)[int barsAgo]

VolumeOscillator(ISeries<double> input, int fast, int slow)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

NinjaScript 2531

© 2023 NinjaTrader, LLC

Parameters

fast The number of bars to include in the short term

moving average

input Indicator source data (?)

slow The number of bars to include in the long term

moving average

Example

// Prints the current value of a Volume Oscillator

double value = VolumeOscillator(12, 26)[0];

Print("The current Volume Oscillator value is " +

value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.102 Volume Rate of Change (VROC)

Description
Volume Rate of Change is identical to Price Rate Of Change (ROC) indicator except that it

uses volume instead of price.

Syntax
VROC(int period, int smooth)

VROC(ISeries<double> input, int period, int smooth)

Returns default value

VROC(int period, int smooth)[int barsAgo]

VROC(ISeries<double> input, int period, int smooth)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

NinjaTrader 82532

© 2023 NinjaTrader, LLC

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

smooth The number of bars for smoothing the signal

Example

// Prints the current value of VROC

double value = VROC(13, 3)[0];

Print("The current VROC value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.103 Volume Up Dow n

Description
Variation of the VOL (Volume) indicator that colors the volume histogram different color

depending if the current bar is up or down bar.

Syntax
VolumeUpDown()

VolumeUpDown(ISeries<double> input)

Returns default value

VolumeUpDown()[int barsAgo]

VolumeUpDown(ISeries<double> input)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

NinjaScript 2533

© 2023 NinjaTrader, LLC

Example

// Prints the current value VolumeUpDown

double value = VolumeUpDown()[0];

Print("The current Volume value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.104 Vortex

Description
The Vortex indicator is an oscillator used to identify trends. A bullish signal triggers when the

VIPlus line crosses above the VIMinus line. A bearish signal triggers when the VIMinus line

crosses above the VIPlus line.

Syntax
Vortex(int period)

Vortex(ISeries<double> input, int period)

Returns VIPlus value

Vortex(int period).VIPlus[int barsAgo]

Vortex(ISeries<double> input, int period).VIPlus[int barsAgo]

Returns VIMinus value

Vortex(int period).VIMinus[int barsAgo]

Vortex(ISeries<double> input, int period).VIMinus[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

NinjaTrader 82534

© 2023 NinjaTrader, LLC

// Prints the current VIPlus value of a 14 period Vortex

double valueP = Vortex(14).VIPlus[0];

Print("The current Vortex VIPlus value is " + valueP.ToString());

// Prints the current VIMinus value of a 14 period Vortex

double valueM = Vortex(14).VIMinus[0];

Print("The current Vortex VIMinusvalue is " + valueM.ToString());

11.6.2.18.105 Williams %R

Description
Developed by Larry Williams, Williams %R is a momentum indicator that works much like the

Stochastic Oscillator. It is especially popular for measuring overbought and oversold levels.

The scale ranges from 0 to -100 with readings from 0 to -20 considered overbought, and

readings from -80 to -100 considered oversold.

... Courtesy of StockCharts

Syntax
WilliamsR(int period)

WilliamsR(ISeries<double> input, int period)

Returns default value

WilliamsR(int period)[int barsAgo]

WilliamsR(ISeries<double> input, int period)[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

period Number of bars used in the calculation

Examples

https://school.stockcharts.com/doku.php?id=technical_indicators:williams_r

NinjaScript 2535

© 2023 NinjaTrader, LLC

// Prints the current value of a 20 period WilliamsR using default

price type

double value = WilliamsR(20)[0];

Print("The current WilliamsR value is " + value.ToString());

// Prints the current value of a 20 period WilliamsR using high

price type

double value = WilliamsR(High, 20)[0];

Print("The current WilliamsR value is " + value.ToString());

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

11.6.2.18.106 Wiseman Alligator

Description
The Wiseman Alligator is an indicator that consists of 3 moving averages with offsets applied

to identify trend absence, formation, and direction. This indicator was provided by Profitunity:

http://www.profitunity.com

Syntax
Wiseman Alligator(int jawPeriod, int teethPeriod, int lipsPeriod, int jawOffset, int

teethOffset, int lipsOffset)

Wiseman Alligator(ISeries<double> input, int jawPeriod, int teethPeriod, int

lipsPeriod, int jawOffset, int teethOffset, int lipsOffset)

Returns Teeth

Wiseman Alligator(int jawPeriod, int teethPeriod, int lipsPeriod, int jawOffset, int

teethOffset, int lipsOffset).Teeth[int barsAgo]

Wiseman Alligator(ISeries<double> input, int jawPeriod, int teethPeriod, int

lipsPeriod, int jawOffset, int teethOffset, int lipsOffset).Teeth[int barsAgo]

Returns Lips

Wiseman Alligator(int jawPeriod, int teethPeriod, int lipsPeriod, int jawOffset, int

teethOffset, int lipsOffset).Teeth[int barsAgo]

Wiseman Alligator(ISeries<double> input, int jawPeriod, int teethPeriod, int

lipsPeriod, int jawOffset, int teethOffset, int lipsOffset).Lips[int barsAgo]

Returns Jaw

Wiseman Alligator(int jawPeriod, int teethPeriod, int lipsPeriod, int jawOffset, int

teethOffset, int lipsOffset).Teeth[int barsAgo]

Wiseman Alligator(ISeries<double> input, int jawPeriod, int teethPeriod, int

lipsPeriod, int jawOffset, int teethOffset, int lipsOffset).Jaw[int barsAgo]

http://www.profitunity.com/

NinjaTrader 82536

© 2023 NinjaTrader, LLC

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

jawPeriod Number of bars used in the jaw moving average

calculation

teethPeriod Number of bars used in the teeth moving

average calculation

lipsPeriod Number of bars used in the lips moving average

calculation

jawOffset The offset for the jaw moving average

teethOffset The offset for the teeth moving average

lipsOffset The offset for the lips moving average

Examples

// Prints the current value of the teeth for the Wiseman Alligator

double value = WisemanAlligator(13, 8, 5, 8, 5, 3).Teeth[0];

Print("The current Wiseman Alligator teeth value is " +

value.ToString());

11.6.2.18.107 Wiseman Aw esome Oscillator

Description
The Wiseman Awesome Oscillator is a momentum indicator to identify trends and reversals.

This indicator was provided by Profitunity: http://www.profitunity.com

Syntax
WisemanAwesomeOscillator()

WisemanAwesomeOscillator(ISeries<double> input)

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

http://www.profitunity.com/

NinjaScript 2537

© 2023 NinjaTrader, LLC

Parameters

input Indicator source data (?)

Examples

// Prints the current value of the Wiseman Awesome Oscillator

double value = WisemanAwesomeOscillator()[0];

Print("The current Wiseman Awesome Oscillator value is " +

value.ToString());

11.6.2.18.108 Woodies CCI

Description
NinjaTrader provides the Woodies CCI indicator. It's implemented as specified by Woodie.

Syntax
WoodiesCCI()

WoodiesCCI(ISeries<double> input)

Returns default value

WoodiesCCI()[int barsAgo]

WoodiesCCI(ISeries<double> input)[int barsAgo]

Returns turbo value

WoodiesCCI().Turbo[int barsAgo]

WoodiesCCI(ISeries<double> input).Turbo[int barsAgo]

Returns histogram bar color

WoodiesCCI().ZoneBars[int barsAgo]

WoodiesCCI(ISeries<double> input).ZoneBars[int barsAgo]

Return values representing the chopzone plot color are as follows:

0 = Negative (default color is red)

1 = Positive (default color is blue)

2 = Neutral (default color is gray)

3 = Last neutral bar (default color is yellow)

Returns chopzone value

WoodiesCCI().ChopZone[int barsAgo]

WoodiesCCI(ISeries<double> input).ChopZone[int barsAgo]

Return values representing the chopzone plot color are as follows:

-4 = DarkRed

-3 = LightRed

NinjaTrader 82538

© 2023 NinjaTrader, LLC

-2 = DarkOrange

-1 = LightOrange

0 = Yellow

1 = Lime

2 = LightGreen

3 = DarkGreen

4 = Cyan

Returns sidewinder value

WoodiesCCI().Sidewinder[int barsAgo]

WoodiesCCI(ISeries<double> input).Sidewinder[int barsAgo]

Return values representing the sidewinder plot value are as follows:

-1 = Warning

0 = Neutral

1 = Trending

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

Example

// Prints the current value of a 14 period WoodiesCCI using default

price type

double value = WoodiesCCI(2, 5, 14, 34, 25, 6, 60, 100, 2)[0];

Print("The current WoodiesCCI value is " + value.ToString());

// Prints the current turbo value of a 14 / 6 period WoodiesCCI

using default price type

double value2 = WoodiesCCI(2, 5, 14, 34, 25, 6, 60, 100,

2).Turbo[0];

Print("The current WoodiesCCI turbo value is " +

value2.ToString());

NinjaScript 2539

© 2023 NinjaTrader, LLC

11.6.2.18.109 Woodies Pivots

Description
Woodies CCI Club pivots indicator.

Syntax
WoodiesPivots(HLCCalculationModeWoodie priorDayHLC, int width)

WoodiesPivots(ISeries<double> input, HLCCalculationModeWoodie priorDayHLC, int width)

Returns pivot point value

WoodiesPivots(HLCCalculationModeWoodie priorDayHLC, int width).PP[int barsAgo]

WoodiesPivotsISeries<double> input, HLCCalculationModeWoodie priorDayHLC, int

width).PP[int barsAgo]

Returns R1 value

WoodiesPivots(HLCCalculationModeWoodie priorDayHLC, int width).R1[int barsAgo]

WoodiesPivots(ISeries<double> input, HLCCalculationModeWoodie priorDayHLC, int

width).R1[int barsAgo]

Returns R2 value

WoodiesPivots(HLCCalculationModeWoodie priorDayHLC, int width).R2[int barsAgo]

WoodiesPivots(ISeries<double> input, HLCCalculationModeWoodie priorDayHLC, int

width).R2[int barsAgo]

Returns S1 value

WoodiesPivots(HLCCalculationModeWoodie priorDayHLC, int width).S1[int barsAgo]

WoodiesPivots(ISeries<double> input, HLCCalculationModeWoodie priorDayHLC, int

width).S1[int barsAgo]

Returns S2 value

WoodiesPivots(HLCCalculationModeWoodie priorDayHLC, int width).S2[int barsAgo]

WoodiesPivots(ISeries<double> input, HLCCalculationModeWoodie priorDayHLC, int

width).S2[int barsAgo]

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

Parameters

input Indicator source data (?)

priorDayHLC Sets how the prior range High, Low, Close

values are calculated. Possible values are:

HLCCalculationModeWoodie.CalcFromIntradayD

NinjaTrader 82540

© 2023 NinjaTrader, LLC

ata

HLCCalculationModeWoodie.DailyBars

HLCCalculationModeWoodie.UserDefinedValues

width An int determining the width of the pivot values

plotted

Example

// Prints the current pivot point value

double ppValue =

WoodiesPivots(HLCCalculationModeWoodie.CalcFromIntradayData,

20).PP[0];

Print("The current Woodies Pivots' pivot value is " + ppValue);

// Prints the current S2 pivot value

double s2Value =

WoodiesPivots(HLCCalculationModeWoodie.CalcFromIntradayData,

20).S2[0];

Print("The current Woodies Pivots' S2 pivot value is " + s2Value);

Tip: When using HLCCalculationMode.DailyBars it can be expected that a value of 0 is

returned when the daily bars have not been loaded yet. Due to the asynchronous nature of

this indicator calling daily bars you should only access the pivot values when the indicator

has loaded all required Bars objects. To ensure you are accessing accurate values you

can use .IsValidDataPoint()as a check:

// Evaluates that this is a valid Woodies Pivots value

if (WoodiesPivots(HLCCalculationModeWoodie.DailyBars,

20).PP.IsValidDataPoint(0))

{

 // Prints the current pivot point value

 double value =

WoodiesPivots(HLCCalculationModeWoodie.DailyBars, 20).PP[0];

 Print("The current Woodies Pivots' pivot value is " +

value.ToString());

}

NinjaScript 2541

© 2023 NinjaTrader, LLC

11.6.2.18.110 ZigZag

Description
The ZigZag indicator highlights trends based on user defined threshold values and helps

filtering the noise in price charts, it's not a classical indicator but more a reactive filter showing

extreme price points. In processing it's calculations it can update it's current direction and

price extreme point based on newly incoming data, the current developing leg should be

thought of temporary until a new leg in opposite direction has been set.

You can access methods within this indicator to determine the number of bars ago a zigzag

high or low point occurred or the current zigzag value, it is only meaningful to work with in

Calculate.OnBarClose mode for the Calculate property.

Syntax - Bars Ago
High Bar

ZigZag(DeviationType deviationType, double deviationValue, bool

useHighLow).HighBar(int barsAgo, int instance, int lookBackPeriod)

ZigZag(ISeries<double> input, DeviationType deviationType, double deviationValue, bool

 useHighLow).HighBar(int barsAgo, int instance, int lookBackPeriod)

Low Bar

ZigZag(DeviationType deviationType, double deviationValue, bool useHighLow).LowBar(int

 barsAgo, int instance, int lookBackPeriod)

ZigZag(ISeries<double> input, DeviationType deviationType, double deviationValue, bool

 useHighLow).LowBar(int barsAgo, int instance, int lookBackPeriod)

Return Value
An int value representing the number of bars ago. Returns a value of -1 if a swing point is not

found within the look back period.

Syntax - Value

High Value

ZigZag(DeviationType deviationType, double deviationValue, bool

useHighLow).ZigZagHigh[int barsAgo]

ZigZag(ISeries<double> input, DeviationType deviationType, double

deviationValue, bool useHighLow).ZigZagHigh[int barsAgo]

Low Value

ZigZag(DeviationType deviationType, double deviationValue, bool

useHighLow).ZigZagLow[int barsAgo]

ZigZag(ISeries<double> input, DeviationType deviationType, double

deviationValue, bool useHighLow).ZigZagLow[int barsAgo]

NinjaTrader 82542

© 2023 NinjaTrader, LLC

Return Value
double; Accessing this method via an index value [int barsAgo] returns the indicator value of

the referenced bar.

* A return value of 0 (zero) indicates that a zigzag high or low has not yet formed.

Parameters

barsAgo The number of bars ago that serves as the

starting bar and works backwards

deviationType Possible values are:

DeviationType.Points

DeviationType.Percent

deviationValue The deviation value

input Indicator source data (?)

instance The occurrence to check for (1 is the most

recent, 2 is the 2nd most recent etc...)

lookBackPeriod Number of bars to look back to check for the test

condition. Test is evaluated on the current bar

and the bars in the look back period.

useHighLow When true, both High and Low price series are

used. When false, the default input is used for

both highs and lows.

Example

// Prints the high price of the most recent zig zag high

Print("The high of the zigzag bar is " + High[Math.Max(0,

ZigZag(DeviationType.Points, 0.5, false).HighBar(0, 1, 100))]);

Source Code
You can view this indicator method source code by selecting the menu New > NinjaScript

Editor > Indicators within the NinjaTrader Control Center window.

NinjaScript 2543

© 2023 NinjaTrader, LLC

11.6.2.19 TradingHours

Definition
Represents the Trading Hours information returned from the current bars series. The Trading

Hours object contains several methods and properties for working with various trading

sessions.

Warning: The properties in this class should NOT be accessed within the

OnStateChange() method before the State has reached State.DataLoaded

Methods and Properties

Get() Returns the Trading Hours object for the

specified Trading Hours template name

GetPreviousTradin

gDayEnd()

Returns the end date and time of the previous

trading session relative to the time passed in the

methods parameters.

Holidays A collection of full holidays which are configured

for a Trading Hours template

Name Indicates the name of the trading hours template
applied to the Bars series object.

PartialHolidays A collection of partial holidays which are

configured for a Trading Hours template

Sessions A collection of session definitions of the trading

hours template.

TimeZoneInfo Indicates a time zone that is configured by a
Trading Hour template

11.6.2.19.1 Get

Definition
Returns the TradingHours object for the specified Trading Hours template name, such as

"CME US Index Futures RTH"

Method Return Value
A TradingHours object representing the specified Trading Hours template name.

Syntax

NinjaTrader 82544

© 2023 NinjaTrader, LLC

Get(string name)

Parameters

name The name of the desired TradingHours object to

return

Examples

// Loop through and print all regular holidays in the found

TradingHours object

foreach(KeyValuePair<DateTime, string> holiday in

TradingHours.Get("CME US Index Futures RTH").Holidays)

{

 Print(String.Format("Date: {0} Description: {1}", holiday.Key,

holiday.Value));

}

11.6.2.19.2 GetPreviousTradingDayEnd()

Definition
Returns the end date and time of the previous trading session regarding the time passed in

the methods parameters.

Method Return Value
A DateTime structure representing the previous trading days end date and time

Syntax
GetPreviousTradingDayEnd(DateTime timeLocal)

Warning: This method is resource intensive and should ONLY be reserved for situations

when calculations would be limited to a few specific use cases. For example, calling this

method for each bar in the OnBarUpdate() method would NOT be recommended.

Parameters

timeLocal An DateTime structure which is

used to calculate the current

trading day

Examples

NinjaScript 2545

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (Bars.IsFirstBarOfSession)

 {

 DateTime previousEndDate =

TradingHours.GetPreviousTradingDayEnd(Time[0]);

 Print(string.Format("The current bars date is {0} - the

previous trading session ended on {1}", Time[0], previousEndDate));

 }

 //Output: The current bars date is 2/18/2015 12:35:00 PM - the

previous trading session ended on 2/17/2015 3:15:00 PM

}

11.6.2.19.3 Holidays

Definition
A collection of full holidays configured for a Trading Hours template. Holidays are days which

fall outside of the regular trading schedule.

Note: For more information please see the "Understanding trading holidays" section of the

Using the Trading Hours window.

Property Value
A Dictionary holding a collection of holiday Dates and Descriptions of each holiday.

Date A DateTime representing the date

of the trading hours holiday

Description A string which is used to

describe the holiday (e.g.,

Christmas)

Syntax
TradingHours.Holidays

Examples

https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx

NinjaTrader 82546

© 2023 NinjaTrader, LLC

// Print all holidays included in the Bars object's Trading Hours

template

foreach(KeyValuePair<DateTime, string> holiday in

TradingHours.Holidays)

{

 Print(holiday);

}

11.6.2.19.4 Name

Definition
Indicates the name of the trading hours template applied to the Bars series object.

Property Value
A string representing the name of the trading hours template.

Syntax
Bars.TradingHours.Name

Examples

protected override void OnBarUpdate()

{

 Print(TradingHours.Name);

 //Output if applied to the ES with 'use instrument settings':

CME US Index Futures ETH

}

11.6.2.19.5 PartialHolidays

Definition
A collection of partial holidays which are configured for a Trading Hours template. Holidays

are days which fall outside of the normal trading schedule, on which data will be excluded. For

more information please see the "Understanding trading holidays" section of the Using the

Trading Hours window.

Property Value
A Dictionary holding a collection of holiday Dates and PartialHoliday objects for each partial

holiday.

Date A DateTime representing the

trading date of the Trading

https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx

NinjaScript 2547

© 2023 NinjaTrader, LLC

Hours holiday

PartialHoliday An object containing a DateTime

representing the date of the early

close or late begin, a description

of the partial holiday, and two bool

properties, IsEarlyClose and

IsLateBegin

Syntax
TradingHours.PartialHolidays

Examples

// Print all partial holidays included in the Bars object's Trading

Hours template

foreach(KeyValuePair<DateTime, PartialHoliday> holiday in

TradingHours.PartialHolidays)

{

 Print(holiday);

}

11.6.2.19.6 Sessions

Definition
A collection of session definitions of the configured Trading Hours template.

Available Properties

BeginDay A DayOfWeek value representing

the begin day

BeginTime An int value representing the

begin time

EndDay A DayOfWeek value representing

the end day

EndTime An int value representing the end

time

https://msdn.microsoft.com/en-us/library/system.dayofweek(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.dayofweek(v=vs.90).aspx

NinjaTrader 82548

© 2023 NinjaTrader, LLC

TradingDay A DayOfWeek value representing

the trading day this session

belongs to

Syntax
Bars.TradingHours.Sessions[int idx]

Tip: Each index value will represent a new defined session for the Trading Hours
template. For example, accessing Bars.TradingHours.Sessions[0] would provide you
with information for the first trading session configured in the Trading Hours template:

Bars.TradingHours.Sessions[0].TradingDay = DayOfWeek.Monday,

Bars.TradingHours.Sessions[1].TradingDay = DayOfWeek.Tuesday,

Bars.TradingHours.Sessions[2].TradingDay = DayOfWeek.Wednesday, etc.

Examples

// Print details for all sessions in the Trading Hours template

for (int i = 0; i < TradingHours.Sessions.Count; i++)

{

 Print(String.Format("Session {0}: {1} at {2} to {3} at {4}", i,

 TradingHours.Sessions[i].BeginDay,

TradingHours.Sessions[i].BeginTime,

 TradingHours.Sessions[i].EndDay,

TradingHours.Sessions[i].EndTime));

}

11.6.2.19.7 TimeZoneInfo

Definition
Indicates a time zone that is configured by a Trading Hours template

Property Value
A TimeZoneInfo object the represents the time zone for a configured Trading Hours

template.

Syntax
Bars.TradingHours.TimeZoneInfo

Examples

https://msdn.microsoft.com/en-us/library/system.dayofweek(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.timezoneinfo(v=vs.110).aspx

NinjaScript 2549

© 2023 NinjaTrader, LLC

// Print the timezone before printing all sessions

Print(String.Format("All sessions are in {0}",

Bars.TradingHours.TimeZoneInfo));

// Print details for all sessions in the Trading Hours template

for (int i = 0; i < TradingHours.Sessions.Count; i++)

{

 Print(String.Format("Session {0}: {1} at {2} to {3} at {4}", i,

 TradingHours.Sessions[i].BeginDay,

TradingHours.Sessions[i].BeginTime,

 TradingHours.Sessions[i].EndDay,

TradingHours.Sessions[i].EndTime));

}

11.6.2.20 Clone()

Definition
Used to override the default NinjaScript Clone() method which is called any time an instance

of a NinjaScript object is created. By default, the NinjaScript Clone() method will copy all the

Property Info and Browsable Attributes to the new instance when the object is created (e.g.,

when an optimization is ran a new instance of the strategy will be created for each iteration).

However it is possible to override this behavior if desired for custom development. There is

no requirement to override the Clone behavior and this method will use the default constructor

if not overridden.

Note: This method is reserved for advanced developers who would like to change the

default behavior when a NinjaScript object is created

Method Return Value
A virtual object representing the NinjaScript type.

Syntax
public override object Clone()

Parameters
This method does not take any parameters

Examples

https://msdn.microsoft.com/en-us/library/system.reflection.propertyinfo%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.browsableattribute%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx

NinjaTrader 82550

© 2023 NinjaTrader, LLC

public override object Clone()

{

 // custom logic to handle before the base clone

 return base.Clone();

 // custom logic to hand after the base clone

}

11.6.2.21 Description

Definition
Text which is used on the UI's information box to be displayed to a user when configuration a

NinjaScript object.

Method Return Value
A string value representing text used to describe the object.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
Description

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 Description = @"An indicator used to demonstrate various

NinjaScript methods and properties";

 }

}

11.6.2.22 DisplayName

Definition
Determines the text display on the chart panel. This is also listed in the UI as the "Label"
which can be manually changed (if not overridden). The default behavior of this property will
include the NinjaScript type Name along with its input and data series parameters. However
this behavior can be overridden if desired.

NinjaScript 2551

© 2023 NinjaTrader, LLC

Note: For modifying the string which is used in the list of available indicators, please see
the Name property.

Property Value
A virtual string. This property is read-only.

Syntax
DisplayName

You may choose to override this property using the following syntax:

public override string DisplayName

{

 get { }

}

Examples

 Printing the default DisplayName which displays on the chart
label

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example Indicator";

 }

}

protected override void OnBarUpdate()

{

 Print(DisplayName); //Output: Example Indicator(ES 03-15 (1

Minute))

}

NinjaTrader 82552

© 2023 NinjaTrader, LLC

 Overriding the DisplayName to customize the chart label

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example Indicator";

 }

}

public override string DisplayName

{

 get { return "My Custom Display " + Name; }

}

protected override void OnBarUpdate()

{

 Print(DisplayName); //Output: My Custom Display Example

Indicator

}

11.6.2.23 IsVisible

Definition
Determines if the current NinjaScript object should be visible on the chart. When an object's

IsVisible property is set to false, the object will NOT be displayed on the chart and will not be

calculated to save resources.

Note: Strategies intentionally contain no IsVisible property.

Warning: This property should NOT be set on indicators which add a panel or own their

own panel. Panel addition/removal is determined when an indicator is added/removed to a

chart and is not modified through the IsVisible property.

Property Value
A bool value when true will be displayed on the chart; otherwise false; default value is true.

Syntax
IsVisible

Examples

NinjaScript 2553

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Loops through the DrawObjects collection via a threadsafe list copy

 foreach (DrawingTool draw in DrawObjects.ToList())

 {

 // Detect all manual drawn line objects and change their visibility

 if (draw is DrawingTools.Line && draw.IsUserDrawn)

 {

 draw.IsVisible = false;

 }

 }

}

11.6.2.24 Name

Definition
Determines the listed name of the NinjaScript object.

Property Value
A string value.

Syntax
Name

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples indicator";

 Description = @"An example of an indicator used for

documentation purposes";

 }

}

11.6.2.25 TriggerCustomEvent()

Definition
Provides a way to use your own custom events (such as a Timer object) so that internal

NinjaScript indexes and pointers are correctly set prior to processing user code triggered by

your custom event. When calling this event, NinjaTrader will synchronize all internal pointers

and then call your custom event handler where your user code is located.

NinjaTrader 82554

© 2023 NinjaTrader, LLC

Note: The TriggerCustomEvent() method does NOT execute before State.DataLoaded

or during or after State.Terminated. In effect, attempting to trigger custom events may

be unavailable in some circumstances (e.g., while an indicator is terminating, or viewing

the Strategy Analyzer chart display after backtest has completed, etc.)

Method Return Value
This method does not have a return value.

Syntax
TriggerCustomEvent(Action<object> customEvent, object state)

TriggerCustomEvent(Action<object> customEvent, int barsSeriesIndex, object state)

Parameters

barsIndex Index of the bar series you want to synchronize

to

customEvent Delegate of your custom event method

state Any object you want passed into your custom

event method

Tips:

· There may be scenarios in which you need to set a Series<T> value outside of one of

the core data event methods. In these cases, you can use TriggerCustomEvent() to

reliably synchronize the barAgo indexer to the recent. current bar being updated.

Please see the example below.

· Usually the correct approach is to use the WPF Dispatcher timer, however in cases

where you need the timer to update a WinForms window it opened - please use the

WinForms timer.

Examples

http://msdn.microsoft.com/en-us/library/018hxwa8%28v=vs.110%29.aspx
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.timer?view=netframework-4.7.2

NinjaScript 2555

© 2023 NinjaTrader, LLC

 Using TriggerCustomEvent() in simple timer event

protected override void OnBarUpdate()

{

 // OnBarUpdate() only runs as bars are processed, which is not

guaranteed to occur at a specific interval

 // e.g., even on a 5 second bar series, there may be time periods

where there are no updates due to low trading activity

 // or could be buffered due to running Calculate.OnBarClose.

Instead of trying to obtain the Close[0] value

 // at some interval here, we are going to do it in our custom

TimerEventProcessor

}

// This is the method to run when the timer is raised.

private void TimerEventProcessor(Object myObject, EventArgs

myEventArgs)

{

 // Do not process your code here but instead call the

TriggerCustomEvent() method

 // and process your code in the custom handler method e.g., our

custom PrintThePrice()

 // Doing so ensures all internal indexers are up-to-date

 if (CurrentBar > 0)

 {

 TriggerCustomEvent(PrintThePrice, Close[0]);

 }

}

// Print the latest closing price with the current time

private void PrintThePrice(object price)

{

 Print("The Last Bar's Closing Value as of " +

NinjaTrader.Core.Globals.Now + " was " + price);

}

// Declare the WPF dispatcher timer

private System.Timers.Timer myTimer;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "SampleTriggerCustomEventTimer";

 }

 else if (State == State.DataLoaded)

 {

 // Instantiates the timer and sets the interval to 5 seconds.

 myTimer = new System.Timers.Timer(5000);

 // Adds the event handler for the method that will

 // process the timer event to the timer.

 myTimer.Elapsed += TimerEventProcessor;

 // Starts the timer

 myTimer.Enabled = true;

 }

 else if (State == State.Terminated)

 {

 // Stops the timer and removes the timer event handler

 if (myTimer != null)

 {

 myTimer.Enabled = false;

 myTimer.Elapsed -= TimerEventProcessor;

 myTimer = null;

 }

 }

}

NinjaTrader 82556

© 2023 NinjaTrader, LLC

NinjaScript 2557

© 2023 NinjaTrader, LLC

 Using TriggerCustomEvent to update a previously set custom
Series<T> value

// using the virtual on render method for demonstration

// but concept could apply to any custom event that does not rely

on bars data

// e.g., from a custom mouse event or other 3rd party dependency

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // we want to reset a custom series values 20 barsAgo during

some condition

 if (conditionWhichRequiredUpdate)

 {

 // First, synchronize the index value used in via

Series[barsAgo]

 // to the NinjaScriptBase.CurrentBar being currently being

processed in OnBarUpdate

 TriggerCustomEvent(o =>

 {

 // For debugging, check the previous value

 Print("Before value which was set in OnBarUpdate(): " +

SomeVolumeData[20]);

 SomeVolumeData[20] = 5; // set to our new custom value

 // For debugging, check the updated value

 Print("After value which was updated later in OnRender():

" + SomeVolumeData[20]);

 }, null);

 // reset our flag until we need to update a value again

 conditionWhichRequiredUpdate = false;

 }

 //Output:

 //Before value which was set in OnBarUpdate(): 1165

 //After value which was updated later in OnRender(): 5

}

private Series<double> SomeVolumeData; // custom Series for

tracking volume which will be modified through its lifetime

private bool conditionWhichRequiredUpdate = true;

protected override void OnStateChange()

{

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Name = "SampleUpdateCustomSeries";

 }

 else if (State == State.Historical)

 {

 SomeVolumeData = new Series<double>(this);

 }

 }

}

protected override void OnBarUpdate()

{

 SomeVolumeData[0] = Volume[0]; // set the custom series to the

CurrentBar volume

}

NinjaTrader 82558

© 2023 NinjaTrader, LLC

11.6.3 Add On

Custom Add Ons can be used to extend NinjaTrader's functionality. The methods and

properties covered in this section are unique to custom Add On development.

For more information on the Add On development process please see this article.

NinjaTrader

Controls

This section contains controls that are native

NinjaTrader controls.

Account The Account class can be used to subscribe to

account related events as well as accessing

account related information.

BarsRequest BarsRequest can be used to request Bars data

and subscribe to real-time Bars data events.

Connection The Connection class can be used to monitor

connection related events as well as accessing

connection related information.

IInstrumentProvide

r Interface

When creating your NTTabPage, if you wish to

use the instrument link, be sure to implement the

IInstrumentProvider interface.

IIntervalProvider

Interface

When creating your NTTabPage, if you wish to

use the interval link, be sure to implement the

IIntervalProvider interface.

INTTabFactory

Interface

If you wish to have tab page functionality like

adding, removing, moving, duplicating tabs you

must create a class which implements the

INTTabFactory interface.

IWorkspacePersist

ence Interface

When creating your NTWindow, be sure to

implement the IWorkspacePersistence interface

as well for the ability to save and restore your

window with NinjaTrader workspaces.

NTTabPage Class This is where the actual content for tabs inside

the custom add on NTWindow can be defined.

NinjaScript 2559

© 2023 NinjaTrader, LLC

Alert and Debug

Concepts

In most scenarios you can use the NinjaScript

provided methods for triggering alerts and

debugging functionality. However, when building

your own custom objects, you may find yourself

wanting to use this functionality outside the

NinjaScript scope.

AtmStrategy AtmStrategy contains properties and methods

used to manage ATM Strategies.

ControlCenter ControlCenter is a XAML-defined class

containing the layout and properties of the

Control Center window.

FundamentalData FundamentalData is used to access

fundamental snapshot data and for subscribing

to fundamental data events.

MarketData MarketData can be used to access snapshot

market data and for subscribing to market data

events.

MarketDepth MarketDepth can be used to access snapshot

market depth and for subscribing to market

depth events.

NewsItems NewsItems can be used to store news articles.

NewsSubscription NewsSubscription can be used for subscribing

to News events.

NTMenuItem NTMenuItem is used to create new menu

entries.

NTWindow The NTWindow class defines parent windows

for custom window creation. Instances of

NTWindow act as containers for instances of

NTTabPage, in which UI elements and their

related logic are contained.

NumericTextBox NumericTextBox provides functionality for

numeric text boxes to capture user input.

NinjaTrader 82560

© 2023 NinjaTrader, LLC

OnWindowCreate

d()

This method is called whenever a new

NTWindow is created.

OnWindowDestroy

ed()

This method is called whenever a new

NTWindow is destroyed.

OnWindowRestor

ed()

This method is used to recall any custom

XElement data from the workspace by

referencing a window.

OnWindowSaved() This method is used to save any custom

XElement data associated with your window.

StartAtmStrategy() StartAtmStrategy can be used to submit entry

orders with ATM strategies.

StrategyBase StrategyBase contains properties and methods

for managing a Strategy object, and is the base

class from which AtmStrategy derives.

PropagateInstrume

ntChange()

In an NTWindow, PropagateInstrumentChange()

sends an Instrument to other windows with the

same Instrument Linking color configured.

PropagateIntervalC

hange()

In an NTWindow, PropagateIntervalChange()

sends an interval to other windows with the

same Interval Linking color configured.

TabControl The TabControl class provides functionality for

working with NTTabPage objects within an

NTWindow.

TabControlManage

r

The TabControlManager class can be used to

set or check several properties of a TabControl

object.

11.6.3.1 NinjaTrader Controls

The following section contains controls that are native NinjaTrader controls. To fully integrate

your Add On within NinjaTrader it is recommended to use these controls as opposed to

building your own when possible.

Note: For cleaning up these resources, please see the NTTabPage.Cleanup() method

NinjaScript 2561

© 2023 NinjaTrader, LLC

Accoun

tSelect

or

AccountSelector can be used as an UI element users can

interact with for selecting accounts.

AtmStr

ategyS

elector

AtmStrategySelector is an UI element users can interact

with for selecting ATM Strategies.

Instrum

entSele

ctor

InstrumentSelector is a UI element users can interact with

for selecting instruments. This can be used with instrument

linking between windows.

Interval

Selecto

r

IntervalSelector is as a UI element users can interact with

for selecting intervals. This can be used with interval linking

between windows.

TifSele

ctor

TifSelector can be used as an UI element users can interact

with for selecting TIF.

Quantit

yUpDo

wn

QuantityUpDown can be used as an UI element users can

interact with for selecting quantity.

11.6.3.1.1 AccountSelector

Definition
AccountSelector can be used as an UI element users can interact with for selecting

accounts.

Events and Properties

Cleanup() Disposes of the AccountSelector (Note: calling

the NTTabPage base.Cleanup() is sufficient to

clean up this control)

SelectedAccount Returns an Account representing the selected

account

SelectionChanged Event handler for when the selected account has

changed

NinjaTrader 82562

© 2023 NinjaTrader, LLC

Examples

NinjaScript 2563

© 2023 NinjaTrader, LLC

C#

/* Example of subscribing/unsubscribing to market data from an Add

On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 private AccountSelector accountSelector

 public MyAddOnTab()

 {

 // Note: pageContent (not demonstrated in this example)

is the page content of the XAML

 // Find account selector

 accountSelector =

LogicalTreeHelper.FindLogicalNode(pageContent, "accountSelector")

as AccountSelector;

 // When the account selector's selection changes,

unsubscribe and resubscribe

 accountSelector.SelectionChanged += (o, args) =>

 {

 if (accountSelector.SelectedAccount != null)

 {

 // Unsubscribe to any prior account

subscriptions

 accountSelector.SelectedAccount.AccountItemUpdate -=

OnAccountItemUpdate;

 accountSelector.SelectedAccount.ExecutionUpdate

-= OnExecutionUpdate;

 accountSelector.SelectedAccount.OrderUpdate -=

OnOrderUpdate;

 accountSelector.SelectedAccount.PositionUpdate

-= OnPositionUpdate;

 // Subscribe to new account subscriptions

 accountSelector.SelectedAccount.AccountItemUpdate +=

OnAccountItemUpdate;

 accountSelector.SelectedAccount.ExecutionUpdate

 += OnExecutionUpdate;

 accountSelector.SelectedAccount.OrderUpdate

 += OnOrderUpdate;

 accountSelector.SelectedAccount.PositionUpdate

 += OnPositionUpdate;

 }

 };

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Clean up our resources

 base.Cleanup();

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

NinjaTrader 82564

© 2023 NinjaTrader, LLC

XAML

<Page

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:Tools="clr-

namespace:NinjaTrader.Gui.Tools;assembly=NinjaTrader.Gui"

 xmlns:AccountPerformance="clr-

namespace:NinjaTrader.Gui.AccountPerformance;assembly=NinjaTrader.G

ui"

 xmlns:AccountData="clr-

namespace:NinjaTrader.Gui.AccountData;assembly=NinjaTrader.Gui"

 xmlns:AtmStrategy="clr-

namespace:NinjaTrader.Gui.NinjaScript.AtmStrategy;assembly=NinjaTra

der.Gui">

<Grid>

 <Tools:AccountSelector x:Name="accountSelector"

HorizontalAlignment="Left" VerticalAlignment="Top"/>

</Grid>

11.6.3.1.2 AtmStrategySelector

Definition
AtmStrategySelector is an UI element users can interact with for selecting ATM Strategies.

Events and Properties

Cleanup() Disposes of the AtmStrategySelector (Note:

calling the NTTabPage base.Cleanup() is

sufficient to clean up this control)

CustomProperties

Changed

Event handler for when properties have changed

on the ATM strategy

Id A string identifying the ATM Strategy selector

SelectedAtmStrate

gy

Returns an AtmStrategy representing the

selected ATM strategy

SelectionChanged Event handler for when the selected ATM

strategy has changed

Examples

NinjaScript 2565

© 2023 NinjaTrader, LLC

This example demonstrates how to use the ATM strategy selector and properly link its

behavior with the quantity up/down and TIF selectors.

Examples

NinjaTrader 82566

© 2023 NinjaTrader, LLC

C#

private QuantityUpDown qudSelector;

private TifSelector tifSelector;

private AtmStrategy.AtmStrategySelector atmStrategySelector;

private DependencyObject LoadXAML()

{

 // Note: pageContent (not demonstrated in this example) is the

page content of the XAML

 // Find the Quantity Up-Down selector

 qudSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

"qudSelector") as QuantityUpDown;

 // Find the TIF selector

 tifSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

"tifSelector") as TifSelector;

 // Be sure to bind our account selector to our TIF selector to

ensure proper functionality

 tifSelector.SetBinding(TifSelector.AccountProperty, new

Binding { Source = accountSelector,

 Path = new PropertyPath("SelectedAccount") });

 // When our TIF selector's selection changes

 tifSelector.SelectionChanged += (o, args) =>

 {

 // Change the selected TIF in the ATM strategy too

 if (atmStrategySelector.SelectedAtmStrategy != null)

 atmStrategySelector.SelectedAtmStrategy.TimeInForce

= tifSelector.SelectedTif;

 };

 // Find ATM Strategy selector and attach event handler

 atmStrategySelector =

LogicalTreeHelper.FindLogicalNode(pageContent,

"atmStrategySelector") as AtmStrategy.AtmStrategySelector;

 atmStrategySelector.Id = Guid.NewGuid().ToString("N");

 if (atmStrategySelector != null)

 atmStrategySelector.CustomPropertiesChanged +=

OnAtmCustomPropertiesChanged;

 // Be sure to bind our account selector to our ATM strategy

selector to ensure proper functionality

 atmStrategySelector.SetBinding(AtmStrategy.AtmStrategySelector

.AccountProperty,

 new Binding { Source = accountSelector, Path = new

PropertyPath("SelectedAccount") });

 // When our ATM selector's selection changes

 atmStrategySelector.SelectionChanged += (o, args) =>

 {

 if (atmStrategySelector.SelectedItem == null)

 return;

 if (args.AddedItems.Count > 0)

 {

 // Change the selected TIF in our TIF selector too

 AtmStrategy selectedAtmStrategy = args.AddedItems[0]

as AtmStrategy;

 if (selectedAtmStrategy != null)

 tifSelector.SelectedTif =

selectedAtmStrategy.TimeInForce;

}

};

}

private void OnAtmCustomPropertiesChanged(object sender,

NinjaScript.AtmStrategy.CustomPropertiesChangedEventArgs args)

{

 // Adjust our TIF and Quantity selectors to the new ATM

strategy values

 tifSelector.SelectedTif = args.NewTif;

 qudSelector.Value = args.NewQuantity;

}

// NOTE: Don't forget to clean up resources and unsubscribe to

events

// Called by TabControl when tab is being removed or window is

closed

public override void Cleanup()

{

 // Clean up our resources

 base.Cleanup();

}

NinjaScript 2567

© 2023 NinjaTrader, LLC

XAML

<AtmStrategy:AtmStrategySelector x:Name="atmStrategySelector"

LinkedQuantity="{Binding ElementName=qudSelector, Path=Value,

Mode=OneWay}" Grid.Row="12" Grid.Column="2">

 <AtmStrategy:AtmStrategySelector.Margin>
 <Thickness Left="{StaticResource MarginButtonLeft}"
Top="{StaticResource MarginControl}" Right="{StaticResource
MarginBase}" Bottom="0" />
 </AtmStrategy:AtmStrategySelector.Margin>
</AtmStrategy:AtmStrategySelector>

11.6.3.1.3 InstrumentSelector

Definition
InstrumentSelector is a UI element users can interact with for selecting instruments. This can

be used with instrument linking between windows.

Events and Properties

Cleanup() Disposes of the InstrumentSelector (Note:

calling the NTTabPage base.Cleanup() is

sufficient to clean up this control)

Instrument An Instrument representing the selected

instrument

InstrumentChange

d

Event handler for when the instrument changes

on the instrument selector

Examples
This example demonstrates how to use the instrument selector and properly link its behavior

to windows linking.

C#

private InstrumentSelector instrumentSelector;

private DependencyObject LoadXAML()

{

 // Note: pageContent (not demonstrated in this example) is the

page content of the XAML

 // Find the Instrument selector

NinjaTrader 82568

© 2023 NinjaTrader, LLC

C#

 instrumentSelector =

LogicalTreeHelper.FindLogicalNode(pageContent,

"instrumentSelector") as InstrumentSelector;

 if (instrumentSelector != null)

 instrumentSelector.InstrumentChanged +=

OnInstrumentChanged;

}

// This method is fired when our instrument selector changes

instruments

private void OnInstrumentChanged(object sender, EventArgs e)

{

 Instrument = sender as Cbi.Instrument;

}

// IInstrumentProvider member. Required if you want to use the

instrument link mechanism in this Add On window

public Cbi.Instrument Instrument

{

 get { return instrument }

 set

 {

 instrument = value;

 if (instrumentSelector != null)

 instrumentSelector.Instrument = value;

 // Send instrument to other windows linked to the same

color

 PropagateInstrumentChange(value);

 }

}

// NOTE: Don't forget to clean up resources and unsubscribe to

events

// Called by TabControl when tab is being removed or window is

closed

public override void Cleanup()

{

 // Clean up our resources

 if (instrumentSelector != null)

 {

 instrumentSelector.InstrumentChanged -=

OnInstrumentChanged;

 }

 base.Cleanup();

}

NinjaScript 2569

© 2023 NinjaTrader, LLC

XAML

<Page

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:Tools="clr-

namespace:NinjaTrader.Gui.Tools;assembly=NinjaTrader.Gui"

xmlns:AccountPerformance="clr-

namespace:NinjaTrader.Gui.AccountPerformance;assembly=NinjaTrader.G

ui"

xmlns:AccountData="clr-

namespace:NinjaTrader.Gui.AccountData;assembly=NinjaTrader.Gui"

xmlns:AtmStrategy="clr-

namespace:NinjaTrader.Gui.NinjaScript.AtmStrategy;assembly=NinjaTra

der.Gui">

<Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <Tools:InstrumentSelector x:Name="instrumentSelector"

Grid.Column="0" LastUsedGroup="MyAddOn"/>

</Grid>

11.6.3.1.4 IntervalSelector

Definition
IntervalSelector is as a UI element users can interact with for selecting intervals. This can be

used with interval linking between windows.

Events and Properties

Cleanup() Disposes of the IntervalSelector (Note: calling

the NTTabPage base.Cleanup() is sufficient to

clean up this control)

Interval A BarsPeriod representing the interval currently

selected

IntervalChanged Event handler for when the interval changed

Examples

NinjaTrader 82570

© 2023 NinjaTrader, LLC

This example demonstrates how to use the interval selector and properly link its behavior to

windows linking.

C#

private IntervalSelector intervalSelector;

private DependencyObject LoadXAML()

{

 // Note: pageContent (not demonstrated in this example) is the

page content of the XAML

 // Find the Interval selector

 intervalSelector =

LogicalTreeHelper.FindLogicalNode(pageContent, "intervalSelector")

as IntervalSelector;

 if (intervalSelector != null)

 intervalSelector.IntervalChanged += OnIntervalChanged;

}

// This method is fired when our interval selector changes

intervals

private void OnIntervalChanged(object sender, BarsPeriodEventArgs

e)

{

 if (e.BarsPeriod == null)

 return;

}

/* IIntervalProvider member. Required if you want to use the

interval linker mechanism on this window.

No functionality has been linked to the interval linker in this

sample. */

public BarsPeriod BarsPeriod { get; set; }

// NOTE: Don't forget to clean up resources and unsubscribe to

events

// Called by TabControl when tab is being removed or window is

closed

public override void Cleanup()

{

 // Clean up our resources

 if (intervalSelector != null)

 intervalSelector.IntervalChanged -= OnIntervalChanged;

 base.Cleanup();

}

NinjaScript 2571

© 2023 NinjaTrader, LLC

XAML

<Page

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:Tools="clr-

namespace:NinjaTrader.Gui.Tools;assembly=NinjaTrader.Gui"

xmlns:AccountPerformance="clr-

namespace:NinjaTrader.Gui.AccountPerformance;assembly=NinjaTrader.G

ui"

xmlns:AccountData="clr-

namespace:NinjaTrader.Gui.AccountData;assembly=NinjaTrader.Gui"

xmlns:AtmStrategy="clr-

namespace:NinjaTrader.Gui.NinjaScript.AtmStrategy;assembly=NinjaTra

der.Gui">

<Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <Tools:IntervalSelector x:Name="intervalSelector"

Grid.Column="0" HorizontalAlignment="Left"/>

</Grid>

11.6.3.1.5 TifSelector

Definition
TifSelector can be used as an UI element users can interact with for selecting TIF.

Events and Properties

Cleanup() Disposes of the TifSelector (Note: calling the

NTTabPage base.Cleanup() is sufficient to clean

up this control)

SelectedTif A TimeInForce representing the selected TIF

Possible values:

TimeInForce.Day

TimeInForce.Gtc

TimeInForce.Gtd

TimeInForce.Ioc

TimeInForce.Opg

NinjaTrader 82572

© 2023 NinjaTrader, LLC

SelectionChanged Event handler for when the selected ATM

strategy has changed

Examples
This example demonstrates how to use the TIF selector and properly link its behavior with the

quantity up/down and TIF selectors.

NinjaScript 2573

© 2023 NinjaTrader, LLC

C#

private QuantityUpDown qudSelector;

private TifSelector tifSelector;

private AtmStrategy.AtmStrategySelector atmStrategySelector;

private DependencyObject LoadXAML()

{

 // Note: pageContent (not demonstrated in this example) is the

page content of the XAML

 // Find the Quantity Up-Down selector

 qudSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

"qudSelector") as QuantityUpDown;

 // Find the TIF selector

 tifSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

"tifSelector") as TifSelector;

 // Be sure to bind our account selector to our TIF selector to

ensure proper functionality

 tifSelector.SetBinding(TifSelector.AccountProperty, new

Binding { Source = accountSelector,

 Path = new PropertyPath("SelectedAccount") });

 // When our TIF selector's selection changes

 tifSelector.SelectionChanged += (o, args) =>

 {

 // Change the selected TIF in the ATM strategy too

 if (atmStrategySelector.SelectedAtmStrategy != null)

 atmStrategySelector.SelectedAtmStrategy.TimeInForce

= tifSelector.SelectedTif;

 };

 // Find ATM Strategy selector and attach event handler

 atmStrategySelector =

LogicalTreeHelper.FindLogicalNode(pageContent,

"atmStrategySelector") as AtmStrategy.AtmStrategySelector;

 atmStrategySelector.Id = Guid.NewGuid().ToString("N");

 if (atmStrategySelector != null)

 atmStrategySelector.CustomPropertiesChanged +=

OnAtmCustomPropertiesChanged;

 // Be sure to bind our account selector to our ATM strategy

selector to ensure proper functionality

 atmStrategySelector.SetBinding(AtmStrategy.AtmStrategySelector

.AccountProperty,

 new Binding { Source = accountSelector, Path = new

PropertyPath("SelectedAccount") });

 // When our ATM selector's selection changes

 atmStrategySelector.SelectionChanged += (o, args) =>

 {

 if (atmStrategySelector.SelectedItem == null)

 return;

 if (args.AddedItems.Count > 0)

 {

 // Change the selected TIF in our TIF selector too

 AtmStrategy selectedAtmStrategy = args.AddedItems[0]

as AtmStrategy;

 if (selectedAtmStrategy != null)

 tifSelector.SelectedTif =

selectedAtmStrategy.TimeInForce;

}

};

}

private void OnAtmCustomPropertiesChanged(object sender,

NinjaScript.AtmStrategy.CustomPropertiesChangedEventArgs args)

{

 // Adjust our TIF and Quantity selectors to the new ATM

strategy values

 tifSelector.SelectedTif = args.NewTif;

 qudSelector.Value = args.NewQuantity;

}

// NOTE: Don't forget to clean up resources and unsubscribe to

events

// Called by TabControl when tab is being removed or window is

closed

public override void Cleanup()

{

 // Clean up our resources

 base.Cleanup();

}

NinjaTrader 82574

© 2023 NinjaTrader, LLC

XAML

<Page

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:Tools="clr-

namespace:NinjaTrader.Gui.Tools;assembly=NinjaTrader.Gui"

xmlns:AccountPerformance="clr-

namespace:NinjaTrader.Gui.AccountPerformance;assembly=NinjaTrader.G

ui"

xmlns:AccountData="clr-

namespace:NinjaTrader.Gui.AccountData;assembly=NinjaTrader.Gui"

xmlns:AtmStrategy="clr-

namespace:NinjaTrader.Gui.NinjaScript.AtmStrategy;assembly=NinjaTra

der.Gui">

<Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <Tools:QuantityUpDown x:Name="qudSelector" Value="1"

Grid.Column="0"/>

 <Tools:TifSelector x:Name="tifSelector" Grid.Column="1"/>

 <AtmStrategy:AtmStrategySelector x:Name="atmStrategySelector"

LinkedQuantity="{Binding Value,

 ElementName=qudSelector, Mode=OneWay}" Grid.Column="2"/>

</Grid>

11.6.3.1.6 QuantityUpDow n

Definition
QuantityUpDown can be used as an UI element users can interact with for selecting quantity.

Events and Properties

Value An int representing the quantity

Examples
This example demonstrates how to use the quantity up/down selector and properly link its

behavior with the ATM strategy and TIF selectors.

NinjaScript 2575

© 2023 NinjaTrader, LLC

C#

private QuantityUpDown qudSelector;

private TifSelector tifSelector;

private AtmStrategy.AtmStrategySelector atmStrategySelector;

private DependencyObject LoadXAML()

{

 // Note: pageContent (not demonstrated in this example) is the

page content of the XAML

 // Find the Quantity Up-Down selector

 qudSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

"qudSelector") as QuantityUpDown;

 // Find the TIF selector

 tifSelector = LogicalTreeHelper.FindLogicalNode(pageContent,

"tifSelector") as TifSelector;

 // Be sure to bind our account selector to our TIF selector to

ensure proper functionality

 tifSelector.SetBinding(TifSelector.AccountProperty, new

Binding { Source = accountSelector,

 Path = new PropertyPath("SelectedAccount") });

 // When our TIF selector's selection changes

 tifSelector.SelectionChanged += (o, args) =>

 {

 // Change the selected TIF in the ATM strategy too

 if (atmStrategySelector.SelectedAtmStrategy != null)

 atmStrategySelector.SelectedAtmStrategy.TimeInForce

= tifSelector.SelectedTif;

 };

 // Find ATM Strategy selector and attach event handler

 atmStrategySelector =

LogicalTreeHelper.FindLogicalNode(pageContent,

"atmStrategySelector") as AtmStrategy.AtmStrategySelector;

 atmStrategySelector.Id = Guid.NewGuid().ToString("N");

 if (atmStrategySelector != null)

 atmStrategySelector.CustomPropertiesChanged +=

OnAtmCustomPropertiesChanged;

 // Be sure to bind our account selector to our ATM strategy

selector to ensure proper functionality

 atmStrategySelector.SetBinding(AtmStrategy.AtmStrategySelector

.AccountProperty,

 new Binding { Source = accountSelector, Path = new

PropertyPath("SelectedAccount") });

NinjaTrader 82576

© 2023 NinjaTrader, LLC

C#

 // When our ATM selector's selection changes

 atmStrategySelector.SelectionChanged += (o, args) =>

 {

 if (atmStrategySelector.SelectedItem == null)

 return;

 if (args.AddedItems.Count > 0)

 {

 // Change the selected TIF in our TIF selector too

 AtmStrategy selectedAtmStrategy = args.AddedItems[0]

as AtmStrategy;

 if (selectedAtmStrategy != null)

 tifSelector.SelectedTif =

selectedAtmStrategy.TimeInForce;

}

};

}

private void OnAtmCustomPropertiesChanged(object sender,

NinjaScript.AtmStrategy.CustomPropertiesChangedEventArgs args)

{

 // Adjust our TIF and Quantity selectors to the new ATM

strategy values

 tifSelector.SelectedTif = args.NewTif;

 qudSelector.Value = args.NewQuantity;

}

// NOTE: Don't forget to clean up resources and unsubscribe to

events

// Called by TabControl when tab is being removed or window is

closed

public override void Cleanup()

{

 // Clean up our resources

 base.Cleanup();

}

NinjaScript 2577

© 2023 NinjaTrader, LLC

XAML

<Page

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:Tools="clr-

namespace:NinjaTrader.Gui.Tools;assembly=NinjaTrader.Gui"

xmlns:AccountPerformance="clr-

namespace:NinjaTrader.Gui.AccountPerformance;assembly=NinjaTrader.G

ui"

xmlns:AccountData="clr-

namespace:NinjaTrader.Gui.AccountData;assembly=NinjaTrader.Gui"

xmlns:AtmStrategy="clr-

namespace:NinjaTrader.Gui.NinjaScript.AtmStrategy;assembly=NinjaTra

der.Gui">

<Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <Tools:QuantityUpDown x:Name="qudSelector" Value="1"

Grid.Column="0"/>

 <Tools:TifSelector x:Name="tifSelector" Grid.Column="1">

 <AtmStrategy:AtmStrategySelector x:Name="atmStrategySelector"

LinkedQuantity="{Binding Value,

 ElementName=qudSelector, Mode=OneWay}" Grid.Column="2"/>

</Grid>

11.6.3.2 Account

Definition
The Account class can be used to subscribe to account related events as well as accessing

account related information.

Static Account Class Properties

All A collection of Account objects

AccountStatu

sUpdate

Event handler for account status updates

SimulationAc

countReset

Event handler for resets on sim accounts

NinjaTrader 82578

© 2023 NinjaTrader, LLC

NOTE: Also happens when rewinding/fast forwarding

Playback connections)

Methods and Properties From Account instances

AccountItem Represents various account variables used to reflect
values the status of the account

AccountItem

Update

Event handler for changes to account values

Cancel() Cancels specified order(s) on the account

CancelAllOrd

ers()

Cancels all orders of an instrument on the account

Change() Changes specified order(s) on the account

Connection A Connection representing the connection this

account is associated with

CreateOrder(

)

Creates orders for the account that need to be

submitted via Submit()

Denomination A Currency representing the denomination currency of

this connection

Executions A collection of executions on this account

ExecutionUpd

ate

Event handler for when new executions come in, an

existing execution is amended, or an execution is

removed

Flatten() Flattens the account on specified instrument(s)

Get() Returns the value of an AccountItem

Name A string representing the name of this account

Orders A collection of orders on this account

NinjaScript 2579

© 2023 NinjaTrader, LLC

OrderUpdate Event handler for changes to orders

Positions A collection of positions on this account

PositionUpdat

e

Event handler for changes to positions

Strategies A collection of strategies on this account

Submit() Submits specified order(s)

Example

NinjaTrader 82580

© 2023 NinjaTrader, LLC

private Account myAccount;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Find our Sim101 account

 lock (Account.All)

 myAccount = Account.All.FirstOrDefault(a => a.Name

== "Sim101");

 // Subscribe to static events. Remember to unsubscribe

with -= when you are done

 Account.AccountStatusUpdate += OnAccountStatusUpdate;

 if (myAccount != null)

 {

 // Print some information about our account using

the AccountItem indexer

 Print(string.Format("Account Name: {0} Connection

Name: {1} Cash Value {2}",

 myAccount.Name,

 myAccount.Connection.Options.Name,

 myAccount.Get(AccountItem.CashValue,

Currency.UsDollar)

));

 // Print the prices of the executions on our account

 lock (myAccount.Executions)

 foreach (Execution execution in

myAccount.Executions)

 Print("Price: " + execution.Price);

 // Subscribe to events. Remember to unsubscribe with

-= when you are done

 myAccount.AccountItemUpdate += OnAccountItemUpdate;

 myAccount.ExecutionUpdate += OnExecutionUpdate;

 }

 }

 else if (State == State.Terminated)

 {

 // Unsubscribe to events

 myAccount.AccountItemUpdate -= OnAccountItemUpdate;

 myAccount.ExecutionUpdate -= OnExecutionUpdate;

 Account.AccountStatusUpdate -= OnAccountStatusUpdate;

 }

}

private void OnAccountStatusUpdate(object sender,

AccountStatusEventArgs e)

{

 // Do something with the account status update

}

private void OnAccountItemUpdate(object sender,

AccountItemEventArgs e)

{

 // Do something with the account item update

}

private void OnExecutionUpdate(object sender, ExecutionEventArgs e)

{

 // Do something with the execution update

}

NinjaScript 2581

© 2023 NinjaTrader, LLC

11.6.3.2.1 AccountItem

Definition
Represents various account variables used to reflect values the status of the account. Each

account connected in NinjaTrader will have it's own unique AccountItem values.

Tip: For strategies, see also OnAccountItemUpdate(). For other objects, you can also

subscribe to the AccountItemUpdate stream.

Syntax
AccountItem

Parameters

AccountItem.BuyingPower

AccountItem.CashValue

AccountItem.Commission

AccountItem.ExcessIntradayMargin

AccountItem.ExcessInitialMargin

AccountItem.ExcessMaintenanceMargin

AccountItem.ExcessPositionMargin

AccountItem.Fee

AccountItem.GrossRealizedProfitLoss

AccountItem.InitialMargin

AccountItem.IntradayMargin

AccountItem.LongOptionValue

AccountItem.LookAheadMaintenanceMargin

AccountItem.LongStockValue

NinjaTrader 82582

© 2023 NinjaTrader, LLC

AccountItem.MaintenanceMargin

AccountItem.NetLiquidation

AccountItem.NetLiquidationByCurrency

AccountItem.PositionMargin

AccountItem.RealizedProfitLoss

AccountItem.ShortOptionValue

AccountItem.ShortStockValue

AccountItem.SodCashValue

AccountItem.SodLiquidatingValue

AccountItem.UnrealizedProfitLoss

AccountItem.TotalCashBalance

11.6.3.2.2 AccountItemUpdate

Definition
AccountItemUpdate is used for subscribing to account item update events.

Note: Remember to unsubscribe if you are no longer using the subscription.

Syntax
AccountItemUpdate

Example

NinjaScript 2583

© 2023 NinjaTrader, LLC

/* Example of subscribing/unsubscribing to account item update

events from an Add On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 private Account account;

 public MyAddOnTab()

 {

 // Find our Sim101 account

 lock (Account.All)

 account = Account.All.FirstOrDefault(a => a.Name ==

"Sim101");

 // Subscribe to account item updates

 if (account != null)

 account.AccountItemUpdate += OnAccountItemUpdate;

 }

 // This method is fired on any change of an account value

 private void OnAccountItemUpdate(object sender,

AccountItemEventArgs e)

 {

 // Output the account item

 NinjaTrader.Code.Output.Process(string.Format("Account:

{0} AccountItem: {1} Value: {2}",

 e.Account.Name, e.AccountItem, e.Value),

PrintTo.OutputTab1);

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Make sure to unsubscribe to the account item

subscription

 if (account != null)

 account.AccountItemUpdate -= OnAccountItemUpdate;

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

11.6.3.2.3 AccountStatusUpdate

Definition
AccountStatusUpdate can be used for subscribing to account status events from all

accounts.

NinjaTrader 82584

© 2023 NinjaTrader, LLC

Note: Remember to unsubscribe if you are no longer using the subscription.

Syntax
AccountStatusUpdate

Examples

/* Example of subscribing/unsubscribing to account status update

events from an Add On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 public MyAddOnTab()

 {

 // Subscribe to account status updates

 Account.AccountStatusUpdate += OnAccountStatusUpdate;

 }

 // This method is fired on any status change of any account

 private void OnAccountStatusUpdate(object sender,

AccountStatusEventArgs e)

 {

 // Output the account name and status

 NinjaTrader.Code.Output.Process(string.Format("Account:

{0} Status: {1}",

 e.Account.Name, e.Status), PrintTo.OutputTab1);

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Make sure to unsubscribe to the account status

subscription

 Account.AccountStatusUpdate -= OnAccountStatusUpdate;

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

11.6.3.2.4 All

Definition
A collection of Account objects

NinjaScript 2585

© 2023 NinjaTrader, LLC

Property Value
A Collection of Account objects

Syntax
Accounts.All

Examples

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 foreach (Account sampleAccount in Account.All)

 Print(String.Format("The account {0} has a {1} unit FX

lotsize set", sampleAccount.Name, sampleAccount.ForexLotSize));

 }

}

11.6.3.2.5 Cancel()

Definition
Cancels specified Order object(s).

Syntax
Cancel(IEnumerable<Order> orders)

Parameters

orders Order(s) to cancel

Examples

https://msdn.microsoft.com/en-us/library/ms132397(v=vs.110).aspx

NinjaTrader 82586

© 2023 NinjaTrader, LLC

private Account myAccount;

Order stopOrder = null;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Initialize myAccount

 }

}

private void OnExecutionUpdate(object sender, ExecutionEventArgs e)

{

 // Cancel the stop order if an execution results in a long

position

 if(e.MarketPosition == MarketPosition.Long)

 myAccount.Cancel(new[] { stopOrder });

}

11.6.3.2.6 CancelAllOrders()

Definition
Cancels all Orders of an instrument.

Syntax
CancelAllOrders(Instrument instrument)

Parameters

instrument Instrument of the orders to be cancelled

Example

NinjaScript 2587

© 2023 NinjaTrader, LLC

private Account myAccount;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Initialize myAccount

 }

}

private void OnExecutionUpdate(object sender, ExecutionEventArgs e)

{

 // Cancel all orders if an execution is triggered after 9pm

 if (e.Time > new DateTime(now.Year, now.Month, now.Day, 21, 0,

0))

 myAccount.CancelAllOrders(e.Execution.Instrument);

}

11.6.3.2.7 Change()

Definition
Changes specified Order object(s).

Syntax
Change(IEnumerable<Order> orders)

Parameters

orders Order(s) to change

Example

Order stopOrder;

stopOrder.StopPriceChanged = stopOrder.StopPrice - 4 *

stopOrder.Instrument.MasterInstrument.TickSize;

private void OnExecutionUpdate(object sender, ExecutionEventArgs e)

{

 // Change the stop order if an execution results in a long

position

 if(e.MarketPosition == MarketPosition.Long)

 myAccount.Change(new[] { stopOrder });

}

NinjaTrader 82588

© 2023 NinjaTrader, LLC

11.6.3.2.8 Connection

Definition
Indicates the data connection used for the specified account.

Property Value
An instance of the Connection class containing information about the connection used for a

specified account

Syntax
<Account>.Connection

Examples

private Account myAccount;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 myAccount = Account.All.FirstOrDefault(a => a.Name ==

"Sim101");

 }

}

private void OnAccountStatusUpdate(object sender,

AccountStatusEventArgs e)

{

 Print(String.Format("{0} connection updated",

myAccount.Connection.Options.Name));

}

11.6.3.2.9 ConnectOptions

Definition
ConnectOptions is an abstract class used to configure options for a specific configured

Connection. An instance of ConnectOptions can be passed into the Connection.Connect()

method to initiate a connection, as seen in the example below.

Note: For a complete, working example of this class in use, download framework

example located on our Developing AddOns Overview

Properties accessible from an instance of ConnectOptions include:

NinjaScript 2589

© 2023 NinjaTrader, LLC

BrandNam

e

A string representing the provider name

CanEnable

Hds

A bool determining the connection can use NinjaTrader

Historical Data Servers. Related properties include

HasHdsAlwaysEnabled and IsHdsEnabled

CanManag

eOrders

A bool determining orders can be managed on the

Connection. Related properties include

IsDataProviderOnly

Mode A NinjaTrader.Cbi.Mode object representing the current

mode of the connection (Mode.Live or Mode.Simulation)

Name The user-configured name of the Connection

Provider The provider configured in the Connection

Examples

NinjaTrader 82590

© 2023 NinjaTrader, LLC

// Connecting to a configured connection

private Connection Connect(string connectionName)

{

 // Get the configured account connection by using the string

passed into this custom Connect() method

 // We will lock the ConnectOptions collection to avoid in-

flight changes causing any issues

 ConnectOptions connectOptions = null;

 lock (Core.Globals.ConnectOptions)

 connectOptions =

Core.Globals.ConnectOptions.FirstOrDefault(o => o.Name ==

connectionName);

 // If connection is not already connected, connect to it

 lock (Connection.Connections)

 if (Connection.Connections.FirstOrDefault(c =>

c.Options.Name == connectionName) == null)

 {

 Connection connect =

Connection.Connect(connectOptions);

 // Only return connection if successfully connected

 if (connect.Status == ConnectionStatus.Connected)

 return connect;

 else

 return null;

 }

}

11.6.3.2.10 CreateOrder()

Definition
Creates an Order to be submitted via Submit().

Syntax
CreateOrder(Instrument instrument, OrderAction action, OrderType orderType, OrderEntry

orderEntry, TimeInForce timeInForce, int quantity, double limitPrice, double

stopPrice, string oco, string name, DateTime gtd, CustomOrder customOrder)

Parameters

instrument Order instrument

orderAction Possible values:

OrderAction.Buy

NinjaScript 2591

© 2023 NinjaTrader, LLC

OrderAction.BuyToCover

OrderAction.Sell

OrderAction.SellShort

orderType Possible values:

OrderType.Limit

OrderType.Market

OrderType.MIT

OrderType.StopMarket

OrderType.StopLimit

orderEntry Possible values:

OrderEntry.Automated

OrderEntry.Manual

Allows setting the tag for orders submitted

manually or via automated trading logic (CME tag

1028).

timeInForce Possible values:

TimeInForce.Day

TimeInForce.Gtc

TimeInForce.Gtd

TimeInForce.Ioc

TimeInForce.Opg

quantity Order quantity

limitPrice Order limit price. Use "0" should this parameter

be irrelevant for the OrderType being submitted.

stopPrice Order stop price. Use "0" should this parameter

be irrelevant for the OrderType being submitted.

oco A string representing the OCO ID used to link

OCO orders together

name A string representing the name of the order. Max

50 characters.

NinjaTrader 82592

© 2023 NinjaTrader, LLC

Note: If using ATM Strategy StartAtmStrategy(),

this value MUST be "Entry"

gtd A DateTime value to be used with

TimeInForce.Gtd - for all other cases you can

pass in Core.Globals.MaxDate

customOrder Custom order if it is being used

Examples

Order stopOrder;

stopOrder = myAccount.CreateOrder(myInstrument, OrderAction.Sell,

OrderType.StopMarket, OrderEntry.Automated, TimeInForce.Day, 1, 0,

1400, "myOCO", "stopOrder", Core.Globals.MaxDate, null);

myAccount.Submit(new[] { stopOrder });

11.6.3.2.11 Denomination

Definition
Indicates the currency set on an account

Property Value
A Currency object containing information about the currency denomination specified in the

referenced account

Syntax
<Account>.Connection

Examples

NinjaScript 2593

© 2023 NinjaTrader, LLC

private Account myAccount;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Initialize myAccount here

 // Print myAccount's currency denomination

 NinjaTrader.Code.Output.Process("myAccount currency is set to

" + myAccount.Denomination, PrintTo.OutputTab1);

 }

}

11.6.3.2.12 Executions

Definition
A collection of Execution objects generated for the specified account. These are the current

sessions executions and should match executions reported in the Executions tab of the

NinjaTrader Account Data window.

Property Value
An Collection of Execution objects

Syntax
<Account>.Executions

Note: At this time there is not a supported method to retrieve historical executions from

the local database.

Examples

https://msdn.microsoft.com/en-us/library/ms132397(v=vs.110).aspx

NinjaTrader 82594

© 2023 NinjaTrader, LLC

private Account myAccount;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Initialize myAccount

 }

}

private void OnExecutionUpdate(object sender, ExecutionEventArgs e)

{

 foreach (Execution execution in myAccount.Executions)

 {

 Print(String.Format("Execution triggered for Order {0}",

execution.Order));

 }

}

11.6.3.2.13 ExecutionUpdate

Definition
ExecutionUpdate is used for subscribing to execution update events.

Note: Remember to unsubscribe if you are no longer using the subscription.

Syntax
ExecutionUpdate

Examples

NinjaScript 2595

© 2023 NinjaTrader, LLC

/* Example of subscribing/unsubscribing to execution update events

from an Add On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 private Account account;

 public MyAddOnTab()

 {

 // Find our Sim101 account

 lock (Account.All)

 account = Account.All.FirstOrDefault(a => a.Name ==

"Sim101");

 // Subscribe to execution updates

 if (account != null)

 account.ExecutionUpdate += OnExecutionUpdate;

 }

 /* This method is fired as new executions come in, an existing

execution is amended

 (e.g. by the broker's back office), or an execution is removed

(e.g. by the broker's back office) */

 private void OnExecutionUpdate(object sender,

ExecutionEventArgs e)

 {

 // Output the execution

 NinjaTrader.Code.Output.Process(string.Format("Instrument

: {0} Quantity: {1} Price: {2}",

 e.Execution.Instrument.FullName, e.Quantity,

e.Price), PrintTo.OutputTab1);

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Make sure to unsubscribe to the execution subscription

 if (account != null)

 account.ExecutionUpdate -= OnExecutionUpdate;

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

NinjaTrader 82596

© 2023 NinjaTrader, LLC

11.6.3.2.14 Flatten()

Definition
Flattens the account on an instrument.

Syntax
Flatten(ICollection<Instrument> instruments)

Parameters

instruments A collection of Instruments for orders to be

cancelled and positions closed

Examples

 Flatten a single instrument

Account.Flatten(new [] { Instrument.GetInstrument("ES 12-15") });

 Flatten a list of instruments

// Please note that your 'Using declarations' section needs to

have

//

// using System.Collections.ObjectModel;

//

// added in order for this example to compile correctly

// instantiate a list of instruments

Collection<Cbi.Instrument> instrumentsToClose = new

Collection<Instrument>();

// add instruments to the collection

instrumentsToClose.Add(Instrument.GetInstrument("AAPL"));

instrumentsToClose.Add(Instrument.GetInstrument("MSFT"));

// pass the instrument collection to the Flatten() method to be

flattened

Account.Flatten(instrumentsToClose);

11.6.3.2.15 Get()

Definition
Returns the value of an AccountItem, such as BuyingPower, CashValue, etc.

Method Return Value

NinjaScript 2597

© 2023 NinjaTrader, LLC

A double representing the value of the requested AccountItem

Syntax
Get(AccountItem itemType, Cbi.Currency currency)

Parameters

itemType The desired AccountItem to return

Currency The account currency the value should be

denoted (required parameter, but has no effect

on returned value)

Examples

// Evaluates to see if the account has more than $25000

if (Account.Get(AccountItem.CashValue, Currency.UsDollar) > 25000)

{

 // Do something;

}

11.6.3.2.16 Name

Definition
Indicates the name of the specified account

Property Value
An string representing the name of the account

Syntax
<Account>.Name

Example

NinjaTrader 82598

© 2023 NinjaTrader, LLC

private Account myAccount;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Initialize myAccount

 }

}

private void OnAccountStatusUpdate(object sender,

AccountStatusEventArgs e)

{

 // Print the name of each account updated

 Print(String.Format("{0} account updated", myAccount.Name));

}

11.6.3.2.17 Orders

Definition
A collection of Order objects generated for the specified account

Property Value
An Collection of Order objects

Note: Please keep in mind that orders placed when in State.Historical are not submitted

live to an account.

Syntax
<Account>.Orders

Examples

https://msdn.microsoft.com/en-us/library/ms132397(v=vs.110).aspx

NinjaScript 2599

© 2023 NinjaTrader, LLC

private Account myAccount;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Initialize myAccount

 }

}

private void OnAccountItemUpdate(object sender,

AccountItemEventArgs e)

{

 // Print the name and order action of each order processed on

the account

 foreach (Order order in myAccount.Orders)

 {

 Print(String.Format("Order placed: {0} - {1}", order.Name,

order.OrderAction));

 }

}

11.6.3.2.18 OrderUpdate

Definition
OrderUpdate can be used for subscribing to order update events.

Note: Remember to unsubscribe if you are no longer using the subscription.

Syntax
OrderUpdate

Examples

/* Example of subscribing/unsubscribing to order update events from

an Add On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 private Account account;

 private Order myEntryOrder;

 private Order profitTarget;

 private Order stopLoss;

 public MyAddOnTab()

NinjaTrader 82600

© 2023 NinjaTrader, LLC

 {

 // Find our Sim101 account

 lock (Account.All)

 account = Account.All.FirstOrDefault(a => a.Name ==

"Sim101");

 // Subscribe to order updates

 if (account != null)

 account.OrderUpdate += OnOrderUpdate;

 }

 // This method is fired as the status of an order changes

 private void OnOrderUpdate(object sender, OrderEventArgs e)

 {

 // Submit stop/target bracket orders

 if (myEntryOrder != null && myEntryOrder == e.Order)

 {

 if (e.OrderState == OrderState.Filled)

 {

 string oco = Guid.NewGuid().ToString("N");

 profitTarget =

account.CreateOrder(e.Order.Instrument, OrderAction.Sell,

OrderType.Limit, OrderEntry.Manual, TimeInForce.Day,

 e.Quantity, e.AverageFillPrice + 10 *

e.Order.Instrument.MasterInstrument.TickSize, 0, oco, "Profit

Target", Core.Globals.MaxDate, null);

 stopLoss =

account.CreateOrder(e.Order.Instrument, OrderAction.Sell,

OrderType.StopMarket, OrderEntry.Manual, TimeInForce.Day,

 e.Quantity, 0, e.AverageFillPrice - 10 *

e.Order.Instrument.MasterInstrument.TickSize, oco, "Stop Loss",

Core.Globals.MaxDate, null);

 account.Submit(new[] { profitTarget,

stopLoss });

 }

 }

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Make sure to unsubscribe to the orders subscription

 if (account != null)

 account.OrderUpdate -= OnOrderUpdate;

 }

NinjaScript 2601

© 2023 NinjaTrader, LLC

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

11.6.3.2.19 Positions

Definition
A collection of Position objects generated for the specified account

Property Value
An Collection of Position objects

Syntax
Account.Positions

<Account>.Positions

Examples

private Account myAccount;

protected override void OnStateChange()
{
 if (State == State.SetDefaults)
 {
 // Find our Sim101 account
 lock (Account.All)
 myAccount = Account.All.FirstOrDefault(a => a.Name ==
"Sim101");
 }

 if (State == State.DataLoaded)
 {
 lock (myAccount.Positions)
 {
 Print("Positions in State.DataLoaded:");

 foreach (Position position in myAccount.Positions)
 {
 Print(String.Format("Position: {0} at {1}",
position.MarketPosition, position.AveragePrice));
 }
 }
 }
}

https://msdn.microsoft.com/en-us/library/ms132397(v=vs.110).aspx

NinjaTrader 82602

© 2023 NinjaTrader, LLC

11.6.3.2.20 PositionUpdate

Definition
PositionUpdate can be used for subscribing to position update events.

Note: Remember to unsubscribe if you are no longer using the subscription.

Syntax
PositionUpdate

Examples

NinjaScript 2603

© 2023 NinjaTrader, LLC

/* Example of subscribing/unsubscribing to position update events

from an Add On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 private Account account;

 public MyAddOnTab()

 {

 // Find our Sim101 account

 lock (Account.All)

 account = Account.All.FirstOrDefault(a => a.Name ==

"Sim101");

 // Subscribe to position updates

 if (account != null)

 account.PositionUpdate += OnPositionUpdate;

 }

 // This method is fired as a position changes

 private void OnPositionUpdate(object sender, PositionEventArgs

 e)

 {

 // Output the new position

 NinjaTrader.Code.Output.Process(string.Format("Instrument

: {0} MarketPosition: {1} AveragePrice: {2} Quantity: {3}",

 e.Position.Instrument.FullName, e.MarketPosition,

e.AveragePrice, e.Quantity), PrintTo.OutputTab1);

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Make sure to unsubscribe to the positions subscription

 if (account != null)

 account.PositionUpdate -= OnPositionUpdate;

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

Tip: The core MarketPosition e.Position is considered flat when Operation.Remove is

seen, thus any related tracking in your logic you want to trigger or update should be aware.

NinjaTrader 82604

© 2023 NinjaTrader, LLC

An Operation.Update would be seen if there was no flat state in between, i.e. on a reverse

of the position.

11.6.3.2.21 SimulationAccountReset

Definition
SimulationAccountReset can be used for subscribing to simulation account reset events.

These resets occur whenever the user manually resets an account as well as when the user

rewinds/fast forwards the Playback connection. When the reset occurs due to changes to the

Playback connection it is important to recreate bar requests.

Note: Remember to unsubscribe if you are no longer using the subscription.

Syntax
SimulationAccountRest

Examples

NinjaScript 2605

© 2023 NinjaTrader, LLC

/* Example of subscribing/unsubscribing to sim account reset events

from an Add On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 public MyAddOnTab()

 {

 // Subscribe to sim account resets

 Account.SimulationAccountReset +=

OnSimulationAccountReset;

 }

 /* This method is fired on sim account reset events. It is

important to recreate bar requests

 after a reset on the Playback connection */

 private void OnSimulationAccountReset(object sender, EventArgs

e)

 {

 Account simAccount = (sender as Account);

 // If the account was reset due to a rewind/fast forward

of the Playback connection

 if (simAccount != null && simAccount.Provider ==

Provider.Playback)

 {

 // Redo our bars requests here

 }

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Make sure to unsubscribe to the simulation account

reset subscription

 Account.SimulationAccountReset -=

OnSimulationAccountReset;

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

11.6.3.2.22 Strategies

Definition
A collection of StrategyBase objects generated for the specified account

NinjaTrader 82606

© 2023 NinjaTrader, LLC

Property Value
An Collection of StrategyBase objects

Syntax
<Account>.Strategies

Examples

private Account myAccount;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Initialize myAccount

 }

}

private void OnAccountStatusUpdate(object sender,

AccountStatusEventArgs e)

{

 foreach (StrategyBase strategy in myAccount.Strategies)

 {

 Print(String.Format("Account status updated. {0} strategy

applied with position {1}", strategy.Name, strategy.Position));

 }

}

11.6.3.2.23 Submit()

Definition
Submits specified Order object(s).

Syntax
Submit(IEnumerable<Order> orders)

Parameters

orders Order(s) to submit

Examples

https://msdn.microsoft.com/en-us/library/ms132397(v=vs.110).aspx

NinjaScript 2607

© 2023 NinjaTrader, LLC

Order stopOrder = null;

stopOrder = myAccount.CreateOrder(myInstrument, OrderAction.Sell,

OrderType.StopMarket, TimeInForce.Day, 1, 0, 1400, "myOCO",

"stopOrder", null);

myAccount.Submit(new[] { stopOrder });

11.6.3.3 BarsRequest

Definition
BarsRequest can be used to request Bars data and subscribe to real-time Bars data events.

Notes:

1. When using the DateTime fromLocal and toLocal parameters, the dates are converted

to local daily timestamps (12:00 AM) and return a BarsRequest representing full trading

days. If you need to request less than one full trading day, please use the barsBack

parameter

2. A BarsRequest should be called only once and subscribe to the .Update event.

Remember to unsubscribe from the .Update Event handler if you are no longer using

the subscription.

3. A BarsRequest provides underlying market data for an instrument, but is not

synchronized with an indicator or strategies primary data series. You will need to

implement your own BarsUpdateEvent logic.

4. BarsRequest data CANNOT be used as input for a NinjaTrader indicator

5. Performing a BarsRequest in Playback will always yield bars up to the current playback

time / slider position.

6. The documented BarsRequest behavior would be the same for all NinjaScript types.

Syntax
BarsRequest(Cbi.Instrument instrument, int barsBack)

BarsRequest(Cbi.Instrument instrument, DateTime fromLocal, DateTime toLocal)

Parameters

Instr

ume

nt

The Instrument to request

bars

Bac

k

An int value determining the number of bars to request from

the current time

NinjaTrader 82608

© 2023 NinjaTrader, LLC

from

Loca

l

A DateTime value determining the starting date to request

toLo

cal

A DateTime value determining the ending date to request

Methods and Properties

Bars The Bars object returned from the request

BarsBack An int representing the number of bars back

used in the request

BarsPeriod The BarsPeriod for the bars request

FromLocal A DateTime representing the starting date used

in the request

IsDividendAdjusted A bool representing if the bars request will be

dividend adjusted

IsResetOnNewTra

dingDay

A bool representing if the bars request will Break

at EOD

IsSplitAdjusted A bool representing if the bars request will be

split adjusted

Instrument The Instrument of the bars request

LookupPolicy The lookup policies for the bars request.

Possible Values are:

· Provider - Queries the provider. The repository

is updated on provider's reply

· Repository - Looks up the local repository only

MergePolicy The merge policy for the bars request.

Request() Requests the bars as parametrized

NinjaScript 2609

© 2023 NinjaTrader, LLC

TradingHours The trading hours for the bars request

ToLocal A DateTime representing the end date used in

the request

Update A BarsUpdateEvent handler for

subscribing/unsubscribing to bar update events

Examples

NinjaTrader 82610

© 2023 NinjaTrader, LLC

/* Example of subscribing/unsubscribing to bars data events from an

Add On as well as making bars requests.

The concept can be carried over to any NinjaScript object you may

be working on. */

public class MyAddOnTab : NTTabPage

{

 private int daysBack = 5;

 private bool barsRequestSubscribed = false;

 private BarsRequest barsRequest;

 public MyAddOnTab()

 {

 // create a new bars request. This will determine the

insturment and range for the bars to be requested

 barsRequest = new

BarsRequest(Cbi.Instrument.GetInstrument("AAPL"),

DateTime.Now.AddDays(-daysBack), DateTime.Now);

 // Parametrize your request.

 barsRequest.BarsPeriod = new BarsPeriod { BarsPeriodType =

BarsPeriodType.Minute, Value = 1 };

 barsRequest.TradingHours = TradingHours.Get("Default 24 x 7");

 // Attach event handler for real-time events if you want to

process real-time data

 barsRequest.Update += OnBarUpdate;

 // Request the bars

 barsRequest.Request(new Action<BarsRequest, ErrorCode,

string>((bars, errorCode, errorMessage) =>

 {

 if (errorCode != ErrorCode.NoError)

 {

 // Handle any errors in requesting bars here

 NinjaTrader.Code.Output.Process(string.Format("Error on

requesting bars: {0}, {1}",

 errorCode, errorMessage),

PrintTo.OutputTab1);

 return;

 }

 // Output the bars we requested. Note: The last returned bar

may be a currently in-progress bar

 for (int i = 0; i < bars.Bars.Count; i++)

 {

 // Output the bars

 NinjaTrader.Code.Output.Process(string.Format("Time: {0}

Open: {1} High: {2} Low: {3} Close: {4} Volume: {5}",

 bars.Bars.GetTime(i),

 bars.Bars.GetOpen(i),

 bars.Bars.GetHigh(i),

 bars.Bars.GetLow(i),

 bars.Bars.GetClose(i),

 bars.Bars.GetVolume(i)),

PrintTo.OutputTab1);

 }

 // If requesting real-time bars, but there are currently no

connections

 lock (Connection.Connections)

 if (Connection.Connections.FirstOrDefault() == null)

 NinjaTrader.Code.Output.Process("Real-Time Bars: Not

connected.", PrintTo.OutputTab1);

 }));

 }

 // This method is fired on real-time bar events

 private void OnBarUpdate(object sender, BarsUpdateEventArgs e)

 {

 /* Depending on the BarsPeriod type of your barsRequest you can

have situations where more than one bar is

 updated by a single tick. Be sure to process the full range of

updated bars to ensure you did not miss a bar. */

 // Output bar information on each tick

 for (int i = e.MinIndex; i <= e.MaxIndex; i++)

 {

 // Processing every single tick

 NinjaTrader.Code.Output.Process(string.Format("Time: {0}

Open: {1} High: {2} Low: {3} Close: {4}",

 e.BarsSeries.GetTime(i),

 e.BarsSeries.GetOpen(i),

 e.BarsSeries.GetHigh(i),

 e.BarsSeries.GetLow(i),

 e.BarsSeries.GetClose(i)),

PrintTo.OutputTab1);

 }

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Make sure to unsubscribe to the bars request subscription

 if (barsRequest != null)

 {

 barsRequest.Update -= OnBarUpdate;

 barsRequest.Dispose();

 barsRequest = null;

 }

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

NinjaScript 2611

© 2023 NinjaTrader, LLC

11.6.3.3.1 Request()

Definition
Performs the bars request for a BarsRequest object

Syntax
BarsRequest.Request(Action<BarsRequest, ErrorCode, string> callback)

Properties

BarsRequest A BarsRequest representing the bars

ErrorCode An ErrorCode representing error status

string A string representing error message

Example

NinjaTrader 82612

© 2023 NinjaTrader, LLC

// Request the bars

barsRequest.Request(new Action<BarsRequest, ErrorCode,

string>((bars, errorCode, errorMessage) =>

{

 if (errorCode != ErrorCode.NoError)

 {

 // Handle any errors in requesting bars here

 NinjaTrader.Code.Output.Process(string.Format("Error on

requesting bars: {0}, {1}",

 errorCode, errorMessage),

 PrintTo.OutputTab1);

 return;

 }

 // Do something with the returned bars here.

 for (int i = 0; i < bars.Bars.Count; i++)

 {

 // Output the bars

 NinjaTrader.Code.Output.Process(string.Format("Time: {1}

Open: {2} High: {3} Low: {4} Close: {5} Volume: {6}",

 bars.Bars.GetTime(i),

 bars.Bars.GetOpen(i),

 bars.Bars.GetHigh(i),

 bars.Bars.GetLow(i),

 bars.Bars.GetClose(i),

 bars.Bars.GetVolume(i)),

PrintTo.OutputTab1);

 }

}));

11.6.3.3.2 MergePolicy

Definition
Determines the merge policy of the bars request.

Notes:

· This property is ONLY applicable to Futures contracts

· General information regrading merge policies can be found from the Market Data

Configuration section

· For an Instruments configured merge policy, please see the

MasterInstrument.MergePolicy property

Property Value
Represents the MergePolicy used for the bars request.

NinjaScript 2613

© 2023 NinjaTrader, LLC

Possible values are:

DoNotMerge No merge policy is applied

MergeBackAdjusted Merge policy is applied between contracts

along with rollover offsets

MergeNonBackAdjusted Merge policy is applied between contracts

without offsets

UseGlobalSettings Uses the value configured from Tools ->

Options -> Market Data

UseDefault Uses the default values configured for the

MasterInstrument

Syntax
MergePolicy

Example

// request the last 365 1 day bars

BarsRequest useGlobalRequest = new

BarsRequest(Instrument.GetInstrument("ES 09-16"), 365);

useGlobalRequest.BarsPeriod = new BarsPeriod { BarsPeriodType =

BarsPeriodType.Day, Value = 1 };

// use the merge policy the user has configured as their global

setting

useGlobalRequest.MergePolicy = MergePolicy.UseGlobalSettings;

useGlobalRequest.Request(new Action<BarsRequest, ErrorCode,

string>((barsRequest, errorCode, errorMessage) =>{

 Print("bars returned=" + barsRequest.Bars.Count);

}));

// dispose of the bars request if we are done with it

useGlobalRequest.Dispose();

NinjaTrader 82614

© 2023 NinjaTrader, LLC

11.6.3.4 Connection

Definition
The Connection class can be used to monitor connection related events as well as accessing

connection related information.

Static Connection Class Events and Properties

CancelAllOrd

ers()

Cancels all orders

Connect() Connects to a connection

ConnectionSt

atusUpdate

Event handler for connection status updates

Events and Properties from Connection instances

Accounts List of accounts from the connection

Disconnect() Disconnects from the connection

Options The connection's configuration options

PriceStatus A ConnectionStatus representing the status of the

price feed. Possible values are:

ConnectionStatus.Connected

ConnectionStatus.Connecting

ConnectionStatus.ConnectionLost

ConnectionStatus.Disconnecting

ConnectionStatus.Disconnected

Status A ConnectionStatus representing the status of the

order feed. Possible values are:

ConnectionStatus.Connected

ConnectionStatus.Connecting

ConnectionStatus.ConnectionLost

ConnectionStatus.Disconnecting

ConnectionStatus.Disconnected

NinjaScript 2615

© 2023 NinjaTrader, LLC

Example

// Example of accessing information on all connected connections

public class MyAddOnTab : NTTabPage

{

 public MyAddOnTab()

 {

 // Print information about all connected connections

 lock (Connection.Connections)

 foreach(Connection c in Connection.Connections)

 NinjaTrader.Code.Output.Process(string.Format("Connecti

on: {0} Provider: {1}", c.Options.Name, c.Options.Provider),

PrintTo.OutputTab1);

 // Other required NTTabPage members left out for

demonstration purposes. Be sure to add them in your own code.

 }

}

11.6.3.4.1 CancelAllOrders()

Definition
Cancels all orders for the specified instrument on the connection.

Syntax
<Connection>.CancelAllOrders(Instrument instrument)

instru

ment

An Instrument object used to identify the instrument for which

to cancel orders

Example

NinjaTrader 82616

© 2023 NinjaTrader, LLC

private Account myAccount;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Initialize myAccount

 }

}

private void OnExecutionUpdate(object sender, ExecutionEventArgs e)

{

 // Cancel all orders if an execution is triggered after 9pm

 if (e.Time > new DateTime(now.Year, now.Month, now.Day, 21, 0,

0))

 myAccount.CancelAllOrders(e.Execution.Instrument);

}

11.6.3.4.2 Connect()

Definition
Connects to a connection.

Syntax
Connection.Connect(ConnectOptions options)

Parameters

options The connection option of what you want to

connect to

Example

/* Example of subscribing/unsubscribing to execution update events

from an Add On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 private Connection connection;

 public MyAddOnTab()

 {

 // Connect to Kinetick EOD

 if (connection == null)

 connection = Connect("Kinetick - End Of Day

NinjaScript 2617

© 2023 NinjaTrader, LLC

(Free)");

 }

 private Connection Connect(string connectionName)

 {

 // Output the execution

 try

 {

 // Get the configured account connection

 ConnectOptions connectOptions = null;

 lock (Core.Globals.ConnectOptions)

 connectOptions =

Core.Globals.ConnectOptions.FirstOrDefault(o => o.Name ==

connectionName);

 if (connectOptions == null)

 {

 NinjaTrader.Code.Output.Process("Could not

connect. No connection found.", PrintTo.OutputTab1);

 return null;

 }

 // If connection is not already connected, connect.

 lock (Connection.Connections)

 if (Connection.Connections.FirstOrDefault(c =>

c.Options.Name == connectionName) == null)

 {

 Connection connect =

Connection.Connect(connectOptions);

 // Only return connection if successfully

connected

 if (connect.Status ==

ConnectionStatus.Connected)

 return connect;

 else

 return null;

 }

 return null;

 }

 catch (Exception error)

 {

 NinjaTrader.Code.Output.Process("Connect exception:

" + error.ToString(), PrintTo.OutputTab1);

 return null;

 }

NinjaTrader 82618

© 2023 NinjaTrader, LLC

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Disconnect from our connection

 if (connection != null)

 connection.Disconnect();

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

11.6.3.4.3 ConnectionStatusUpdate

Definition
ConnectionStatusUpdate can be used for subscribing to connection status update events.

Note: Remember to unsubscribe if you are no longer using the subscription.

Syntax
ConnectionStatusUpdate

Example

NinjaScript 2619

© 2023 NinjaTrader, LLC

/* Example of subscribing/unsubscribing to connection update events

from an Add On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 private Connection connection;

 public MyAddOnTab()

 {

 // Subscribe to connection updates

 Connection.ConnectionStatusUpdate +=

OnConnectionStatusUpdate;

 }

 // This method is fired on connection status update events

 private void OnConnectionStatusUpdate(object sender,

ConnectionStatusEventArgs e)

 {

 /* For multi-threading reasons, work with a copy of the

ConnectionStatusEventArgs to prevent situations

 where the ConnectionStatusEventArgs may already be ahead

of us while in the middle processing it. */

 ConnectionStatusEventArgs eCopy = e;

 // If the Kinetick EOD connection disconnects, do

something

 if (eCopy.Connection.Options.Name == "Kinetick - End Of

Day (Free)")

 {

 if (eCopy.Status == ConnectionStatus.Disconnected)

 // Do something

 }

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Make sure to unsubscribe to the connection status

subscription

 Connection.ConnectionStatusUpdate -=

OnConnectionStatusUpdate;

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

NinjaTrader 82620

© 2023 NinjaTrader, LLC

11.6.3.4.4 Disconnect()

Definition
Disconnects from the data connection.

Syntax
<Connection>.Disconnect()

Example

private void OnExecutionUpdate(object sender, ExecutionEventArgs e)

{

 // If an execution triggers after 9pm, disconnect from the

account's data source

 if (e.Time > new DateTime(now.Year, now.Month, now.Day, 21, 0,

0))

 myAccount.Connection.Disconnect();

}

11.6.3.4.5 Options

Definition
The connection's configuration options

Properties

ConnectOnSt

artup

A bool representing if this connection auto connects

on startup

Name A string representing the connection's name

Provider A Provider representing the connection's provider

Example

NinjaScript 2621

© 2023 NinjaTrader, LLC

// Example of accessing information on all connected connections

public class MyAddOnTab : NTTabPage

{

 public MyAddOnTab()

 {

 // Print information about all connected connections

 lock (Connection.Connections)

 Connection.Connections.ToList().ForEach(c =>

NinjaTrader.Code.Output.Process(string.Format("Connection: {0}

 Provider: {1}", c.Options.Name,

c.Options.Provider), PrintTo.OutputTab1);

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

11.6.3.4.6 PriceStatus

Definition
Indicates the current status of the price feed of the primary data connection

Syntax
<Connection>.PriceStatus

Example

NinjaTrader 82622

© 2023 NinjaTrader, LLC

private int priceLost;

private int mainLost;

private void OnAccountItemUpdate(object sender,

AccountItemEventArgs e)

{

 // Count the number of times OnAccountItemUpdate() is called

with a lost price connection

 if (myAccount.Connection.PriceStatus ==

ConnectionStatus.ConnectionLost)

 priceLost += 1;

 // Count the number of times OnAccountItemUpdate() is called

with a lost primary connection

 if (myAccount.Connection.Status ==

ConnectionStatus.ConnectionLost)

 mainLost += 1;

 // Print the number of times each connection was lost during

OnAccountItemUpdate()

 if (mainLost > 0 || priceLost > 0)

 Print(String.Format("Main connection lost {0} times. Price

feed lost {1} times.", mainLost, priceLost));

}

11.6.3.4.7 Status

Definition
Indicates the current status of the primary data connection.

Properties
<Connection>.Status

Example

NinjaScript 2623

© 2023 NinjaTrader, LLC

private int priceLost;

private int mainLost;

private void OnAccountItemUpdate(object sender,

AccountItemEventArgs e)

{

 // Count the number of times OnAccountItemUpdate() is called

with a lost price connection

 if (myAccount.Connection.PriceStatus ==

ConnectionStatus.ConnectionLost)

 priceLost += 1;

 // Count the number of times OnAccountItemUpdate() is called

with a lost primary connection

 if (myAccount.Connection.Status ==

ConnectionStatus.ConnectionLost)

 mainLost += 1;

 // Print the number of times each connection was lost during

OnAccountItemUpdate()

 if (mainLost > 0 || priceLost > 0)

 Print(String.Format("Main connection lost {0} times. Price

feed lost {1} times.", mainLost, priceLost));

}

11.6.3.4.8 ReloadAllHistoricalData()

Definition
To be used only in the OnConnectionStatusUpdate() event. Forces the data repository to be

reloaded for any bars series running in the hosting script after. Data will be reloaded for any

charts currently running which match the hosting scripts bars series (minute, tick, day). This

method will also check and reload the max number of days or bars to load used in every chart

running which matches the bars series contained in the script. Reloading historical data

refreshes the UI which will force the NinjaScript object to re-transition to real-time. This

method was designed for reloading historical data after an OnConnectionStatusUpdate event.

Critical: This method should NOT be called from any of the event methods which access

data or any of the OnStateChange() states as it may be called recursively while the

hosting object transitions through states. The designed use case for this method is

reloading historical data after a connection update therefore we suggest ONLY using this

method in the OnConnectionStatusUpdate method. Please see the examples below for

an demonstration of the intended use case.

NinjaTrader 82624

© 2023 NinjaTrader, LLC

Method Return Value
This method does not return a value

Syntax
ReloadAllHistoricalData()

Parameters
This method does not take any parameters

Examples

//monitor our connection status so our NinjaScript object would

know to reload historical data

//create a bool which tracks when historical data would need to be

reloaded after a connection loss

private bool IsReloadAllHistoricalDataNeeded = false;

protected override void

OnConnectionStatusUpdate(ConnectionStatusEventArgs

connectionStatusUpdate)

{

 //if the connection status update detects a lost connection

 if(connectionStatusUpdate.Status ==

ConnectionStatus.ConnectionLost)

 {

 Print("Connection Lost, setting IsReloadAllHistorical Data to

true");

 // switch the reload data bool to true

 IsReloadAllHistoricalDataNeeded = true;

 }

 // only if we needed to reload historical data && only after

when we have reconnected

 else if (IsReloadAllHistoricalDataNeeded &&

connectionStatusUpdate.Status == ConnectionStatus.Connected)

 {

 Print("Connection is reconnected, reloading all historical

data");

 //then reload data and set our bool back to false.

 ReloadAllHistoricalData();

 IsReloadAllHistoricalDataNeeded = false;

 }

}

NinjaScript 2625

© 2023 NinjaTrader, LLC

11.6.3.4.9 PlaybackConnection

Definition
Defines the method/property

Note: This important note

Method Return Value
A bool value when true; otherwise false.

Syntax
MethodName(int input)

Parameters

input An int which represents the

method input

Examples

1

11.6.3.5 IInstrumentProvider Interface

When creating your NTTabPage, if you wish to use the instrument link, be sure to implement

the IInstrumentProvider interface.

Examples

public class MyWindowTabPage : NTTabPage, IInstrumentProvider

{

 private Instrument instrument;

 public MyWindowTabPage()

 {

 /* Define the content for our NTTabPage. We can load

loose XAML to define controls and layouts

 if we so choose here as well.

 Note: XAML with event handlers defined inside WILL FAIL

when attempted to load.

NinjaTrader 82626

© 2023 NinjaTrader, LLC

 Note: XAML with "inline code" WILL FAIL when attempted to

load */

 }

 // IInstrumentProvider member

 public Instrument Instrument

 {

 get { return instrument; }

 set

 {

 if (instrument != null)

 {

 // Unsubscribe to subscriptions to previously

selected instrument

 }

 if (value != null)

 {

 // Create subscriptions for the newly selected

instrument

 }

 instrument = value;

 // Send instrument to other windows linked to the

same color

 PropagateInstrumentChange(value);

 // Update the tab header name

 RefreshHeader();

 }

 }

 // Be sure to include all the required NTTabPage members as

well

}

11.6.3.5.1 Instrument

In order for instrument linking to work properly in your Add On, Instrument must be created.

Examples

NinjaScript 2627

© 2023 NinjaTrader, LLC

// IInstrumentProvider member

public Instrument Instrument

{

 get { return instrument; }

 set

 {

 if (instrument != null)

 {

 // Unsubscribe to subscriptions to previously

selected instrument

 }

 if (value != null)

 {

 // Create subscriptions for the newly selected

instrument

 }

 instrument = value;

 // Send instrument to other windows linked to the same

color

 PropagateInstrumentChange(value);

 // Update the tab header name

 RefreshHeader();

 }

}

11.6.3.6 IIntervalProvider Interface

When creating your NTTabPage, if you wish to use the interval link, be sure to implement the

IIntervalProvider interface.

Examples

NinjaTrader 82628

© 2023 NinjaTrader, LLC

public class MyWindowTabPage : NTTabPage, IIntervalProvider

{

 public MyWindowTabPage()

 {

 /* Define the content for our NTTabPage. We can load

loose XAML to define controls and layouts

 if we so choose here as well.

 Note: XAML with event handlers defined inside WILL FAIL

when attempted to load.

 Note: XAML with "inline code" WILL FAIL when attempted to

load */

 }

 // IIntervalProvider member

 public BarsPeriod BarsPeriod { get; set; }

 // Be sure to include all the required NTTabPage members as

well

}

11.6.3.6.1 BarsPeriod

In order for interval linking to work properly in your Add On, BarsPeriod must be created.

Examples

// IIntervalProvider member

public BarsPeriod BarsPeriod { get; set; }

11.6.3.7 INTTabFactory Interface

If you wish to have tab page functionality like adding, removing, moving, duplicating tabs you

must create a class which implements the INTTabFactory interface.

This interface contains two methods which must be hidden:

NTWindow CreateParentWindow();
NTTabPage CreateTabPage(string typeName, bool isNewWindow = false);

Examples

NinjaScript 2629

© 2023 NinjaTrader, LLC

public class MyWindowFactory : INTTabFactory

{

 // INTTabFactory member. Creates the parent window that

contains tabs

 public NTWindow CreateParentWindow()

 {

 return new MyWindow();

 }

 // INTTabFactory member. Creates new tab pages whenever the

user presses the + button

 public NTTabPage CreateTabPage(string typeName)

 {

 return new MyWindowTabPage();

 }

}

11.6.3.7.1 CreateParentWindow ()

This determines which NTWindow is created as the parent window for our Add On.

Examples

// INTTabFactory member. Creates the parent window that contains

tabs

public NTWindow CreateParentWindow()

{

 return new MyWindow();

}

11.6.3.7.2 CreateTabPage()

This determines which NTTabPage is created whenever a new tab is needed in our parent

window for our Add On.

Examples

NinjaTrader 82630

© 2023 NinjaTrader, LLC

// INTTabFactory member. Creates new tab pages whenever the user

presses the + button

public NTTabPage CreateTabPage(string typeName, bool isNewWindow =

false)

{

 return new MyWindowTabPage();

}

11.6.3.8 IWorkspacePersistence Interface

When creating your NTWindow, be sure to implement the IWorkspacePersistence interface

as well for the ability to save and restore your window with NinjaTrader workspaces.

Note: AddOn Classes which derive from NTWindow or implements

IWorkspacePersistance CANNOT be a nested type of another class and MUST have a

default constructor

This interface contains two methods and one property which must be hidden by the

implementing class:

Restore() Restores the window from

workspaces.

Save() Saves the window to workspaces.

WorkspaceOptions Sets required workspace options.

Examples

https://msdn.microsoft.com/en-us/library/ms173120.aspx
https://msdn.microsoft.com/en-us/library/ms173115.aspx

NinjaScript 2631

© 2023 NinjaTrader, LLC

public class MyWindow : NTWindow, IWorkspacePersistence

{

 // default constructor

 public MyWindow()

 {

 // Define our NTWindow. If we want to use NT style tabs,

we would define that here.

 // WorkspaceOptions property must be set

 Loaded += (o, e) =>

 {

 if (WorkspaceOptions == null)

 WorkspaceOptions = new

WorkspaceOptions("MyWindow-" + Guid.NewGuid().ToString("N"), this);

 };

 }

 // IWorkspacePersistence member. Required for restoring window

from workspaces

 public void Restore(XDocument document, XElement)

 {

 if (MainTabControl != null)

 MainTabControl.RestoreFromXElement(element);

 }

 // IWorkspacePersistence member. Required for saving window to

workspaces

 public void Save(XDocument document, XElement element)

 {

 if (MainTabControl != null)

 MainTabControl.SaveToXElement(element);

 }

 // IWorkspacePersistence member

 public WorkspaceOptions WorkspaceOptions { get; set; }

}

11.6.3.8.1 Restore()

Restores the window from workspaces.

Examples

NinjaTrader 82632

© 2023 NinjaTrader, LLC

// IWorkspacePersistence member. Required for restoring window from

workspaces

public void Restore(XDocument document, XElement)

{

 if (MainTabControl != null)

 MainTabControl.RestoreFromXElement(element);

}

11.6.3.8.2 Save()

Saves the window to workspaces.

Examples

// IWorkspacePersistence member. Required for saving window to

workspaces

public void Save(XDocument document, XElement element)

{

 if (MainTabControl != null)

 MainTabControl.SaveToXElement(element);

}

11.6.3.8.3 WorkspaceOptions

Definition
Sets required workspace options.

Notes:

· The WorkspaceOptions class includes logic for opening, closing, saving, and restoring

workspaces, checking windows are off screen, and setting basic properties such as the

workspace name and current status.

· A WorkspaceOptions property must simply be declared within your NTWindow, as in

the example below. All of its contained logic is taken care of automatically.

Tip: For a complete, working example of this class in use, please download the AddOn

Framework NinjaScript Basic Example to your desktop.

Examples

http://ninjatrader.com/support/helpGuides/AddOn_Framework_NinjaScript_Basic.zip
http://ninjatrader.com/support/helpGuides/AddOn_Framework_NinjaScript_Basic.zip

NinjaScript 2633

© 2023 NinjaTrader, LLC

// IWorkspacePersistence member

public WorkspaceOptions WorkspaceOptions { get; set; }

11.6.3.9 NTTabPage Class

This is where the actual content for tabs inside the custom add on NTWindow can be defined.

Note: A class derived from NTTabPage has to be created if instrument link or interval link

functionality is desired. IInstrumentProvider and IIntervalProvider interfaces should be

implemented as well to ensure proper linking.

Clea

nup()

Unregisters LinkControls and calls Cleanup() on ICleanable

controls on the NTTabPage

GetH

eader

Part()

Indicates the tab header name.

Rest

ore()

Restores any elements in our NTTabPage from the

workspace.

Save

()

Saves elements in our NTTabPage to the workspace.

Examples

public class MyWindowTabPage : NTTabPage,

NinjaTrader.Gui.Tools.IInstrumentProvider, IIntervalProvider

{

 private Instrument instrument;

 public MyWindowTabPage()

 {

 /* Define the content for our NTTabPage. We can load

loose XAML to define controls and layouts

 if we so choose here as well.

 Note: XAML with event handlers defined inside WILL FAIL

when attempted to load.

 Note: XAML with "inline code" WILL FAIL when attempted to

NinjaTrader 82634

© 2023 NinjaTrader, LLC

load */

 }

 // Called by TabControl when a tab is being removed or window

is closed

 public override void Cleanup()

 {

 /* Unsubscribe and clean up resources used by the tab

that just closed. You may have

 resources you don't want to clean up just yet because the

window is still being used */

 }

 // NTTabPage member. Required for determining the tab header

name

 protected override string GetHeaderPart(string variable)

 {

 // Determine the text for the tab header name

 return variable;

 }

 // NTTabPage member. Required for restoring elements from

workspaces

 protected override void Restore(System.Xml.Linq.XElement

element)

 {

 if (element == null)

 return;

 // Restore any elements you may have saved. e.g. selected

accounts or instruments

 }

 // NTTabPage member. Required for saving elements to

workspaces

 protected override void Save(System.Xml.Linq.XElement element)

 {

 if (element == null)

 return;

 // Save any elements you may want persisted. e.g.

selected accounts or instruments

 }

 // IInstrumentProvider member

 public Instrument Instrument

 {

NinjaScript 2635

© 2023 NinjaTrader, LLC

 get { return instrument; }

 set

 {

 if (instrument != null)

 {

 // Unsubscribe to subscriptions to previously

selected instrument

 }

 if (value != null)

 {

 // Create subscriptions for the newly selected

instrument

 }

 instrument = value;

 // Update the tab header name

 RefreshHeader();

 }

 }

 // IIntervalProvider member

 public BarsPeriod BarsPeriod { get; set; }

}

11.6.3.9.1 Cleanup()

Definition
Unregisters LinkControls (IInstrumentProvider IIntervalProvider) and calls Cleanup() on

ICleanable controls on the NTTabPage. Override this to, e.g., unsubscribe from events or

perform any other cleanup operations when the tab is closed.

Note: When overriding Cleanup(), it is strongly recommended when you call

base.Cleanup() which ensures any link controls are also unregistered. The base

implementation will also handle cleaning up any controls which implement ICleanable:

AccountSelector, AtmStrategySelector, InstrumentSelector, IntervalSelector, TifSelector

Method Return Value
This method does not return a value

Syntax
public override void Cleanup()

{

NinjaTrader 82636

© 2023 NinjaTrader, LLC

}

Parameters
This method does not accept any parameters

Examples

public override void Cleanup()

{

 // unregister from any custom events

 Connection.ConnectionStatusUpdate -=

OnConnectionStatusUpdate;

 // a call to base.Cleanup() will loop through the visual tree

looking for all ICleanable children

 // i.e., AccountSelector, AtmStrategySelector,

InstrumentSelector, IntervalSelector, TifSelector,

 // as well as unregister any link control events

 base.Cleanup();

}

11.6.3.9.2 GetHeaderPart()

Definition
Indicates the tab header name.

Examples

// NTTabPage member. Required for determining the tab header name

protected override string GetHeaderPart(string variable)

{

 // Determine the text for the tab header name

 switch (variable)

 {

 case "@INSTRUMENT": return Instrument == null ?

Resource.GuiNewTab : Instrument.MasterInstrument.Name;

 case "@INSTRUMENT_FULL": return Instrument == null ?

Resource.GuiNewTab : Instrument.FullName;

 }

 return variable;

}

NinjaScript 2637

© 2023 NinjaTrader, LLC

11.6.3.9.3 Restore()

Restores any elements in our NTTabPage from the workspace. (e.g. Selected accounts or

instruments)

Examples

// NTTabPage member. Required for restoring elements from

workspaces

public void Restore(XElement element)

{

 if (element == null)

 return;

 // Restore any elements you may have saved. e.g. selected

accounts or instruments

}

11.6.3.9.4 Save()

Saves elements in our NTTabPage to the workspace (e.g. Selected accounts or instruments)

Examples

// NTTabPage member. Required for saving elements to workspaces

public void Save(XElement element)

{

 if (element == null)

 return;

 // Save any elements you may want persisted. e.g. selected

accounts or instruments

}

11.6.3.10 Alert and Debug Concepts

In most scenarios you can use the NinjaScript provided methods for triggering alerts and

debugging functionality. However, when building your own custom objects, you may find

yourself wanting to use this functionality outside the NinjaScript scope (e.g. when building a

NTTabPage for Add Ons).

Using the NinjaScript Output
Instead of Print(), use Output.Process() to write a message.

Instead of ClearOutputWindow(), use Output.Reset() to clear the output window.

NinjaTrader 82638

© 2023 NinjaTrader, LLC

Example

// Instead of Print()

NinjaTrader.Code.Output.Process("my message", PrintTo.OutputTab1);

// Instead of ClearOutputWindow()

NinjaTrader.Code.Output.Reset()

Using Alerts
Instead of Alert(), use NinjaTrader.NinjaScript.Alert.AlertCallback() for sending an alert.

Instead of ResetAlert(), use NinjaTrader.NinjaScript.Alert.RearmAlert()

Example

// Instead of Alert()

NinjaTrader.NinjaScript.Alert.AlertCallback(NinjaTrader.Cbi.Instrum

ent.GetInstrument("MSFT"), this, "someId",

NinjaTrader.Core.Globals.Now, Priority.High, "message", null,

Brushes.Blue, Brushes.White, 0);

// Instead of ResetAlert()

NinjaTrader.NinjaScript.Alert.ResetAlert("someId");

Miscellaneous
Instead of Log(), use NinjaScript.Log() to send a message to the NinjaTrader logs.

Instead of PlaySound(), use Globals.PlaySound() to play a sound.

Instead of SendMail(), use Globals.SendMail() to send a mail.

Tip: Both the Globals.PlaySound() and .SendMail() above could be used in a regular

NinjaScript objects as well, however this is not recommended practice since those would

not ignore the calls outside State.Realtime which could yield unexpected results.

Examples

NinjaScript 2639

© 2023 NinjaTrader, LLC

// Instead of Log()

NinjaScript.Log("My log message", LogLevel.Error);

// Instead of PlaySound()

NinjaTrader.Core.Globals.PlaySound(@"C:\mySound.wav");

// Instead of SendMail()

NinjaTrader.Core.Globals.SendMail("customers@email.com",

"cc_these_people@email.com", "Subject", "Mail body", null);

Error Codes in Log Files
The ErrorCode enumeration can be found in NinjaTrader logs from time to time when an error

occurs, and these can provide further clues into the cause of unexpected behavior during

your debugging. These error codes are not necessarily related to your code, but they can

provide an indication of an issue to address outside of the scope of your code, saving you

time in trying to find the source of errors in your code. Below is a list of ErrorCode enum

values and their meanings:

NoError No errors were thrown

LogOnFai

led

Failed to log on due to invalid credentials

OrderRej

ected

Broker rejected the current order

UnableTo

CancelOr

der

Order cannot be canceled now, but may be successfully

canceled later

UnableTo

ChangeO

rder

Either the exchange or broker does not support order

updates for the instrument in question, or the order has

not yet been submitted

UserAbor

t

The operation was aborted by the user

Panic An unspecified error was thrown

NinjaTrader 82640

© 2023 NinjaTrader, LLC

11.6.3.10.1 AlertCallback()

Definition
Creates an alert event to be raised specified by a string "id" and a corresponding .wav file will

be played matching the "soundLocation" parameter. Once an alert has triggered, its message

is reflected in the "Alerts Log" window based on the background and foreground brushes

provided in the callback.

Notes:

1. If the AlertCallback() method is called again with the same string "id" parameter before

the provided "rearmSeconds" duration has passed, the alert event will be reset based

on the new "rearmSeconds" parameter provided. Doing so could consequently cause

an alert to be reset inadvertently, in which case you should pass a "rearmSeconds"

parameter of "0" to ensure the specified alert event is always raised.

2. The AlertCallback() method is the same core function used by the simpler Alert()

method which can alternatively be used with NinjaScript indicators and strategies. The

AlertCallback() was exposed for use with Add-ons or other more advance use cases.

3. Providing a "rearmSeconds" parameter greater than "0" will add the matching alert id

to a rearmed state, which only allows the alert to be reissued after the specified time

interval in seconds has lapsed. You can reset an alert's rearm parameter by using the

ResetAlertRearmById().

Method Return Value
This method does not return a value.

Syntax
NinjaTrader.NinjaScript.Alert.AlertCallback(Instrument instrument, object source,

string id, DateTime time, Priority priority, string message, string soundLocation,

Brush backBrush, Brush foreBrush, int rearmSeconds)

Warning: An "id" parameter MUST be provided otherwise a null argument exception will

be generated

Parameters

instrument An Instrument object associated with the alert.

source A generic object type which created the alert

(e.g. "this")

id A string representing a unique id for the alert

NinjaScript 2641

© 2023 NinjaTrader, LLC

time The DateTime representing the time associated

with the alert

priority Sets the precedence of the alert in relation to

other alerts.

Any one of the following values:

Priority.High

Priority.Low

Priority.Medium

message A string representing the Alert message

soundLocation A string representing the absolute file path of the

.wav file to play.

backBrush Sets the background color of the Alerts window

row for this alert when triggered (reference)

foreBrush Sets the foreground color of the Alerts window

row for this alert when triggered (reference)

rearmSeconds An int which sets the number of seconds an

alert will rearm.

Note: If the same alert (identified by the id

parameter) is called within a time window of the

time of last alert + rearmSeconds, the alert will

be ignored.

Tips: You can obtain the default NinjaTrader installation directory to access the sounds

folder by using NinjaTrader.Core.Globals.InstallDir property. Please see the example

below for usage.

Examples

http://msdn.microsoft.com/en-us/library/system.drawing.color_members(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/system.drawing.color_members(v=vs.90).aspx

NinjaTrader 82642

© 2023 NinjaTrader, LLC

NinjaTrader.NinjaScript.Alert.AlertCallback(NinjaTrader.Cbi.Instrum

ent.GetInstrument("MSFT"), this, "someId",

NinjaTrader.Core.Globals.Now, Priority.High, "message",

NinjaTrader.Core.Globals.InstallDir+@"\sounds\Alert1.wav", new

SolidColorBrush(Colors.Blue), new SolidColorBrush(Colors.White),

0);

11.6.3.10.2 RearmAlert()

Definition
Rearms an existing alert event by the string "id" parameter created via the AlertCallback()

method. A NinjaScript generated alert by may need to be rearmed after the alert is triggered

depending on the Alert()'s rearmSeconds parameter.

Note: The NinjaScriptBase has a non-static method implemented with the same name.

Please see the RearmAlert() method for Indicator or Strategies.

Method Return Value
This method does not return a value.

Syntax
NinjaTrader.NinjaScript.Alert.RearmAlert(string id)

Parameters

id A unique string id representing an alert id to reset

Examples

if (resetCondition)

{

 NinjaTrader.NinjaScript.Alert.ResetAlertRearmById("someId");

 resetCondition = false;

}

11.6.3.11 AtmStrategy

AtmStrategy contains properties and methods used to manage ATM Strategies. When

working with an AtmStrategySelector, selected objects can be case to AtmStrategy to obtain

or change their properties.

NinjaScript 2643

© 2023 NinjaTrader, LLC

Notes:

1. For a complete, working example of this class in use, download framework example

located on our Developing AddOns Overview

2. For more information on working with the ATM strategies programmatically in general,

please see the Using ATM Strategies section.

Example

// Using AtmStrategy to handle user selections in an ATM Strategy

Selector

myAtmStrategySelector.SelectionChanged += (o, args) =>

{

 if (myAtmStrategySelector.SelectedItem == null)

 return;

 if (args.AddedItems.Count > 0)

 {

 // Change the selected TIF in a TIF selector based on what

is selected in the ATM Strategy Selector

 NinjaTrader.NinjaScript.AtmStrategy selectedAtmStrategy =

args.AddedItems[0] as NinjaTrader.NinjaScript.AtmStrategy;

 if (selectedAtmStrategy != null)

 {

 myTifSelector.SelectedTif =

selectedAtmStrategy.TimeInForce;

 }

 }

};

11.6.3.12 ControlCenter

Definition
ControlCenter is a XAML-defined class containing the layout and properties of the Control

Center window. When altering the Control Center window (for example, to add a menu item

into the "New" menu to launch an NTWindow as part of an AddOn, as seen in the example

below), a generic reference to a Window object can be cast to ControlCenter specifically.

Note: For a complete, working example of this class in use, download framework

example located on our Developing AddOns Overview

Example

NinjaTrader 82644

© 2023 NinjaTrader, LLC

private NTMenuItem ControlCenterNewMenu;

protected override void OnWindowCreated(Window window)

{

 // We want to place the menu item for the AddOn in the Control

Center's "New" menu

 // First obtain a reference to the Control Center window

 ControlCenter cc = window as ControlCenter;

 if (cc == null)

 return;

 /* Determine we want to place the AddOn in the Control Center's

"New" menu

 Other menus can be accessed via the control's "Automation ID".

For example: toolsMenuItem, workspacesMenuItem,

connectionsMenuItem, helpMenuItem. */

 ControlCenterNewMenu = cc.FindFirst("ControlCenterMenuItemNew")

 as NTMenuItem;

}

11.6.3.13 FundamentalData

Definition
FundamentalData is used to access fundamental snapshot data and for subscribing to

fundamental data events.

Note: Remember to unsubscribe if you are no longer using the subscription.

Properties

AverageDailyVolu

me

A double representing the average daily volume

Beta A double representing the beta

CalendarYearHigh A double representing the high price of the

calendar year

CalendarYearHigh

Date

A DateTime representing the date of the calendar

year's high price

NinjaScript 2645

© 2023 NinjaTrader, LLC

CalendarYearLow A double representing the low price of the

calendar year

CalendarYearLow

Date

A DateTime representing the date of the calendar

year's low price

CurrentRatio A double representing the current ratio

DividendAmount A double representing the dividend amount

DividendPayDate A DateTime representing the date dividends are

paid

DividendYield A double representing the dividend yield

EarningsPerShare A double representing the earnings per share

FiveYearsGrowthP

ercentage

A double representing the 5yr growth percent

High52Weeks A double representing the 52 week high

High52WeeksDate A DateTime representing the date of the 52 week

high price

HistoricalVolatility A double representing the historical volatility

InsiderOwned A double representing the insider owned amount

Instrument An Instrument representing the instrument

Low52Weeks A double representing the 52 week low

Low52WeeksDate A DateTime representing the date of the 52 week

low price

MarketCap A double representing the market capitalization

NextYearsEarning

sPerShare

A double representing next year's earnings per

share

NinjaTrader 82646

© 2023 NinjaTrader, LLC

PercentHeldByInsti

tutions

A double representing the percent held by

institutions

PriceEarningsRati

o

A double representing the P/E ratio

RevenuePerShare A double representing the revenue per share

SharesOutstandin

g

A long representing the shares outstanding

ShortInterest A double representing the short interest

ShortInterestRatio A double representing the short interest ratio

VWAP A double representing the VWAP

Update Event handler for subscribing/unsubscribing to

market depth events

Syntax
FundamentalData

Example

NinjaScript 2647

© 2023 NinjaTrader, LLC

/* Example of subscribing/unsubscribing to fundamental data from an

Add On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

private Instrument instrument;

public MyAddOnTab()

{

instrument = Instrument.GetInstrument("AAPL");

if (instrument == null)

return;

// Subscribe to fundamental data. Snapshot data is
provided right on subscription

if (!instrument.Dispatcher.HasShutdownStarted)

instrument.Dispatcher.InvokeAsync(() =>
instrument.FundamentalData.Update += OnFundamentalData);

// Printing snapshot fundamental data for average
daily volume

NinjaTrader.Code.Output.Process(instrument.FundamentalData.AverageD
ailyVolume, PrintTo.OutputTab1);

}

// This method is fired on fundamental data events

private void OnFundamentalData(object sender,
FundamentalDataEventArgs e)

{
 // Do something with fundamental data events

}

// Called by TabControl when tab is being removed or window
is closed

public override void Cleanup()

{

// Make sure to unsubscribe to the fundamental data
subscription

if (instrument != null)

instrument.FundamentalData.Update -=
OnFundamentalData;

}

// Other required NTTabPage members left out for
demonstration purposes. Be sure to add them in your own code.
}

NinjaTrader 82648

© 2023 NinjaTrader, LLC

11.6.3.14 MarketData

Definition
MarketData can be used to access snapshot market data and for subscribing to market data

events.

Notes:

1. Remember to unsubscribe if you are no longer using the subscription.

2. You should only unsubscribe to a market data event if you are actually subscribed.

Properties

Ask A MarketDataEventArgs representing the ask

price

Bid A MarketDataEventArgs representing the bid

price

DailyHigh A MarketDataEventArgs representing the daily

high

DailyLow A MarketDataEventArgs representing the daily

low

DailyVolume A MarketDataEventArgs representing the daily

volume

Instrument An Instrument representing the instrument

Last A MarketDataEventArgs representing the last

price

LastClose A MarketDataEventArgs representing the last

close

Opening A MarketDataEventArgs representing the

opening price

OpenInterest A MarketDataEventArgs representing the open

interest

NinjaScript 2649

© 2023 NinjaTrader, LLC

Settlement A MarketDataEventArgs representing the

settlement price

Update Event handler for subscribing/unsubscribing to

market depth events

Note: Attempting to unsubscribe to this event

before there is a subscription will generate

errors.

Syntax
MarketData

Example

NinjaTrader 82650

© 2023 NinjaTrader, LLC

/* Example of subscribing/unsubscribing to market data from an Add

On. The concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

private Instrument instrument;

public MyAddOnTab()

{

instrument = Instrument.GetInstrument("AAPL");

if (instrument == null)

return;

// Subscribe to market data. Snapshot data is
provided right on subscription

// Note: "instrument" is a placeholder in this
example, you will need to replace

// with a valid Instrument object through various
methods or properties available depending

// on the NinjaScript type you are working with
(e.g., Bars.Instrument or Instrument.GetInstrument()

if (!instrument.Dispatcher.HasShutdownStarted)

instrument.Dispatcher.InvokeAsync(() =>

instrument.MarketData.Update += OnMarketData);

// Printing snapshot market data for the last price

and time

NinjaTrader.Code.Output.Process(instrument.MarketData.Last.Price.To

String() + " " + instrument.MarketData.Last.Time.ToString(),

PrintTo.OutputTab1);

}

// This method is fired on market data events

private void OnMarketData(object sender, MarketDataEventArgs

e)

{

// Do something with market data events

}

// Called by TabControl when tab is being removed or window

is closed

public override void Cleanup()

{

// Make sure to unsubscribe to the market data

subscription

if (instrument != null)

instrument.MarketData.Update -= OnMarketData;

}

// Other required NTTabPage members left out for

demonstration purposes. Be sure to add them in your own code.

}

NinjaScript 2651

© 2023 NinjaTrader, LLC

11.6.3.15 MarketDepth

Definition
MarketDepth can be used to access snapshot market depth and for subscribing to market

depth events.

Notes:

1. Remember to unsubscribe if you are no longer using the subscription.

2. You should only unsubscribe to a market depth event if you are actually subscribed.

3. You must unsubscribe from the same thread where the subscription is made. It is

therefore recommended to user an Instrument's Dispatcher to ensure this is handled

properly.

Properties

Asks List of ask prices

Bids List of bid prices

Instrument Instrument representing the instrument of the

market depth event

Update Event handler for subscribing/unsubscribing to

market depth events

Syntax
MarketDepth

Example

NinjaTrader 82652

© 2023 NinjaTrader, LLC

/* Example of subscribing/unsubscribing to market depth from an Add

On. */

public class MyAddOnTab : NTTabPage

{

 private Instrument instrument;

 public MyAddOnTab()

 {

 instrument = Instrument.GetInstrument("AMD");

 if (instrument == null)

 return;

 // Follow this pattern to subscribe to MarketDepth events

so they may be unsubscribed from the same instrument thread

 if (!instrument.Dispatcher.HasShutdownStarted)

 instrument.Dispatcher.InvokeAsync(() =>

instrument.MarketDepth.Update += OnMarketDepth);

 // Print the Ask's price ladder

 for (int i = 0; i < instrument.MarketDepth.Asks.Count; i+

+)

 {

 NinjaTrader.Code.Output.Process(string.Format("Positi

on: {0} Price: {1} Volume: {2}", i,

 instrument.MarketDepth.Asks[i].Price,

instrument.MarketDepth.Asks[i].Volume), PrintTo.OutputTab1);

 }

 }

 // This method is fired on market depth events and after the

snapshot data is updated.

 private void OnMarketDepth(object sender, MarketDepthEventArgs

e)

 {

 return;

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Follow this pattern to subscribe to MarketDepth events

so they may be unsubscribed from the same intrument thread

 if (instrument != null &&

!instrument.Dispatcher.HasShutdownStarted)

 instrument.Dispatcher.InvokeAsync(() =>

instrument.MarketDepth.Update -= OnMarketDepth);

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

NinjaScript 2653

© 2023 NinjaTrader, LLC

11.6.3.16 NewsItems

Definition
NewsItems can be used to store news articles.

Properties

Items Collection of NewsEventArgs representing news

articles

NewsToMaintain An int representing the number of articles to

maintain

Update() For storing news articles

Syntax
NewsItems

Example

/* Example of storing and accessing news items from an Add On. The

concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 private NewsSubscription newsSubscription;

 private NewsItems newsItems;

 public MyAddOnTab()

 {

 // Subscribe to news

 newsSubscription = new NewsSubscription();

 newsSubscription.Update += OnNews;

 newsItems = new NewsItems(10);

 // Print news

 PrintNews(newsItems);

 }

 // This method is fired as new News events come in. Old News

events are not provided when you subscribe.

 private void OnNews(object sender, NewsEventArgs e)

 {

 // Store the news items

NinjaTrader 82654

© 2023 NinjaTrader, LLC

 newsItems.Update(e);

 }

 // Loop through the stored news articles and output them

 private void PrintNews(NewsItems news)

 {

 for (int x = 0; x < news.Items.Count; x++)

 {

 NinjaTrader.Code.Output.Process(string.Format("ID:

{0} News Provider: {1} Headline: {2}",

 news.Items[x].Id,

 news.Items[x].NewsProvider,

 news.Items[x].Headline), PrintTo.OutputTab1);

 }

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Make sure to unsubscribe to the News subscription

 if (newsSubscription != null)

 newsSubscription.Update -= OnNews;

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

11.6.3.17 NewsSubscription

Definition
NewsSubscription can be used for subscribing to News events.

Note: Remember to unsubscribe if you are no longer using the subscription.

Properties

Update Event handler for subscribing/unsubscribing to

market depth events

Syntax
NewsSubscription

NinjaScript 2655

© 2023 NinjaTrader, LLC

Example

/* Example of subscribing/unsubscribing to news from an Add On. The

concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 private NewsSubscription newsSubscription;

 private NewsItems newsItems;

 public MyAddOnTab()

 {

 // Subscribe to news

 newsSubscription = new NewsSubscription();

 newsSubscription.Update += OnNews;

 newsItems = new NewsItems(10);

 }

 // This method is fired as new News events come in. Old News

events are not provided when you subscribe.

 private void OnNews(object sender, NewsEventArgs e)

 {

 // Print the headline of the news

 NinjaTrader.Code.Output.Process(string.Format("ID: {0}

News Provider: {1} Headline: {2}",

 e.Id,

 e.NewsProvider,

 e.Headline), PrintTo.OutputTab1);

 // Maintain the news items

 newsItems.Update(e);

 }

 // Called by TabControl when tab is being removed or window is

closed

 public override void Cleanup()

 {

 // Make sure to unsubscribe to the News subscription

 if (newsSubscription != null)

 newsSubscription.Update -= OnNews;

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code.

}

NinjaTrader 82656

© 2023 NinjaTrader, LLC

11.6.3.18 NTMenuItem

Definition
NTMenuItem is used to create new menu entries. For example, an instance of this class can

be placed in an existing Control Center menu to launch an NTWindow as part of an AddOn,

as seen in the example code below.

Note: For a complete, working example of this class in use, download framework

example located on our Developing AddOns Overview

Examples

NinjaScript 2657

© 2023 NinjaTrader, LLC

private NTMenuItem myNewMenuItem;

private NTMenuItem existingControlCenterNewMenu;

protected override void OnWindowCreated(Window window)

{

 // We want to place the menu item for the AddOn in the Control

Center's "New" menu

 // First obtain a reference to the Control Center window

 ControlCenter cc = window as ControlCenter;

 if (cc == null)

 return;

 /* Determine we want to place the AddOn in the Control Center's

"New" menu

 Other menus can be accessed via the control's "Automation ID".

For example: toolsMenuItem, workspacesMenuItem,

connectionsMenuItem, helpMenuItem. */

 existingControlCenterNewMenu =

cc.FindFirst("ControlCenterMenuItemNew") as NTMenuItem;

 if (existingControlCenterNewMenu == null)

 return;

 // Instantiate myNewMenuItem

 // 'Header' sets the name of our AddOn seen in the menu

structure. 'Style' sets the font style.

 myNewMenuItem = new NTMenuItem { Header = "AddOn Framework",

Style = Application.Current.TryFindResource("MainMenuItem") as

Style };

 // Add our AddOn menu item into the "New" menu

 existingControlCenterNewMenu.Items.Add(myNewMenuItem);

 // Subscribe to the event for when the user presses the menu

item

 myNewMenuItem.Click += OnMenuItemClick;

}

11.6.3.19 NTMessageBoxSimple.Show()

Definition
Creates a message box window.

Note: For more information on using MessageBox windows, please see .NET

MessageBox Class Documentation

Method Return Value

https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.windows.messagebox?view=netframework-4.8

NinjaTrader 82658

© 2023 NinjaTrader, LLC

MessageBoxResult; an enum representing the button press used to close the MessageBox

window

Syntax
NTMessageBoxSimple.Show(Window input, string messageTxt, string caption,

MessageBoxButton buttonSet, MessageBoxImage icon)

Parameters

parent A Window (DependencyObject)

which represents the owning

window

messageTxt The message body of the

MessageBox window

caption The header of the MessageBox

window

buttonSet A MesageBoxButton enum

determining the buttons used for

the MessageBox window

icon A MesageBoxImage enum

determining the icon used for the

MessageBox window

Examples

// Create a MessageBox window from a Chart

ChartControl.Dispatcher.InvokeAsync(new Action(() => {

 NinjaTrader.Gui.Tools.NTMessageBoxSimple.Show(Window.GetWindow(C

hartControl.OwnerChart as DependencyObject), "Message Body",

"Message Header", MessageBoxButton.OK, MessageBoxImage.None);

}));

NinjaScript 2659

© 2023 NinjaTrader, LLC

// Create a MessageBox window from a button press in an AddOn

private void OnMenuItemClick(object sender, RoutedEventArgs e)

{

 NinjaTrader.Gui.Tools.NTMessageBoxSimple.Show(Window.GetWindow(

e.Source as DependencyObject), "Message Body", "Message Header",

MessageBoxButton.OK, MessageBoxImage.None);

}

11.6.3.20 NTWindow

Definition
The NTWindow class defines parent windows for custom window creation. Instances of

NTWindow act as containers for instances of NTTabPage, in which UI elements and their

related logic are contained.

Notes:

· The IWorkspacePersistance interface should be implemented if you want your window

to be saved and restored with NinjaTrader workspaces.

· AddOn Classes which derive from NTWindow or implements IWorkspacePersistance

 CANNOT be a nested type of another class and MUST have a default constructor

Example
The example below shows how to instantiate an NTWindow while:

· Implementing IWorkspacePersistence to ensure the window is saved/restored in

workspaces

· Setting the window caption and dimensions

· Instantiating a TabControl to support tabs within the window

· Setting workspace options

Tip: For a complete, working example of this class in use, download framework example

located on our AddOn Development Overview

public class AddOnFrameworkWindow : NTWindow, IWorkspacePersistence

{

 // default constructor

 public AddOnFrameworkWindow()

 {

https://msdn.microsoft.com/en-us/library/ms173120.aspx
https://msdn.microsoft.com/en-us/library/ms173115.aspx

NinjaTrader 82660

© 2023 NinjaTrader, LLC

 // set Caption property (not Title), since Title is managed

internally to properly combine selected Tab Header and Caption for

display in the Windows taskbar

 // This is the name displayed in the top-left of the window

 Caption = "AddOn Framework";

 // Set the default dimensions of the window

 Width = 1085;

 Height = 900;

 // TabControl should be created for window content if tab

features are wanted

 TabControl tc = new TabControl();

 // Attached properties defined in the TabControlManager

class should be set to achieve adding, removing, and moving tabs

 TabControlManager.SetIsMovable(tc, true);

 TabControlManager.SetCanAddTabs(tc, true);

 TabControlManager.SetCanRemoveTabs(tc, true);

 // if ability to add new tabs is desired, TabControl has to

have attached property "Factory" set.

 TabControlManager.SetFactory(tc, new

AddOnFrameworkWindowFactory());

 Content = tc;

 /* In order to have link buttons functionality, tab control

items must be derived from Tools.NTTabPage

 They can be added using extension method

AddNTTabPage(NTTabPage page) */

 tc.AddNTTabPage(new AddOnFrameworkTab());

 // WorkspaceOptions property must be set

 Loaded += (o, e) =>

 {

 if (WorkspaceOptions == null)

 WorkspaceOptions = new

WorkspaceOptions("AddOnFramework-" + Guid.NewGuid().ToString("N"),

this);

 };

 }

 // IWorkspacePersistence member. Required for restoring window

from workspace

 public void Restore(XDocument document, XElement element)

 {

 if (MainTabControl != null)

NinjaScript 2661

© 2023 NinjaTrader, LLC

 MainTabControl.RestoreFromXElement(element);

 }

 // IWorkspacePersistence member. Required for saving window to

workspace

 public void Save(XDocument document, XElement element)

 {

 if (MainTabControl != null)

 MainTabControl.SaveToXElement(element);

 }

 // IWorkspacePersistence member

 public WorkspaceOptions WorkspaceOptions { get; set; }

}

11.6.3.21 NumericTextBox

NumericTextBox provides functionality for numeric text boxes to capture user input. This UI

element can be defined in XAML for an AddOn if desired, with functionality and logic related to

the text box defined in C#, as in the examples below.

Note: For a complete, working example of this class in use, download framework

example located on our Developing AddOns Overview

NumericTextBox inherits from System.Windows.Controls.Textbox, and the following

additional properties can be accessed for an instance the class:

Minimum Determines the minimum value which can be entered

Maximu

m

Determines the maximum value which can be entered

ValueTyp

e

Determines the System.Type which can be accepted

Examples

https://msdn.microsoft.com/en-us/library/system.windows.controls.textbox(v=vs.110).aspx

NinjaTrader 82662

© 2023 NinjaTrader, LLC

 XAML Definition of the UI Element

<!-- Create a grid in which to place the NumericTextBox -->

<Grid>

 <!-- Define a NumericTextBox -->

 <t:NumericTextBox x:Name="daysBackSelector" Text="5"

ValueType="{x:Type system:Int32}" Width="50" Grid.Column="2">

 <!-- Set the margins for the box -->

 <t:NumericTextBox.Margin>

 <Thickness Left="{StaticResource MarginButtonLeft}"

Top="{StaticResource PaddingColumn}" Right="{StaticResource

MarginBase}"/>

 </t:NumericTextBox.Margin>

 </t:NumericTextBox>

</Grid>

 C# Code Handling Logic

private NumericTextBox daysBack;

private DependencyObject LoadXAML()

{

 // Find days back selector

 daysBack = LogicalTreeHelper.FindLogicalNode(pageContent,

"daysBackSelector") as NumericTextBox;

}

11.6.3.22 OnWindowCreated()

Definition
This method is called whenever a new NTWindow is created. It will be called in the thread of

that window. This is where you would install your AddOn to an existing window, or if creating

your own custom window, add a Menu item to the NinjaTrader Control Center.

Note: This method will also be called on a recompile of the NinjaTrader.Custom project

(e.g., when you compile an indicator, strategy, or add-on)

Method Return Value
This method does not return a value

Syntax
OnWindowCreated(Window window)

Parameters

NinjaScript 2663

© 2023 NinjaTrader, LLC

window A Window object which is being

added to the workspace

Examples

NinjaTrader 82664

© 2023 NinjaTrader, LLC

public class MyWindowAddOn : AddOnBase

{

 private NTMenuItem myMenuItem;

 private NTMenuItem existingMenuItem;

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Description = "Our custom MyWindow add on";

 Name = "MyWindow";

 }

 }

 // Will be called as a new NTWindow is created. It will be

called in the thread of that window

 protected override void OnWindowCreated(Window window)

 {

 // We want to place our add on in the Control Center's

menus

 ControlCenter cc = window as ControlCenter;

 if (cc == null)

 return;

 /* Determine we want to place our add on in the Control

Center's "New" menu

 Other menus can be accessed via the control's Automation

ID. For example: toolsMenuItem,

 workspacesMenuItem, connectionsMenuItem, helpMenuItem. */

 existingMenuItem =

cc.FindFirst("ControlCenterMenuItemNew") as NTMenuItem;

 if (existingMenuItem == null)

 return;

 // 'Header' sets the name of our add on seen in the menu

structure

 myMenuItem = new NTMenuItem { Header = "My Menu Item",

 Style =

Application.Current.TryFindResource("MainMenuItem") as Style };

 // Place our add on into the "New" menu

 existingMenuItem.Items.Add(myMenuItem);

 // Subscribe to the event for when the user presses our

add on's menu item

 myMenuItem.Click += OnMenuItemClick;

 }

 // Open our add on's window when the menu item is clicked on

 private void OnMenuItemClick(object sender, RoutedEventArgs e)

 {

 // Show the NTWindow "MyWindow"

 Core.Globals.RandomDispatcher.InvokeAsync(new Action(()=>

 new MyWindow().Show()));

 }

}

NinjaScript 2665

© 2023 NinjaTrader, LLC

11.6.3.23 OnWindowDestroyed()

Definition
This method is called whenever a new NTWindow is destroyed. It will be called in the thread

of that window. A window is destroyed either by the user closing the window, closing a

workspace, or on a shut down of NinjaTrader.

Note: This method will also be called on a recompile of the NinjaTrader.Custom project

(e.g., when you compile an indicator, strategy, or add-on)

Method Return Value
This method does not return a value

Syntax
OnWindowDestroyed(Window window)

Parameters

window A Window object which is being

removed from the workspace

Examples

NinjaTrader 82666

© 2023 NinjaTrader, LLC

public class MyWindowAddOn : AddOnBase

{

 private NTMenuItem myMenuItem;

 private NTMenuItem existingMenuItem;

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Description = "Our custom MyWindow add on";

 Name = "MyWindow";

 }

 }

 // Will be called as a new NTWindow is destroyed. It will be

called in the thread of that window

 protected override void OnWindowDestroyed(Window window)

 {

 if (myMenuItem != null && window is ControlCenter)

 {

 if (existingMenuItem != null &&

existingMenuItem.Items.Contains(myMenuItem))

 existingMenuItem.Items.Remove(myMenuItem);

 myMenuItem.Click -= OnMenuItemClick;

 myMenuItem = null;

 }

 }

}

11.6.3.24 OnWindowRestored()

Definition
Called when the window is restored from a workspace, which is called after

OnWindowCreated(). This method is used to recall any custom XElement data from the

workspace by referencing a window. Please also see OnWindowSaved() for information on

how to store custom XElement data when a window is saved.

Method Return Value
This method does not return a value

Syntax
OnWindowRestored(Window window, XElement element)

Parameters

NinjaScript 2667

© 2023 NinjaTrader, LLC

window A Window object which is being

restored from a workspace

element The XElement object representing

the workspace being restored

Examples

protected override void OnWindowRestored(Window window, XElement

element)

{

 Print("OnWindowRestored for " + window.GetHashCode());

 // locate the worksapces "SampleAddOn" elemenet which was

created and saved earlier using the OnWindowSaved() method

 XElement sampleAddOnElement = element.Element("SampleAddOn");

 // do not do anything if that element does not exist

 if (sampleAddOnElement == null)

 return;

 // loop through all the contents of the "SampleAddOn" element

 foreach (XElement content in sampleAddOnElement.Elements())

 {

 // find the "ButtonState" content, restore it's value and

set that as our tracked buttonState

 if (content.Name == "ButtonState")

 {

 bool buttonState = false;

 bool.TryParse(content.Value, out buttonState);

 continue;

 }

 //Parse additional elements here

 }

 //Don't forget to call the base OnWindowRestored method after

you're done.

 base.OnWindowRestored(window, element);

}

https://msdn.microsoft.com/en-us/library/system.windows.window(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.xml.linq.xelement(v=vs.110).aspx

NinjaTrader 82668

© 2023 NinjaTrader, LLC

11.6.3.25 OnWindowSaved()

Definition
Called when the window is saved to a workspace, which is called before

OnWindowDestroyed(). This method is used to save any custom XElement data associated

with your window.

Method Return Value
This method does not return a value

Syntax
OnWindowSaved(Window window, XElement element)

Parameters

window A Window object which is being

saved to the workspace

element A XElement object representing

the workspace being saved

Examples

https://msdn.microsoft.com/en-us/library/system.windows.window(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.xml.linq.xelement(v=vs.110).aspx

NinjaScript 2669

© 2023 NinjaTrader, LLC

protected override void OnWindowSaved(Window window, XElement

element)

{

 Print("OnWindowSaved for " + window.GetHashCode());

 // create a new XElement to save the last state of a custom

button to the workspace

 XElement xml = new XElement("SampleAddOn", new

XElement("ButtonState", true));

 // e.g.,

 // <SampleAddOn>

 // <ButtonState>true</ButtonState>

 // </SampleAddOn>

 // add the new element to the workspace which can be restored

later

 element.Add(xml);

 //Don't forget to call the base OnWindowSaved method after

you've finished your operation.

 base.OnWindowSaved(window, element);

}

11.6.3.26 StartAtmStrategy()

Definition
StartAtmStrategy can be used to submit entry orders with ATM strategies.

Syntax
NinjaTrader.NinjaScript.AtmStrategy.StartAtmStrategy(AtmStrategy atmStrategyTemplate,

Order entryOrder)

NinjaTrader.NinjaScript.AtmStrategy.StartAtmStrategy(string atmStrategyTemplateName,

Order entryOrder)

Properties

atmStrategyTempl

ate

An AtmStrategy representing the ATM strategy

you wish to use

atmStrategyTempl

ateName

A string representing the name of the ATM

strategy you wish to use

entryOrder An Order representing the entry order

NinjaTrader 82670

© 2023 NinjaTrader, LLC

Critical: The "name" argument on the CreateOrder() method MUST be named "Entry" for

the ATM Strategy to be started successfully.

Example

/* Example of starting an ATM strategy from an Add On window. The

concept can be carried over

to any NinjaScript object you may be working on. */

public class MyAddOnTab : NTTabPage

{

 private Account account;

 private Order entryOrder;

 public MyAddOnTab()

 {

 // Find our Sim101 account

 lock (Account.All)

 account = Account.All.FirstOrDefault(a => a.Name ==

"Sim101");

 if (account != null)

 {

 entryOrder =

account.CreateOrder(Cbi.Instrument.GetInstrument("AAPL"),

OrderAction.Buy, OrderType.Market,

 TimeInForce.Day, 1, 0, 0, string.Empty,

"Entry", null);

 // Submits our entry order with the ATM strategy

named "myAtmStrategyName"

 NinjaTrader.NinjaScript.AtmStrategy.StartAtmStrategy

("myAtmStrategyName", entryOrder);

 }

 }

 // Other required NTTabPage members left out for demonstration

purposes. Be sure to add them in your own code if building an Add

On window.

}

11.6.3.27 StrategyBase

StrategyBase contains properties and methods for managing a Strategy object, and is the

base class from which AtmStrategy derives.

NinjaScript 2671

© 2023 NinjaTrader, LLC

Note: For a complete, working example of this class in use, download framework

example located on our Developing AddOns Overview

Example

// A button called acctStratButton in an NTTabPage displays all ATM

and NinjaScript strategies configured on a selected Account when

clicked

private void OnButtonClick(object sender, RoutedEventArgs e)

{

 Button button = sender as Button;

 if (button != null && ReferenceEquals(button, acctStratButton))

 {

 // When the button is pressed, iterate through all ATM and

NinjaScript strategies

 // This comprises all which are active, recovered upon last

connect, or deactived since last connect

 // First, lock the Strategies collection to avoid in-flight

changes to the collection affecting our output

 lock (accountSelector.SelectedAccount.Strategies)

 // Iterate through the Strategies collection in the

selected Account

 foreach (StrategyBase strategy in

accountSelector.SelectedAccount.Strategies)

 outputBox.AppendText(string.Format("{0}Name: {1}{0}

ATM Template Name: {2}{0}Instrument: {3}{0}State: {4}{0}Category:

{5}{0}",

 Environment.NewLine,

 strategy.Name,

 strategy.Template,

 strategy.Instruments[0].FullName,

 strategy.State,

 strategy.Category));

 }

}

11.6.3.28 PropagateInstrumentChange()

Definition
In an NTWindow, PropagateInstrumentChange() sends an Instrument to other windows with

the same Instrument Linking color configured.

Notes:

NinjaTrader 82672

© 2023 NinjaTrader, LLC

· A public Instrument property must be defined in order to use

PropagateInstrumentChange(), as in the example below

· For a complete, working example of this class in use, download framework example

located on our Developing AddOns Overview

Example

// IInstrumentProvider member. Required if you want to use the

instrument link mechanism on an NTWindow.

public Cbi.Instrument Instrument

{

 get { return instrument; }

 set

 {

 // Process logic related to switching instruments, such as:

 // Unsubscribe to subscriptions to old instruments...

 // Subscribe for the new instrument...

 // Change the value displayed in an Instrument Selector in

the NTWindow...

 // Update the tab header name on AddOnFramework to be the

same name as the new instrument...

 // etc...

 // Send instrument to other windows linked to the same

color

 PropagateInstrumentChange(value);

 }

}

11.6.3.29 PropagateIntervalChange()

Definition
In an NTWindow, PropagateIntervalChange() sends an interval to other windows with the

same Interval Linking color configured.

Notes:

1. A public Instrument property must be defined in order to use

PropagateInstrumentChange(), as in the example below

2. For a complete, working example of this class in use, download framework example

located on our Developing AddOns Overview

Example

NinjaScript 2673

© 2023 NinjaTrader, LLC

// This custom method will be fired when an interval selector in a

custom NTTabPage changes intervals

private void OnIntervalChanged(object sender, BarsPeriodEventArgs

args)

{

 if (args.BarsPeriod == null)

 return;

 PropagateIntervalChange(args.BarsPeriod);

}

11.6.3.30 TabControl

Definition
The TabControl class provides functionality for working with NTTabPage objects within an

NTWindow. TabControl should be instantiated within the constructor for an NTWindow

instance, in order to configure the window to be able to host and work with tabs.

Note: For a complete, working example of this class in use, download framework

example located on our Developing AddOns Overview

Example
In the example below, we define an instance of NTWindow, then use TabControl to

accomplish various setup tasks:

· Provide the NTWindow with the ability to add, remove, and move tabs

· Attach a Factory to the TabControl to handle logic for creating new tabs

· Set up the TabControl with the ability to utilize window linking

NinjaTrader 82674

© 2023 NinjaTrader, LLC

public class MyWindow : NTWindow, IWorkspacePersistence

{

 public MyWindow()

 {

 // TabControl should be created for window content if tab

features are wanted

 TabControl tc = new TabControl();

 // Attached properties defined in the TabControlManager

class should be set to add, remove, or move tabs

 TabControlManager.SetIsMovable(tc, true);

 TabControlManager.SetCanAddTabs(tc, true);

 TabControlManager.SetCanRemoveTabs(tc, true);

 // if the ability to add new tabs is desired, TabControl

must have attached property "Factory" set.

 TabControlManager.SetFactory(tc, new MyWindowFactory());

 Content = tc;

 /* In order to have link buttons functionality, tab control

items must be derived from Tools.NTTabPage

 They can be added using extention method

AddNTTabPage(NTTabPage page) */

 tc.AddNTTabPage(new MyTab());

 }

}

/* Class which implements Tools.INTTabFactory must be created and

set as an attached property for TabControl

in order to use tab page add/remove/move/duplicate functionality */

public class MyWindowFactory : INTTabFactory

{

 // INTTabFactory member. Required to create parent window

 public NTWindow CreateParentWindow()

 {

 return new MyWindow();

 }

 // INTTabFactory member. Required to create tabs

 public NTTabPage CreateTabPage(string typeName, bool isTrue)

 {

 return new MyTab();

 }

}

NinjaScript 2675

© 2023 NinjaTrader, LLC

11.6.3.31 TabControlManager

Definition
The TabControlManager class can be used to set or check several properties of a TabControl

object. Rather than instantiating a TabControlManager object, you can use the public static

methods of the class to set specific properties for a specified TabControl, as in the example

code below.

Note: For a complete, working example of this class in use, download framework

example located on our Developing AddOns Overview

Setters

SetCanAddTabs(Depe

ndencyObject obj, bool

value)

Sets a TabControl can add new tabs

SetCanDuplicateTabs(

DependencyObject obj,

bool value)

Sets a TabControl can duplicate tabs in new

tabs or new windows

SetCanRemoveTabs(D

ependencyObject obj,

bool value)

Sets a TabControl can remove tabs

SetFactory(Dependenc

yObject obj, bool value)

Sets the NTTabFactory for the TabControl

SetIsSimulation(Depen

dencyObject obj, bool

value)

Sets the current NTTabPage to the

simulation color if true. This method needs

to be used logically from within your

NTTabPage.

SetIsMovable(Depende

ncyObject obj, bool

value)

Sets a TabControl allows changing the

order of tabs in a window

Getters

GetCanAddTabs(Depe

ndencyObject obj)

Indicates a TabControl can add new tabs

NinjaTrader 82676

© 2023 NinjaTrader, LLC

GetCanDuplicateTabs(

DependencyObject obj)

Indicates a TabControl can duplicate tabs in

new tabs or new windows

GetCanRemoveTabs(

DependencyObject obj)

Indicates a TabControl can remove tabs

GetFactory(Dependenc

yObject obj)

Obtains the NTTabFactory used by a

TabControl

GetIsSimulation(Depen

dencyObject obj)

Indicates the Simulation Color selected in

the Options menu is visible in the tab

background when a simulation account is

selected in the tab

GetIsMovable(Depende

ncyObject obj)

Indicates a TabControl allows changing the

order of tabs in a window

Example

NinjaScript 2677

© 2023 NinjaTrader, LLC

public AddOnFrameworkWindow()

{

 // TabControl should be created for window content if tab

features are wanted

 TabControl tc = new TabControl();

 // Attached properties defined in TabControlManager class

should be set to achieve tab moving, adding/removing tabs

 TabControlManager.SetIsMovable(tc, true);

 TabControlManager.SetCanAddTabs(tc, true);

 TabControlManager.SetCanRemoveTabs(tc, true);

 // if ability to add new tabs is desired, TabControl has to

have attached property "Factory" set.

 TabControlManager.SetFactory(tc, new

AddOnFrameworkWindowFactory());

 Content = tc;

 /* In order to have link buttons functionality, tab control

items must be derived from Tools.NTTabPage

 They can be added using extention method AddNTTabPage(NTTabPage

page) */

 tc.AddNTTabPage(new AddOnFrameworkTab());

}

11.6.4 Bars Type

Creating custom Bars Types allows for incredible flexibility in the way you want to present

data in a chart. The methods and properties covered in this section are unique to custom

Bars Type development.

Methods and Properties

AddBar() Adds new data points for the Bars Type.

ApplyDefaultBase

PeriodValue

Sets the default base values used for the

BarsPeriod selected by the user (e.g., the default

PeriodValue, DaysToLoad, etc.) for your custom

Bar Type.

ApplyDefaultValue Sets the default BarsPeriod values used for a

custom Bar Type.

NinjaTrader 82678

© 2023 NinjaTrader, LLC

BuiltFrom Determines the base dataset used to build the

BarsType (i.e., Tick, Minute, Day).

GetInitialLookBack

Days()

Determines how many days of data load when a

user makes a "bars back" data request.

GetPercentCompl

ete()

Determines the value your BarsType would

return for Bars.PercentComplete

Icon The shape which displays next to the Bars Type

menu item.

IsRemoveLastBar

Supported

Determines if the bars type can use the

RemoveLastBar() method when true, otherwise

an exception will be thrown.

IsTimebased Used to indicate the BarsType is built from time-

based bars (day, minute, second).

OnDataPoint() OnDataPoint() method is where you should

adjust data points (bar values) of your series

through AddBar() and UpdateBar().

RemoveLastBar() Removes the last data point for the Bars Type.

SessionIterator Provides trading session information to the bars

type. Must be built using the bars object.

UpdateBar() Updates a data point in our Bars Type.

11.6.4.1 AddBar()

Definition
Adds new data points for the Bars Type.

Syntax
AddBar(Bars bars, double open, double high, double low, double close, DateTime time,

long volume)

AddBar(Bars bars, double open, double high, double low, double close, DateTime time,

long volume, double bid, double ask)

Parameters

bars The Bars object of your bars type

NinjaScript 2679

© 2023 NinjaTrader, LLC

open A double value representing the open price

high A double value representing the high price

low A double value representing the low price

close A double value representing the close price

time A DateTime value representing the time

volume A long value representing the volume

bid A double value representing the bid price

ask A double value representing the ask price

Examples

AddBar(bars, open, high, low, close, time, (long)

Math.Min(volumeTmp, bars.BarsPeriod.Value));

11.6.4.2 ApplyDefaultBasePeriodValue

Definition
Sets the default base values used for the BarsPeriod selected by the user (e.g., the default

PeriodValue, DaysToLoad, etc.) for your custom Bar Type.

Method Return Value
This method does not return a value.

Parameters

period The BarsPeriod chosen by the user when

utilizing this Bars type

Syntax
You must override the method in your Bars Type with the following syntax:

public override void ApplyDefaultBasePeriodValue(BarsPeriod period)

{

NinjaTrader 82680

© 2023 NinjaTrader, LLC

}

Examples

public override void ApplyDefaultBasePeriodValue(BarsPeriod period)

{

 //sets the default Minute bars period value to 1, and days to

load to 5

if (period.BaseBarsPeriodType == BarsPeriodType.Minute)

{

 period.BaseBarsPeriodValue = 1;

 DaysToLoad = 5;

}

 //sets the default Tick bars period value to 150, and days to

load to 3

else if (period.BaseBarsPeriodType == BarsPeriodType.Tick)

{

period.BaseBarsPeriodValue = 150;

DaysToLoad = 3;

}

}

11.6.4.3 ApplyDefaultValue

Definition
Sets the default BarsPeriod values used for a custom Bar Type.

Method Return Value
This method does not return a value.

Parameters

period The BarsPeriod chosen by the user when

utilizing this Bars type

Syntax
You must override the method in your Bars Type with the following syntax:

public override void ApplyDefaultValue(BarsPeriod period)

{

NinjaScript 2681

© 2023 NinjaTrader, LLC

}

Examples

public override void ApplyDefaultValue(BarsPeriod period)

{

period.BarsPeriodTypeName = "MyBarType";

period.Value = 1;

}

11.6.4.4 BuiltFrom

Definition
Determines the base dataset used to build the BarsType (i.e., Tick, Minute, Day). The

BuiltFrom property will control the frequency in which OnDataPoint() processes historical

data.

Property Value
A BarsPeriodType enum. Values that will be recognized include:

· BarsPeriodType.Tick

· BarsPeriodType.Minute

· BarsPeriodType.Day

Warning: Using other bars period types (e.g., Range, Volume, or other custom bars

types) is NOT supported. The BarsPeriodType values mentioned above represent all of

the fundamental data points needed to build a bar.

Syntax
BuiltFrom

Examples

NinjaTrader 82682

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "MyCustomBarsType";

 BarsPeriod = new BarsPeriod { BarsPeriodType =

(BarsPeriodType) 15, BarsPeriodTypeName = "MyCustomBarsType(15)",

Value = 1 };

 BuiltFrom = BarsPeriodType.Minute; // update

OnDataPoint() every minute on historical data

 DaysToLoad = 5;

 }

 else if (State == State.Configure)

 {

 }

}

11.6.4.5 DefaultChartStyle

Definition
Allows to set a default ChartStyle for usage with a NinjaTrader bars type

Property Value
A ChartStyleTypeÂenum value representing the ChartStyle to be set as default. System defaults

include:

· ChartStyleType.Box,

· ChartStyleType.CandleStick,

· ChartStyleType.LineOnClose,

· ChartStyleType.OHLC,

· ChartStyleType.PointAndFigure,

· ChartStyleType.KagiLine,

· ChartStyleType.OpenClose,

· ChartStyleType.Mountain

Syntax
DefaultChartStyle

Examples

NinjaScript 2683

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "SampleBarsType";

 BarsPeriod = new BarsPeriod

{ BarsPeriodType = (BarsPeriodType) 15, BarsPeriodTypeName =

"SampleBarsType(15)", Value = 1 };

 BuiltFrom = BarsPeriodType.Minute;

 DaysToLoad = 5;

 DefaultChartStyle =

Gui.Chart.ChartStyleType.CandleStick;

 IsIntraday = true;

 }

}

11.6.4.6 GetInitialLookBackDays()

Definition
Determines how many days of data load when a user makes a "bars back" data request.

Method Return Value
This method returns an int value.

Method Parameters

barsPeriod The bars period chosen by the user when

utilizing this Bars type

tradingHours The trading hours chosen by the user when

utilizing this Bars type

barsBack The bars back chosen by the user when

utilizing this Bars type

Syntax
You must override the method in your Bars Type with the following syntax.

public override int GetInitialLookBackDays(BarsPeriod barsPeriod, TradingHours

tradingHours, int barsBack)

{

}

NinjaTrader 82684

© 2023 NinjaTrader, LLC

Examples

public override int GetInitialLookBackDays(BarsPeriod barsPeriod,

TradingHours tradingHours, int barsBack)

{

 // Returns the minimum number of days needed to successfully

load the number

 // of bars back requested for a monthly Bars type

 return (int) barsPeriod.Value * barsBack * 31;

}

Tip: Try to request an amount of data that is just right for what is needed. Requesting too
large a data set will result in unnecessary data being loaded. Requesting too small a data
set will result in multiple requests being done.

11.6.4.7 GetPercentComplete()

Definition
Determines the value your BarsType would return for Bars.PercentComplete

Method Return Value
This method returns a double value.

Method Parameters

bars The bars object chosen by the user when

utilizing this Bars type

now The DateTime value to measure

Syntax
You must override the method in your Bars Type with the following syntax.

public override double GetPercentComplete(Bars bars, DateTime now)

{

}

Examples

NinjaScript 2685

© 2023 NinjaTrader, LLC

public override double GetPercentComplete(Bars bars, DateTime now)

{

 // Calculate the percent complete for our monthly bars

 if (now.Date <= bars.LastBarTime.Date)

 {

 int month = now.Month;

 int daysInMonth = (month == 2) ?

(DateTime.IsLeapYear(now.Year) ? 29 : 28) :

 (month == 1 || month == 3 || month == 5 || month ==

7 || month == 8 || month == 10 || month == 12 ? 31 : 30);

 return (daysInMonth -

(barsSeries.LastBarTime.Date.AddDays(1).Subtract(now).TotalDays /

barsSeries.BarsPeriod.Value)) /

 daysInMonth; // an estimate

 }

 return 1;

}

11.6.4.8 Icon

Definition
The shape which displays next to the Bars Type menu item. Since this is a standard object,

any type of icon can be used (unicode characters, custom image file resource, geometry

path, etc).

For more information on using images to create icons, see the Using Images with Custom

Icons page.

Note: When using UniCode characters, first ensure that the desired characters exist in

the icon pack for the font family used in NinjaTrader.

Property Value
A generic virtual object representing the drawing tools menu icon. This property is read-only.

Syntax
You must override this property using the following syntax:

public override object Icon

Examples

NinjaTrader 82686

© 2023 NinjaTrader, LLC

public override object Icon

{

 get

 {

 //use a unicode character as our string which will render an

arrow

 string uniCodeArrow = "\u279A";

 return uniCodeArrow;

 }

}

11.6.4.9 IsRemoveLastBarSupported

Definition
Determines if the bars type can use the RemoveLastBar() method when true, otherwise an

exception will be thrown. Bar Types which use remove last bar concepts CANNOT be used

with Tick Replay, and as a result Tick Replay will be disabled on the UI when

IsRemoveLastBarSupported is set to true.

Note: This property is read-only, but may be overridden in a custom bar type.

Syntax
IsRemoveLastBarSupported

Property value
A bool determining if the BarsType can remove the last; default value is false.

Examples

// allows RemoveLastBar() to be called

public override bool IsRemoveLastBarSupported { get { return

true; } }

11.6.4.10 IsTimeBased

Definition
Used to indicate the BarsType is built from time-based bars (day, minute, second). Setting

this property on a custom bar type is useful for correct calculations from many core data and

session logic, and can also be used by 3rd party NinjaScript objects to determine how to

interact with the bars.

Property Value

NinjaScript 2687

© 2023 NinjaTrader, LLC

A bool which when true tells other objects the bars are built from time; default set to false.

Syntax
Bars.IsTimeBased

Examples

 Setting the IsTimeBased defaults in a custom BarsType

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Custom BarsType";

 IsTimeBased = true; // indicates to the core the these bars

are built using time.

 }

}

 Reading IsTimeBased from a custom NinjaScript object

protected override void OnBarUpdate()

{

 // include milliseconds time stamps for tick based bars

 string timeFormat = "HH:mm:ss:fff";

 if (Bars.BarsType.IsTimeBased)

 {

 // on time based bars, only format up to "seconds"

 timeFormat = "HH:mm:ss";

 }

 // format string based on the appropriate time format

 Print(Time[0].ToString(timeFormat));

}

11.6.4.11 OnDataPoint()

Definition
Called for each record in the corresponding base dataset used to build the BarType (i.e., for

every tick, minute, or day). The OnDataPoint() method is where you should adjust data

points (bar values) of your series through AddBar() and UpdateBar(). See also the BuiltFrom

property.

Notes:

1. Historical data processing receives a single update for every base bar determined by

the BuiltFrom property

NinjaTrader 82688

© 2023 NinjaTrader, LLC

2. When using TickReplay, historical updates will call for every tick handled by the core

regardless of the BuiltFrom property defined

3. Once transitioned to real-time, updates will call on every tick processed by the core

4. The bid/ask parameters will ONLY be available historically when using Tick Replay,

unless you are using a 1-tick series

5. isBar could be true in case the BarsSeries was internally copied to another BarsSeries

and is only needed for IsTimeBased = true BarsTypes (e.g. Second/Minute/Day...).

Method Return Value
This method does not return a value.

Method Parameters

bars The Bars object of your bars type

open A double value representing the open price

high A double value representing the high price

low A double value representing the low price

close A double value representing the close price

time A DateTime value representing the time

volume A long value representing the volume

isBar A bool value representing if OnDataPoint

should treat the timestamp as an already built

bar instead of an

 intrabar timestamp.

bid A double value representing the bid price

ask A double value representing the ask price

Syntax
You must override the method in your Bars Type with the following syntax.

protected override void OnDataPoint(Bars bars, double open, double high, double low,

double close,

NinjaScript 2689

© 2023 NinjaTrader, LLC

DateTime time, long volume, bool isBar, double bid, double ask)

{

}

Examples

protected override void OnDataPoint(Bars bars, double open, double

high, double low,

 double close, DateTime time, long volume, bool isBar, double

bid, double ask)

{

 int minIndex;

 // Create the first data point of our series

 if (bars.Count == 0)

 {

 minIndex = 0;

 AddBar(bars, open, high, low, close, TimeToBarTime(time,

(int) bars.BarsPeriod.Value), volume);

 }

 // Update our data point with the latest information

 else if ((time.Month <= bars.LastBarTime.Month && time.Year ==

 bars.LastBarTime.Year) || time.Year < bars.LastBarTime.Year)

 {

 if (high != bars.GetHigh(bars.Count - 1) || low !=

bars.GetLow(bars.Count - 1) ||

 close != bars.GetClose(bars.Count - 1) || volume >

0)

 {

 minIndex = bars.Count - 1;

 UpdateBar(bars, high, low, close, bars.LastBarTime,

volume);

 }

 else

 minIndex = -1;

 }

 // Add new data points

 else

 {

 minIndex = bars.Count;

 AddBar(bars, open, high, low, close, time, (long)

Math.Min(volumeTmp, bars.BarsPeriod.Value));

 }

 FirstBarAmended = minIndex;

}

NinjaTrader 82690

© 2023 NinjaTrader, LLC

11.6.4.12 RemoveLastBar()

Definition
Removes the last data point for the Bars Type. There may be cases where your custom bar

type may need to amend the last values added on a bar that has already closed. Calling

RemoveLastBar() will remove the last points for that bar type and allow you to call AddBar()

with the updated values.

Notes:

· In order to use this method, the IsRemoveLastBarSupported method must be true.

· RemoveLastBar() CANNOT be used with TickReplay

Syntax
RemoveLastBar(Bars bars)

Parameters

bars The Bars object of your bars type

Examples

RemoveLastBar(bars);

11.6.4.13 SetPropertyName

Definition
Sets a default property name to a custom string to be displayed on the UI.

Method Return Value
This method does not return a value.

Syntax
SetPropertyName(string propertyName, string displayName)

Method Parameters

propertyName A string representing the property to be

renamed. Possible values include:

· UpBrush

· DownBrush

· BarWidth

NinjaScript 2691

© 2023 NinjaTrader, LLC

· Stroke

· Stroke2

· Value

· Value2

· BaseBarsPeriodType

· BaseBarsPeriodValue

· PointAndFigurePriceType

· ReversalType

displayName A string representing the desired property

name

Example

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 Properties.Remove(Properties.Find("Stroke", true));

 Properties.Remove(Properties.Find("Stroke2", true));

 SetPropertyName("UpBrush", "AdvanceBar");

 SetPropertyName("DownBrush", "DeclineBar");

 }

}

Note: If you do not wish to use specific properties accessible via SetPropertyName(), you

will need to remove them from the list via Properties.Remove, as shown in the example

above.

11.6.4.14 SessionIterator

Definition
Provides trading session information to the bars type. Must be built using the bars object.

Property Value
A SessionIterator object which is used to to calculate trading day/session information.

Syntax
SessionIterator

NinjaTrader 82692

© 2023 NinjaTrader, LLC

Examples

protected override void OnDataPoint(Bars bars, double open, double

high, double low, double close, DateTime time, long volume, bool

isBar, double bid, double ask)

{

 // build a session iterator from the bars object being updated

 if (SessionIterator == null)

 SessionIterator = new SessionIterator(bars);

 // check if we are in a new trading session based on the trading

hours selected by the user

 bool isNewSession = SessionIterator.IsNewSession(time, isBar);

 // calculate the new trading day

 if (isNewSession)

 SessionIterator.CalculateTradingDay(time, isBar);

 Print(SessionIterator.ActualTradingDayExchange);

}

11.6.4.15 UpdateBar()

Definition
Updates a data point in our Bars Type.

Syntax
UpdateBar(Bars bars, double high, double low, double close, DateTime time, long

volumeAdded)

Parameters

bars The Bars object of your bars type

high A double value representing the high price

low A double value representing the low price

close A double value representing the close price

time A DateTime value representing the time

volume A long value representing the volume

NinjaScript 2693

© 2023 NinjaTrader, LLC

Examples

UpdateBar(bars, high, low, close, time, volume);

11.6.5 Chart Style

Custom Chart Styles can be used on charts to present bars information in a different visual

representation. The methods and properties covered in this section are unique to custom

Chart Style development. Following is an index of properties and methods documented for

Chart Styles.

Methods and Properties

BarWidth The painted width of a ChartStyle bar

BarWidth

UI

The Bar width value which displays on the UI

ChartStyl

eType

Defines a unique identifier value used to register a custom

ChartStyle

DownBru

sh

A Brush object used to determine the color to paint the

down bars for the ChartStyle

DownBru

shDX

A SharpDX.Brush object used to paint the down bars for

the ChartStyle

GetBarPa

intWidth()

Returns the painted width of the chart bar

IsTranspa

rent

Indicates the bars in the ChartStyle are transparent

OnRende

r()

An event driven method used to render content to a

ChartStyle

SetProper

tyName()

Sets a default property name to a custom string to be

displayed on the UI

Transfor

mBrush()

Scales a non-solid color brush used for rendering the

chart style to properly display in NinjaTrader

https://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaTrader 82694

© 2023 NinjaTrader, LLC

UpBrush A Brush object used to determine the color to paint the up

bars for the ChartStyle

UpBrush

DX

A SharpDX.Brush object used to paint the up bars for the

ChartStyle

11.6.5.1 BarWidth

Definition
The painted width of a ChartStyle bar. This value will updated as the ChartControl is resized.

Property Value
A double value representing the current width the chart bars

Syntax
BarWidth

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example ChartStyle";

 ChartStyleType = (ChartStyleType) 52;

 BarWidth = 1;

 }

}

11.6.5.2 BarWidthUI

Definition
The Bar width value which displays on the UI. This value will be rounded from the internal

BarWidth property which is updated as the ChartControl is resized

Property Value
A int value representing the width of the chart bars which can be set by a user.

Syntax
BarWidthUI

Examples

https://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2695

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale, ChartBars chartBars)

{

 int barWidth = GetBarPaintWidth(BarWidthUI);

}

11.6.5.3 ChartStyleType

Definition
Defines a unique identifier value used to register a custom ChartStyle. There are 11 default

ChartStyles which come with NinjaTrader which are reserved per the table on this page under

the Parameters section of this page.

Note: The ChartStyle property can allow a large number of ChartStyles to be registered

on a single user's installation (up to 2,147,483,647). However it's important to note that it

is still possible for two installed ChartStyles on a user's computer to conflict should they

be register to the same enumerator value. In this case, NinjaTrader will ignore the

conflicting ChartStyle type and information pertaining to this conflict will be displayed on

the Log tab of the NinjaTrader Control Center.

Added 1/31/2018 : We advise users to use values larger then 1023 when selecting an

enum. As NinjaTrader from time to time may add a new enum value in that range which

may cause conflicts.

Property Value
A enum value representing the ChartStyle to be registered.

Tip: It is recommended to pick high, unique enumeration value to avoid conflict from other

ChartStyles that may be used by a single installation.

Syntax
You must cast ChartStyleType from an int using the following syntax:
(ChartStyleType) 80;

Parameters
Reserved enumeration values are listed below:

0 Box

NinjaTrader 82696

© 2023 NinjaTrader, LLC

1 CandleStick

2 LineOnClose

3 OHLC

4 PointAndFigure

5 KagiLine

6 OpenClose

7 Mountain

8 Volumetric

9 HollowCandleStick

10 Equivolume

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Example ChartStyle";

 ChartStyleType = (ChartStyleType) 80;

 BarWidth = 1;

 }

}

11.6.5.4 DownBrush

Definition
A Brush object used to determine the color to paint the down bars for the ChartStyle.

Note: This Windows Presentation Forms (WPF) implementation of the Brush class is not

directly used to paint bars on the chart. Instead it is converted to a SharpDX Brush in the

DownBrushDX property. This property is used to capture user input for changing brush

colors.

https://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx

NinjaScript 2697

© 2023 NinjaTrader, LLC

Property Value
A WPF Brush object used to paint the down bars

Syntax
DownBrush

Example

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Set a new name for the DownBrush property

 SetPropertyName("DownBrush", "DecliningBrush");

 }

}

11.6.5.5 DownBrushDX

Definition
A SharpDX Brush object used to paint the down bars for the ChartStyle.

Property Value
A SharpDX Brush object used to paint the down bars

Syntax
DownBrushDX

Example

https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx

NinjaTrader 82698

© 2023 NinjaTrader, LLC

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale, ChartBars chartBars)

{

 for (int idx = chartBars.FromIndex; idx <= chartBars.ToIndex;

idx++)

 {

 double closeValue =

bars.GetClose(idx);

 double openValue =

bars.GetOpen(idx);

 // Set the brush of the current candle to UpBrushDX or

DownBrushDX, depending on the

 // bar direction

 Brush brush = closeValue >= openValue ? UpBrushDX :

DownBrushDX;

 }

}

11.6.5.6 GetBarPaintWidth()

Definition
Returns the painted width of the chart bar. The GetBarPintWidth() method will return a

minimum value of 1.

Note: This is an abstract method which is required to compile a ChartStyle object. If

you do not plan on recalculating a barWidth, simply return the default barWidth parameter

which is passed in this method. Please see the Examples section of this page for more

information.

Method Return Value
An int value

Syntax
You must over ride this method using the following syntax:

public override int GetBarPaintWidth(int barWidth)

{

}

Method Parameters

barWidth An int value representing the

https://msdn.microsoft.com/en-us/library/sf985hc5.aspx

NinjaScript 2699

© 2023 NinjaTrader, LLC

current width of the bar to

calculate

Examples

 Returning the default barWidth

public override int GetBarPaintWidth(int barWidth)

{

 return barWidth

}

 Calculating and returning a new barWidth from the original

barWidth

public override int GetBarPaintWidth(int barWidth)

{

 // calculate a new bar width

 return 1 + 2 * (barWidth - 1) + 2 * (int)

Math.Round(Stroke.Width);

}

11.6.5.7 Icon

Definition
The shape which displays next to the Chart Style menu item. Since this is a standard object,

any type of icon can be used (unicode characters, custom image file resource, geometry

path, etc).

For more information on using images to create icons, see the Using Images with Custom

Icons page.

Note: When using UniCode characters, first ensure that the desired characters exist in the

icon pack for the font family used in NinjaTrader.

Property Value
A generic virtual object representing the drawing tools menu icon. This property is read-only.

Syntax

NinjaTrader 82700

© 2023 NinjaTrader, LLC

You must override this property using the following syntax:

public override object Icon

Examples

public override object Icon

{

 get

 {

 //use a unicode character as our string which will render an

arrow

 string uniCodeArrow = "\u279A";

 return uniCodeArrow;

 }

}

11.6.5.8 IsTransparent

Definition
Indicates the bars in the ChartStyle are transparent.

Property Value
A bool which, when true, indicates that the UpBrush, DownBrush, and Stroke.Brush are all

set to transparent. Returns false if any of the three are not transparent.

Syntax
IsTransparent

Example

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 //Print a message if the UpBrush, DownBrush, and

Stroke.Brush are all transparent

 if (IsTransparent)

 Print("All bars are currently set to transparent");

 }

}

NinjaScript 2701

© 2023 NinjaTrader, LLC

11.6.5.9 OnRender()

Definition
An event driven method used to render content to a ChartStyle. The OnRender() method is

called every time the chart values are updated. These updates are driven by incoming data to

the chart bars or by a user manually interacting with the chart control or chart scale.

Method Return Value
This method does not return a value.

Syntax
You must override the method in your ChartStyle with the following syntax:

protected override void OnRender(ChartControl chartControl, ChartScale chartScale,

ChartBars chartBars)

{

}

Method Parameters

chartControl A ChartControl representing the x-axis

chartScale A ChartScale representing the y-axis

chartBars A ChartBars representing the Bars series for

the chart

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale, ChartBars chartBars)

{

 // Rendering logic for our chart style

}

11.6.5.10 SetPropertyName()

Definition
Sets a default property name to a custom string to be displayed on the UI.

Method Return Value
This method does not return a value.

NinjaTrader 82702

© 2023 NinjaTrader, LLC

Syntax
SetPropertyName(string propertyName, string displayName)

Method Parameters

propertyName A string representing the property to be

renamed. Possible values include:

· UpBrush

· DownBrush

· BarWidth

· Stroke

· Stroke2

displayName A string representing the desired property

name

Example

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 Properties.Remove(Properties.Find("Stroke", true));

 Properties.Remove(Properties.Find("Stroke2", true));

 SetPropertyName("UpBrush", "AdvanceBar");

 SetPropertyName("DownBrush", "DeclineBar");

 }

}

Note: If you do not wish to use specific properties accessible via SetPropertyName(), you

will need to remove them from the list via Properties.Remove, as shown in the example

above.

11.6.5.11 TransformBrush()

Definition
Scales a non-solid color brush used for rendering the chart style to properly display in

NinjaTrader.

NinjaScript 2703

© 2023 NinjaTrader, LLC

Note: This method has no impact on solid color brushes. You would only need to pass in

either a linear or radial gradient brush.

Method Return Value
This method does not return a value.

Syntax
TransformBrush(SharpDX.Direct2D1.Brush brush, RectangleF rect)

Method Parameters

brush A SharpDX.Direct2D1.Brush object

representing the brush used to render

rect A RectangleF structure representing the

rectangle to be rendered

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale, ChartBars chartBars)

{

 TransformBrush(brush, rect);

}

11.6.5.12 UpBrush

Definition
A Brush object used to determine the color to paint the up bars for the ChartStyle.

Note: This Windows Presentation Forms (WPF) implementation of the Brush class is not

directly used to paint bars on the chart. Instead it is converted to a SharpDX Brush in the

UpBrushDX property. This property is used to capture user input for changing brush

colors.

Property Value
A WPF Brush object used to paint the up bars

Syntax

https://msdn.microsoft.com/en-us/library/system.drawing.rectanglef%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.brush(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx

NinjaTrader 82704

© 2023 NinjaTrader, LLC

UpBrush

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Set a new name for the UpBrush property

 SetPropertyName("UpBrush", "AdvancingBrush");

 }

}

11.6.5.13 UpBrushDX

Definition
A SharpDX Brush object used to paint the up bars for the ChartStyle.

Property Value
A SharpDX Brush object used to paint the up bars

Syntax
UpBrushDX

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale, ChartBars chartBars)

{

 for (int idx = chartBars.FromIndex; idx <= chartBars.ToIndex;

idx++)

 {

 double closeValue =

bars.GetClose(idx);

 double openValue =

bars.GetOpen(idx);

 // Set the brush of the current candle to UpBrushDX or

DownBrushDX, depending on the

 // bar direction

 Brush brush = closeValue >= openValue ? UpBrushDX :

DownBrushDX;

 }

}

NinjaScript 2705

© 2023 NinjaTrader, LLC

11.6.6 Drawing Tool

Custom Drawing Tools can be used to render custom shapes to a point on the chart to

represent various information. The methods and properties covered in this section are unique

to custom Drawing Tools development. Following is an index of the documented properties

and methods related to drawing tools.

Methods and Properties

AddPastedO

ffset()

A virtual method which is called every time a Drawing

Tool is copied and pasted to a chart

Anchors Creates a collection of Chart Anchors which will

represent various points of the drawing tool

AttachedTo An object which holds information regarding where the

drawing tool is attached

ChartAnchor Defines objects used by Drawing Tools which

represent a point on the chart where the Drawing Tool

is located

ConvertToV

erticalPixels

Used to convert the cursor position (pixels) to device

pixels represented on the Y axis of the chart

CreateAnch

or()

Used to create a new chart anchor at a specified

mouse point

DisplayOnC

hartsMenus

Determines if the drawing tool should be listed in the

chart's drawing tool menus

Dispose() Releases any device resources used for the drawing

tool

DrawingStat

e

Represents the current state of the drawing tool in

order to perform various actions, such as building,

editing, or moving

DrawnBy Represents the NinjaScript object by which the drawing

tool was created

GetAttached

ToChartBar

s()

Returns information which relate to the underlying bars

series in which the drawing tool is attached

https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx

NinjaTrader 82706

© 2023 NinjaTrader, LLC

GetClosestA

nchor()

Returns the closest chart anchor within a specified

maximum distance from the mouse cursor

GetCursor() An event driven method which is called when a chart

object is selected

GetSelection

Points()

Returns the chart object's data points where the user

can interact

Icon The shape which displays next to the drawing tool

menu item

IgnoresSnap

ping

Determines if the drawing tool chart anchor's will use
the chart's Snap Mode mouse coordinates

IgnoresUserI

nput

Determines if the drawing tool can be clicked on by the
user

IsAttachedT

oNinjaScript

Indicates if the drawing tool is currently attached to a
NinjaScript object (such an indicator or a strategy)

IsGlobalDra

wingTool

Indicates if the drawing tool is currently set as a Global

Drawing object

IsLocked Determines if the drawing tool should be be locked in
place

IsUserDraw

n

Indicates if the drawing tool was manually drawn by a
user

OnBarsCha

nged()

An event driven method which is called any time the

underlying bar series have changed for the chart where

the drawing tool resides

OnMouseDo

wn()

An event driven method which is called any time the

mouse pointer over the chart control has the mouse

button pressed

OnMouseMo

ve()

An event driven method which is called any time the

mouse pointer is over the chart control and a mouse is

moving

NinjaScript 2707

© 2023 NinjaTrader, LLC

OnMouseUp

()

An event driven method is called any time the mouse

pointer is over the chart control and a mouse button is

being released

SupportsAle

rts

Indicates if the drawing tool can be used for manually

configured alerts through the UI

ZOrderType Determintes the order in which the drawing tool will be

rendered

11.6.6.1 AddPastedOffset()

Definition
A virtual method which is called every time a DrawingTool is copied and pasted to a chart.

The default behavior will offset the chart anchors price value down by 1, percent. However,

this behavior can be overridden for your custom drawing tool if desired.

Method Return Value
This method does not return a value

Syntax
You must override this method using the following syntax:
public override void AddPastedOffset(ChartPanel panel, ChartScale chartScale)

{

}

Method Parameters

panel A ChartPanel representing the the panel for the

chart

chartScale A ChartScale representing the Y-axis

Examples

https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx

NinjaTrader 82708

© 2023 NinjaTrader, LLC

public override void AddPastedOffset(ChartPanel chartPanel,

ChartScale chartScale)

{

 foreach (ChartAnchor anchor in Anchors)

 {

 //bump each anchor 1 minute to the right

 DateTime tmpTime = anchor.Time;

 anchor.Time = tmpTime.AddMinutes(1);

 }

}

11.6.6.2 Anchors

Definition
Returns a custom collection of ChartAnchors which will represent various points of the

drawing tool.

Note: You must declare this property with the chart anchors used in the drawing tool

which you plan on using for iteration. Doing so will expose a simple enumerator which will

allow you to to iterate over the chart anchors in which have been defined in this interface.

Property Value
A virtual IEnumerable interface consisting of ChartAnchors

Syntax
You must override this property using the following syntax:
public override IEnumerable<ChartAnchor> Anchors

{

}

Examples

https://msdn.microsoft.com/en-us/library/9eekhta0%28v=vs.110%29.aspx

NinjaScript 2709

© 2023 NinjaTrader, LLC

//defines the chart anchors used for the drawing tool

public ChartAnchor StartAnchor { get; set; }

public ChartAnchor MiddleAnchor { get; set; }

public ChartAnchor EndAnchor { get; set; }

//create a collection of chart anchors used for a simple iteration

public override IEnumerable<ChartAnchor> Anchors

{

 get

 {

 return new[] { StartAnchor, MiddleAnchor, EndAnchor };

 }

}

//setup our chart anchor instances and assign a display name to

each

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "My Drawing Tool";

 StartAnchor = new ChartAnchor();

 MiddleAnchor = new ChartAnchor();

 EndAnchor = new ChartAnchor();

 StartAnchor.DisplayName = "My Start Anchor";

 MiddleAnchor.DisplayName = "My Middle Anchor";

 EndAnchor.DisplayName = "My End Anchor";

 }

}

//for each render pass, print out the display name of the chart

anchors

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 foreach (ChartAnchor anchor in Anchors)

 {

 Print(anchor.DisplayName);

 }

}

NinjaTrader 82710

© 2023 NinjaTrader, LLC

11.6.6.3 AttachedTo

Definition
An object which holds information regarding where the drawing tool is attached.

Available Properties

AttachedToType An enum representing the type of

object the drawing to is attached.

Possible values are:

· Bars - The chart bars of the

parent chart

· GlobalInstrument - The bars of

an instrument crossed all charts

· Indicator - A NinjaScript indicator

· Strategy - A NinjaScript strategy

ChartObject A ChartObject interface such an

indicator, strategy, chart bars

DisplayName A string value indicating the name

of the object the drawing tool is

attached

Instrument The Instrument that the drawing

tool is attached

Syntax
AttachedTo

Examples

if (AttachedTo.AttachedToType == AttachedToType.Indicator)

 // do something

11.6.6.4 ChartAnchor

Definition
Defines objects used by Drawing Tools which represent a point on the chart where the

Drawing Tool is located.

Syntax
class ChartAnchor

NinjaScript 2711

© 2023 NinjaTrader, LLC

Constructors

new ChartAnchor() Initializes a new instance of the

ChartAnchor object

new ChartAnchor(DateTime time,

double price, ChartControl

chartControl)

Initializes a new instance of the

ChartAnchor object using time,

price, and relative chart control

new ChartAnchor(DateTime time,

double yValue, int currentBar,

ChartControl chartControl)

Initializes a new instance of the

ChartAnchor object using time, y-

axis coordinates, current bar, and

relative chart control

Methods and Properties

CopyDataValues() Copies the ChartAnchor time and price
values from on anchor to another

DisplayName A string value which sets the name

prefix used for all properties for a chart

anchor

DrawingTool The drawing tool which owns a chart

anchor

DrawnOnBar Gets the current bar value that the chart

anchor is drawn by a NinjaScript object.

GetPoint() Returns a chart anchor's data points.

IsBrowsable A bool value determining the anchor is

visible on the UI.

IsEditing A bool value determining the anchor is

currently being edited

IsNinjaScriptDrawn Indicates if the chart anchor was drawn

by a NinjaScript object

NinjaTrader 82712

© 2023 NinjaTrader, LLC

IsXPropertiesVisible A bool value determining the X

properties are visible on the UI

IsYPropertyVisible A bool value determining the Y data

value is visible on the UI

MoveAnchor() Moves a Chart Anchor's x and y values

from start point by a delta point amount.

MoveAnchorX() Moves an anchor x values from start

point by a delta point amount

MoveAnchorY() Moves an anchor y values from start

point by a delta point amount

Price Determines price value the chart

anchor is drawn.

SlotIndex Indicates the nearest bar slot where

anchor is drawn.

Time Determines date/time value the chart

anchor is drawn.

UpdateFromPoint() Updates an anchor's x and y values

from a given point (in device pixels)

UpdateXFromPoint() Updates an anchor's X values from a

given point (in device pixels)

UpdateYFromPoint() Updates an anchor's Y value from a

given point (in device pixels)

Examples

NinjaScript 2713

© 2023 NinjaTrader, LLC

public ChartAnchor MyAnchor { get; set; } // declares the

"MyAnchor" ChartAnchor object

public override IEnumerable<ChartAnchor> Anchors { get { return

new[] { MyAnchor }; } } //adds the "MyAnchor" ChartAnchor object to

a collection of anchors used to interact with your anchors

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Description = @"Drawing tool example";

 Name = "SampleDrawingTool";

 MyAnchor = new ChartAnchor(); //creates a new instances of

the ChartAnchor object

 MyAnchor.IsEditing = true;

 MyAnchor.DrawingTool = this;

 MyAnchor.IsBrowsable = false;

 }

}

public override void OnMouseUp(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 if (DrawingState == DrawingState.Editing)

 {

 if (MyAnchor.IsEditing)

 {

 //if anchor is editing, update anchor point

 dataPoint.CopyDataValues(MyAnchor);

 }

 }

}

11.6.6.4.1 CopyDataValues()

Definition

Copies the ChartAnchor time and price values from on anchor to another. This includes the

BarsAgo, SlotIndex, Time, Price, and DrawnOnBar values. This method is useful for updating

a chart anchor to a recent data point when the user interacts with the drawing chart anchor.

Method Return Value
This method does not return a value.

NinjaTrader 82714

© 2023 NinjaTrader, LLC

Syntax
<chartAnchor>.CopyDataValues(ChartAnchor toAnchor)

Method Parameters

toAnchor The ChartAnchor to copy

Examples

public override void OnMouseMove(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 // if the user is moving the draw object, copy the most recent

dataPoint to MyAnchor

 if (DrawingState == DrawingState.Moving)

 dataPoint.CopyDataValues(Anchor);

}

11.6.6.4.2 DisplayName

Definition
Sets the display name prefix used for all properties for a chart anchor.

Property Value
A string value that is used to identify the name for a corresponding anchor. Default value is

null.

Syntax
<ChartAnchor>.DisplayName

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 MyAnchor = new ChartAnchor();

 MyAnchor.DisplayName = "MyChartAnchor";

 }

}

NinjaScript 2715

© 2023 NinjaTrader, LLC

11.6.6.4.3 Draw ingTool

Definition
The DrawingTool object which owns a chart anchor.

Property Value
A IDrawingTool object representing the owner of the chart anchor

Syntax
<ChartAnchor>.DrawingTool

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

Name = "SampleDrawingTool";

MyAnchor = new ChartAnchor();

MyAnchor.DrawingTool =

this

; //NinjaTrader.NinjaScript.DrawingTools.SampleDrawingToo

l

 }

 else if (State == State.Configure)

 {

 }

}

11.6.6.4.4 Draw nOnBar

Definition
Gets the current bar value that the chart anchor is drawn by a NinjaScript object. Please see

the Drawing section for more information.

Note: This value will NOT work on manually drawn objects. This property is reserved for

chart anchors which were drawn by another NinjaScript object (e.g, using a Draw method

in an indicator). For manually drawn objects, please see the SlotIndex property

Property Value
A int value that value which the current bar the chart anchor is drawn. This property is read-

only.

NinjaTrader 82716

© 2023 NinjaTrader, LLC

Syntax
<ChartAnchor>.DrawnOnBar

Examples

//Places text if high is 2419 and prints what bar the text was

drawn on

if (High[0] == 2419)

{

Text myText = Draw.Text(this, @"Text " + CurrentBar, @"High

is 2419" , 0, High[0]);

Print("Text is on bar " + myText.Anchor.DrawnOnBar);

}

11.6.6.4.5 GetPoint()

Definition
Returns a chart anchor's data point in device pixels

Method Return Value
A Point structure; a point value in device pixels for a chart's given panel & scale

Syntax
<chartAnchor>.GetPoint(ChartControl chartControl, ChartPanel chartPanel, ChartScale,

[bool pixelAlign])

Method Parameters

chartControl A ChartControl representing the x-axis

chartPanel A ChartPanel representing the a panel of the

chart

chartScale A ChartScale representing the y-axis

pixelAlign An optional bool determining if the data point

should be rounded to closest .5 pixel point

Examples

//gets the chart anchors data points

Point anchorPoint = MyAnchor.GetPoint(chartControl, chartPanel,

chartScale);

https://msdn.microsoft.com/en-us/library/system.drawing.point%28v=vs.110%29.aspx

NinjaScript 2717

© 2023 NinjaTrader, LLC

11.6.6.4.6 IsBrow sable

Definition
Determines if the anchor are visible on the UI. When set to true, the anchors Y and X values

can be viewed from the Drawing Objects properties.

Property Value
A bool value which when true will display the anchor data values from the drawing object

properties; otherwise false. Default value is true.

Syntax
<ChartAnchor>.IsBrowsable

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

MyAnchor = new ChartAnchor();

MyAnchor.IsBrowsable = true;

 }

 else if (State == State.Configure)

 {

 }

}

11.6.6.4.7 IsEditing

Definition
Determines if the anchor can be edited.

Property Value
A bool value which when true determines if the chart anchor is currently in a state it can be

edited. Default is false.

Syntax
<ChartAnchor>.IsEditing

Examples

NinjaTrader 82718

© 2023 NinjaTrader, LLC

public override void OnMouseDown(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, Point point)

{

if(DrawingState == DrawingState.Building)

{

 // if drawing tool is currently editing, update to current

mouse point

if(MyAnchor.IsEditing)

{

 MyAnchor.UpdateFromPoint(point, chartControl,

chartScale);

 //set the anchor to disable editing when done updating

 MyAnchor.IsEditing = false;

}

}

}

11.6.6.4.8 IsNinjaScriptDraw n

Definition
Indicates if the chart anchor was drawn by a NinjaScript object (such as an indicator or

strategy).

Property Value
A bool value which returns true of the object was drawn by other NinjaScript object;

otherwise false. This property is read-only.

Syntax
<ChartAnchor>.IsNinjaScriptDrawn

Examples

NinjaScript 2719

© 2023 NinjaTrader, LLC

//unlocks the NinjaScript drawn object and allows the user to

modify the anchor, while the NinjaScript object still 'owns' the

object

protected override void OnBarUpdate()

{

 foreach(IDrawingTool dt in DrawObjects)

 {

 DrawingTools.Line sampleLine = dt as DrawingTools.Line;

 if (sampleLine != null &&

sampleLine.StartAnchor.IsNinjaScriptDrawn)

 {

 sampleLine.IsLocked = false;

 Print(sampleLine.StartAnchor.ToString());

 }

 }

}

11.6.6.4.9 IsXPropertiesVisibile

Definition
Indicates the anchor's X properties are visible on the UI. When set to true, the X values can

be viewed from the Drawing Objects properties.

Property Value
A bool value which when true will display the anchor's X (time) data values from the drawing

object properties; otherwise false. Default value is true.

Syntax
<ChartAnchor>.IsXPropertiesVisibile

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

MyAnchor = new ChartAnchor();

MyAnchor.IsXPropertiesVisible = true;

 }

 else if (State == State.Configure)

 {

 }

}

NinjaTrader 82720

© 2023 NinjaTrader, LLC

11.6.6.4.10 IsYPropertyVisibile

Definition
Indicates the anchor's Y properties are visible on the UI. When set to true, the Y values can

be viewed from the Drawing Objects properties.

Property Value
A bool value which when true will display the anchor's Y (price) data values from the drawing

object properties; otherwise false. Default value is true.

Syntax
<ChartAnchor>.IsYPropertyVisibile

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

MyAnchor = new ChartAnchor();

MyAnchor.IsYPropertyVisibile = true;

 }

 else if (State == State.Configure)

 {

 }

}

11.6.6.4.11 MoveAnchor()

Definition
Moves a Chart Anchor's x and y values from start point by a delta point amount.

Method Return Value
This method does not return a value.

Syntax
<ChartAnchor>.MoveAnchor(ChartAnchor startDataPoint, ChartAnchor deltaDataPoint,

ChartControl chartControl, ChartPanel chartPanel, ChartScale chartScale, DrawingTool

drawingTool)

Method Parameters

startPoint The chart anchor's original starting location

value represented by a point structure

NinjaScript 2721

© 2023 NinjaTrader, LLC

startDataPoint A chart anchor's original starting location value

represented by a chart anchor

deltaPoint The chart anchor's new location value to be

updated represented by a point structure

deltaDataPoint The chart anchor's new location value to be

udpated represened by a chart anchor

chartControl A ChartControl representing the x-axis

chartScale A ChartScale representing the y-axis

chartPanel A ChartPanel representing the the panel for the

chart

drawingTool The drawing tool which owns the chart anchor

to be moved (usually this).

Examples

//move the chart anchors x and y values

MyAnchor.MoveAnchor(lastPoint, newPoint, chartControl, chartPanel,

chartScale, this);

11.6.6.4.12 MoveAnchorX()

Definition
Moves an anchor's x value from start point by a delta point amount.

Method Return Value
This method does not return a value.

Syntax
<ChartAnchor>.MoveAnchorX(Point startPoint, Point deltaPoint, ChartControl

chartControl, ChartPanel chartPanel, ChartScale chartScale)

Method Parameters

startPoint The chart anchor's original starting point value

NinjaTrader 82722

© 2023 NinjaTrader, LLC

deltaPoint The chart anchor's new point value to be

updated

chartControl A ChartControl representing the x-axis

chartScale A ChartScale representing the y-axis

Examples

//move only the chart anchors x (bar/time) value

MyAnchor.MoveAnchorX(lastPoint, newPoint, chartControl,

chartScale);

11.6.6.4.13 MoveAnchorY()

Definition
Moves an anchor's y value from start point by a delta point amount.

Method Return Value
This method does not return a value.

Syntax
<ChartAnchor>.MoveAnchorY(Point startPoint, Point deltaPoint, ChartControl

chartControl, ChartScale chartScale)

Method Parameters

startPoint The chart anchor's original starting point value

deltaPoint The chart anchor's new point value to be

updated

chartControl A ChartControl representing the x-axis

chartScale A ChartScale representing the y-axis

Examples

NinjaScript 2723

© 2023 NinjaTrader, LLC

//move only the chart anchors Y (price) value

MyAnchor.MoveAnchorY(lastPoint, newPoint, chartControl, chartPanel,

chartScale);

11.6.6.4.14 Price

Definition
Determines price value the chart anchor is drawn.

Property Value
An double value representing a price value

Syntax
<ChartAnchor>.Price

Examples

public override void OnMouseDown(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, Point point)

{

 Print(MyAnchor.Price); // prints the Y axis data point of the

chart anchor

 // 1999.25

}

11.6.6.4.15 SlotIndex

Definition
Indicates the nearest bar slot value where anchor is drawn on a chart. In a single series chart

there will always be equal number of slots and bars, however for multi-series charts there

may be additonal slots compared to the bar series your drawing tool resides.

Property Value
An double value representing the current bar.

Note: The bar index value is represented as a double as it is possible (and likely) that a

given chart anchor is drawn between bars (i.e., if a user draws the tool with snap mode

disabled)

Syntax
ChartAnchor.SlotIndex

NinjaTrader 82724

© 2023 NinjaTrader, LLC

Examples

public override void OnMouseDown(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 Print(MyAnchor.SlotIndex); // prints the nearest current bar

value

 //4502.02734375

}

11.6.6.4.16 Time

Definition
Determines date/time value the chart anchor is drawn.

Property Value
An DateTime value representing a time value

Syntax
<ChartAnchor>.Time

Examples

public override void OnMouseDown(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, Point point)

{

Print(MyAnchor.Time); // prints the X axis datetime of the

chart anchor

// 8/26/2014 6:55:00 PM

}

11.6.6.4.17 UpdateFromPoint()

Definition
Updates an anchor's x and y values from a given point (in device pixels).

Method Return Value
This method does not return a value.

Syntax
<ChartAnchor>.UpdateFromPoint(Point point, ChartControl chartControl, ChartScale

chartScale)

Method Parameters

NinjaScript 2725

© 2023 NinjaTrader, LLC

point The chart anchor's point value to be updated

chartControl A ChartControl representing the x-axis

chartScale A ChartScale representing the y-axis

Examples

//set the chart anchors x and y point value

MyAnchor.UpdateFromPoint(point, chartControl, chartScale);

11.6.6.4.18 UpdateXFromPoint()

Definition
Updates an anchor's X value from a given point (in device pixels).

Method Return Value
This method does not return a value.

Syntax
<ChartAnchor>.UpdateXFromPoint(Point point, ChartControl chartControl, ChartScale

chartScale)

Method Parameters

point The chart anchor's point value to be updated

chartControl A ChartControl representing the x-axis

chartScale A ChartScale representing the y-axis

Examples

//set the chart anchors x point value

MyAnchor.UpdateXFromPoint(point, chartControl, chartScale);

11.6.6.4.19 UpdateYFromPoint()

Definition
Updates an anchor's Y value from a given point (in device pixels).

NinjaTrader 82726

© 2023 NinjaTrader, LLC

Method Return Value
This method does not return a value.

Syntax
<ChartAnchor>.UpdateYFromPoint(Point point, ChartScale chartScale)

Method Parameters

point The chart anchor's point value to be updated

chartScale A ChartScale representing the y-axis

Examples

//set the chart anchors x point value

MyAnchor.UpdateYFromPoint(point, chartScale);

11.6.6.5 ConvertToVerticalPixels()

Definition
Used to convert the cursor position (pixels) to device pixels represented on the Y axis of the

chart. This method would only be needed if the value you are given is provided in WPF pixel

point (such as the data point used in OnMouseDown), but you would need the value in the

chart's rendered pixels. This is useful when handling drawing tools and charts which would

have multiple chart panels.

Method Return Value
An int value representing the converted value in device pixels

Syntax
ConvertToVerticalPixels(ChartControl chartControl, ChartPanel chartPanel, double wpfY)

Method Parameters

chartControl A ChartControl representing the x-axis

chartPanel A ChartPanel representing the the panel for the

chart

wpfY A double value which needs to be converted

NinjaScript 2727

© 2023 NinjaTrader, LLC

Examples

public override void OnMouseDown(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 //get chart anchors data point when mouse is clicked

 Point myPoint = dataPoint.GetPoint(chartControl, chartPanel,

chartScale);

 Print("before convert: " + myPoint.Y); //before convert: 630.5

 //convert the data point to device pixels

 double yPixel = ConvertToVerticalPixels(chartControl,

chartPanel, myPoint.Y);

 Print("after convert: " + yPixel); //after convert: 1108

}

11.6.6.6 CreateAnchor()

Definition
Used to create a new chart anchor at a specified mouse point.

Method Return Value
A new ChartAnchor at a specified point in device pixels.

Syntax
CreateAnchor(Point point, ChartControl chartControl, ChartScale chartScale)

Method Parameters

point A Point in device pixels representing the

current mouse cursor position

chartControl A ChartControl representing the x-axis

chartScale A ChartScale representing the y-axis

Examples

NinjaTrader 82728

© 2023 NinjaTrader, LLC

public override void OnMouseDown(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 // get the point where the mouse was clicked

 Point myPoint = dataPoint.GetPoint(chartControl, chartPanel,

chartScale);

 // create an anchor at that point

 ChartAnchor MyAnchor = CreateAnchor(myPoint, chartControl,

chartScale);

 Print(MyAnchor.Time); // 3/16/2015 8:18:48 AM

}

11.6.6.7 DisplayOnChartsMenus

Definition
Determines if the drawing tool displays in the chart's drawing tool menus.

Property Value
A bool value, when true the drawing tool will be created on the chart's drawing tool menu;

otherwise false. Default value is true.

Syntax
DisplayOnChartsMenus

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = @"My Drawing Tool";

 DisplayOnChartsMenus = true;

 }

}

11.6.6.8 Dispose()

Definition
Releases any device resources used for the drawing tool.

Method Return Value
This method does not return a value

NinjaScript 2729

© 2023 NinjaTrader, LLC

Syntax
Dispose()

Method Parameters
This method does not accept any parameters

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = @"My Drawing Tool";

 }

 else if (State == State.Terminated)

 Dispose();

}

11.6.6.9 DrawingState

Definition
Represents the current state of the drawing tool to perform various actions, such as building,

editing, or moving.

Property Values
An enum representing the current state of the drawing tool. Possible values are:

DrawingState.Building The initial state when a drawing

tool is first being drawn, allowing

for the anchors to be set for the

drawing.

DrawingState.Editing Allows for changing the values of

any of the drawing tools anchors

DrawingState.Normal The drawing tool is normal on the

chart and is not in a state to allow

for changes.

DrawingState.Moving The entire drawing tool to be

moved by a user.

NinjaTrader 82730

© 2023 NinjaTrader, LLC

Syntax
DrawingState

Examples

public override void OnMouseDown(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, Point point)

{

 switch(DrawingState)

 {

 case DrawingState.Normal:

 DrawingState = DrawingState.Editing; // set state to

allow editing

 break;

 case DrawingState.Editing:

 // do your edits here

 break;

 case DrawingState.Moving:

 return; // don't allow move whe editing

 }

}

11.6.6.10 DrawnBy

Definition
Represents the NinjaScript object which created the drawing object

Property Value
The NinjaScript object which created the drawing tool; this value will be null if drawn by a

user.

Syntax
DrawnBy

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // if the drawing tool was not created by a user,

 // print the name of the object that it was created

 if(!IsUserDrawn)

 Print(DrawnBy.Name);

}

NinjaScript 2731

© 2023 NinjaTrader, LLC

11.6.6.11 GetAttachedToChartBars()

Definition
Returns information which relate to the underlying bars series in which the drawing tool is

attached. If the drawing tool is attached to an indicator rather than a bar series, the indicator's

bars series used for input will be returned.

Note: For drawing tools made global, this method will not be returning meaningful values -

since those are not attached to a specific bars series

Method Return Value
A ChartBars object

Syntax
GetAttachedToChartBars()

Method Parameters
This method does not accept any parameters

Examples

protected override void OnRender(ChartControl chartControl,

ChartScale chartScale)

{

 // get the attached chart bars

 ChartBars myBars = GetAttachedToChartBars();

 Print(myBars.Bars.ToChartString()); // NQ 03-15 (1 Minute)

}

11.6.6.12 GetClosestAnchor()

Definition
Returns the closest chart anchor within a specified maximum distance from the mouse

cursor.

Method Return Value
This method returns an existing ChartAnchor

Syntax
GetClosestAnchor(ChartControl chartControl, ChartPanel chartPanel, ChartScale

chartScale, double maxDist, Point point)

Method Parameters

NinjaTrader 82732

© 2023 NinjaTrader, LLC

chartControl A ChartControl representing the x-axis

chartPanel A ChartPanel representing the the panel for the

chart

chartScale A ChartScale representing the y-axis

maxDist A double value representing the cursor's

sensitivity used to detect the nearest anchor

point A Point in device pixels representing the

current mouse cursor position

Examples

public override Cursor GetCursor(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, Point point)

{

 // get the closest anchor to where the user has clicked

 ChartAnchor closest = GetClosestAnchor(chartControl,

chartPanel, chartScale, 10, point);

 if (closest != null)

 {

 // set cursor to indicate that it can be moved

 return Cursors.SizeNWSE;

 }

 // otherwise set cursor back to arrow

 else return Cursors.Arrow;

}

11.6.6.13 GetCursor()

Definition
An event driven method which is called when a chart object is selected. This method can be

used to change the cursor image used in various states.

Method Return Value
This method returns a Cursor used to paint the mouse pointer.

Syntax
You must override the method in your Drawing Tool with the following syntax:

https://msdn.microsoft.com/en-us/library/system.windows.forms.cursor(v=vs.110).aspx

NinjaScript 2733

© 2023 NinjaTrader, LLC

public override Cursor GetCursor(ChartControl chartControl, ChartPanel chartPanel,

ChartScale chartScale, Point point)

{

}

Method Parameters

chartControl A ChartControl representing the x-axis

chartPanel A ChartPanel representing the the panel for the

chart

chartScale A ChartScale representing the y-axis

point A Point in device pixels representing the

current mouse cursor position

Examples

public override Cursor GetCursor(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, Point point)

{

 switch (DrawingState)

 {

 //when drawing, display the cursor as a pen

 case DrawingState.Building: return Cursors.Pen;

 // when moving, display a four-headed sizing cursor

 case DrawingState.Moving: return Cursors.SizeAll;

 default: return Cursors.Pen;

 }

}

11.6.6.14 GetSelectionPoints()

Definition
Returns the chart object's data points where the user can interact. These points are used to

visually indicate that the chart object is selected and allow the user to manipulate the chart

object. This method is only called when IsSelected is set to true.

Method Return Value
A collection of Points representing the x- and y-coordinates of the chart object.

https://msdn.microsoft.com/en-us/library/system.drawing.point%28v=vs.110%29.aspx

NinjaTrader 82734

© 2023 NinjaTrader, LLC

Syntax
You must override the method using the following syntax:

public override Point[] GetSelectionPoints(ChartControl chartControl, ChartScale

chartScale)

{

}

Method Parameters

chartControl A ChartControl representing the x-axis

chartScale A ChartScale representing the y-axis

Examples

public override Point[] GetSelectionPoints(ChartControl

chartControl, ChartScale chartScale)

{

ChartPanel chartPanel =

chartControl.ChartPanels[chartScale.PanelIndex];

// get the anchor point to be displayed on the drawing tool

Point anchorPoint = Anchor.GetPoint(chartControl,

chartPanel, chartScale, false);

return new[] { anchorPoint } ;

}

11.6.6.15 Icon

Definition
The shape which displays next to the Drawing Tool menu item. Since this is a standard

object, any type of icon can be used (unicode characters, custom image file resource,

geometry path, etc). For more information on using images to create icons, see the Using

Images with Custom Icons page.

Note: When using UniCode characters, first ensure that the desired characters exist in the

icon pack for the font family used in NinjaTrader.

Property Value
A generic virtual object representing the drawing tools menu icon. This property is read-only.

NinjaScript 2735

© 2023 NinjaTrader, LLC

Syntax
You must override this property using the following syntax:
public override object Icon

Examples

public override object Icon

{

 get

 {

 //use a unicode character as our string which will render an

arrow

 string uniCodeArrow = "\u279A";

 return uniCodeArrow;

 }

}

11.6.6.16 IgnoresSnapping

Definition
Determines if the drawing tool chart anchor's will use the chart's Snap Mode mouse

coordinates.

Property Value
A bool value which when true the drawing tool ignores snapping; otherwise false. Default is

set to false.

Syntax
IgnoresSnapping

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IgnoresSnapping = true; // Set this to true to receive

non-snapped mouse coordinates

 }

 else if (State == State.Configure)

 {

 }

}

NinjaTrader 82736

© 2023 NinjaTrader, LLC

11.6.6.17 IgnoresUserInput

Definition
Determines if the drawing tool can be clicked on by the user.

Property Value
A bool value which wen true if the drawing tool cannot not be interacted with by a user;

otherwise false. Default is set to false.

Syntax
IgnoresUserInput

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IgnoresUserInput = true; // Set this to true to make the

drawing object non-interactive

 }

 else if (State == State.Configure)

 {

 }

}

11.6.6.18 IsAttachedToNinjaScript

Definition
Indicates if the drawing tool is currently attached to a NinjaScript object (such an indicator or a

strategy).

Property Value
A bool value which when true if the drawing tool is attached to a NinjaScript object; otherwise

false. This property is read-only.

Syntax
IsAttachedToNinjaScript

Examples

NinjaScript 2737

© 2023 NinjaTrader, LLC

public override void OnMouseMove(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 // do not interact if drawn by an indicator or strategy

 if (IsAttachedToNinjaScript)

 return;

}

11.6.6.19 IsGlobalDrawingTool

Definition
Indicates if the drawing tool is currently set as a Global Drawing object. Global draw objects

display on any chart which matches the parent chart's underlying instrument.

Property Value
A bool value which returns true if the drawing tool is currently attached as a global drawing

object; otherwise false.

Syntax
IsGlobalDrawingTool

Examples

public override void OnMouseMove(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 // do not interact if attached to global chart

 if (IsGlobalDrawingTool)

 return;

}

11.6.6.20 IsLocked

Definition
Determines if the drawing tool should be be locked in place. This property can be set either

manually through the UI or explicitly through code.

Property Value
A bool value which when true if the drawing tool is locked; otherwise false. Default is set to

false.

NinjaTrader 82738

© 2023 NinjaTrader, LLC

Note: For Drawing tools which are drawn by an indicator or strategy, this property will

default to true.

Syntax
IsLocked

Examples

public override void OnMouseMove(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, Point point)

{

 if (IsLocked) //if the object is locked, do not attempt to move

 return;

}

11.6.6.21 IsUserDrawn

Definition
Indicates if the drawing tool was manually drawn by a user as opposed to programmatically

drawn by a NinjaScript object (such as an indicator or strategy).

Property Value
A bool value which when true if the draw object was manually drawn ; otherwise false. This

property is read-only

Syntax
IsUserDrawn

Examples

if (IsUserDrawn)

{

 // do something only if the object was drawn manually

}

11.6.6.22 OnBarsChanged()

Definition
An event driven method which is called any time the underlying bar series have changed for

the chart where the drawing tool resides. For example if a user has changed the primary

instrument or the time frame of the bars used on the chart.

Method Return Value

NinjaScript 2739

© 2023 NinjaTrader, LLC

This method does not return a value

Syntax
You must override this method using the following syntax:

public override void OnBarsChanged()

{

}

Method Parameters
This method does not accept any parameters

Examples

public override void OnBarsChanged()

{

 //bars have change, do something

}

11.6.6.23 OnMouseDown()

Definition
An event driven method which is called any time the mouse pointer over the chart control has

the mouse button pressed.

Method Return Value
This method does not return a value.

Note: For a combined single click operation, i.e. mouse down click, move and release the

dataPoint reported will always be the initial starting one.

Syntax
You must override the method in your Drawing Tool with the following syntax.

public override void OnMouseDown(ChartControl chartControl, ChartPanel chartPanel,

ChartScale chartScale, ChartAnchor dataPoint)

{

}

Method Parameters

chartControl A ChartControl representing the x-axis

NinjaTrader 82740

© 2023 NinjaTrader, LLC

chartPanel A ChartPanel representing the the panel for the

chart

chartScale A ChartScale representing the y-axis

dataPoint A ChartAnchor representing a point where the

user clicked

Examples

public override void OnMouseDown(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 switch (DrawingState)

 {

 case DrawingState.Building:

 dataPoint.CopyDataValues(Anchor);

 Anchor.IsEditing = false;

 DrawingState = DrawingState.Normal;

 IsSelected = false;

 break;

 case DrawingState.Normal:

 // make sure they clicked near us. use GetCursor incase

something has more than one point

 Point point = dataPoint.GetPoint(chartControl, chartPanel,

 chartScale);

 if (GetCursor(chartControl, chartPanel, chartScale,

point) != null)

 DrawingState = DrawingState.Moving;

 else

 IsSelected = false;

 break;

 }

}

11.6.6.24 OnMouseMove()

Definition
An event driven method which is called any time the mouse pointer is over the chart control

and a mouse is moving.

Method Return Value
This method does not return a value.

NinjaScript 2741

© 2023 NinjaTrader, LLC

Note: For a combined single click operation, i.e. mouse down click, move and release the

dataPoint reported will always be the initial starting one.

Syntax
You must override the method in your Drawing Tool with the following syntax.

public override void OnMouseMove(ChartControl chartControl, ChartPanel chartPanel,

ChartScale chartScale, ChartAnchor dataPoint)

{

}

Method Parameters

chartControl A ChartControl representing the x-axis

chartPanel A ChartPanel representing the the panel for the

chart

chartScale A ChartScale representing the y-axis

dataPoint A ChartAnchor representing a point where the

user is moving the mouse

Examples

NinjaTrader 82742

© 2023 NinjaTrader, LLC

private ChartAnchor lastMouseMoveAnchor

= new ChartAnchor();

private ChartAnchor MyAnchor;

public override void OnMouseMove(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 // add any logic for when the mouse is moved here

 if (DrawingState == DrawingState.Moving)

 {

 //move the chart anchor when the drawing tool is in a moving

state

 MyAnchor.MoveAnchor(lastMouseMoveAnchor, dataPoint,

chartControl, chartPanel, chartScale, this);

 // dont forget to update delta point to last used!

 dataPoint.CopyDataValues(lastMouseMoveAnchor);

 }

}

11.6.6.25 OnMouseUp()

Definition
An event driven method is called any time the mouse pointer is over the chart control and a

mouse button is being released.

Method Return Value
This method does not return a value

Note: For a combined single click operation, i.e. mouse down click, move and release the

dataPoint reported will always be the initial starting one.

Syntax
You must override the method with the following syntax.

public override void OnMouseUp(ChartControl chartControl, ChartPanel chartPanel,

ChartScale chartScale, ChartAnchor dataPoint)

{

}

Method Parameters

chartControl A ChartControl representing the x-axis

NinjaScript 2743

© 2023 NinjaTrader, LLC

chartPanel A ChartPanel representing the the panel for the

chart

chartScale A ChartScale representing the y-axis

dataPoint A ChartAnchor representing a point where the

user is releasing the mouse

Examples

public override void OnMouseUp(ChartControl chartControl,

ChartPanel chartPanel, ChartScale chartScale, ChartAnchor

dataPoint)

{

 //when the user releases the mouse, ensure the drawing state is

set to normal

 if (DrawingState == DrawingState.Editing || DrawingState ==

DrawingState.Moving)

 DrawingState = DrawingState.Normal;

}

11.6.6.26 SupportsAlerts

Definition
Determines if the drawing tool can be used for manually configured alerts through the UI.

Property Value
A bool which when true determines that user can setup an alert based off this drawing tool;

otherwise false.

Note: This property is false by default and MUST be overridden upon initialization to

allow for manually configured alerts. You cannot set this during run-time.

Syntax
SupportsAlerts

You may choose to override this property using the following syntax:

public override bool SupportsAlerts

NinjaTrader 82744

© 2023 NinjaTrader, LLC

Examples

public override bool SupportsAlerts { get { return true; } }

11.6.6.27 ZOrderType

Definition
Determines the order in which the drawing tool will be rendered. This will help control the

ZOrder index between chart objects

Property Value
An enum determining the drawing tool's ZOrder type. Possible values are:

DrawingToolZOrder.Normal Default behavior, drawing tools

are rendered as they appear in

the ZOrder index

DrawingToolZOrder.AlwaysDraw

nFirst

Ensures the drawing tool is

always the first to be rendered

DrawingToolZOrder.AlwaysDraw

nLast

Ensures the drawing tool is

always the last object to be

rendered

Syntax
ZOrderType

Examples

NinjaScript 2745

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = @"My Drawing Tool";

 // always draw this last

 ZOrderType = DrawingToolZOrder.AlwaysDrawnLast;

 }

 else if (State == State.Configure)

 {

 }

}

11.6.7 Import Type

Custom data Import Types can be developed to allow for the importing of historical data from

any format. Two important event handler methods are documented in this section:

Methods and Properties

OnNextIn

strument(

)

Called at the beginning of the import process

OnNextD

ataPoint()

Called for each line of data contained in the file being

imported

11.6.7.1 OnNextInstrument()

Definifition
The OnNextInstrument() method is called at the beginning of the import process for each file

that is being imported. This method is only called after it has determined the file contains a

valid instrument.

Method Return Value
This method does not return a value.

Syntax
See example below. The NinjaScript code wizard automatically generates the method syntax

for you.

Example

NinjaTrader 82746

© 2023 NinjaTrader, LLC

private int currentInstrumentIdx = -1;

public string[] FileNames

{ get; set; }

protected override void OnNextInstrument()

{

 if (FileNames == null)

 return;

 // Try to read from file into the FileNames array created

above

 // Log an error and continue if the data is unreadable

 try

 {

 reader = new

StreamReader(FileNames[currentInstrumentIdx]);

 }

 catch (Exception exp)

 {

 NinjaScript.Log(FileNames[currentInstrumentIdx],

exp.Message, LogLevel.Error);

 continue;

 }

}

11.6.7.2 OnNextDataPoint()

Definifition
The OnNextDataPoint() method is called for each line of data contained in the file being

imported. This method is only called if the import type determines that the file has a valid data

point, and will continue to be called until it reaches the end of the file, or until the data point is

no longer valid.

Method Return Value
This method does not return a value.

Syntax
See example below. The NinjaScript code wizards automatically generate the method syntax

for you.

Example

NinjaScript 2747

© 2023 NinjaTrader, LLC

private StreamReader reader;

protected override void OnNextDataPoint()

{

 if (reader == null)

 return;

 // Continually read data using the StreamReader defined above

 while (true)

 {

 DataPointString = reader.ReadLine();

 // Additional data formatting here

 }

}

11.6.8 Indicator

The methods and properties covered in this section are unique to custom indicator

development. Indicator configuration properties globally define various behaviors of

indicators. All properties have default values and can be overridden by setting them in the

OnStateChange() method of the indicator.

Tip: See also the "Common" section for more method and properties which are shared

by NinjaScript types

Methods and Properties

AddLine() Adds line objects on a chart.

AddPlot() Adds plot objects that define how an indicator or

strategy data series render on a chart.

BarsRequir

edToPlot

The number of bars on a chart required before the

script plots.

DisplayInDa

taBox

Determines if plot(s) display in the chart data box.

DrawHorizo

ntalGridLine

s

Plots horizontal grid lines on the indicator panel.

NinjaTrader 82748

© 2023 NinjaTrader, LLC

DrawOnPric

ePanel

Determines the chart panel the draw objects renders.

DrawVertica

lGridLines

Plots vertical grid lines on the indicator panel.

IndicatorBas

eConverter

A custom TypeConverter class handling the designed

behavior of an indicator's property descriptor collection.

IsChartOnly If true, any indicator will be only available for charting

usage - indicators with this property enabled would for

example not be expected to show if called in a

SuperDOM or MarketAnalyzer window.

IsSuspende

dWhileInacti

ve

Prevents real-time market data events from being

raised while the indicator's hosting feature is in a state

that would be considered suspended and not in

immediate use by a user.

PaintPriceM

arkers

If true, any indicator plot values display price markers in

the y-axis.

ShowTrans

parentPlotsI

nDataBox

Determines if plot(s) values which are set to a

Transparent brush display in the chart data box.

11.6.8.1 AddLine()

Definition
Adds line objects on a chart.

Note: Lines are ONLY visible from the UI property grid when AddLine() is called from

State.SetDefaults. If your indicator or strategy dynamically adds lines during

State.Configure, you will NOT have an opportunity to select the line or to set the line

configuration via the UI. Alternatively, you may use custom public Brush, Stroke or value

properties which are accessible in the State.SetDefaults and pass those values to

AddLine() during State.Configure. Calling AddLine() in this manner should be reserved

for special cases. Please see the examples below.

Methods and Properties

AreLinesConfigura Determines if the line(s) used in an indicator are

NinjaScript 2749

© 2023 NinjaTrader, LLC

ble configurable from within the indicator dialog

window.

Line Class Objects derived from the Line class are used to

characterize how an oscillator line is visually

displayed (plotted) on a chart.

Lines A collection holding all of the Line objects that

define the visualization characteristics oscillator

lines of the indicator.

Syntax
AddLine(Brush brush, double value, string name)

AddLine(Stroke stroke, double value, string name)

Warning: This method should ONLY be called within the OnStateChange() method during

State.SetDefaults or State.Configure

Parameters

brush A Brush object used to construct the line

name A string value representing the name of the line

stroke A Stroke object used to construct the line

value A double value representing the value the line will

be drawn at

Examples

Defining a single UI configurable static line

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 // Adds an oscillator line at a value of 30

 AddLine(Brushes.Gray, 30, "Lower");

 }

}

NinjaTrader 82750

© 2023 NinjaTrader, LLC

Indicator which dynamically adds a line in State.Configure

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 // logical property which user can set

 UseSpecialMode = false;

 // Default brush selection pushed to the UI

 MyBrush = Brushes.Red;

 }

 else if (State == State.Configure)

 {

 // if user enables logical property

 if (UseSpecialMode)

 {

 // add line using default selected brush and special

line name

 AddLine(MyBrush, 40, "My Special Line");

 }

 else

 {

 // otherwise use default selected brush and regular

line name

 AddLine(MyBrush, 60, "My Regular Line");

 }

 }

}

[XmlIgnore]

public Brush MyBrush { get; set; }

public bool UseSpecialMode { get; set; }

11.6.8.1.1 AreLinesConfigurable

Definition
Determines if the line(s) used in an indicator are configurable from within the indicator dialog

window.

Property Value
A bool which true if any indicator line(s) are configurable; otherwise, false. Default set to

true.

NinjaScript 2751

© 2023 NinjaTrader, LLC

Syntax
AreLinesConfigurable

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 AddLine(Brushes.Gray, 30, "Lower");

 AreLinesConfigurable = false; // Indicator lines are not

configurable

 }

}

11.6.8.1.2 Line Class

Definition
Objects derived from the Line class are used to characterize how an oscillator line is visually

displayed (plotted) on a chart.

Properties

Brush The

System.Windows.Media.Brush

used to construct the line

(reference)

BrushDX A SharpDX.Direct2D1.Brush used

to actually render the line

Note: To avoid and resolve

access violation exceptions,

please see Warning and examples

remarked below

DashStyleDX A SharpDX.Direct2D1.DashStyle

used to render the stroke style

Note: To avoid and resolve

access violation exceptions,

https://msdn.microsoft.com/en-us/library/system.windows.media.brushes%28v=vs.110%29.aspx

NinjaTrader 82752

© 2023 NinjaTrader, LLC

please see Warning and examples

remarked below

DashStyleHelper A dashstyle used to construct the

stroke. Possible values are:

· DashStyleHelper.Dash

· DashStyleHelper.DashDot

· DashStyleHelper.DashDotDot

· DashStyleHelper.Dot

· DashStyleHelper.Solid

Name A string representing the name of

the line

RenderTarget The RenderTarget drawing context

used for the line.

Note: This property must be set

before accessing a stroke's

BrushDX property. Please see

Warning and examples remarked

below

StrokeStyle A SharpDX.Direct2D1.StrokeStyle

Value A double representing the value of

the line

Width A float representing the width in

pixels

Examples
See the AddLine() method for examples.

11.6.8.1.3 Lines

Definition
A collection holding all of the Line objects that define the visualization characteristics oscillator

lines of the indicator.

Property Value

NinjaScript 2753

© 2023 NinjaTrader, LLC

A collection of Line objects.

Syntax
Lines[int index]

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Lines are added to the Lines collection in order

 AddLine(Brushes.Gray, 30, "Lower"); // Stored in Lines[0]

 AddLine(Brushes.Gray, 70, "Upper"); // Stored in Lines[1]

 }

}

// Dynamically change the upper line's color and thickness based on

the indicator value

protected override void OnBarUpdate()

{

 if(Value[0] > 70)

 {

 Lines[1].Brush = Brushes.Blue;

 Lines[1].Width = 3;

 }

 else

 {

 Lines[1].Brush = Brushes.Gray;

 Lines[1].Width = 1;

 }

}

11.6.8.2 AddPlot()

Definition
Adds plot objects that define how an indicator or strategy data series render on a chart. When

this method is called to add a plot, an associated Series<double> object is created held in the

Values collection.

Note: Plots are ONLY visible from the UI property grid when AddPlot() is called from

State.SetDefaults. If your indicator or strategy dynamically adds plots during

State.Configure, you will NOT have an opportunity to select the plot or to set the plot

configuration via the UI. Alternatively, you may use custom public Brush, Stroke, or

NinjaTrader 82754

© 2023 NinjaTrader, LLC

PlotStyle properties which are accessible in State.SetDefaults and pass those values to

AddPlot() during State.Configure. Calling AddPlot() in this manner should be reserved

for special cases. Please see the examples below.

Methods and Properties

ArePlotsConfigura

ble

Determines if the plot(s) used in an indicator are

configurable within the indicator dialog window.

Displacement An offset value that shifts the visually displayed

value of an indicator.

PlotBrushes Holds an array of color series objects holding

historical bar colors.

Plots A collection holding all of the Plot objects that

define their visualization characteristics.

Syntax
AddPlot(Brush brush, string name)

AddPlot(Stroke stroke, PlotStyle plotStyle, string name)

Warning: This method should ONLY be called within the OnStateChange() method during

State.SetDefaults or State.Configure

Parameters

brush A Brush object used to construct the plot

name A string representing the name of the plot

plotStyle A PlotStyle object used to construct the style of

the plot

Possible values:

PlotStyle.Bar

PlotStyle.Block

PlotStyle.Cross

PlotStyle.Dot

PlotStyle.Hash

NinjaScript 2755

© 2023 NinjaTrader, LLC

PlotStyle.HLine

PlotStyle.Line

PlotStyle.PriceBox

PlotStyle.Square

PlotStyle.TriangleDown

PlotStyle.TriangleLeft

PlotStyle.TriangleRight

PlotStyle.TriangleUp

stroke A Stroke object used to construct the plot

Tips:

1. We suggest using the NinjaScript wizard to generate your plots.

2. Plot objects DO NOT hold the actual script values. They simply

define how the script's values are plotted on a chart.

3. A script may calculate multiple values and therefore hold

multiple plots to determine the display of each calculated value.

Script values are held in the script's Values collection.

4. If you script calls AddPlot() multiple times, then multiple Values

series are added per the "three value series" example below

5. For MultiSeries scripts, plots are synched to the primary series

of the NinjaScript object.

6. Plots will become visible once the script’s BarsRequiredToPlot

value has been satisfied. By default, the value is 20.

Examples

NinjaTrader 82756

© 2023 NinjaTrader, LLC

 Indicator using various AddPlot() signatures

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 // Adds a blue line style plot

 AddPlot(Brushes.Blue, "MyPlot");

 // Adds a blue historgram style plot

 AddPlot(new Stroke(Brushes.Blue), PlotStyle.Bar, "MyPlot2");

 // Ensures that the width of the PlotStyle.Bar plot matches

the width of the data series

 Plots[1].AutoWidth = true;

 // Adds a blue Dash-Line style plot with 5pixel width and 50%

opacity

 AddPlot(new Stroke(Brushes.Blue, DashStyleHelper.Dash, 5,

50), PlotStyle.Line, "MyPlot3");

 }

}

NinjaScript 2757

© 2023 NinjaTrader, LLC

 Indicator using a public Series<double> to expose a plot with a
friendly name. This is required for making plots accessible in the
Strategy Builder
For an example on exposing other variables publicly, see Exposing
Indicator values that are not plots

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 // Adds a blue line style plot

 AddPlot(Brushes.Blue, "MyPlot");

 // Adds a blue historgram style plot

 AddPlot(new Stroke(Brushes.Blue), PlotStyle.Bar, "MyPlot2");

 }

}

protected override void OnBarUpdate()

{

 MyPlot[0] = Close[0] + High[0] / 2?;

 MyPlot[1] = Close[0] + High[0] / 2?;

}

[Browsable(false)]

[XmlIgnore]

public Series<double> MyPlot

{

 get { return Values[0]; }

}

[Browsable(false)]

[XmlIgnore]

public Series<double> MyPlot2

{

 get { return Values[1]; }

}

NinjaTrader 82758

© 2023 NinjaTrader, LLC

 Indicator which adds three value series

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 // Add three plots and associated Series<double> objects

 AddPlot(Brushes.Blue, "PlotA"); // Defines the plot for

Values[0]

 AddPlot(Brushes.Red, "PlotB"); // Defines the plot for

Values[1]

 AddPlot(Brushes.Green, "PlotC"); // Defines the plot for

Values[2]

 }

}

protected override void OnBarUpdate()

{

 Values[0][0] = Median[0]; // Blue "Plot A"

 Values[1][0] = Low[0]; // Red "Plot B"

 Values[2][0] = High[0]; // Green "Plot C"

}

NinjaScript 2759

© 2023 NinjaTrader, LLC

 Indicator which dynamically adds a plot in State.Configure

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 // logical property which user can set

 UseSpecialMode = false;

 // Default brush selection pushed to the UI

 MyBrush = Brushes.Red;

 }

 else if (State == State.Configure)

 {

 // if user enables logical property

 if (UseSpecialMode)

 {

 // add plot using default selected brush and special plot

name

 AddPlot(MyBrush, "My Special Plot");

 }

 else

 {

 // otherwise use default selected brush and regular plot

name

 AddPlot(MyBrush, "My Regular Plot");

 }

 }

}

protected override void OnBarUpdate()

{

 if (UseSpecialMode)

 Value[0] = Close[0] + High[0] / 2;

 else Value[0] = Close[0] * TickSize / 2;

}

[XmlIgnore]

public Brush MyBrush { get; set; }

public bool UseSpecialMode { get; set; }

11.6.8.2.1 ArePlotsConfigurable

Definition
Determines if the plot(s) used in an indicator are configurable within the indicator dialog

window.

NinjaTrader 82760

© 2023 NinjaTrader, LLC

Property Value
A bool which returns true if any indicator plot(s) are configurable; otherwise, false. Default

set to true.

Syntax
ArePlotsConfigurable

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 AddPlot(Brushes.Orange, "SMA");

 ArePlotsConfigurable = false; // Plots are not

configurable in the indicator dialog

 }

}

11.6.8.2.2 Displacement

Definition
An offset value that shifts the visually displayed value of an indicator.

Property Value
An int value that represents the number of bars ago to offset with.

Syntax
Displacement

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Displacement = 2; // Plots the indicator value from 2

bars ago on the current bar

 AddPlot(Brushes.Orange, "SMA");

 }

}

NinjaScript 2761

© 2023 NinjaTrader, LLC

11.6.8.2.3 PlotBrushes

Definition
Holds an array of color series objects holding historical bar colors. A color series object is

added to this array when calling the AddPlot() method in a custom Indicator for plots. Its

purpose is to provide access to the color property of all bars.

Property Value
An array of color series objects.

Syntax
PlotBrushes[int PlotIndex][int barsAgo]

Examples

NinjaTrader 82762

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if(State == State.SetDefaults)

 {

 Name = "Example Indicator";

 // Add two plots

 AddPlot(Brushes.Blue, "Upper");

 AddPlot(Brushes.Orange, "Lower");

 }

}

protected override void OnBarUpdate()

{

 // Sets values to our two plots

 Upper[0] = SMA(High, 20)[0];

 Lower[0] = SMA(Low, 20)[0];

 // Color the Upper plot based on plot value conditions

 if (IsRising(Upper))

 PlotBrushes[0][0] = Brushes.Blue;

 else if (IsFalling(Upper))

 PlotBrushes[0][0] = Brushes.Red;

 else

 PlotBrushes[0][0] = Brushes.Yellow;

 // Color the Lower plot based on plot value conditions

 if (IsRising(Lower))

 PlotBrushes[1][0] = Brushes.Blue;

 else if (IsFalling(Lower))

 PlotBrushes[1][0] = Brushes.Red;

 else

 PlotBrushes[1][0] = Brushes.Yellow;

}

public Series<double> Upper

{

 get { return Values[0]; }

}

public Series<double> Lower

{

 get { return Values[1]; }

}

11.6.8.2.4 Plots

Definition
A collection holding all of the Plot objects that define their visualization characteristics.

NinjaScript 2763

© 2023 NinjaTrader, LLC

Property Value
A collection of Plot objects.

Syntax
Plots[int index]

Note: The example code below will change the color of an entire plot series. See

PlotBrushes for information on changing only specific segments of a plot instead.

Example

protected override void OnStateChange()

{

 if(State == State.SetDefaults)

 {

 Name = "Examples Indicator";

 // Lines are added to the Lines collection in order

 AddPlot(Brushes.Orange, "Plot1"); // Stored in Plots[0]

 AddPlot(Brushes.Blue, "Plot2"); // Stored in Plots[1]

 }

}

// Dynamically change the primary plot's color based on the

indicator value

protected override void OnBarUpdate()

{

 if (Value[0] > 70)

 {

 Plots[0].Brush = Brushes.Blue;

 Plots[0].Width = 2;

 }

 else

 {

 Plots[0].Brush = Brushes.Red;

 Plots[0].Width = 2;

 }

}

11.6.8.3 BarsRequiredToPlot

Definition
The number of bars on a chart required before the script plots. By default, the value is 20

bars.

NinjaTrader 82764

© 2023 NinjaTrader, LLC

Note: This property is NOT the same as a minimum number of bars required to calculate

the script values. OnBarUpdate will always start calculating for the first bar on the chart

(CurrentBar 0)

Property Value
An int value that represents the minimum number of bars required.

Syntax
BarsRequiredToPlot

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 BarsRequiredToPlot = 10; // Do not plot until the 11th

bar on the chart

 AddPlot(Brushes.Orange, "SMA");

 }

}

11.6.8.4 DisplayInDataBox

Definition
Determines if plot(s) display in the chart data box.

Property Value
This property returns true if the indicator plot(s) values display in the chart data box;

otherwise, false. Default set to true.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
DisplayInDataBox

Examples

NinjaScript 2765

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 DisplayInDataBox = false;

 AddPlot(Brushes.Orange, "SMA");

 }

}

11.6.8.5 DrawHorizontalGridLines

Definition
Plots horizontal grid lines on the indicator panel.

Note: The indicator panel's parent chart has a similar option 'Grid line - horizontal which
if Visible property set to false, will override the indicator's local setting if true.

Property Value
This property returns true if horizontal grid lines are plotted on the indicator panel; otherwise,

false. Default set to true.

Warning: This property should ONLY be set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
DrawHorizontalGridLines

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 DrawHorizontalGridLines = false; // Horizontal grid lines

will not plot on the indicator panel

 AddPlot(Brushes.Orange, "SMA");

 }

}

NinjaTrader 82766

© 2023 NinjaTrader, LLC

11.6.8.6 DrawOnPricePanel

Definition
Determines the chart panel the draw objects renders

Property Value
This property returns true if the indicator paints draw objects on the price panel; otherwise

when false, draw objects are painted on the actual indicator panel itself. Default set to true.

Warning: This property should ONLY be set from the OnStateChange() method during

State.SetDefaults. Dynamically using DrawOnPricePanel in an indicator outside of

State.SetDefaults may show issues when working with that indicator through a hosting

strategy via AddChartIndicator().

Syntax
DrawOnPricePanel

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 DrawOnPricePanel = false; // Draw objects now paint on

the indicator panel itself

 AddPlot(Brushes.Orange, "SMA");

 }

}

11.6.8.7 DrawVerticalGridLines

Definition
Plots vertical grid lines on the indicator panel.

Note: The indicator panel's parent chart has a similar option 'Grid line - vertical which if
Visible property set to false, will override the indicator's local setting if true.

Property Value
This property returns true if vertical grid lines are plotted on the indicator panel; otherwise,

false. Default set to true.

NinjaScript 2767

© 2023 NinjaTrader, LLC

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
DrawVerticalGridLines

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 DrawVerticalGridLines = false; // Vertical grid lines

will not plot on the indicator panel

 AddPlot(Brushes.Orange, "SMA");

 }

}

11.6.8.8 IndicatorBaseConverter

Definition
A custom TypeConverter class handling the designed behavior of an indicator's property

descriptor collection. Use this as a base class for any custom TypeConverter you are

applying to an indicator class.

Notes:

· A working NinjaScript demo can be found through the reference sample on "Using a

TypeConverter to Customize Property Grid Behavior"

· When applying the custom converter, you must fully qualify the name (e.g.,

"NinjaTrader.NinjaScript.Indicators.MyCustomConveter")

· Additional TypeConverter information can be found from the MSDN documentation

· See also TypeConverterAttribute

· For Strategies, see the StrategyBaseConverter class

Relevant base methods

TypeConverter.GetProperties() When overriding

GetProperties(), calling

base.GetProperties() ensures

https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter%28v=vs.110%29.aspx
http://ninjatrader.com/support/forum/showthread.php?t=97919
http://ninjatrader.com/support/forum/showthread.php?t=97919
https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter.getproperties(v=vs.110).aspx

NinjaTrader 82768

© 2023 NinjaTrader, LLC

that all default property grid

behavior works as designed

TypeConverter.GetPropertiesSup

ported()

In your custom converter class,

you must override

GetPropertiesSupported() and

return a value of true in order for

your custom type converter to

work

Syntax
public class IndicatorBaseConverter : TypeConverter

Warning: Failure to apply a type of IndicatorBaseConverter on an indicator class can

result in unpredictable behavior of the standard NinjaTrader WPF property grid.

Tip: Common indicator functions like Print() are not available to a type converter instance.

 To debug a type converter class, you can use the AddOn Debug Concepts or attach to a

debugger (recommended)

Examples

https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter.getpropertiessupported(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter.getpropertiessupported(v=vs.110).aspx

NinjaScript 2769

© 2023 NinjaTrader, LLC

//This namespace holds Indicators in this folder and is required.

Do not change it.

namespace NinjaTrader.NinjaScript.Indicators

{

 // When applying the type converter, you must fully qualify the

name

 [TypeConverter("NinjaTrader.NinjaScript.Indicators.MyCustomConve

ter")]

 public class MyCustomIndicator : Indicator

 {

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Name = "MyCustomIndicator";

 }

 }

 protected override void OnBarUpdate()

 {

 //Add your custom indicator logic here.

 }

 }

 public class MyCustomConveter : IndicatorBaseConverter

 {

 // A general TypeConveter method used for converting types

 public override PropertyDescriptorCollection

GetProperties(ITypeDescriptorContext context, object component,

Attribute[] attrs)

 {

 // sometimes you may need the indicator instance which

actually exists on the grid

 MyCustomIndicator indicator = component as

MyCustomIndicator;

 // base.GetProperties ensures we have all the properties

(and associated property grid editors)

 // NinjaTrader internal logic handles for a given

indicator

 PropertyDescriptorCollection propertyDescriptorCollection

= base.GetPropertiesSupported(context)

 ? base.GetProperties(context, component, attrs) :

TypeDescriptor.GetProperties(component, attrs);

 if (indicator == null || propertyDescriptorCollection ==

null)

 return propertyDescriptorCollection;

 // example of why you may need the instance that exists on

the grid....

 if (indicator.EntryHandling ==

EntryHandling.UniqueEntries)

 {

 // do something in the event a property contains some

value...

 }

 // Loop all of the properties of the indicator

 foreach (PropertyDescriptor property in

propertyDescriptorCollection)

 {

 // do something with a specific property

 // cannot call Print() here

 // but you can call the static Output window

"Process()"

 NinjaTrader.Code.Output.Process(property.Name,

PrintTo.OutputTab1);

 }

 // must return the collection after making changes

 return propertyDescriptorCollection;

 }

 // Important: This must return true otherwise the type

converter will not be called

 public override bool

GetPropertiesSupported(ITypeDescriptorContext context)

 { return true; }

 }

 }

}

NinjaTrader 82770

© 2023 NinjaTrader, LLC

11.6.8.9 IsChartOnly

Definition
If true, any indicator will be only available for charting usage - indicators with this property

enabled would for example not be expected to show if called in a SuperDOM or

MarketAnalyzer window.

Property Value
This property returns true if the indicator can only be used on a chart; otherwise, false.

Default set to false.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
IsChartOnly

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsChartOnly = true; // Allow the indicator to work in

charting environment only

 }

}

11.6.8.10 IsSuspendedWhileInactive

Definition
Prevents OnBarUpdate from being raised while the indicators display is not in use. Enabling

this property in your indicator helps save CPU cycles while the indicator is suspended and not

in use by a user. Once the indicator is in a state that would no longer be considered

suspended, the historical OnBarUpdate() events will be triggered allowing the indicator to

catch up to current real-time values.

Suspension occurs in the following scenarios:

· Minimized Chart

· Minimized Market Analyzer

· Minimized Hot List Analyzer

· Minimized SuperDOM

NinjaScript 2771

© 2023 NinjaTrader, LLC

· Background tabs of above features are considered "minimized"

· Inactive workspaces in the background

Note: Since events in OnBarUpdate() will not be processed while the indicator is

suspended, internal NinjaScript functions such as Alert(), PlaySound(), Share(), Print(),

etc - or any other method that would be used to notify a user of activity will NOT be

processed until the indicator is un-suspended.

Scenarios where suspension will not occur
The IsSuspendedWhileInactive property will be ignored and real-time events will be
processed as normal under the following cases:

· Indicators running in Automated NinjaScript Strategies

· Indicators which have manually configured alerts

· Indicators which have been manually attached to orders

Property Value
This property returns true if indicator can take advantage of suspension optimization;

otherwise, false. Default set to false.

Note: This property is overridden to "true" automatically by the NinjaScript Code Wizard.

 You will need to remove the property to return to the default value or manually set it to

false to disable this behavior

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
IsSuspendedWhileInactive

Examples

NinjaTrader 82772

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsSuspendedWhileInactive = true;

 }

}

11.6.8.11 PaintPriceMarkers

Definition
If true, any indicator plot values display price markers in the y-axis.

Property Value
This property returns true if the indicator plot values display in the y-axis; otherwise, false.

Default set to true.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
PaintPriceMarkers

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 PaintPriceMarkers = true; // Indicator plots values

display in the y-axis

 AddPlot(Brushes.Orange, "SMA");

 }

}

11.6.8.12 ShowTransparentPlotsInDataBox

Definition
Determines if plot(s) values which are set to a Transparent brush display in the chart data

box. The default behavior is to hide any plots which have been configured as a Transparent

brush, however this behavior can be changed by setting ShowTransparentPlotsInDataBox

to true on the indicator.

NinjaScript 2773

© 2023 NinjaTrader, LLC

Property Value
This property returns true if transparent indicator plot(s) values display in the chart data box;

otherwise, false. Default set to false.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
ShowTransparentPlotsInDataBox

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 ShowTransparentPlotsInDataBox = true;

 AddPlot(Brushes.Transparent, "MyPlot");

 }

}

11.6.9 Market Analyzer Column

Custom Market Analyzer columns can be used to further enhance your Market Analyzer

experience by providing custom columns displaying values of your choosing. The methods

and properties covered in this section are unique to custom Market Analyzer Column

development.

In this section

Curre

ntTex

t

Sets text to be displayed in the Market Analyzer column.

Curre

ntVal

ue

The value to be displayed in the Market Analyzer Column.

Data

Type

Determines the data type displayed in a Market Analyzer

Column.

NinjaTrader 82774

© 2023 NinjaTrader, LLC

Form

atDe

cimal

s

Rounds the value contained in CurrentValue to a specified

number of decimal places before displaying it in the Market

Analyzer column.

IsEdit

able

Determines if a Market Analyzer Column is editable.

Prior

Value

Contains the last value of CurrentValue. PriorValue is

assigned the value of CurrentValue immediately before

CurrentValue is updated.

11.6.9.1 CurrentText

Definition
Sets text to be displayed in the Market Analyzer column.

Note: CurrentText will overrule any value set for CurrentValue. If both CurrentValue and
CurrentText have assigned values, the value of CurrentText will display in the column.

Property Value
A string representing text to display in the column

Syntax
CurrentText

Example

protected override void OnMarketData(MarketDataEventArgs

marketDataUpdate)

{

 // Print "Ask" in the column if an Ask price update is received

 if(marketDataUpdate.MarketDataType == MarketDataType.Ask)

 CurrentText = "Ask";

}

11.6.9.2 CurrentValue

Definition
The value to be displayed in the Market Analyzer Column

Property Value
A double representing the value to be displayed in the column

NinjaScript 2775

© 2023 NinjaTrader, LLC

Syntax
CurrentValue

Example

protected override void OnMarketData(Data.MarketDataEventArgs

marketDataUpdate)

{

 CurrentValue = marketDataUpdate.Price;

}

11.6.9.3 DataType

Definition
Determines the data type displayed in a Market Analyzer Column.

Syntax
DataType

Example

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 DataType = typeof(string);

 IsEditable = true;

 }

}

11.6.9.4 FormatDecimals

Definition
Rounds the value contained in CurrentValue to a specified number of decimal places before

displaying it in the Market Analyzer column.

Property Value
An int representing a number of decimal places to which to round CurrentValue

Syntax
FormatDecimals

Example

NinjaTrader 82776

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Round CurrentValue to one decimal place

 FormatDecimals = 1;

 }

}

protected override void OnMarketData(MarketDataEventArgs

marketDataUpdate)

{

 CurrentValue = marketDataUpdate.Price;

}

11.6.9.5 IsEditable

Definition
Determines if a Market Analyzer Column is editable.

Property Value
This property returns true if the Market Analyzer Column can be edited; otherwise, false.

Syntax
IsEditable

Example

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 DataType = typeof(string);

 IsEditable = true;

 }

}

11.6.9.6 OnRender()

Definition
Used to draw custom content to a Market Analyzer Column, such as a graph.

This method is called during the following conditions:

· The Market Analyzer is scrolled

NinjaScript 2777

© 2023 NinjaTrader, LLC

· The user changes the Market Analyzer's properties through the Properties menu

· The Market Analyzer first loads (e.g. restoring from a workspace)

· The height / width of the Market Analyzer window changes

· A user re-sizes the content area by dragging the splitter between the columns

Note: While similar to a Chart Indicator's OnRender() method, the Market Analyzer

Column uses WPF Drawing Context class, rather than the SharpDX library used for

chart rendering. Concepts between these two methods are guaranteed to be different.

Method Return Value
This method does not return a value.

Syntax
You must override the method in your Market Analyzer column with the following syntax:

protected override void OnRender(DrawingContext dc, System.Windows.Size renderSize)

{

}

Method Parameters

dc The drawing context for the column

renderSize The rendering size for the column

Tip: In order to force OnRender() to be called under a specific condition, call the

OnPropertyChanged() method which will force the entire column to repaint. This

approach should be used instead of calling OnRender() directly.

Examples

protected override void OnRender(DrawingContext dc,

System.Windows.Size renderSize)

{

 // Rendering logic for our Market Analyzer column

}

https://msdn.microsoft.com/en-us/library/system.windows.media.drawingcontext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.drawingcontext(v=vs.110).aspx

NinjaTrader 82778

© 2023 NinjaTrader, LLC

11.6.9.7 PriorValue

Definition
Contains the last value of CurrentValue. PriorValue is assigned the value of CurrentValue

immediately before CurrentValue is updated.

Property Value
A double containing the last value contained in CurrentValue before its most recent update

Syntax
PriorValue

Example

protected override void OnMarketData(MarketDataEventArgs

marketDataUpdate)

{

 if (marketDataUpdate.MarketDataType == MarketDataType.Last)

 {

 CurrentValue = marketDataUpdate.Price;

 // Trigger an alert if the current Last price update is

greater than the previous one

 if(CurrentValue > PriorValue)

 Alert("MA Alert", Priority.High, "Check Market

Analyzer", "", 30, Brushes.Black, Brushes.White);

 }

}

11.6.10 Optimization Fitness

Custom Optimization Fitnesses can be used when optimizing to help you choose custom

metrics your Strategy can be measured against. The methods and properties covered in this

section are unique to custom Optimization Fitness development.

In this section

OnCalculat

ePerforma

nceValue()

This method calculates the value for the Optimization

Fitness.

Value The value an optimization would be calculating against

when using this Optimization Fitness.

NinjaScript 2779

© 2023 NinjaTrader, LLC

11.6.10.1 OnCalculatePerformanceValue()

Definition
This method calculates the value for the Optimization Fitness.

Syntax
protected override void OnCalculatePerformanceValue(StrategyBase strategy)

{

}

Examples

protected override void OnCalculatePerformanceValue(StrategyBase

strategy)

{

 Value =

strategy.SystemPerformance.AllTrades.TradesPerformance.Percent.Draw

down;

}

11.6.10.2 Value

Definition
The value an optimization would be calculating against when using this Optimization Fitness.

Property Value
A double value.

Syntax
Value

Examples

protected override void OnCalculatePerformanceValue(StrategyBase

strategy)

{

 Value =

strategy.SystemPerformance.AllTrades.TradesPerformance.Percent.Draw

down;

}

NinjaTrader 82780

© 2023 NinjaTrader, LLC

11.6.11 Optimizer

Custom Optimizers can be used to optimize your Strategy through different algorithms.

These may allow you to make trade offs like being able to find adequate results quickly as

opposed to trying to find the absolute best result but through a time consuming process. The

methods and properties covered in this section are unique to custom Optimizer development.

In this section

NumberOfIt

erations

Informs the Strategy Analyzer how many iterations of

optimizing it needs to do.

OnOptimize

()

This method must be overridden in order to optimize a

strategy.

Optimizatio

nParameter

s

The optimization parameters selected for the

optimization run.

RunIteration

()

Runs an iteration of backtesting for the optimizer.

SupportsMul

tiObjectiveO

ptimization

Informs the Strategy Analyzer if this Optimizer can do

multi-objective optimizations.

11.6.11.1 NumberOfIterations

Definition
Informs the Strategy Analyzer how many iterations of optimizing it needs to do.

Property Value
An int value.

Syntax
NumberOfIterations

Examples

NinjaScript 2781

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 Name = "MyOptimizer";

 else if (State == State.Configure && Strategies.Count > 0)

 NumberOfIterations = 1;

}

11.6.11.2 OnOptimize()

Definition
This method must be overridden in order to optimize a strategy. This method is called once

per optimization run (not once per iteration).

Method Return Value
This method does not return a value.

Syntax
You must override the method in your Optimizer with the following syntax.

protected override void OnOptimize()

{

}

Examples

protected override void OnOptimize()

{

 // If there is no optimization objective, return

 if (Strategies[0].OptimizationParameters.Count == 0)

 return;

 // Optimizer logic

}

11.6.11.3 OptimizationParameters

Definition
The optimization parameters selected for the optimization run. (e.g. user parameters or Data

Series)

Property Value

NinjaTrader 82782

© 2023 NinjaTrader, LLC

A bool value.

Syntax
Strategies[0].OptimizationParameters

Examples

protected override void OnOptimize()

{

 // If there are no optimization parameters to optimize, return

 if (Strategies[0].OptimizationParameters.Count == 0)

 return;

 // Do something with the optimization parameter

 Parameter parameter = Strategies[0].OptimizationParameters[0];

}

11.6.11.4 RunIteration()

Definition
Runs an iteration of backtesting for the optimizer

Method Return Value
This method does not return a value.

Syntax
RunIteration()

Examples

protected override void OnOptimize()

{

 // Optimizer logic

 RunIteration();

}

11.6.11.5 SupportsMultiObjectiveOptimization

Definition
Informs the Strategy Analyzer if this Optimizer can do multi-objective optimizations.

Property Value
A bool value.

NinjaScript 2783

© 2023 NinjaTrader, LLC

Syntax
SupportsMultiObjectiveOptimization

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "MyOptimizer";

 SupportsMultiObjectiveOptimization = true;

 }

}

11.6.12 Performance Metrics

Custom Performance Metrics can be used when generating Trade Performance statistics.

Once custom performance metrics are created be sure to enable their usage in Tools >

Options > General or else they will not be available in the Strategy Analyzer or Trade

Performance windows.

In this section

Format() This method allows you to customize the rendering of the

performance value on the Summary grid.

OnAddTra

de()

This method is called as each trade is added.

OnCopyTo

()

Called as the values of a trade metric are saved.

OnMergeP

erformanc

eMetric()

This method is called when the Performance Metric

would be aggregated and merged together.

Performan

ceUnit

Enumeration defining each type of PerformanceUnit

calculated by NinjaTrader. Used to store a value for this

performance type in PerformanceMetrics.

NinjaTrader 82784

© 2023 NinjaTrader, LLC

Values The Values array holds an 5 values corresponding to

each Cbi.PerformanceUnit.

11.6.12.1 Format()

Definition
This method allows you to customize the rendering of the performance value on the

Summary grid.

Syntax
public override string Format(object value, Cbi.PerformanceUnit unit, string

propertyName)

{

}

Examples

public override string Format(object value, Cbi.PerformanceUnit

unit, string propertyName)

{

 double[] tmp = value as double[];

 if (tmp != null && tmp.Length == 5)

 switch (unit)

 {

 case Cbi.PerformanceUnit.Currency : return

Core.Globals.FormatCurrency(tmp[0], denomination);

 case Cbi.PerformanceUnit.Percent : return

tmp[1].ToString("P");

 case Cbi.PerformanceUnit.Pips : return

Math.Round(tmp[

2]).ToString(Core.Globals.GeneralOptions.CurrentCulture);

 case Cbi.PerformanceUnit.Points : return

Math.Round(tmp[

3]).ToString(Core.Globals.GeneralOptions.CurrentCulture);

 case Cbi.PerformanceUnit.Ticks : return

Math.Round(tmp[

4]).ToString(Core.Globals.GeneralOptions.CurrentCulture);

 }

 return value.ToString();

}

NinjaScript 2785

© 2023 NinjaTrader, LLC

11.6.12.2 OnAddTrade()

Definition
This method is called as each trade is added. You would add any custom math you wanted to

do here.

Note: If your performance metric only needs to iterate through all trades at the end to

perform its calculation and does not need to be calculated on each trade then using the

property approach (On demand example) will have less of a performance impact.

Syntax
protected override void OnAddTrade(Cbi.Trade trade)

{

}

Examples

protected override void OnAddTrade(Cbi.Trade trade)

{

 Values[(int)Cbi.PerformanceUnit.Currency] +=

trade.ProfitCurrency;

 Values[(int)Cbi.PerformanceUnit.Percent] +=

trade.ProfitPercent;

 Values[(int)Cbi.PerformanceUnit.Pips] += trade.ProfitPips;

 Values[(int)Cbi.PerformanceUnit.Points] +=

trade.ProfitPoints;

 Values[(int)Cbi.PerformanceUnit.Ticks] +=

trade.ProfitTicks;

}

11.6.12.3 OnCopyTo()

Definition
Called as the values of a trade metric are saved.

Syntax
protected override void OnCopyTo(PerformanceMetricBase target)

{

}

Examples

NinjaTrader 82786

© 2023 NinjaTrader, LLC

protected override void OnCopyTo(PerformanceMetricBase target)

{

 // You need to cast, in order to access the right type

 SampleCumProfit targetMetrics = (target as SampleCumProfit);

 if (targetMetrics != null)

 Array.Copy(Values, targetMetrics.Values, Values.Length);

}

11.6.12.4 OnMergePerformanceMetric()

Definition
This method is called when the Performance Metric would be aggregated and merged

together (E.g. on the Strategy Analyzer's total row).

Syntax
protected override void OnMergePerformanceMetric(PerformanceMetricBase merge)

{

}

Examples

protected override void

OnMergePerformanceMetric(PerformanceMetricBase target)

{

 // You need to cast, in order to access the right type

 SampleCumProfit targetMetrics = (target as SampleCumProfit);

 // This is just a simple weighted average sample

 if (targetMetrics != null && TradesPerformance.TradesCount +

targetMetrics.TradesPerformance.TradesCount > 0)

 for (int i = 0; i < Values.Length; i++)

 targetMetrics.Values[i] = (targetMetrics.Values[i] *

targetMetrics.TradesPerformance.TradesCount + Values[i] *

TradesPerformance.TradesCount) / (TradesPerformance.TradesCount +

targetMetrics.TradesPerformance.TradesCount);

}

11.6.12.5 PerformanceUnit

Definition
Enumeration defining each type of PerformanceUnit calculated by NinjaTrader. Used to store

a value for this performance type in PerformanceMetrics.

Syntax

NinjaScript 2787

© 2023 NinjaTrader, LLC

PerformanceUnit.Currency

PerformanceUnit.Percent

PerformanceUnit.Pips

PerformanceUnit.Points

PerformanceUnit.Ticks

Examples

//Prints unrealized PnL in ticks at the close of each bar

Print(Position.GetUnrealizedProfitLoss(PerformanceUnit.Ticks,

Close[0]));

11.6.12.6 Values

Definition
The Values array holds an 5 values corresponding to each Cbi.PerformanceUnit. NinjaTrader

will then access the Values property to display the calculated performance metric in the UI.

You can also access these performance metrics for a NinjaScript strategy.

Syntax
public double[] Values

{ get; private set; }

Calculating Values OnAddTrade Example

protected override void OnAddTrade(Cbi.Trade trade)

{

 Values[(int)Cbi.PerformanceUnit.Currency] +=

trade.ProfitCurrency;

 Values[(int)Cbi.PerformanceUnit.Percent] = (1.0 +

Values[(int)Cbi.PerformanceUnit.Percent]) * (1.0 +

trade.ProfitPercent) - 1;

 Values[(int)Cbi.PerformanceUnit.Pips] +=

trade.ProfitPips;

 Values[(int)Cbi.PerformanceUnit.Points] +=

trade.ProfitPoints;

 Values[(int)Cbi.PerformanceUnit.Ticks] +=

trade.ProfitTicks;

}

// The attribute determines the name of the performance value on

the grid

[Display("MyPerformanceMetric", Order = 0)]

public double[] Values

{ get; private set; }

NinjaTrader 82788

© 2023 NinjaTrader, LLC

Calculating Values On Demand Example

// The attribute determines the name of the performance value on

the grid

[Display("MyPerformanceMetric", Order = 0)]

public double[] Values

{

 get

 {

 return /*Your custom math here*/

 }

 private set;

}

11.6.13 Share Service

Custom Share Services can be developed in order to enable users to share content from

the NinjaTrader application to various websites and social media networks via the Sharing

Services dialog. NinjaTrader comes pre-configured with Share Services for an Email

adapter and Test message via email adapter, however a custom adapter can be developed

for any website, forum, or social media network by following their public API documentation

and guidelines.

In this section

Charact

erLimit

Determines the maximum number of characters the social

network allows.

Charact

ersRese

rvedPer

Media

Sets the number of characters allowed when attaching an

image to ensure that character count is properly calculated.

Icon The shape which displays within the Share window when

sharing content.

UseOAu

th

If this property is set to true, a Connect button will appear in

the dialogue for configuring the adapter that will call

OnAuthorizeAccount() when the user clicks it.

IsConfig

ured

Sets when the Share Service is correctly configured.

NinjaScript 2789

© 2023 NinjaTrader, LLC

IsDefaul

t

Sets the default Share Service used when the type of

sharing service is selected (email for example).

IsImage

Attachm

entSupp

orted

Determines if the Share Service will allow for images as

attachments.

OnAuth

orizeAc

count()

If the UseOAuth property is set to true, this method will be

called when the user clicks the Connect button in the Share

Services dialogue under Tools -> Options.

OnShar

e()

This method is called when the user clicks OK on the

Share window in NinjaTrader. This method can also be

called by Alerts and general NinjaScript objects.

Signatur

e

Sets the text appended to the end of the user's message.

11.6.13.1 CharacterLimit

Definition
Determines the maximum number of characters the social network allows. Signature, text,

and links all contribute to this character count displayed on the share window.

A value of int.MaxValue determines no practical limit and will make the character count not

appear on the Share window.

Property Value
A int value that represents the maximum number of characters the social network allows.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
CharacterLimit

Examples

NinjaTrader 82790

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

if (State == State.SetDefaults)

{

CharacterLimit = 280;

}

}

11.6.13.2 CharactersReservedPerMedia

Definition
Sets the number of characters allowed when attaching an image to ensure that character

count is properly calculated.

Note: Social networks which limit the number of characters for each post, will have a

defined number of characters that are reserved when an image or other media is

attached.

Property Value
A int value that represents the number of characters reserved when attaching an image or

other media.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
CharactersReservedPerMedia

Examples

protected override void OnStateChange()

{

if (State == State.SetDefaults)

{

CharactersReservedPerMedia = 40;

}

}

NinjaScript 2791

© 2023 NinjaTrader, LLC

11.6.13.3 Icon

Definition
The shape which displays within the Share window when sharing content. Since this is a

standard object, any type of icon can be used (unicode characters, custom image file

resource, geometry path, etc). For more information on using images to create icons, see the

Using Images with Custom Icons page.

Note: When using UniCode characters, first ensure that the desired characters exist in

the icon pack for the font family used in NinjaTrader.

Property Value
A generic virtual object representing the drawing tools menu icon. This property is read-only.

Syntax
You must override this property using the following syntax:

public override object Icon

Examples

public override object Icon

{

 get

 {

 //use a unicode character as our string which will render an

arrow

 string uniCodeArrow = "\u279A";

 return uniCodeArrow;

 }

}

11.6.13.4 UseOAuth

Definition
If this property is set to true, a Connect button will appear in the dialogue for configuring the

adapter that will call OnAuthorizeAccount() when the user clicks it.

Property Value
A bool value determining if the OnAuthorizeAccount() method should be called in order to

authorize the account to the social service.

NinjaTrader 82792

© 2023 NinjaTrader, LLC

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults

Syntax
UseOAuth

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 UseOAuth = true;

 }

}

11.6.13.5 IsConfigured

Definition
Sets when the Share Service is correctly configured. Typically this would be set after the

account is authorized, at which point the adapter will allow for the user to share content to the

sharing service.

Note: It is not required for a Share Service to authorize a user, therefore it is possible to

set IsConfigured to true in State.SetDefaults which will bypass any sort of authorization

or additional setup that may be needed for the share adapter.

Property Value
A bool value when true determines if the Share Adapter is properly configured.

Syntax
IsConfigured

Examples

NinjaScript 2793

© 2023 NinjaTrader, LLC

public override void OnAuthorizeAccount()

{

 //Authorization logic would be here, after success, set

IsConfigured to true.

 IsConfigured = true;

}

11.6.13.6 IsDefault

Definition
Sets the default Share Service used when the type of sharing service is selected.

For example, if you are using two different email adapters, you may set one to be the default

when the user selects the email sharing service. Setting this property as the default would

only apply to any email adapters and would not apply to any other types of sharing services

which have their own respective default adapter.

Property Value
A bool value that represents if the current adapter is default Share Service used for that type

of sharing service.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults

Syntax
Default

Examples

protected override void OnStateChange()

{

if (State == State.SetDefaults)

{

Default = false;

}

}

NinjaTrader 82794

© 2023 NinjaTrader, LLC

11.6.13.7 IsImageAttachmentSupported

Definition
Determines if the Share Service will allow for images as attachments.

Property Value
A bool value when false, screenshots will be unable to be sent to the social network.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
IsImageAttachmentSupported

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsImageAttachmentSupported = false;

 }

}

11.6.13.8 OnAuthorizeAccount()

Definition
If the IsAuthorizationRequired property is set to true, this method will be called when the user

clicks the Connect button in the Share Services dialogue under Tools -> Options. When this

method is called, it will allow you go through the handshake process for authorizing the

account to a sharing service. For example, you can obtain user tokens for posting on their

behalf to social networks using OAuth authentication.

Documentation on the OAuth handshake process can be found from the official OAuth

website: http://oauth.net/code/

Specific documentation for the authorization process for a particular sharing service can be

found on it's public API resources located on their website.

Method Return Value
An asynchronous Task

http://oauth.net/code/
https://msdn.microsoft.com/en-us/library/system.threading.tasks.task.aspx

NinjaScript 2795

© 2023 NinjaTrader, LLC

Parameters
This method does not require any parameters

Syntax
This method is not required to be overridden. You may override the method in your Share

Service with the following syntax if needed:

public override async Task OnAuthorizeAccount()

{

}

Examples

public override async Task OnAuthorizeAccount()

{

 //MyShareServicesToken() is a place holder for an actual API's

token method

 string result = await MyShareServicesToken("myToken");

 // result is also a place holder

 if(result == "APIErrorCode123")

 {

 Print("Unable to authorize token");

 return;

 }

 // please see the your API's OUATH documenation for proper

handshake usage

 else Print("Success!");

}

11.6.13.9 OnShare()

Definition
This method is called when the user clicks OK on the Share window in NinjaTrader. This

method can also be called by Alerts and general NinjaScript objects.

Method Return Value
This method does not return a value

Parameters

text The message being sent to the social network or

other Share provider. This is what appears in the

textbox of the Share window

NinjaTrader 82796

© 2023 NinjaTrader, LLC

imageFilePath Optional path to screenshot or other image to be

sent to the social network or other Share

provider

Syntax

You must override the method in your Share Service with the following syntax.

public override void OnShare(string text, string imageFilePath)

{

}

Examples

public override void OnShare(string text, string imgFilePath)

{

// place your share service logic here

}

11.6.13.10Signature

Definition
Sets the text appended to the end of the user's message. It is uneditable by the user, and

contributes to the character count of the overall message.

You can set it to an empty string if it does not apply to your adapter. In that case, the

Signature label will not appear in the Share window.

Property Value
A string value which is appended to the end of the user's message.

Syntax
Signature

Examples

NinjaScript 2797

© 2023 NinjaTrader, LLC

//example #1, adds text "This message was sent from NinjaTrader" at

the end of the message".

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Signature = "This message was sent from NinjaTrader";

 }

}

//example #2, uses an empty string which does not add any

additional text to the message

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Signature = string.Empty;

 }

}

11.6.14 Strategy

The methods and properties covered in this section are unique to custom strategy

development.

In this section

Account Represents the real-world or simulation Account

configured for the strategy.

AddChartIndi

cator()

Adds an indicator to the strategy only for the purpose

of displaying it on a chart.

AddPerforma

nceMetric()

Adds an instance of custom Performance Metric to a

strategy used in strategy calculations.

ATM Strategy

Methods

Adds ATM strategies to manage your position

BarsRequired

ToTrade

The number of historical bars required before the

strategy starts processing order methods called in the

OnBarUpdate() method.

NinjaTrader 82798

© 2023 NinjaTrader, LLC

BarsSinceEnt

ryExecution()

Returns the number of bars that have elapsed since

the last specified entry.

BarsSinceExi

tExecution()

Returns the number of bars that have elapsed since

the last specified exit.

ChartIndicato

rs

Contains a collection of Indicators which have been

added to the strategy instance using

AddChartIndicator().

CloseStrateg

y()

Cancels all working orders, closes any existing

positions, and finally disables the strategy.

ConnectionLo

ssHandling

Sets the manner in which your strategy will behave

when a connection loss is detected.

DaysToLoad Determines the number of trading days which will be

configured when loading the strategy from the

Strategies Grid.

DefaultQuanti

ty

An order size variable that can be set either

programmatically or overriden via the Strategy that

determines the quantity of an entry order.

DisconnectD

elaySeconds

Determines the amount of time a disconnect would

have to last before connection loss handling takes

action.

EntriesPerDir

ection

Determines the maximum number of entries allowed

per direction while a position is active based on the

EntryHandling property.

EntryHandling Sets the manner in how entry orders will handle.

Execution Represents a read only interface that exposes

information regarding an execution (filled order)

resulting from an order and is passed as a parameter

in the OnExecutionUpdate() method.

ExitOnSessio

nCloseSecon

ds

The number of seconds before the actual session end

time that the "IsExitOnSessionCloseStrategy" function

will trigger.

NinjaScript 2799

© 2023 NinjaTrader, LLC

IncludeCom

mission

Determines if the strategy performance results will

include commission on a historical backtest.

IncludeTrade

HistoryInBack

test

Determines if the strategy will save orders, trades,

and execution history.

IsAdoptAccou

ntPositionAw

are

Determines if the strategy is programmed in a manner

capable of handling real-world account positions.

IsExitOnSess

ionCloseStrat

egy

Determines if the strategy will cancel all strategy

generated orders and close all open strategy positions

at the close of the session.

IsFillLimitOnT

ouch

Determines if the strategy will use a more liberal fill

algorithm for back-testing purposes only.

IsInstantiated

OnEachOpti

mizationIterati

on

Determines if the strategy should be re-instantiated

(re-created) after each optimization run when using

the Strategy Analyzer Optimizer.

IsInStrategyA

nalyzer

Determines if the current NinjaScript Strategy is run

from a Strategy Analyzer chart.

IsTradingHou

rsBreakLineVi

sible

Plots trading hours break lines on the indicator panel.

IsWaitUntilFla

t

Indicates the strategy is currently waiting until a flat

position is detected before submitting live orders.

NumberRest

artAttempts

Determines the maximum number of restart attempts

allowed within the last x minutes defined in

RestartsWithinMinutes when the strategy experiences

a connection loss.

OnAccountIte

mUpdate()

An event driven method used for strategies which is

called for each AccountItem update for the account on

which the strategy is running.

NinjaTrader 82800

© 2023 NinjaTrader, LLC

OnExecution

Update()

An event driven method which is called on an

incoming execution of an order managed by a

strategy.

OnOrderTrac

e()

An event driven method used for strategies which will

allow you to customize the output of TraceOrders.

OnOrderUpd

ate()

An event driven method which is called each time an

order managed by a strategy changes state.

OnPositionUp

date()

An event driven method which is called each time the

position of a strategy changes state.

Optimization

Period

Reserved for Walk-Forward Optimization, this

property determines the number of days used for the

"in sample" backtest period for a given strategy. See

also TestPeriod.

Order Represents a read only interface that exposes

information regarding an order.

Order

Methods

NinjaScript provides several approaches you can use

for order placement within your NinjaScript strategy.

OrderFillRes

olution

Determines how strategy orders are filled during

historical states.

OrderFillRes

olutionType

Determines the bars type which will be used for

historical fill processing.

OrderFillRes

olutionValue

Determines the bars period interval value which will be

used for historical fill processing.

Performance

Metrics

Holds an array of PerformanceMetrics objects that

represent custom metrics that can be used for

strategy calcuations.

Plots A collection holding all of the Plot objects that define

their visualization characteristics.

Position Represents position related information that pertains

to an instance of a strategy.

NinjaScript 2801

© 2023 NinjaTrader, LLC

PositionAcco

unt

Represents position related information that pertains

to real-world account (live or simulation).

Positions Holds an array of Position objects that represent

positions managed by the strategy.

PositionsAcc

ount

Holds an array of PositionAccount objects that

represent positions managed by the strategy's

account.

RealtimeErro

rHandling

Defines the behavior of a strategy when a strategy

generated order is returned from the broker's server in

a "Rejected" state.

RestartsWithi

nMinutes

Determines within how many minutes the strategy will

attempt to restart.

SetOrderQua

ntity

Determines how order sizes are calculated for a given

strategy.

Slippage Sets the amount of slippage in ticks per execution

used in performance calculations during backtests.

StartBehavior Sets the start behavior of the strategy. See Syncing

Account Positions for more information.

StopTargetHa

ndling

Determines how stop and target orders are submitted

during an entry order execution.

StrategyBase

Converter

A custom TypeConverter class handling the designed

behavior of an strategy's property descriptor

collection.

SystemPerfor

mance

The SystemPerformance object holds all trades and

trade performance data generated by a strategy.

TestPeriod Reserved for Walk-Forward Optimization, this

property determines the number of days used for the

"out of sample" backtest period for a given strategy.

TimeInForce Sets the time in force property for all orders generated

by a strategy.

NinjaTrader 82802

© 2023 NinjaTrader, LLC

TraceOrders Determines if OnOrderTrace() would be called for a

given strategy.

Trade A Trade is a completed buy/sell or sell/buy

transaction. It consists of an entry and exit execution.

TradeCollecti

on

A collection of Trade objects.

TradesPerfor

manceValues

Performance values of a collection of Trade objects.

WaitForOco

ClosingBrack

et

Determines if the strategy will submit both legs of an

OCO bracket before submitting the pair to the broker.

11.6.14.1 Account

Definition
Represents the real-world or simulation Account configured for the strategy.

Property Value
An Account object configured for the strategy

Syntax
Account

Examples

//Displays text on chart indicating what account the strategy is

applied to

Draw.TextFixed(this, "tag1", "Strategy is applied to " +

Account.Name, TextPosition.BottomRight);

11.6.14.2 AddChartIndicator()

Definition
Adds an indicator to the strategy only for the purpose of displaying it on a chart.

Notes:

· Only the Plot properties of an indicator added by AddChartIndicator() will be accessible

in the Indicators dialogue on charts. Other properties must be set in code.

NinjaScript 2803

© 2023 NinjaTrader, LLC

· To add Bars objects to your strategy for calculation purposes see the AddDataSeries()

method.

· An indicator being added via AddChartIndicator() cannot use any additional data series

hosted by the calling strategy, but can only use the strategy's primary data series. If you

wish to use a different data series for the indicator's input, you can add the series in the

indicator itself and explicitly reference it in the indicator code (please make sure though

the hosting strategy has the same AddDataSeries() call included as well)

o If a secondary or null Bars series is specified by the calling strategy (not the indicator

itself), the strategy's primary series will be substituted instead.

· Dynamically using DrawOnPricePanel in an indicator outside of State.SetDefaults may

show issues when working with that indicator through a hosting strategy via

AddChartIndicator().

Method Return Value
This method does not return a value.

Syntax
AddChartIndicator(IndicatorBase indicator)

Warning: This method should ONLY be called from the OnStateChange() method during

State.DataLoaded

Parameters

indicator An indicator object

Examples

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 // Charts a 20 period simple moving average to the chart

 AddChartIndicator(SMA(20));

 }

}

NinjaTrader 82804

© 2023 NinjaTrader, LLC

Tip: If you are adding an indicator which is dependent on the correct State of the

indicator, you will need to ensure that you are also calling the indicator from the strategy in

OnBarUpdate(), otherwise your indicator will only process in State.RealTime for

performance optimizations.

protected override void OnStateChange()

{

 if (State == State.DataLoaded)

 {

 // Charts a 20 period simple moving average to the chart

 AddChartIndicator(SMA(20));

 }

}

protected override void OnBarUpdate()

{

 // call SMA() historically to ensure the indicator processes its

historical states as well

 double sma = SMA(20)[0];

}

11.6.14.3 AddPerformanceMetric()

Definition
Adds an instance of custom Performance Metric to a strategy used in strategy calculations.

Method Return Value
This method does not return a value.

Syntax
AddPerformanceMetric(PerformanceMetricBase performanceMetric)

Warning: This method should ONLY be called from the OnStateChange() method during

State.Configure

Parameters

performanceMetric The performance metric object to be added

NinjaScript 2805

© 2023 NinjaTrader, LLC

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 AddPerformanceMetric(new

NinjaTrader.NinjaScript.PerformanceMetrics.SampleCumProfit());

 }

}

11.6.14.4 ATM Strategy Methods

ATM Strategy Methods

From a NinjaScript strategy it is possible to use ATM strategies to manage your positions.

Benefit of such an approach is that you can use the NinjaScript strategy to generate

automated entry signals and once entered, you can delegate exit management to an ATM

strategy which allows you degrees of manual control over how to close out of a trade.

For more information please see the Using ATM Strategies section.

ATM Strategy Management
› AtmStrategyCancelEntryOrder()

› AtmStrategyChangeEntryOrder()

› AtmStrategyChangeStopTarget()

› AtmStrategyClose()

› AtmStrategyCreate()

ATM Strategy Monitoring
› GetAtmStrategyEntryOrderStatus()

› GetAtmStrategyMarketPosition()

› GetAtmStrategyPositionAveragePrice()

› GetAtmStrategyPositionQuantity()

› GetAtmStrategyRealizedProfitLoss()

› GetAtmStrategyStopTargetOrderStatus()

› GetAtmStrategyUniqueId()

› GetAtmStrategyUnrealizedProfitLoss()

11.6.14.4.1 AtmStrategyCancelEntryOrder()

Definition
Cancels the specified entry order determined by the string "orderId" parameter.

Notes:

1. This method is intended ONLY for orders submitted as Atm Entry Orders and

assumes the OrderState is NOT terminal (i.e., Cancelled, Filled, Rejected, Unknown).

NinjaTrader 82806

© 2023 NinjaTrader, LLC

2. If the specified order does not exist, the method returns false and an error is logged.

Method Return Value
Returns true if the specified order was found; otherwise false.

Syntax
AtmStrategyCancelEntryOrder(string orderId)

Warning: This method should ONLY be called once the strategy State has reached

State.Realtime

Parameters

orderId The unique identifier for the entry order

Examples

protected override void OnBarUpdate()

{

 // ATM strategy methods only work during real-time

 if (State != State.Realtime)

 return;

 string[] entryOrder = GetAtmStrategyEntryOrderStatus("orderId");

 // checks if the entry order exists

 // and the order state is not already cancelled/filled/rejected

 if (entryOrder.Length > 0 && entryOrder[2] == "Working")

 {

 AtmStrategyCancelEntryOrder("orderId");

 }

}

11.6.14.4.2 AtmStrategyChangeEntryOrder()

Definition
Changes the price of the specified entry order.

Method Return Value
Returns true if the specified order was found; otherwise false.

NinjaScript 2807

© 2023 NinjaTrader, LLC

Syntax
AtmStrategyChangeEntryOrder(double limitPrice, double stopPrice, string orderId)

Parameters

limitPrice Order limit price

stopPrice Order stop price

orderId The unique identifier for the entry order

Examples

protected override void OnBarUpdate()

{

 AtmStrategyChangeEntryOrder(GetCurrentBid(), 0,

"orderIdValue");

}

11.6.14.4.3 AtmStrategyChangeStopTarget()

Definition
Changes the price of the specified order of the specified ATM strategy.

Method Return Value
Returns true if the specified order was found; otherwise false.

Syntax
AtmStrategyChangeStopTarget(double limitPrice, double stopPrice, string orderName,

string atmStrategyId)

Parameters

limitPrice Order limit price

stopPrice Order stop price

orderName The order name such as "Stop1" or "Target2"

atmStrategyId The unique identifier for the ATM strategy

NinjaTrader 82808

© 2023 NinjaTrader, LLC

Examples

protected override void OnBarUpdate()

{

 AtmStrategyChangeStopTarget(0, SMA(10)[0], "Stop1",

"AtmIdValue");

}

11.6.14.4.4 AtmStrategyClose()

Definition
Cancels any working orders and closes any open position of a strategy using the default ATM

strategy close behavior.

Method Return Value
Returns true if the specified ATM strategy was found; otherwise false.

Note: A method return value of true in NO WAY indicates that the strategy in fact is

closed. It indicates that the the specified ATM strategy was found and the internal close

routine was triggered.

Syntax
AtmStrategyClose(string atmStrategyId)

Parameters

atmStrategyId The unique identifier for the ATM strategy

Examples

protected override void OnBarUpdate()

{

 // Check for valid condition and create an ATM Strategy

 if (GetAtmStrategyUnrealizedProfitLoss("idValue") > 500)

 AtmStrategyClose("idValue");

}

NinjaScript 2809

© 2023 NinjaTrader, LLC

11.6.14.4.5 AtmStrategyCreate()

Definition
Submits an entry order that will execute a specified ATM Strategy.

Notes:

· Please review the section on using ATM Strategies

· This method is NOT backtestable and will NOT execute on historical data

· See the AtmStrategyCancelEntryOrder() to cancel an entry order

· See the AtmStrategyChangeEntryOrder() to change the price of the entry order

· The ATM Strategy will be created asyncronous on the hosting NinjaScripts UI Thread, a

callback is provided solely to check when the ATM Strategy is started on that thread -

accessing for example price data in that outside OnBarUpdate() context is not

possible.

· Please see the SampleATMStrategy build into NinjaTrader for example usage.

Method Return Value
This method does not return a value

Syntax
AtmStrategyCreate(OrderAction action, OrderType orderType, double limitPrice, double

stopPrice, TimeInForce timeInForce, string orderId, string strategyTemplateName,

string atmStrategyId, Action<Cbi.ErrorCode, string> callback)

Parameters

action Sets if the entry order is a buy or sell order

Possible values are:

· OrderAction.Buy

· OrderAction.Sell

orderType Sets the order type of the entry order

Possible values are:

· OrderType.Limit

· OrderType.Market

· OrderType.MIT

NinjaTrader 82810

© 2023 NinjaTrader, LLC

· OrderType.StopMarket

· OrderType.StopLimit

limitPrice The limit price of the order

stopPrice The stop price of the order

timeInForce Sets the time in force of the entry order

Possible values are:

· TimeInForce.Day

· TimeInForce.Gtc

orderId The unique identifier for the entry order

strategyTemplateN

ame

Specifies which strategy template will be used

atmStrategyId The unique identifier for the ATM strategy

callback The callback action is used to check that the

ATM Strategy is successfully started

Tip: Unlike NinjaScript Strategy orders (both managed and unmanaged), ATM strategies

generated by the AtmStrategyCreate() method can then be managed manually by any

order entry window such as the SuperDOM or within your NinjaScript strategy.

Examples

NinjaScript 2811

© 2023 NinjaTrader, LLC

private string atmStrategyId;

private string atmStrategyOrderId;

private bool isAtmStrategyCreated = false;

protected override void OnBarUpdate()

{

 if (State < State.Realtime)

 return;

 if (Close[0] > SMA(20)[0])

 {

 atmStrategyId = GetAtmStrategyUniqueId();

 atmStrategyOrderId = GetAtmStrategyUniqueId();

 AtmStrategyCreate(OrderAction.Buy, OrderType.Market, 0, 0,

TimeInForce.Day,

 atmStrategyOrderId, "MyTemplate", atmStrategyId,

(atmCallbackErrorCode, atmCallbackId) => {

 // checks that the call back is returned for the

current atmStrategyId stored

 if (atmCallbackId == atmStrategyId)

 {

 // check the atm call back for any error codes

 if (atmCallbackErrorCode == Cbi.ErrorCode.NoError)

 {

 // if no error, set private bool to true to

indicate the atm strategy is created

 isAtmStrategyCreated = true;

 }

 }

 });

 }

 if(isAtmStrategyCreated)

 {

 // atm logic

 }

 else if(!isAtmStrategyCreated)

 {

 // custom handling for a failed atm Strategy

 }

}

NinjaTrader 82812

© 2023 NinjaTrader, LLC

11.6.14.4.6 GetAtmStrategyEntryOrderStatus()

Definition
Gets the current state of the specified entry order.

Note: If the method can't find the specified order, an empty array is returned.

Method Return Value
A string[] array holding three elements that represent average fill price, filled amount and

order state.

Syntax
GetAtmStrategyEntryOrderStatus(string orderId)

Parameters

orderId The unique identifier for the entry order

Examples

protected override void OnBarUpdate()

{

 string[] entryOrder =

GetAtmStrategyEntryOrderStatus("orderId");

 // Check length to ensure that returned array holds order

information

 if (entryOrder.Length > 0)

 {

 Print("Average fill price is " +

entryOrder[0].ToString());

 Print("Filled amount is " + entryOrder[1].ToString());

 Print("Current state is " + entryOrder[2].ToString());

 }

}

11.6.14.4.7 GetAtmStrategyMarketPosition()

Definition
Gets the current market position of the specified ATM Strategy.

Notes:

NinjaScript 2813

© 2023 NinjaTrader, LLC

1. Changes to positions will not be reflected till at least the next OnBarUpdate() event after

an order fill.

2. If the ATM Strategy does not exist then MarketPosition.Flat returns

3. Please note this provides access to the current ATM strategy position, which should not

be confused with the NinjaScript strategy position or account position. For more

information please see the Using ATM Strategies section.

Method Return Value
MarketPosition.Flat

MarketPosition.Long

MarketPosition.Short

Syntax
GetAtmStrategyMarketPosition(string atmStrategyId)

Parameters

atmStrategyId The unique identifier for the ATM strategy

Examples

protected override void OnBarUpdate()

{

 // Check if flat

 if (GetAtmStrategyMarketPosition("id") == MarketPosition.Flat)

 Print("ATM Strategy position is currently flat");

}

11.6.14.4.8 GetAtmStrategyPositionAveragePrice()

Definition
Gets the current position's average price of the specified ATM Strategy.

Note: Changes to positions will not be reflected till at least the next OnBarUpdate() event

after an order fill.

Method Return Value
A double value representing the average price.

Syntax

NinjaTrader 82814

© 2023 NinjaTrader, LLC

GetAtmStrategyPositionAveragePrice(string atmStrategyId)

Parameters

atmStrategyId The unique identifier for the ATM strategy

Examples

protected override void OnBarUpdate()

{

 // Check if flat

 if (GetAtmStrategyMarketPosition("id") != MarketPosition.Flat)

 Print("Average price is " +

GetAtmStrategyPositionAveragePrice("id").ToString());

}

11.6.14.4.9 GetAtmStrategyPositionQuantity()

Definition
Gets the current position quantity of the specified ATM Strategy.

Note: Changes to positions will not be reflected till at least the next OnBarUpdate() event

after an order fill.

Method Return Value
An int value representing the quantity.

Syntax
GetAtmStrategyPositionQuantity(string atmStrategyId)

Parameters

atmStrategyId The unique identifier for the ATM strategy

Examples

NinjaScript 2815

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Check if flat

 if (GetAtmStrategyMarketPosition("idValue") !=

MarketPosition.Flat)

 Print("Position size is " +

GetAtmStrategyPositionQuantity("id").ToString());

}

11.6.14.4.10 GetAtmStrategyRealizedProfitLoss()

Definition
Gets the realized profit and loss value of the specified ATM Strategy.

Method Return Value
A double value representing the realized profit and loss.

Syntax
GetAtmStrategyRealizedProfitLoss(string atmStrategyId)

Parameters

atmStrategyId The unique identifier for the ATM strategy

Examples

protected override void OnBarUpdate()

{

 Print("PnL is " +

GetAtmStrategyRealizedProfitLoss("id").ToString());

}

11.6.14.4.11 GetAtmStrategyStopTargetOrderStatus()

Definition
Gets the current order state(s) of the specified stop or target order of a still-active ATM

strategy.

Notes:

1. If the method can't find the specified order(s), an empty array is returned.

NinjaTrader 82816

© 2023 NinjaTrader, LLC

2. A specified stop or target within an ATM strategy can actually hold multiple orders. For

example, if your ATM strategy submits a stop and target and you receive multiple partial

fills on entry with a delay of a few seconds or more between entry fills, the ATM

strategy will submit stop and target orders for each partial fill all with the same price

and order type.

Method Return Value
A string[,] multi-dimensional array holding three dimensions that represent average fill price,

filled amount and order state. The length (number of elements) represents the number of

orders that represent the specified name.

Syntax
GetAtmStrategyStopTargetOrderStatus(string orderName, string atmStrategyId)

Parameters

orderName The order name such as "Stop1" or "Target2"

atmStrategyId The unique identifier for the ATM strategy

Examples

NinjaScript 2817

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 string[,] orders =

GetAtmStrategyStopTargetOrderStatus("Target1", "idValue");

 // Check length to ensure that returned array holds order

information

 if (orders.Length > 0)

 {

 for (int i = 0; i < orders.GetLength(0); i++)

 {

 Print("Average fill price is " + orders[i,

0].ToString());

 Print("Filled amount is " + orders[i,

1].ToString());

 Print("Current state is " + orders[i,

2].ToString());

 }

 }

}

11.6.14.4.12 GetAtmStrategyUnrealizedProfitLoss()

Definition
Gets the unrealized profit and loss value of the specified ATM Strategy.

Method Return Value
A double value representing the unrealized profit and loss.

Syntax
GetAtmStrategyUnrealizedProfitLoss(string atmStrategyId)

Parameters

atmStrategyId The unique identifier for the ATM strategy

Examples

protected override void OnBarUpdate()

{

 Print("Unrealized PnL is " +

GetAtmStrategyUnrealizedProfitLoss("id").ToString());

}

NinjaTrader 82818

© 2023 NinjaTrader, LLC

11.6.14.4.13 GetAtmStrategyUniqueId()

Definition
Generates a unique ATM Strategy ID value.

Method Return Value
A string value representing a unique id value.

Syntax
GetAtmStrategyUniqueId()

Parameters
This method does use take any parameters.

Examples

protected override void OnBarUpdate()

{

 string orderId = GetAtmStrategyUniqueId();

}

11.6.14.5 BarsRequiredToTrade

Definition
The number of historical bars required before the strategy starts processing order methods

called in the OnBarUpdate() method. This property is generally set via the UI when starting a

strategy.

Note: In a multi-series strategy this restriction applies only for the primary Bars object.

This means your can run into situations where the primary bars required to trade have

been reached, but the additional bars required have not. Should your strategy logic

intertwine calculations across different Bars objects please ensure all Bars objects have

met the BarsRequiredToTrade requirement before proceeding. This can be done via

checks on the CurrentBars array.

Property Value
An int value representing the number of historical bars. Default value is set to 20.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

NinjaScript 2819

© 2023 NinjaTrader, LLC

Syntax
BarsRequiredToTrade

Tip: When working with a multi-series strategy, real-time bar update events for a

particular Bars object are only received when that Bars object has satisfied the

BarsRequiredToTrade requirement. To ensure this requirement is met, please use the

CurrentBars array.

Examples

 Setting the default BarsRequiredToTrade value

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 BarsRequiredToTrade = 20;

 }

}

NinjaTrader 82820

© 2023 NinjaTrader, LLC

Checking BarsRequiredToTrade againt a CurrentBars array

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 BarsRequiredToTrade = 20;

 }

 else if (State == State.Configure)

 {

 // add 30 minute series for calcuation logic

 AddDataSeries(BarsPeriodType.Minute, 30);

 }

}

protected override void OnBarUpdate()

{

 // do not process order logic until bars required to trade

is met

 // for both primary and 30-minute series have reached their

bars required to trade

 if (CurrentBars[0] < BarsRequiredToTrade || CurrentBars[1]

< BarsRequiredToTrade)

 return;

 //order logic

}

11.6.14.6 BarsSinceEntryExecution()

Definition
Returns the number of bars that have elapsed since the last entry. When a signal name is

provided, the number of bars that have elapsed since that last specific entry will be returned.

Method Return Value
An int value that represents a number of bars. A value of -1 will be returned if a previous entry

does not exist.

Syntax
BarsSinceEntryExecution()

BarsSinceEntryExecution(string signalName)

The following method signature should be used when working with multi-time frame and

instrument strategies:

NinjaScript 2821

© 2023 NinjaTrader, LLC

BarsSinceEntryExecution(int barsInProgressIndex, string signalName, int

entryExecutionsAgo)

Note: When working with a multi-series strategy the BarsSinceEntryExecution() will return

you the elapsed bars as determined by the first Bars object for the instrument specified by

the barsInProgressIndex.

Parameters

signalName The signal name of an entry order specified in an

order entry method.

barsInProgressInd

ex

The index of the Bars object the entry order was

submitted against.

Note: See the BarsInProgress property.

entryExecutionsAg

o

Number of entry executions ago. Pass in 0 for

the number of bars since the last entry

execution.

Examples

protected override void OnBarUpdate()

{

 if (CurrentBar < BarsRequiredToTrade)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterLong();

}

11.6.14.7 BarsSinceExitExecution()

Definition
Returns the number of bars that have elapsed since the last exit. When a signal name is

provided, the number of bars that have elapsed since that last specific exit will be returned.

NinjaTrader 82822

© 2023 NinjaTrader, LLC

Method Return Value
An int value that represents a number of bars. A value of -1 will be returned if a previous exit

does not exist.

Syntax
BarsSinceExitExecution()
BarsSinceExitExecution(string signalName)

The following method signature should be used when working with multi-time frame and

instrument strategies:

BarsSinceExitExecution(int barsInProgressIndex, string signalName, int

exitExecutionsAgo)

Note: When working with a multi-series strategy the BarsSinceExitExecution() will return

you the elapsed bars as determined by the first Bars object for the instrument specified in

the barsInProgressIndex.

Parameters

signalName The signal name of an exit order specified in an

order exit method.

barsInProgressInd

ex

The index of the Bars object the entry order was

submitted against.

Note: See the BarsInProgress property.

exitExecutionsAgo Number of exit executions ago. Pass in 0 for the

number of bars since the last exit execution.

Tip: Please see SetStopLoss(), SetProfitTarget() or SetTrailStop() for their corresponding

signal name

Examples

NinjaScript 2823

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < BarsRequiredToTrade)

 return;

 // Only enter if at least 10 bars has passed since our last exit

or if we have never traded yet

 if ((BarsSinceExitExecution() > 10 || BarsSinceExitExecution()

== -1) && CrossAbove(SMA(10), SMA(20), 1))

 EnterLong();

}

11.6.14.8 ChartIndicators

Definition
Contains a collection of Indicators which have been added to the strategy instance using

AddChartIndicator().

Property Value
An Indicator object

Syntax
ChartIndicators[int index]

Examples

if (State == State.DataLoaded)

{

 AddChartIndicator(SMA(20));

 // Set the plots color for the added indicator

 ChartIndicators[0].Plots[0].Brush = Brushes.Blue;

 // Set the added indicator to panel 1 (specified index needs to

be >= 1)

 ChartIndicators[0].Panel = 1;

}

11.6.14.9 CloseStrategy()

Definition
Cancels all working orders, closes any existing positions, and finally disables the strategy.

This behavior can also be overridden for a given strategy if desired.

NinjaTrader 82824

© 2023 NinjaTrader, LLC

Notes:

· If you choose to override this method using custom logic, the default behavior of the

CloseStrategy() method will NOT be executed. For this reason, it is suggested to call

the base implementation of CloseStrategy() method within the virtual override to ensure

that the strategy is terminated as designed, otherwise it is your responsibility to correctly

manage any working orders or positions.

· CloseStrategy() will work of the current strategy position and will not factor in any

StartBehavior setting, i.e. calling CloseStrategy() while the script is in a virtual historical

position could result in an unwanted position

· The default CloseStrategy() handling will be applied to all series of a MultiSeries
NinjaScript strategy.

Method Return Value
This method does not return a value.

Syntax
CloseStrategy(string signalName)

Warning: This method can only be call before the State has reached State.Terminated

and after the State reaches State.Realtime

You may choose to override this method using the following syntax:

public override void CloseStrategy(string signalName)

{

}

Parameters

signalName The signal name which will be used to identify

the closing order. If no signal name exists or is

null, "Close" will be substituted instead.

Examples

NinjaScript 2825

© 2023 NinjaTrader, LLC

 Basic usage of CloseStrategy

DateTime StartTime = new DateTime();

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "ExampleStrategy";

 }

 else if (State == State.Transition)

 StartTime = Core.Globals.Now;

}

protected override void OnBarUpdate()

{

 // if we're still in position 45 minutes after the start time,

close strategy

 if(Position.MarketPosition != MarketPosition.Flat && Time[0] >=

StartTime.AddMinutes(45))

 CloseStrategy("My Custom Close");

}

 Overriding the Default CloseStrategy logic

public override void CloseStrategy(string signalName)

{

 Print("Executing Custom Close Logic");

 // custom close logic

 // call default close action

 base.CloseStrategy(signalName);

}

11.6.14.10ConnectionLossHandling

Definition
Sets the manner in which your strategy will behave when a connection loss is detected.

When using ConnectionLossHandling.Recalculate, recalculations will only occur if the

strategy was stopped based on the conditions below. Should the connection be reestablished

before the strategy was stopped, the strategy will continue running without recalculating as if

no disconnect occurred.

· If data feed disconnects for longer than the time specified in DisconnectDelaySeconds,

the strategy is stopped.

· If the order feed disconnects and the strategy places an order action while

disconnected, the strategy is stopped.

NinjaTrader 82826

© 2023 NinjaTrader, LLC

· If both the data and order feeds disconnect for longer than the time specified in

DisconnectDelaySeconds, the strategy is stopped.

Property Value
An enum determining how the strategy will behave. Default value is set to

ConnectionLossHandling.Recalculate Possible values are:

ConnectionLossHandling.KeepRu

nning

Keeps the strategy running.

When the connection is

reestablished the strategy will

resume as if no disconnect

occurred.

ConnectionLossHandling.Recalcu

late

Strategies will attempt to

recalculate its strategy position

when a connection is

reestablished.

ConnectionLossHandling.StopStr

ategy

 Automatically stops the strategy

when disconnected for more than

DisconnectDelaySeconds. No

action will be taken when a

connection is reestablished.

Syntax
ConnectionLossHandling

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Keeps the strategy running as if no disconnect

occurred

 ConnectionLossHandling =

ConnectionLossHandling.KeepRunning;

 }

}

NinjaScript 2827

© 2023 NinjaTrader, LLC

11.6.14.11DaysToLoad

Definition
Determines the number of trading days which will be configured when loading the strategy

from the Strategies Grid.

Notes:

1. This property does NOT affect a strategy configured of a Chart or the Strategy

Analyzer.

2. A trading day is defined by a Trading Hour template

Property Value
An int value determining the number of trading days to load for historical data processing.

Default value is 5, but can be configured and overridden from the UI.

Syntax
DaysToLoad

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 DaysToLoad = 15;

 }

}

11.6.14.12DefaultQuantity

Definition
An order size variable that can be set either programmatically or overriden via the Strategy

that determines the quantity of an entry order.

Property Value
An int value represents the number of contracts or shares to enter a position with. Default

value is 1.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

NinjaTrader 82828

© 2023 NinjaTrader, LLC

Syntax
DefaultQuantity

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 DefaultQuantity = 1;

 }

}

11.6.14.13DisconnectDelaySeconds

Definition
Determines the amount of time a disconnect would have to last before connection loss

handling takes action.

Property Value
An int value represents the time required for a disconnect to last before connection loss

handling actions will occur. Default value is 10.

Syntax
DisconnectDelaySeconds

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Disconnect has to be at least 10 seconds

 DisconnectDelaySeconds = 10;

 }

}

11.6.14.14EntriesPerDirection

Definition
Determines the maximum number of entries allowed per direction while a position is active

based on the EntryHandling property.

NinjaScript 2829

© 2023 NinjaTrader, LLC

Note: This property ONLY applies to Managed order methods. When IsUnmanaged is

set to true, Entry Handling properties will be hidden from the UI.

Property Value
An int value represents the maximum number of entries allowed. Default value is 1.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
EntriesPerDirection

Examples

 If an open position already exists, subsequent EnterLong() calls
are ignored.

// Example #1

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 EntriesPerDirection = 1;

 EntryHandling = EntryHandling.AllEntries;

 }

}

protected override void OnBarUpdate()

{

 if (CrossAbove(SMA(10), SMA(20), 1)

 EnterLong("SMA Cross Entry");

 if (CrossAbove(RSI(14, 3), 30, 1)

 EnterLong("RSI Cross Entry);

}

NinjaTrader 82830

© 2023 NinjaTrader, LLC

 EnterLong() will be processed once for each uniquely named
entry.

// Example #2

protected override void OnStateChange()

{

 EntriesPerDirection = 1;

 EntryHandling = EntryHandling.UniqueEntries;

}

protected override void OnBarUpdate()

{

 if (CrossAbove(SMA(10), SMA(20), 1)

 EnterLong("SMA Cross Entry");

 if (CrossAbove(RSI(14, 3), 30, 1)

 EnterLong("RSI Cross Entry);

}

11.6.14.15EntryHandling

Definition
Sets the manner in how entry orders will handle.

Note: This property ONLY applies to Managed order methods. When IsUnmanaged is

set to true, Entry Handling properties will be hidden from the UI.

Property Value
An enum which sets how the entry orders are handled. Default value is

EntryHandling.AllEntries. Possible values include:

EntryHandling.AllEntries NinjaScript will process all order

entry methods until the maximum

allowable entries set by the

EntriesPerDirection property is

reached while in an open position

EntryHandling.UniqueEntries NinjaScript will process order

entry methods until the maximum

allowable entries set by the

EntriesPerDirection property per

each uniquely named entry

NinjaScript 2831

© 2023 NinjaTrader, LLC

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
EntryHandling

Examples

 Allow a maximum of two entries while a position is open

// Example #1

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 EntriesPerDirection = 2;

 EntryHandling = EntryHandling.AllEntries;

 }

}

protected override void OnBarUpdate()

{

 if (CrossAbove(SMA(10), SMA(20), 1)

 EnterLong("SMA Cross Entry");

}

NinjaTrader 82832

© 2023 NinjaTrader, LLC

 EnterLong() will be processed once for each uniquely named
entry.

// Example #2

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 EntriesPerDirection = 1;

 EntryHandling = EntryHandling.UniqueEntries;

 }

}

protected override void OnBarUpdate()

{

 if (CrossAbove(SMA(10), SMA(20), 1)

 EnterLong("SMA Cross Entry");

 if (CrossAbove(RSI(14, 3), 30, 1)

 EnterLong("RSI Cross Entry");

}

11.6.14.16Execution

Definition
Represents a read only interface that exposes information regarding an execution (filled

order) resulting from an order and is passed as a parameter in the OnExecutionUpdate()

method.

Note: Not all executions will have associated Order objects (e.g ExitOnSessionClose

executions or AtmStrategyCreate() executions)

Methods and Properties

Account The Account the execution

occurred

BarsInProgress An int value representing the

BarsArray in which the execution

occurred

Commission A double value representing the

commission of an execution

NinjaScript 2833

© 2023 NinjaTrader, LLC

ExecutionId A string value representing the

exchange generated execution id

Instrument An Instrument value representing

the instrument of an order

MarketPosition The position of the execution.

Possible values are:

· MarketPosition.Long

· MarketPosition.Short

Name A string representing the name

of an order which can be provided

by the entry or exit signal name

Order An Order value representing an

order associated to the

execution.

OrderId A string representing the unique

id of the order which was

executed

Position An int value represents the

current quantity of account

position at the time of execution

PositionStrategy An int value represents the

current quantity of strategy

position at the time of execution

Price A double value representing the

price of an execution

Quantity An int value representing quantity

of an execution

Rate A double value representing the

exchange rate calculated for non-

NinjaTrader 82834

© 2023 NinjaTrader, LLC

USD base products (1 if no rate

was applied)

Slippage A double value representing the

number of ticks calculated

between the last trade price and

the execution price

Time A DateTime structure

representing the time the

execution occurred

ToString() A string representation of an

execution

Examples

 Finding the executions of a particular Order object

// Example #1

private Order entryOrder = null;

protected override void OnBarUpdate()

{

 if (entryOrder == null && Close[0] > Open[0])

 EnterLong("myEntryOrder");

}

protected override void OnExecutionUpdate(Execution execution,

string executionId, double price, int quantity, MarketPosition

marketPosition, string orderId, DateTime time)

{

 // Assign entryOrder in OnExecutionUpdate() to ensure the

assignment occurs when expected.

 // This is more reliable than assigning Order objects in

OnBarUpdate, as the assignment is not guaranteed to be complete if

it is referenced immediately after submitting

 if (execution.Order.Name == "myEntryOrder" &&

execution.Order.OrderState == OrderState.Filled)

 entryOrder = execution.order;

 if (entryOrder != null && entryOrder == execution.Order)

 Print(execution.ToString());

}

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaScript 2835

© 2023 NinjaTrader, LLC

 Generic execution logic not specific to a particular Order
object

// Example #2

protected override void OnExecutionUpdate(Execution execution,

string executionId, double price, int quantity, MarketPosition

marketPosition, string orderId, DateTime time)

{

 // Remember to check the underlying Order object for null

before trying to access its properties

 if (execution.Order != null && execution.Order.OrderState ==

OrderState.Filled)

 Print(execution.ToString());

}

11.6.14.17ExitOnSessionCloseSeconds

Definition
The number of seconds before the actual session end time that the

"IsExitOnSessionCloseStrategy" function will trigger.

The time from which this property will be calculated is taken from the Trading Hours EOD

property set in the strategy's Trading Hours template. The ExitOnSessionCloseSeconds

property can either be set programatically in the OnStateChange() method or be driven by the

UI at run time.

Note: This is a real-time only property, it will not have any effect on your

ExitOnSessionClose time in backtesting processing historical data.

Property Value
An int representing the number of seconds. Default value is 30.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
ExitOnSessionCloseSeconds

Examples

NinjaTrader 82836

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Triggers the exit on close function 30 seconds prior

to trading day end

 IsExitOnSessionCloseStrategy = true;

 ExitOnSessionCloseSeconds = 30;

 }

}

11.6.14.18IncludeCommission

Definition
Determines if the strategy performance results will include commission on a historical

backtest. When true, the Commission Template applied to the account on which the strategy

is running will be used.

Property Value
A bool value which returns true if the strategy includes commission on a historical backtest;

otherwise, false. Default value is set to false.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
IncludeCommission

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IncludeCommission = true;

 }

}

NinjaScript 2837

© 2023 NinjaTrader, LLC

11.6.14.19IncludeTradeHistoryInBacktest

Definition
Determines if the strategy will save orders, trades, and execution history. When this property

is set to false you will see significant memory savings at the expense of having access to the

detailed trading information.

Notes:

· Since trade information is not stored you will only see entry/exit executions plotted on the

chart with no connecting PnL trade lines.

· This property is always defaulted to true, except when the strategy is running on the

strategy tab.

Property Value
This property returns true if the strategy will include trade history; otherwise, false. Default is

set to true.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.Configure (or State.SetDefaults when adding the script from the strategy tab)

Syntax
IncludeTradeHistoryInBacktest

Examples

NinjaTrader 82838

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Exclude trade history in a backtest to benefit from

memory savings

 IncludeTradeHistoryInBacktest = false;

 }

}

protected override void OnBarUpdate()

{

 // Stop taking trades after 10 trades have been taken since the

strategy was enabled

 if(SystemPerformance.AllTrades.Count >= 10)

 return;

}

11.6.14.20IsAdoptAccountPositionAware

Definition
Determines if the strategy is programmed in a manner capable of handling real-world

account positions. Once set to true, your strategy's "Start behavior" options will include an

additional parameter named "Adopt account position" which can bet set at run-time. Only set

to true if you have specifically programmed your strategy to be able to adopt account

positions.

Property Value
This property returns true if the strategy can adopt account positions; otherwise, false.

Default is set to false.

Note: This property should ONLY be set from the OnStateChange() method during

State.SetDefaults.

Syntax
IsAdoptAccountPositionAware

Examples

NinjaScript 2839

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsAdoptAccountPositionAware = true;

 }

}

11.6.14.21IsExitOnSessionCloseStrategy

Definition
Determines if the strategy will cancel all strategy generated orders on all strategy instruments

and close all open strategy positions at the close of ANY session for multi-time frame/multi-

instrument strategies. This property can be set programatically in the OnStateChange()

method or be driven by the UI at run time. See also "ExitOnSessionCloseSeconds".

Property Value
This property returns true if the strategy will exit on close; otherwise, false. Default value is

set to true.

Warnings:

· This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

· On historical data, IsExitOnSessionCloseStrategy will cause positions to be exited at the

close of the last bar of the session. If you are using a non time-based Bar Type, such as

Renko, and have "Break at EOD" set to False on the Data Series, this means that

IsExitOnSessionCloseStrategy could trigger after the session close, since the last bar of

the session can extend beyond the session close time in this scenario.

· Even if you're backtesting with a historical order fill resolution set to be more granular

than your base primary series, the ExitOnSessionCloseSeconds will still be tied to the

primary higher timeframe series bar. IsExitOnSessionCloseStrategy should not be

used in combination with Daily Bars and High Order Fill Resolution since it will cause

the position to close as the same time as the daily bar updates (at session close)

· This property is designed to be only used on intraday strategies

Syntax
IsExitOnSessionCloseStrategy

Examples

NinjaTrader 82840

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Triggers the exit on session close function 30 seconds

prior to real-time trading day end

 IsExitOnSessionCloseStrategy = true;

 ExitOnSessionCloseSeconds = 30;

 }

}

11.6.14.22IsFillLimitOnTouch

Definition
Determines if the strategy will use a more liberal fill algorithm for back-testing purposes only.

The default behavior of the strategy's fill algorithm is to fill a limit order once price has

penetrated the limit price. However this behavior can be changed by setting

IsFillLimitOnTouch to true, in which case the strategy's fill algorithm will consider a limit

order filled once price has reached the limit price, but does not necessarily need to trade

through the limit price

Property Value
This property returns true if the strategy will fill limit orders when touched; otherwise, false.

Default is set to false.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
IsFillLimitOnTouch

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsFillLimitOnTouch = true;

 }

}

NinjaScript 2841

© 2023 NinjaTrader, LLC

11.6.14.23IsInstantiatedOnEachOptimizationIteration

Definition
Determines if the strategy should be re-instantiated (re-created) after each optimization run

when using the Strategy Analyzer Optimizer.

The default behavior is to re-instantiate the strategy for each optimization backtest run.

However, the process of re-instantiating a strategy requires more time and computer

resources to return results, which could impact the amount of time it takes to run an

optimization. When false, the strategy is re-used to save time and computer resources.

Under this design, internal properties are reset to default values after each iteration, but it is

possible that user-defined properties and other custom resources may carry their state over

from the previous iteration into a new backtest run. To take advantage of performance

optimizations, developers may need to reset class level variables in the strategy otherwise

unexpected results can occur.

Note: If you choose to take advantage of the performance benefits during strategy

optimization by setting the IsInstantiatedOnEachOptimizationIteration property to

false, any objects you create in your code MUST be reset during the appropriate State

within the OnStateChange() method. Please see the example below on "Manually

resetting class level variables to take advantage of Strategy Analyzer optimizer

performance benefits".

Property Value
This property returns true if the strategy is not recycled; otherwise, false. Default set to true.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
IsInstantiatedOnEachOptimizationIteration

Tip: The default NinjaTrader indicators and strategies have been optimized to take

advantage of performance optimizations as their resources are setup >=

State.Configure. Please see the default system indicators and strategies for an idea of

how you may improve your strategy and indicator performance, or you may also reference

the example code below.

NinjaTrader 82842

© 2023 NinjaTrader, LLC

Examples

NinjaScript 2843

© 2023 NinjaTrader, LLC

 Using IsInstantiatedOnEachOptimizationIteration to reset class
level variables

// A custom trades dictionary is created when strategy is

instantiated

// since we later set "IsInstantiatedOnEachOptimizationIteration"

to true,

// we are guaranteed to start with a new object on each

optimization run

private Dictionary<DateTime, string> myTrades = new

Dictionary<DateTime, string>();

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "My Optimization Test 1";

 Description = "Demonstrates using

IsInstantiatedOnEachOptimizationIteration to reset a class level

variable";

 Fast = 10;

 Slow = 25;

 // setting to true so our custom trades dictionary is reset

on each optimization run (comes with a performance penalty)

 // This is the default behavior.

 IsInstantiatedOnEachOptimizationIteration = true;

 }

 else if (State == State.Terminated)

 {

 // Print the number of trades at the end of the optimization

 if (myTrades != null)

 {

 // if we set "IsInstantiatedOnEachOptimizationIteration"

to false (so not using the default of true), the values here would

be unexpected

 // since the custom trade dictionary was never explicitly

reset at the end of each optimization

 Print(myTrades.Count);

 }

 }

}

protected override void OnBarUpdate()

{

 if (CurrentBar < BarsRequiredToTrade)

 return;

 if (CrossAbove(SMA(Fast), SMA(Slow), 1))

 {

 EnterLong();

 myTrades.Add(Time[0], "long");

 }

 else if (CrossBelow(SMA(Fast), SMA(Slow), 1))

 {

 EnterShort();

 myTrades.Add(Time[0], "short");

 }

}

[Range(1, int.MaxValue), NinjaScriptProperty]

[Display(Name = "Fast", GroupName =

"NinjaScriptStrategyParameters", Order = 0)]

public int Fast

{ get; set; }

[Range(1, int.MaxValue), NinjaScriptProperty]

[Display(Name = "Slow", GroupName =

"NinjaScriptStrategyParameters", Order = 1)]

public int Slow

{ get; set; }

NinjaTrader 82844

© 2023 NinjaTrader, LLC

NinjaScript 2845

© 2023 NinjaTrader, LLC

 Manually resetting class level variables to take advantage of
Strategy Analyzer optimizer performance benefits

// A custom trades dictionary is declared when strategy is first

optimized,

// but not instantiated until later in State.DataLoaded,

private Dictionary<DateTime, string> myTrades;

// examples of other fields which need to be reset

private double myDouble;

private bool myBool;

private DateTime myDateTime;

private Order myOrderObject;

private Brush myBrushObject;

private SMA mySMAIndicator;

private Array myIntArray;

private List<object> myList;

private Series<double> mySeries;

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "My Optimization Test 2";

 Description = "Demonstrates manually resetting a class level

variable without re-instantiating the strategy";

 Fast = 10;

 Slow = 25;

 // in this case, we do not need to re-instantiate the

strategy after each optimization

 // because we are explicitly resetting the custom trade

dictionary in State.DataLoaded

 // This design of re-using the strategy instance comes with

performance benefits

 IsInstantiatedOnEachOptimizationIteration = false;

 }

 else if (State == State.DataLoaded)

 {

 // re-create custom trade dictionary on each optimization run

 // we are guaranteed to start with a new object on each

optimization run

 if (myTrades != null)

 myTrades.Clear();

 else

 myTrades = new Dictionary<DateTime, string>();

 //Any strategy defaults which are maintained do not need to

be reset if they are not mutable as the strategy runs.

 //Any strategy state that would be mutable after

State.SetDefaults needed to be reset for the next run.

 myDouble = double.MinValue;

 myBool = false;

 myDateTime = DateTime.MinValue;

 myOrderObject = null;

 myBrushObject = null;

 mySMAIndicator = SMA(14);

 if (myIntArray != null)

 Array.Clear(myIntArray, 0, myIntArray.Length);

 else

 myIntArray = new int[20];

 if (myList != null)

 myList.Clear();

 else

 myList = new List<object>();

 mySeries = new Series<double>(this);

 }

}

protected override void OnBarUpdate()

{

 if (CurrentBar < BarsRequiredToTrade)

 return;

 if (CrossAbove(SMA(Fast), SMA(Slow), 1))

 {

 EnterLong();

 myTrades.Add(Time[0], "long");

 }

 else if (CrossBelow(SMA(Fast), SMA(Slow), 1))

 {

 EnterShort();

 myTrades.Add(Time[0], "short");

 }

}

[Range(1, int.MaxValue), NinjaScriptProperty]

[Display(Name = "Fast", GroupName =

"NinjaScriptStrategyParameters", Order = 0)]

public int Fast

{ get; set; }

[Range(1, int.MaxValue), NinjaScriptProperty]

[Display(Name = "Slow", GroupName =

"NinjaScriptStrategyParameters", Order = 1)]

public int Slow

{ get; set; }

NinjaTrader 82846

© 2023 NinjaTrader, LLC

11.6.14.24IsInStrategyAnalyzer

Definition
Determines if the current NinjaScript Strategy is run from a Strategy Analyzer chart.

Property Value
A bool value when true the strategy is being run from the Strategy Analyzer chart; otherwise

will return false.

Syntax
IsInStrategyAnalyzer

Examples

protected override void OnBarUpdate()

{

 // Only draw the ArrowUp on our condition if we're not in

the Strategy Analyzer chart

 if (Close[0] > SMA(High, 14)[0] && !IsInStrategyAnalyzer)

 Draw.ArrowUp(this, CurrentBar.ToString(), true, 0,

High[0] + TickSize, Brushes.Blue);

}

11.6.14.25IsTradingHoursBreakLineVisible

Definition
Plots trading hours break lines on the indicator panel.

Note: The indicator panel's parent chart has a similar property 'Plot session break line'

which if set to false, will override the indicator's local setting if true.

Property Value
This property returns true if trading hours break lines are plotted on the indicator panel;

otherwise, false. Default set to true.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
IsTradingHoursBreakLineVisible

NinjaScript 2847

© 2023 NinjaTrader, LLC

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsTradingHoursBreakLineVisible = true;

 AddPlot(Brushes.Orange, "SMA");

 }

}

11.6.14.26IsWaitUntilFlat

Definition
Indicates the strategy is currently waiting until a flat position is detected before submitting live

orders.

Note: This property would only apply if the strategy StartBehavior was set to

StartBehavior.WaitUntilFlat or StartBehavior.WaitUntilFlatSynchronizeAccount.

Property Value
This property returns true if the strategy has detected it is either in a long or short position

during State.Transition; otherwise false. Default value is set to false.

Syntax
IsWaitUntilFlat

Examples

// If a strategy is waiting for a flat position, return and print a

message

if (!IsWaitUntilFlat)

{

 Print("This strategy is currently waiting for a flat account

position to begin placing trades");

 return;

}

NinjaTrader 82848

© 2023 NinjaTrader, LLC

11.6.14.27NumberRestartAttempts

Definition
Determines the maximum number of restart attempts allowed within the last x minutes

defined in RestartsWithinMinutes when the strategy experiences a connection loss. If restart

attempts exceeds this property within a time span shorter than or equal to

RestartsWithinMinutes, then the strategy will be stopped and no further attempts will occur.

The purpose of these settings is to stop the strategy should your connection be unstable and

incapable of maintaining a consistent connected state.

Property Value
An int value represents the maximum number of restart attempts. Default value is set to 4.

Syntax
NumberRestartAttempts

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Only allow the strategy to restart 4 times within the

MaxRestartMinutes time span

 // If disconnected more than 4 times within that time

span, stop the strategy and do not

 // attempt any further restarts.

 NumberRestartAttempts = 4;

 }

}

11.6.14.28OnAccountItemUpdate()

Definition
An event driven method used for strategies which is called for each AccountItem update for

the account on which the strategy is running.

Note: OnAccountItemUpdate() will be called continually in real-time if a position exists on

the account on which the strategy is running. This is to provide updates on the current

Unrealized Profit and Loss and associated risk values.

Method Return Value
This method does not return a value.

NinjaScript 2849

© 2023 NinjaTrader, LLC

Syntax
You must override the method in your strategy with the following syntax:

protected override void OnAccountItemUpdate(Account account, AccountItem accountItem,
double value)
{

}

Method Parameters

account The Account updated

accountItem The AccountItem updated

value The value of the AccountItem

updated

Examples

protected override void OnAccountItemUpdate(Account account,

AccountItem accountItem, double value)

{

 Print(string.Format("{0} {1} {2}", account.Name, accountItem,

value));

 // output:

 // Sim101 BuyingPower 103962.5

 // Sim101 CashValue 103962.5

 // Sim101 GrossRealizedProfitLoss 3962.5

 // Sim101 RealizedProfitLoss 3962.5

}

11.6.14.28.1 AccountItemEventArgs

Definition
AccountItemEventArgs contains Account-related information to be passed as an argument to

the OnAccountItemUpdate() event.

Note: For a complete, working example of this class in use, download framework

example located on our Developing AddOns Overview

The properties listed below are accessible from an instance of AccountItemEventArgs:

NinjaTrader 82850

© 2023 NinjaTrader, LLC

Accoun

t

The Account for which OnAccountItemUpdate() was called

Accoun

tItem

The AccountItem which has updated, resulting in the call to

OnAccountItemUpdate()

Curren

cy

The currency of the Account in question

Time A DateTime object representing the time at which the

change occurred

Value The new value of the updated AccountItems

Example

// This method is fired on any change of an AccountItem

private void OnAccountItemUpdate(object sender,

AccountItemEventArgs e)

{

 /* Dispatcher.InvokeAsync() is needed for multi-threading

considerations. When processing events outside of the UI thread,

and we want to

 influence the UI .InvokeAsync() allows us to do so. It can

also help prevent the UI thread from locking up on long operations.

*/

 Dispatcher.InvokeAsync(() =>

 {

 //Print which AccountItem changed, on which account,

and the new value, using

 outputBox.AppendText(string.Format("{0}Account: {1}{0}

AccountItem: {2}{0}Value: {3}",

 Environment.NewLine,

 e.Account.Name,

 e.AccountItem,

 e.Value));

 });

}

NinjaScript 2851

© 2023 NinjaTrader, LLC

11.6.14.29OnExecutionUpdate()

Definition
An event driven method which is called on an incoming execution of an order managed by a

strategy. An execution is another name for a fill of an order.

· An order can generate multiple executions (partial fills)

· OnExecutionUpdate is typically called after OnOrderUpdate() is called

· Only orders which have been submitted and managed by the strategy will call

OnExecutionUpdate()

· Executions drive the strategy Position object, which is updated when this method is called

Notes:

· Programming in this environment is reserved for the more advanced user. If you are for

example looking to protect a strategy managed position with a basic stop and target,

then the Set() methods would be more convenient.

· When connected to the Playback connection, it is possible for OnExecutionUpdate() to

trigger in the middle of a call to OnBarUpdate(). The Sim101 account adds a simulated

random delay for processing execution events, but the Playback connection triggers

executions immediately, for the sake of consistency in backtesting. Because of this,

OnExecutionUpdate() can appear to be triggered earlier than it would in live trading, or

when simulation trading on a live connection.

· Please also review Multi-Thread Considerations for NinjaScript

· Its best practice to only work with the passed by value parameters and not reference

parameters. This insures that you process each change of the underlying state.

· Rithmic and Interactive Brokers Users: When using a NinjaScript strategy it is best

practice to only work with passed by value data from OnExecutionUpdate(). Instances of

multiple fills at the same time for the same instrument might result in an incorrect

OnPositionUpdate, as sequence of events are not guaranteed due to provider API

design.

Method Return Value
This method does not return a value.

Syntax
You must override the method in your strategy with the following syntax:

protected override void OnExecutionUpdate(Execution execution, string executionId,

double price, int quantity, MarketPosition marketPosition, string orderId, DateTime

time)

{

}

NinjaTrader 82852

© 2023 NinjaTrader, LLC

Parameters

execution An Execution object passed by reference

representing the execution

executionId A string value representing the execution id

price A double value representing the execution price

quantity An int value representing the execution quantity

marketPosition A MarketPosition object representing the position

of the execution. Possible values are:

· MarketPosition.Long

· MarketPosition.Short

orderId A string representing the order id

time A DateTime value representing the time of the

execution

http://msdn.microsoft.com/en-us/library/system.datetime.aspx

NinjaScript 2853

© 2023 NinjaTrader, LLC

 OnExecutionUpdate Example (See SampleOnOrderUpdate for
complete example)

private Order entryOrder = null; // This variable holds an object
representing our entry order
private Order stopOrder = null; // This variable holds an object
representing our stop loss order
private Order targetOrder = null; // This variable holds an object
representing our profit target order
private int sumFilled = 0; // This variable tracks the quantities
of each execution making up the entry order

protected override void OnExecutionUpdate(Execution execution,
string executionId, double price, int quantity, MarketPosition
marketPosition, string orderId, DateTime time)
{
 /* We advise monitoring OnExecutionUpdate() to trigger
submission of stop/target orders instead of OnOrderUpdate() since
OnExecution() is called after OnOrderUpdate()

which ensures your strategy has received the execution which
is used for internal signal tracking. */
 if (entryOrder != null && entryOrder == execution.Order)
 {
 if (execution.Order.OrderState == OrderState.Filled ||
execution.Order.OrderState == OrderState.PartFilled ||
(execution.Order.OrderState == OrderState.Cancelled &&
execution.Order.Filled > 0))
 {
 // We sum the quantities of each execution making up
the entry order
 sumFilled += execution.Quantity;

 // Submit exit orders for partial fills
 if (execution.Order.OrderState ==
OrderState.PartFilled)
 {
 stopOrder = ExitLongStopMarket(0, true,
execution.Order.Filled, execution.Order.AverageFillPrice - 4 *
TickSize, "MyStop", "MyEntry");
 targetOrder = ExitLongLimit(0, true,
execution.Order.Filled, execution.Order.AverageFillPrice + 8 *
TickSize, "MyTarget", "MyEntry");
 }
 // Update our exit order quantities once orderstate
turns to filled and we have seen execution quantities match order
quantities
 else if (execution.Order.OrderState ==
OrderState.Filled && sumFilled == execution.Order.Filled)
 {
 // Stop-Loss order for OrderState.Filled
 stopOrder = ExitLongStopMarket(0, true,
execution.Order.Filled, execution.Order.AverageFillPrice - 4 *
TickSize, "MyStop", "MyEntry");
 targetOrder = ExitLongLimit(0, true,
execution.Order.Filled, execution.Order.AverageFillPrice + 8 *
TickSize, "MyTarget", "MyEntry");
 }

 // Resets the entryOrder object and the sumFilled
counter to null / 0 after the order has been filled
 if (execution.Order.OrderState != OrderState.PartFilled
&& sumFilled == execution.Order.Filled)
 {
 entryOrder = null;
 sumFilled = 0;
 }
 }
 }

 // Reset our stop order and target orders' Order objects after
our position is closed. (1st Entry)
 if ((stopOrder != null && stopOrder == execution.Order) ||
(targetOrder != null && targetOrder == execution.Order))
 {
 if (execution.Order.OrderState == OrderState.Filled ||
execution.Order.OrderState == OrderState.PartFilled)
 {
 stopOrder = null;
 targetOrder = null;
 }
 }
}

NinjaTrader 82854

© 2023 NinjaTrader, LLC

NinjaScript 2855

© 2023 NinjaTrader, LLC

 Using Execution information to calculate Average Entry Price
(Rithmic/Interactive Brokers Friendly Approach)

private Order targetLong1 = null;

private Order stopLossLong1 = null;

private int sumFilledLong1 = 0; // This variable tracks the

quantities of each execution making up the entry order

private List<double> LongEntry1Prices; // This List is used to

track the fill prices of the entry order

protected override void OnExecutionUpdate(Execution execution,

string executionId, double price, int quantity, MarketPosition

marketPosition, string orderId, DateTime time)

{

 // Use execution.Name to identify the order, so we are not

using execution.Order, which may not be up to date if an

ExecutionUpdate is seen before an OrderUpdate in a partial fill

 if (execution.Name == "Long limit entry 1")

 {

 // We sum the quantities of each execution making up the

entry order

 sumFilledLong1 += execution.Quantity;

 if (LongEntry1Prices.IsNullOrEmpty())

 LongEntry1Prices = new List<double>();

 for (int i = 0; i < execution.Quantity; i++)

 LongEntry1Prices.Add(execution.Price);

 // Now we can calculate the average entry price, and use it

to protect the specifc entry

 double averageEntryPrice = 0;

 for (int i = 0; i < LongEntry1Prices.Count; i++)

 averageEntryPrice += LongEntry1Prices[i];

 averageEntryPrice /= LongEntry1Prices.Count;

 if (stopLossLong1 == null && targetLong1 == null)

 {

 // Directly assign order objects from the method's

return value. This prevents us from overprotecting the position by

making sure our code changes the orders, instead of submitting new

orders

 stopLossLong1 = ExitLongStopMarket(0, true,

sumFilledLong1, averageEntryPrice - StopDistance * TickSize,

"StopLossLong1", "Long limit entry 1");

 targetLong1 = ExitLongLimit(0, true, sumFilledLong1,

averageEntryPrice + ProfitDistance * TickSize, "TargetLong1", "Long

limit entry 1");

 }

 else

 {

 ChangeOrder(stopLossLong1, sumFilledLong1, 0,

averageEntryPrice - StopDistance * TickSize);

 ChangeOrder(targetLong1, sumFilledLong1,

averageEntryPrice + ProfitDistance * TickSize, 0);

 }

 // Entry Order filled, and stops and targets submitted.

Reset Price list and running Filled quantity

 if (sumFilledLong1 == entryQuantity1)

 {

 // Move to Class?

 sumFilledLong1 = 0;

 LongEntry1Prices.Clear();

 }

 }

}

NinjaTrader 82856

© 2023 NinjaTrader, LLC

Additional Reference Samples
Additional reference code samples are available the NinjaScript Educational Resources

section of our support forum.

11.6.14.30OnOrderTrace()

Definition
An event driven method used for strategies which will allow you to customize the output of

TraceOrders.

Warning: Overriding this method with disable the default order tracing that is generated

by the NinjaTrader core. It is then up to you to pass the message generated to the

NinjaTrader output window using the Print() method. Generally, overriding this method is

not required.

Method Return Value
This method does not return a value.

Syntax
You must override the method in your strategy with the following syntax:

protected override void OnOrderTrace(DateTime timestamp, string message)

{

}

Method Parameters

timestamp The time that the order trace was

generated

message The message that is generated

Examples

NinjaScript 2857

© 2023 NinjaTrader, LLC

protected override void OnOrderTrace(DateTime timestamp, string

message)

{

 // The below print would give us the default tracing

 Print(string.Format("{0} {1}", timestamp, message));

 // The extended example would also include the instrument

fullname from our primary bars object

 if (BarsArray[0] != null)

 Print(string.Format("{0} {1} {2}", timestamp, message,

BarsArray[0].Instrument.FullName));

}

Additional Reference Samples
Additional reference code samples are available the NinjaScript Educational Resources

section of our support forum.

11.6.14.31OnOrderUpdate()

Definition
An event driven method which is called each time an order managed by a strategy changes

state. An order will change state when a change in order quantity, price or state (working to

filled) occurs. You can use this method to program your own order rejection handling.

Notes:

· Only orders which have been submitted and managed by the strategy will call

OnOrderUpdate().

· Programming in this environment is reserved for the more advanced user. If you are for

example looking to protect a strategy managed position with a basic stop and target,

then the Set() methods would be more convenient.

· For triggering actions such as the submission of a stop loss order and target order

using custom OCO logic when your entry order is filled, we recommend working directly

in OnExecutionUpdate() instead.

· OnOrderUpdate() will run inside of order methods such as EnterLong() or

SubmitOrderUnmanaged(), therefore attempting to assign an order object outside of

OnOrderUpdate() may not return as soon as expected. If your strategy is dependent on

tracking the order object from the very first update, you should try to match your order

objects by the order.Name (signal name) from during the OnOrderUpdate() as the order

is first updated.

· Rithmic and Interactive Brokers Users: When using a NinjaScript strategy it is best

practice to only work with passed by value data from OnExecutionUpdate(). Instances of

multiple fills at the same time for the same instrument might result in an incorrect

OnPositionUpdate, as sequence of events are not guaranteed due to provider API

NinjaTrader 82858

© 2023 NinjaTrader, LLC

design. For an example on protecting positions with this approach, see

OnExecutionUpdate()

Critical: If you want to drive your strategy logic based on order fills you must use

OnExecutionUpdate() instead of OnOrderUpdate(). OnExecutionUpdate() is always

triggered after OnOrderUpdate(). There is internal strategy logic that is triggered after

OnOrderUpdate() is called but before OnExecutionUpdate() that can adversely affect your

strategy if you are relying on tracking fills within OnOrderUpdate().

Playback Connection
When connected to the Playback Connection, calling market order based methods such as

EnterLong() and EnterShort() will result in order state events being fired prior to the order

method return an Order object. This is done to ensure that all events are in sync at high

speed playback.

Method Return Value
This method does not return a value.

Syntax
You must override the method in your strategy with the following syntax:

protected override void OnOrderUpdate(Order order, double limitPrice, double

stopPrice, int quantity, int filled, double averageFillPrice, OrderState orderState,

DateTime time, ErrorCode error, string comment)

{

}

Method Parameters

order An Order object passed by reference

representing the order object

limitPrice A double value representing the limit price of the

order update

stopPrice A double value representing the stop price of the

order update

quantity An int value representing the quantity of the

order update

NinjaScript 2859

© 2023 NinjaTrader, LLC

filled An int value representing the filled amount of the

order update

averageFillPrice A double value representing the average fill price

of the order update

orderState An OrderState value representing the state of

the order (e.g., filled, canceled, rejected, etc)

Note: See order state values table below

time A DateTime structure representing the last time

the order changed state

error An ErrorCode value which categorizes an error

received from the broker

Possible values are:

ErrorCode.LoginExpired

ErrorCode.LogOnFailed

ErrorCode.NoError

ErrorCode.OrderRejected

ErrorCode.OrderRejectedByRisk

ErrorCode.Panic

ErrorCode.UnableToCancelOrder

ErrorCode.UnableToChangeOrder

ErrorCode.UnableToSubmitOrder

ErrorCode.UserAbort

comment A string representing the error message

provided directly from the broker

OrderState Values

OrderState.Initializ

ed

Order is initialized in NinjaTrader

OrderState.Submit

ted

Order is submitted to the broker

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaTrader 82860

© 2023 NinjaTrader, LLC

OrderState.Accept

ed

Order is accepted by the broker or exchange

OrderState.Trigger

Pending

Order is pending submission

OrderState.Workin

g

Order is working in the exchange queue

OrderState.Chang

ePending

Order change is pending in NinjaTrader

OrderState.Chang

eSubmitted

Order change is submitted to the broker

OrderState.Cancel

Pending

Order cancellation is pending in NinjaTrader

OrderState.Cancel

Submitted

Order cancellation is submitted to the broker

OrderState.Cancel

led

Order cancellation confirm received from broker

OrderState.Reject

ed

Order is rejected

OrderState.PartFill

ed

Order is partially filled

OrderState.Filled Order is completely filled

OrderState.Unkno

wn

An unknown order state. Default if broker does

not report current order state.

Examples

NinjaScript 2861

© 2023 NinjaTrader, LLC

 Understanding the order object parameter vs updating value
parameter (Multi-Thread Considerations for NinjaScript)

protected override void OnOrderUpdate(Cbi.Order order, double

limitPrice, double stopPrice,

 int quantity, int filled,

double averageFillPrice,

 Cbi.OrderState orderState,

DateTime time, Cbi.ErrorCode error, string comment)

{

 Print("The most current order state is: " +

order.OrderState); // OrderState.PartFilled

 Print("This particular order update state is: " +

orderState); // OrderState.Working

}

NinjaTrader 82862

© 2023 NinjaTrader, LLC

 Properly assigning order object values

private Order entryOrder = null;

protected override void OnBarUpdate()

{

 if (entryOrder == null && Close[0] > Open[0])

 EnterLong("entryOrder");

}

protected override void OnOrderUpdate(Order order, double

limitPrice, double stopPrice, int quantity, int filled, double

averageFillPrice, OrderState orderState, DateTime time, ErrorCode

error, string nativeError)

{

 // check if the current order matches the orderName passed in

"EnterLong"()

 // Assign entryOrder in OnOrderUpdate() to ensure the

assignment occurs when expected.

 // This is more reliable than assigning Order objects in

OnBarUpdate, as the assignment is not guaranteed to be complete if

it is referenced immediately after submitting

 if (order.Name == "entryOrder")

 entryOrder = order;

 // if entry order exists

 if (entryOrder != null && entryOrder == order)

 {

 Print(order.ToString());

 if (order.OrderState == OrderState.Cancelled)

 {

 // Do something here

 entryOrder = null;

 }

 }

}

Additional Reference Samples
Additional reference code samples are available the NinjaScript Educational Resources

section of our support forum.

11.6.14.32OnPositionUpdate()

Definition
An event driven method which is called each time a PositionUpdate is received for the

strategy.

· This method is typically called after OnExecutionUpdate()

NinjaScript 2863

© 2023 NinjaTrader, LLC

· OnPositionUpdate() will update with PositionUpdates that are filtered for the strategy. The

strategy Position object is driven by Executions, and is updated as early as

OnExecutionUpdate()

Notes:

· You will NOT receive position updates for manually placed orders, or orders managed

by other strategies (including any ATM strategies) in OnPositionUpdate(). The Account

class contains a pre-built event handler (PositionUpdate) which can be used to filter

position updates on a specified account.

· Its best practice to only work with the passed by value parameters and not reference

parameters. This insures that you process each change of the underlying state.

· Rithmic and Interactive Brokers Users: When using a NinjaScript strategy it is best

practice to only work with passed by value data from OnExecution. Instances of multiple

fills at the same time for the same instrument might result in an incorrect

OnPositionUpdate, as sequence of events are not guaranteed due to provider API

design. For an example on protecting positions with this approach, see

OnExecutionUpdate()

Method Return Value
This method does not return a value.

Syntax
You must override the method in your strategy with the following syntax:

protected override void OnPositionUpdate(Position position, double averagePrice, int

quantity, MarketPosition marketPosition)

{

}

Method Parameters

positio

n

A Position object passed by reference representing the

current position object

avera

geFill

Price

A double value representing the updating average fill price of a

position

NinjaTrader 82864

© 2023 NinjaTrader, LLC

quanti

ty

An int value representing the updating quantity of a position

marke

tPositi

on

A MarketPosition object representing the updating position

update provided directly from the broker. This is not the actual

Position core position object, but the last change of the

market position

 Possible values are:

· MarketPosition.Flat

· MarketPosition.Long

· MarketPosition.Short

Examples

protected override void OnPositionUpdate(Cbi.Position position,

double averagePrice,

 int quantity, Cbi.MarketPosition marketPosition)

{

 if (position.MarketPosition == MarketPosition.Flat)

 {

 // Do something like reset some variables here

 }

}

 Understanding the order object parameter vs updating value
parameter (Multi-Thread Considerations for NinjaScript)

protected override void OnPositionUpdate(Cbi.Position position,

double averagePrice,

 int quantity, Cbi.MarketPosition marketPosition)

{

 Print("The most current MarketPosition is: " +

position.MarketPosition); // Flat

 Print("This particular position update marketPosition is: " +

marketPosition); // Long

}

Additional Reference Samples
Additional reference code samples are available the NinjaScript Educational Resources

section of our support forum.

NinjaScript 2865

© 2023 NinjaTrader, LLC

11.6.14.33OptimizationPeriod

Definition
Reserved for Walk-Forward Optimization, this property determines the number of days used

for the "in sample" backtest period for a given strategy. See also TestPeriod.

Note: This property should ONLY be called from the OnStateChange() method during

State.SetDefaults

Property Value
An int value representing the number of "in sample" days used for walk-forward optimization;

Default value is set to 10.

Syntax
OptimizationPeriod

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 //set the default optimization period to 20 days for WFOs

 OptimizationPeriod = 20;

 }

}

11.6.14.34Order

Definition
Represents a read only interface that exposes information regarding an order.

· An Order object returned from calling an order method is dynamic in that its properties will

always reflect the current state of an order

· The property <Order>.OrderId is NOT a unique value, since it can change throughout an

order's lifetime. Please see the Advance Order Handling section on "Transitioning order

references from historical to live" for details on how to handle.

· The property <Order>.Oco WILL be appended with a suffix when the strategy transitions

from historical to real-time to ensure the OCO id is unique across multiple strategies for live

orders

· To check for equality you can compare Order objects directly

Methods and Properties

NinjaTrader 82866

© 2023 NinjaTrader, LLC

Account The Account the order resides

AverageFillPrice A double value representing the

average fill price of an order

Filled An int value representing the

filled amount of an order

FromEntrySignal A string representing the user

defined fromEntrySignal

parameter on an order

Gtd A DateTime structure

representing when the order will

be canceled

HasOverfill A bool value representing if the

order is an overfill. For use when

using Unmanaged orders and

IgnoreOverFill

Instrument An Instrument value representing

the instrument of an order

IsBacktestOrder A bool that indicates if the order

was generated while processing

historical data. For use with

GetRealtimeOrder() when

transitioning historical order

objects to live order objects when

strategies transition to from

State.Historical to

State.Realtime.

IsLiveUntilCancelled A bool that when true, indicates

the order will be canceled by

managed order handling at

expiration

IsTerminalState() A static method used to

determine if the an order's

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaScript 2867

© 2023 NinjaTrader, LLC

OrderState is in considered

terminal and no longer active

LimitPrice A double value representing the

limit price of an order

LimitPriceChanged A double value representing the

new limit price of an order. Used

with Account.Change()

Name A string representing the name

of an order which can be provided

by the entry or exit signal name

Oco A string representing the OCO

(one cancels other) id of an order

OrderAction Represents the action of the

order. Possible values are:

OrderAction.Buy

OrderAction.BuyToCover

OrderAction.Sell

OrderAction.SellShort

OrderId A string representing the broker

issued order id value (this value

can change)

OrderState The current state of the order.

See the order state values table

below

OrderType The type of order submitted.

Possible values are:

OrderType.Limit

OrderType.Market

OrderType.MIT

OrderType.StopMarket

OrderType.StopLimit

NinjaTrader 82868

© 2023 NinjaTrader, LLC

Quantity An int value representing the

quantity of an order

QuantityChanged An int value representing the new

quantity of an order. Used with

Account.Change()

StopPrice A double value representing the

stop price of an order

StopPriceChanged A double value representing the

new stop price of an order. Used

with Account.Change()

Time A DateTime structure

representing the last time the

order changed state

TimeInForce Determines the life of the order.

Possible values are:

TimeInForce.Day

TimeInForce.Gtc

ToString() A string representation of an

order

OrderState Values

OrderState.Initializ

ed

Order is initialized in NinjaTrader

OrderState.Submit

ted

Order is submitted to the broker

OrderState.Accept

ed

Order is accepted by the broker or exchange

OrderState.Trigger

Pending

Order is pending submission

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx

NinjaScript 2869

© 2023 NinjaTrader, LLC

OrderState.Workin

g

Order is working in the exchange queue

OrderState.Chang

ePending

Order change is pending in NinjaTrader

OrderState.Chang

eSubmitted

Order change is submitted to the broker

OrderState.Cancel

Pending

Order cancellation is pending in NinjaTrader

OrderState.Cancel

Submitted

Order cancellation is submitted to the broker

OrderState.Cancel

led

Order cancellation is confirmed by the exchange

OrderState.Reject

ed

Order is rejected

OrderState.PartFill

ed

Order is partially filled

OrderState.Filled Order is completely filled

OrderState.Unkno

wn

An unknown order state. Default if broker does

not report current order state.

Critical: In a historical backtest, orders will always reach a "Working" state. In real-time,

some stop orders may only reach "Accepted" state if they are simulated/held on a brokers

server

Examples

NinjaTrader 82870

© 2023 NinjaTrader, LLC

private Order entryOrder = null;

protected override void OnBarUpdate()

{

 if (entryOrder == null && Close[0] > Open[0])

 EnterLong("myEntryOrder");

}

protected override void OnOrderUpdate(Order order, double

limitPrice, double stopPrice, int quantity, int filled, double

averageFillPrice, OrderState orderState, DateTime time, ErrorCode

error, string nativeError)

{

 // Assign entryOrder in OnOrderUpdate() to ensure the

assignment occurs when expected.

 // This is more reliable than assigning Order objects in

OnBarUpdate, as the assignment is not guaranteed to be complete if

it is referenced immediately after submitting

 if (order.Name == "myEntryOrder")

 entryOrder = order;

 if (entryOrder != null && entryOrder == order)

 {

 Print(order.ToString());

 if (order.OrderState == OrderState.Filled)

 entryOrder = null;

 }

}

11.6.14.34.1 IsTerminalState()

Definition
A static method used to determine if the an order's OrderState is considered terminal and no

longer active.

Note: This is a static method and is compared against an order state, NOT the order

itself. Please see the example below for correct syntax an usage.

Method Return Value
A bool value which will return true when an OrderState is equal to OrderState.Cancelled,

OrderState.Filled, OrderState.Rejected, OrderState.Unknown; otherwise false.

Syntax
IsTerminalState(OrderState orderState)

NinjaScript 2871

© 2023 NinjaTrader, LLC

Parameters

orderState The OrderState to compare

Examples

private Order entryOrder = null;

protected override void OnBarUpdate()

{

 // submit order under valid condition

 // note that the order assignment and handling is done in

OnOrderUpdate()

 if (entryOrder == null && Close[0] > Open[0])

 EnterLongLimit(Close[0] - 1, "myEntryOrder");

}

protected override void OnOrderUpdate(Order order, double

limitPrice, double stopPrice, int quantity, int filled, double

averageFillPrice, OrderState orderState, DateTime time, ErrorCode

error, string nativeError)

{

 // assign incoming order

 if (entryOrder == null)

 {

 // check that order matches by signal name, that order is not

in terminal state

 if (order.Name == "myEntryOrder" &&

!Order.IsTerminalState(order.OrderState))

 entryOrder = order;

 }

 if (entryOrder != null && entryOrder == order)

 {

 // set "entryOrder" to null if it is Cancelled, Filled,

Rejected, Unknown

 if (Order.IsTerminalState(entryOrder.OrderState))

 entryOrder = null;

 }

}

NinjaTrader 82872

© 2023 NinjaTrader, LLC

11.6.14.35Order Methods

Note: You will not be able to mix and match the two approaches. If you decide to go with

the Managed approach you will only be able to use the Managed order methods. If you

decide to go with the Unmanaged approach you will only be able to use the Unmanaged

order methods.

NinjaScript 2873

© 2023 NinjaTrader, LLC

Order Methods Overview

NinjaScript provides several approaches you can use for order placement within your

NinjaScript strategy. The main approaches can be categorized as a Managed approach

and an Unmanaged approach.

Managed

The Managed approach offers you order

methods that are wrapped with an invisible

convenience layer that allows you to focus

on your system's trading rules leaving the

underlying mechanics of order

management and the relationships

between entry and exit orders and positions

to NinjaTrader. The cost for having the

convenience layer is that there are order

handling rules that must be followed to

prevent order errors.

› Understanding the Managed approach

› Advanced Order Handling

› CancelOrder()

› EnterLong()

› EnterLongLimit()

› EnterLongMIT()

› EnterLongStopMarket()

› EnterLongStopLimit()

› EnterShort()

› EnterShortLimit()

› EnterShortMIT()

› EnterShortStopMarket()

› EnterShortStopLimit()

› ExitLong()

› ExitLongLimit()

› ExitLongMIT()

› ExitLongStopMarket()

› ExitLongStopLimit()

› ExitShort()

› ExitShortLimit()

› ExitShortMIT()

› ExitShortStopMarket()

› ExitShortStopLimit()

› GetRealtimeOrder()

› SetProfitTarget()

› SetStopLoss()

› SetTrailStop()

› SetParabolicStop()

Unmanaged

The Unmanaged approach offers you more

flexible order methods without the

convenience layer. This means you are not

restricted to any order handling rules

besides those imposed by the

brokerage/exchange. With such flexibility

though, you will have to ensure to program

your strategy to handle any and all issues

that may arise with placing orders.

› Understanding the Unmanaged approach

› CancelOrder()

› ChangeOrder()

› GetRealtimeOrder()

› IgnoreOverfill

› IsUnmanaged

› SubmitOrderUnmanaged()

NinjaTrader 82874

© 2023 NinjaTrader, LLC

11.6.14.35.1 Managed Approach

The Managed approach in NinjaScript is designed to offer the greatest ease of use for

beginner to intermediate programmers. The order methods are wrapped in a convenience

layer that allows you to focus on your system's trading rules, leaving the underlying

mechanics of order management and the relationships between entry orders, exit orders, and

positions to NinjaTrader. This approach is best suited for simple to moderate order

complexity, and can be further broken down into a Basic/Common Managed approach and a

more Advanced Managed approach. The following section will discuss the use of the

Basic/Common approach.

A few key points to keep in mind:

· Orders are submitted as live and working when a strategy is running in real-time

· Profit target, stop loss and trail stop orders are submitted immediately when an entry order

is filled, and are tied together via OCO (One Cancels Other)

· Order changes and cancellations are queued in the event that the order is in a state where

it can't be cancelled or modified

· By default, orders submitted via Entry() and Exit() methods automatically cancel at the end

of a bar if not re-submitted

· Entry() methods will reverse the position automatically. For example if you are in a 1

contract long position and now call EnterShort() -> you will see 2 executions, one to close

the prior long position and the other to get you into the desired 1 contract short position.

* Via the SetProfitTarget(), SetStopLoss(), SetTrailStop() and SetParabolicStop methods

Order submission for entry and exit methods - basic operation

Orders are primarily submitted from within the OnBarUpdate() method when a

specific order method is called. By default, orders are kept alive, provided they are

re-submitted on each call of the OnBarUpdate() method. If an order is not re-

submitted, it is then canceled. Orders can be modified by re-submitting them with

changed parameters (a new limit price, for example).

In the example below, a Buy Limit order is working at the bid price, provided that

the Close price of the current bar is greater than the current value of the 20 period

Simple Moving Average. If the entry condition is no longer true and the order is still

active, it will be immediately canceled.

NinjaScript 2875

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Entry condition

 if (Close[0] > SMA(20)[0])

 EnterLongLimit(GetCurrentBid());

}

This technique allows you the quickest and easiest order submission method

suitable for programmers of all levels. Should you want to submit an order and not

have to keep re-submitting it to keep it alive you can use an advanced approach

reserved for experienced programmers, which includes an option to keep orders

alive until specifically canceled in code.

Order Entry Methods

Order Entry Methods
Order entry methods are used to submit orders of different types. Methods exist to
submit Market, Market-if-Touched, Limit, Stop Market, and Stop Limit orders. See
the order-entry method pages listed in the help guide table of contents under this
page for more information on a specific method.

Signal Names on Entry Methods
You can optionally tag an entry order with a signal name. Signal names are used

to identify executions resulting from the order on a chart and in performance

reports. Market positions created from a tagged entry method are marked with the

signal name which serves two purposes:

· Used to tie an exit method to a specific position

· Used to identify unique entries in a strategy

Below is an example of placing an Market entry order and an associated Limit exit

order, tied together by the signal name of the entry order.

NinjaTrader 82876

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 1) return;

 if (Close[0] > Close[1])

 {

 // Place a Market order to enter long

 EnterLong("longEntry");

 // Manually place a Profit Target 10 ticks above

the current price, tied to the entry order's SignalName

 ExitLongLimit(Close[0] + (10 * TickSize),

"longEntry");

 }

}

Defining how Entry Methods are Processed in a Strategy
You can limit how many entry methods are processed by determining the

maximum number of entries in a single direction across all entry methods, or

across unique signal names. The following properties can be set in the Strategies

window when adding a strategy to a chart or to the Strategies tab of the Control

Center window.

· EntriesPerDirection property - Sets the maximum number of entries in a single

direction

· EntryHandling property - Determines if EntriesPerDirection applies across all

entries or for entries with specified signal names

The example code below illustrates how the above properties control the

processing of entry methods. The code contains two entry conditions and two

EnterLong methods, each tagged with unique signal names.

NinjaScript 2877

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 EntriesPerDirection = 1;

 EntryHandling = EntryHandling.AllEntries;

 }

}

protected override void OnBarUpdate()

{

 // Entry condition 1

 if (CrossAbove(SMA(10), SMA(20), 1))

 EnterLong("Condition 1 Entry");

 // Entry condition 2

 if (CrossAbove(RSI(14, 3), 30, 1))

 EnterLong("Condition 2 Entry");

}

Entry Methods on Multi-Instrument Strategies
When running strategies that submit orders to multiple instruments, entry methods
will submit orders to the instrument referenced by the BarsInProgress. The
following example assumes that the strategy is running on a 1 minute E-Mini S&P
500 chart. It adds an NQ data series, then enters a position on both instruments.

protected override void OnStateChange()

{

 AddDataSeries("NQ 09-14", BarsPeriodType.Minute, 1);

}

protected override void OnBarUpdate()

{

 if (BarsInProgress == 0)

 EnterLong("ES Trade");

 else if (BarsInProgress == 1)

 EnterLong("NQ Trade");

}

More information on using BarsInProgress to filter instruments can be found in the

Advanced Order Handling page.

NinjaTrader 82878

© 2023 NinjaTrader, LLC

Quantity Type and TIF

You can set the entry order quantity and order type directly in code via the following

properties:

· QuantityType - Sets the order quantity is taken from the entry method quantity

property or the default strategy quantity size

· TimeInForce propery - Sets the time in force of the order

How to close a position

Closing a Position using a Stop Loss, Trailing Stop and/or Profit
Target
You can predefine a stop loss, trailing stop and/or profit target in a strategy by

calling the SetStopLoss(), SetTrailStop(), SetParabolicStop() or SetProfitTarget()

methods from inside the OnStateChange() event handler. When these methods

are called, they submit live working orders in real-time as executions are reported

as a result of calling an entry method. These orders are also tied via OCO (One

Cancels Other).

Stop losses and profit target can be generated for each fill or each position. This is

determined by the "Stop & target submission" property which is set in the

Strategies window. Possible values are listed below:

ByStrategyPosition - When this is selected, only one stop loss, trail stop and/or

profit target order is submitted. As entry executions come in, the order size is

amended. The downside of this approach is that if you receive partial fills, the

orders are re-inserted into the exchange order queue. The upside is that if you

broker charges you commission per order (not per quantity), you will not incur

additional commission expenses.

PerEntryExecution - When this is selected, a stop loss, trail stop and/or profit

target order is submitted for each partial fill received. The downside is that if your

broker charges commission per order, you can incur very expensive commission

costs if you receive partial fills. The upside is that orders are submitted as soon as

possible, giving you the advantage of getting into the order queue immediately.

Closing a Position using an Exit Method
Exit methods submit orders to close out a position in whole or in part. When

closing a position with Exit orders, the order quantity will be reduced as the

strategy position reduces - for example, if we use ExitLongStopMarket() and

NinjaScript 2879

© 2023 NinjaTrader, LLC

ExitLongStopLimit() to protect a position and one of those orders gets filled, the

other order associated with exiting that position will reduce their quantity.

As with entry methods, more information about specific exit methods can be found

in this Help Guide's table of contents, beneath this page.

Closing a Partial Position using an Exit Method
You can close out a partial position by specifying the exit quantity. The following

example first enters long for three contracts. Then, each subsequent bar update

submits a market order to exit one contract until the position is completely closed.

"ExitLong(1)" will be ignored if a long market position does not exist.

protected override void OnBarUpdate()

{

 if (CrossAbove(SMA(10), SMA(20), 1))

 EnterLong(3);

 ExitLong(1);

}

FromEntrySignal -- Using Signal Names in Exit Methods
Identifying entries with a signal name allows you to place multiple unique entries

within a single strategy and call exit methods with specified signal names, so that

only a position created with the specified signal name is closed. In the example

below, there are two entry conditions which create positions, and two exit

conditions specifying which position to close based on the signal name.

NinjaTrader 82880

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Entry condition 1

 if (CrossAbove(SMA(10), SMA(20), 1))

 EnterLong("Condition 1 Entry");

 // Entry condition 2

 if (CrossAbove(RSI(14, 3), 30, 1))

 EnterLong("Condition 2 Entry");

 // Closes the position created by entry condition 1

 if (CrossBelow(SMA(10), SMA(20), 1))

 ExitLong("Condition 1 Entry");

 // Closes the position created by entry condition 2

 if (CrossBelow(RSI(14, 3), 70, 1))

 ExitLong("Condition 2 Entry");

}

Tip: If you do not specify a "fromEntrySignal" parameter the entire position is

exited rendering your strategy flat.

NinjaScript 2881

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (Position.MarketPosition == MarketPosition.Flat)

 {

 // Entry condition 1

 if (CrossAbove(SMA(10), SMA(20), 1))

 EnterLong("Condition 1 Entry");

 }

 if (Position.MarketPosition != MarketPosition.Flat)

 {

 // Scale in condition 2 for position management

 if (CrossAbove(RSI(14, 3), 30, 1))

 EnterLong("Condition 2 Entry");

 // Exit all positions using an empty string (could

also use string.Empty)

 if (CrossBelow(SMA(10), SMA(20), 1))

 ExitLong("Exit All", "");

 }

}

Understanding core order objects

When using order methods such as EnterLong(), ExitShortLimit(), etc, a direct
order object is returned for the NinjaTrader Core. These objects can be used
throughout the lifetime of your strategy to provide additional metadata concerning
your strategy, as well as apply advanced concepts such as CancelOrder() and
ChangeOrder(). More information about this advanced concept which is
discussed under the Advanced Order Handling section

Internal Order Handling Rules that Reduce Unwanted Positions

To prevent situations in real-time in which you may have multiple orders working to

accomplish the same task, there are some "under the hood" rules that a

NinjaScript strategy follows when Managed order methods are called. For

example, if your strategy had a limit order for 1 contract working as a Profit Target,

but then your strategy was also programmed to reverse the position at the price

very close to the target limit order, then submitting both orders can be risky, since

NinjaTrader 82882

© 2023 NinjaTrader, LLC

it could lead to a larger position than the strategy is designed to enter if both orders

got filled in quick succession by the exchange.

Note: These rules do not apply to market orders, such as ExitLong() or

ExitShort().

For the most part, you do not need to be intimately familiar with these rules as you

develop your strategies. It is all taken care of for you internally within a strategy. If a

rule is violated, you will be notified through an error log in the Control Center Log

tab.

Note: To prevent excessive logging which could degrade performance, you

will only be notified of the very first order which has violated an order handling

rule. Subsequent orders which violate a rule will not be notified through the

error log.

The following rules are true per unique signal name:

Methods that generate orders to enter a position will be ignored if:

· A position is open and an order submitted by a non market order exit method

(ExitLongLimit() for example) is active and the order is used to open a position in

the opposite direction

· A position is open and an order submitted by a set method (SetStopLoss() for

example) is active and the order is used to open a position in the opposite

direction

· A position is open and two or more Entry methods to reverse the position are

entered together. In this case the second Entry order will be ignored.

· The strategy position is flat and an order submitted by an enter method

(EnterLongLimit() for example) is active and the order is used to open a position

in the opposite direction

· The entry signal name is not unique

Methods that generate orders to exit a position will be ignored if:

· A position is open and an order submitted by an enter method (EnterLongLimit()

for example) is active and the order is used to open a position in the opposite

direction

· A position is open and an order submitted by a set method (SetStopLoss() for

example) is active

NinjaScript 2883

© 2023 NinjaTrader, LLC

Set() methods that generate orders to exit a position will be ignored if:

· A position is open and an order submitted by an enter method (EnterLongLimit()

for example) is active and the order is used to open a position in the opposite

direction

· A position is open and an order submitted by a non market order exit method

(ExitLongLimit() for example) is active

Advance

d Order

Handling

Through advanced order handling you can submit, change

and cancel orders at your discretion through any event-

driven method within a strategy.

CancelO

rder()

Cancels a specified order.

Change

Order()

Amends a specified Order.

EnterLon

g()

Generates a buy market order to enter a long position.

EnterLon

gLimit()

Generates a buy limit order to enter a long position.

EnterLon

gMIT()

Generates a buy MIT order to enter a long position.

EnterLon

gStopLi

mit()

Generates a buy stop limit order to enter a long position.

EnterLon

gStopMa

rket()

Generates a buy stop market order to enter a long position.

EnterSho

rt()

Generates a sell short market order to enter a short

position.

NinjaTrader 82884

© 2023 NinjaTrader, LLC

EnterSho

rtLimit()

Generates a sell short stop limit order to enter a short

position.

EnterSho

rtMIT()

Generates a sell MIT order to enter a short position.

EnterSho

rtStopLi

mit()

Generates a sell short stop limit order to enter a short

position.

EnterSho

rtStopMa

rket()

Generates a sell short stop order to enter a short position.

ExitLong(

)

Generates a sell market order to exit a long position.

ExitLong

Limit()

Generates a sell limit order to exit a long position.

ExitLong

MIT()

Generates a sell MIT order to exit a long position.

ExitLong

StopLimit

()

Generates a sell stop limit order to exit a long position.

ExitLong

StopMark

et()

Generates a sell stop market order to exit a long position.

ExitShort

()

Generates a buy to cover market order to exit a short

position.

ExitShort

Limit()

Generates a buy to cover limit order to exit a short position.

ExitShort

MIT()

Generates a buy to cover MIT order to exit a short position.

ExitShort

StopLimit

Generates a buy to cover stop limit order to exit a short

position.

NinjaScript 2885

© 2023 NinjaTrader, LLC

()

ExitShort

StopMark

et()

Generates a buy to cover stop market order to exit a short

position.

GetRealti

meOrder

()

Returns a matching real-time order object based on a

specified historical order object reference.

SetParab

olicStop(

)

Generates a parabolic type trail stop order with the signal

name "Parabolic stop" to exit a position.

SetProfit

Target()

Generates a profit target order with the signal name "Profit

target" to exit a position.

SetStopL

oss()

Generates a stop loss order with the signal name "Stop

loss" used to exit a position.

SetTrailS

top()

Generates a trail stop order with the signal name "Trail

stop" to exit a position.

11.6.14.35.1.1 Advanced Order Handling

Advanced order handling is reserved for EXPERIENCED programmers. Through advanced

order handling you can submit, change and cancel orders at your discretion through any

event-driven method within a strategy. Each order method within the "Managed Approach"

section has a method overload designed for advanced handling.

Live Until Cancelled Orders

Orders can remain live until you call the CancelOrder() method, or until the order's

time in force has expired, whichever comes first. This flexibility allows you to

control exactly when an order should be cancelled instead of relying on the close

of a bar. Each order method, such as EnterLongLimit(), has a method overload

designed to submit a "live until canceled" order. When using this overload, it is

important to retain a reference to the Order object, so that it can be canceled via

CancelOrder() at a later time.

The Order Class

NinjaTrader 82886

© 2023 NinjaTrader, LLC

All order methods return an Order object. There are several important items to

note:

· An Order object returned from calling an order method contains dynamic

properties which will always reflect the current state of the associated order

· The property <Order>.OrderId is NOT a unique value, since it can change

throughout an order's lifetime. Please see the section below on "Transitioning

order references from historical to live" for details on how to handle.

· To check for equality, you can compare Order objects directly

The following example code demonstrates the submission of an order and the

assignment of the Order return object to the variable "entryOrder." After this, the

object is checked in the OnOrderUpdate() method for equality, and then checked

for the Filled state.

Examples

NinjaScript 2887

© 2023 NinjaTrader, LLC

private Order entryOrder = null;

protected override void OnBarUpdate()

{

 if (entryOrder == null && Close[0] > Open[0])

 EnterLong("myEntryOrder");

}

protected override void OnOrderUpdate(Order order, double

limitPrice, double stopPrice, int quantity, int filled,

double averageFillPrice, OrderState orderState, DateTime

time, ErrorCode error, string nativeError)

{

 // Assign entryOrder in OnOrderUpdate() to ensure the

assignment occurs when expected.

 // This is more reliable than assigning Order objects

in OnBarUpdate, as the assignment is not gauranteed to be

complete if it is referenced immediately after submitting

 if (order.Name == "myEntryOrder" && orderState !=

OrderState.Filled)

 entryOrder = order;

 // Null Entry order if filled or cancelled. We do not

use the Order objects after the order is filled, so we can

null it here

 if (entryOrder != null && entryOrder == order)
 {
 if (order.OrderState == OrderState.Cancelled &&
order.Filled == 0)
 entryOrder = null;
 if (order.OrderState == OrderState.Filled)
 entryOrder = null;
 }
}

Transitioning order references from historical to live

When starting a strategy on real-time data, the starting behavior will renew any

active historical orders and resubmit these orders to your live or simulation

account. This process includes updating the historical/backtest generated order

ID to the account generated order ID, and any associated OCO IDs. If you are

tracking order objects, is critical that you update the order reference to ensure that

it is now using the correct order details.

NinjaTrader 82888

© 2023 NinjaTrader, LLC

This should be done in OnOrderUpdate() to ensure all cases of order transitions

are handled.

Critical: If you DO NOT update a historical order reference, and then attempt

to cancel/change that order after it has been submitted in real-time, your

strategy will be disabled with a message similar to: "Strategy has been

disabled because it attempted to modify a historical order that has transitioned

to a live order."

Tip: When the real-time order is submitted, there is a generic Order object

passed into the OnOrderUpdate() method containing the live order details

which can be used for debugging. It is recommended you use the helper

GetRealtimeOrder() when your strategy transitions to real-time to update your

order references

Example

NinjaScript 2889

© 2023 NinjaTrader, LLC

private Order entryOrder = null;

protected override void OnBarUpdate()
{
 if (entryOrder == null && Close[0] > Open[0])
 entryOrder = EnterLongLimit("myEntryOrder", Low[0]);
}

protected override void OnOrderUpdate(Order order, double
limitPrice, double stopPrice, int quantity, int filled,
double averageFillPrice, OrderState orderState, DateTime
time, ErrorCode error, string nativeError)
{
 // One time only, as we transition from historical
 // Convert any old historical order object references
to the live order submitted to the real-time account
 if (entryOrder != null && entryOrder.IsBacktestOrder &&
State == State.Realtime)
 entryOrder = GetRealtimeOrder(entryOrder);

 // Null entryOrder if filled or cancelled. We do not

use the Order objects after the order is filled, so we can

null it here

 if (entryOrder != null && entryOrder == order)
 {
 if (order.OrderState == OrderState.Cancelled &&
order.Filled == 0)
 entryOrder = null;
 if (order.OrderState == OrderState.Filled)
 entryOrder = null;
 }
}

Working with a Multi-Instrument Strategy

With advanced order handling, you can submit an order in the context of any Bars

object by designating the "BarsInProgress" index. For example, if your primary bar

series is "MSFT" and your secondary series added to the strategy through the

AddDataSeries() method is "AAPL", you can submit an order for either "MSFT" or

"AAPL" from anywhere within the strategy. In addition to the information found in

the multi-time frame and instrument strategies page, this section specifically

covers order submission.

As an example, consider the EnterLongLimit() method and one of its method

overloads designed for advanced order handling:

NinjaTrader 82890

© 2023 NinjaTrader, LLC

 EnterLongLimit(int barsInProgressIndex, bool isLiveUntilCancelled, int

quantity, double limitPrice, string signalName)

In this example, an "MSFT 1 minute" chart is the primary bar series on which the

strategy is running. A secondary bar series is added for "AAPL 1 minute" via the

AddDataSeries() method in the OnStateChange() event handler. After adding the

secondary Bars object, MSFT has a BarsInProgress index of 0 and AAPL has an

index value of 1.

The following example code demonstrates how to monitor for bar update events

on the first instrument, while submitting orders to the second instrument.

Example

NinjaScript 2891

© 2023 NinjaTrader, LLC

private Order entryOrder = null;

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 AddDataSeries("AAPL", BarsPeriodType.Minute, 1);

 }

}

protected override void OnBarUpdate()

{

 // Check if the MSFT series triggered an bar update

event

 if (BarsInProgress == 0)

 {

 // Submit an order for AAPL in the context of

MSFT bar update event

 if (entryOrder == null)

 EnterLongLimit(1, true, 1, Lows[1][0], "AAPL

Order");

 }

}

protected override void OnOrderUpdate(Order order, double

limitPrice, double stopPrice, int quantity, int filled,

double averageFillPrice, OrderState orderState, DateTime

time, ErrorCode error, string nativeError)

{

 // Assign entryOrder in OnOrderUpdate() to ensure the

assignment occurs when expected.

 // This is more reliable than assigning Order objects

in OnBarUpdate, as the assignment is not gauranteed to be

complete if it is referenced immediately after submitting

 if (order.Name == "AAPL Order" && orderState !=

OrderState.Filled)

 entryOrder = order;

}

11.6.14.35.1.2 CancelOrder()

Definition
Cancels a specified order. This method is reserved for experienced programmers that fully

understanding the concepts of advanced order handling.

NinjaTrader 82892

© 2023 NinjaTrader, LLC

Notes:

1. This method sends a cancel request to the broker and does not guarantee that an

order is completely cancelled. Most of the time you can expect your order to come

back 100% cancelled.

2. An order can be completely filled or part filled in the time that you send the cancel

request and the time the exchange receives the request. Check the OnOrderUpdate()

method for the state of an order you attempted to cancelled.

Syntax
CancelOrder(Order order)

Warning: If you have existing historical order references which have transitioned to

real-time, you MUST update the order object reference to the newly submitted real-

time order; otherwise errors may occur as you attempt to cancel the order. You may use

the GetRealtimeOrder() helper method to assist in this transition.

Parameters

order An Order object representing the order you wish

to cancel.

Examples

NinjaScript 2893

© 2023 NinjaTrader, LLC

private Order myEntryOrder = null;

private int barNumberOfOrder = 0;

protected override void OnBarUpdate()

{

 // Submit an entry order at the low of a bar

 if (myEntryOrder == null)

 {

 // use 'live until canceled' limit order to prevent default

managed order handling which would expire at end of bar

 EnterLongLimit(0, true, 1, Low[0], "Long Entry");

 barNumberOfOrder = CurrentBar;

 }

 // If more than 5 bars has elapsed, cancel the entry order

 if (CurrentBar > barNumberOfOrder + 5)

 CancelOrder(myEntryOrder);

}

protected override void OnOrderUpdate(Order order, double

limitPrice, double stopPrice, int quantity, int filled,

 double averageFillPrice, OrderState orderState, DateTime time,

ErrorCode error, string nativeError)

{

 // Assign entryOrder in OnOrderUpdate() to ensure the

assignment occurs when expected.

 // This is more reliable than assigning Order objects in

OnBarUpdate, as the assignment is not gauranteed to be complete if

it is referenced immediately after submitting

 if (order.Name == "Long Entry")

 myEntryOrder = order;

 // Evaluates for all updates to myEntryOrder.

 if (myEntryOrder != null && myEntryOrder == order)

 {

 // Check if myEntryOrder is cancelled.

 if (myEntryOrder.OrderState == OrderState.Cancelled)

 {

 // Reset myEntryOrder back to null

 myEntryOrder = null;

 }

 }

}

11.6.14.35.1.3 ChangeOrder()

Definition
Amends a specified Order.

NinjaTrader 82894

© 2023 NinjaTrader, LLC

Note: This method is only relevant for Managed orders with IsLiveUntilCancelled set to

true and Unmanaged orders.

Syntax
ChangeOrder(Order order, int quantity, double limitPrice, double stopPrice)

Warning: If you have existing historical order references which have transitioned to

real-time, you MUST update the order object reference to the newly submitted real-

time order; otherwise errors may occur as you attempt to change the order. You may

use the GetRealtimeOrder() helper method to assist in this transition.

Parameters

order Order object of the order you wish to amend

quantity Order quantity

limitPrice Order limit price. Use "0" should this parameter

be irrelevant for the OrderType being submitted.

stopPrice Order stop price. Use "0" should this parameter

be irrelevant for the OrderType being submitted.

Examples

private Order stopOrder = null;

protected override void OnBarUpdate()

{

 // Raise stop loss to breakeven when you are at least 4 ticks

in profit

 if (stopOrder != null && stopOrder.StopPrice <

Position.AveragePrice && Close[0] >= Position.AveragePrice + 4 *

TickSize)

 ChangeOrder(stopOrder, stopOrder.Quantity, 0,

Position.AveragePrice);

}

NinjaScript 2895

© 2023 NinjaTrader, LLC

11.6.14.35.1.4 EnterLong()

Definition
Generates a buy market order to enter a long position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
EnterLong()

EnterLong(string signalName)

EnterLong(int quantity)

EnterLong(int quantity, string signalName)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:
EnterLong(int barsInProgressIndex, int quantity, string signalName)

Note: If using a method signature that does not have the parameter quantity, the order

quantity will be taken from the quantity value set in the strategy dialog window when

running or backtesting a strategy

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

quantity Entry order quantity (if 0 is passed in, will be set

to 1, except for stocks 100)

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaTrader 82896

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterLong(5, "SMA Cross Entry");

}

11.6.14.35.1.5 EnterLongLimit()

Definition
Generates a buy limit order to enter a long position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
EnterLongLimit(double limitPrice)

EnterLongLimit(double limitPrice, string signalName)

EnterLongLimit(int quantity, double limitPrice)

EnterLongLimit(int quantity, double limitPrice, string signalName)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:
EnterLongLimit(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double limitPrice, string signalName)

Note: If using a method signature that does not have the parameter quantity, the order

quantity will be taken from the quantity value set in the strategy dialog window when

running or backtesting a strategy

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

NinjaScript 2897

© 2023 NinjaTrader, LLC

limitPrice The limit price of the order.

quantity Entry order quantity (if 0 is passed in, will be set

to 1, except for stocks 100).

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar, but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterLongLimit(GetCurrentBid(), "SMA Cross Entry");

}

11.6.14.35.1.6 EnterLongMIT()

Definition
Generates a buy MIT order to enter a long position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

NinjaTrader 82898

© 2023 NinjaTrader, LLC

Syntax
EnterLongMIT(double stopPrice)

EnterLongMIT(double stopPrice, string signalName)

EnterLongMIT(int quantity, double stopPrice)

EnterLongMIT(int quantity, double stopPrice, string signalName)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:
EnterLongMIT(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity, double

stopPrice, string signalName)

Note: If using a method signature that does not have the parameter quantity, the order

quantity will be taken from the quantity value set in the strategy dialog window when

running or backtesting a strategy

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

stopPrice The stop price of the order.

quantity Entry order quantity (if 0 is passed in, will be set

to 1, except for stocks 100).

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar, but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2899

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterLongMIT(GetCurrentBid() + TickSize, "SMA Cross

Entry");

}

11.6.14.35.1.7 EnterLongStopLimit()

Definition
Generates a buy stop limit order to enter a long position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
EnterLongStopLimit(double limitPrice, double stopPrice)

EnterLongStopLimit(double limitPrice, double stopPrice, string signalName)

EnterLongStopLimit(int quantity, double limitPrice, double stopPrice)

EnterLongStopLimit(int quantity, double limitPrice, double stopPrice, string

signalName)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:
EnterLongStopLimit(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double limitPrice, double stopPrice, string signalName)

Note: If using a method signature that does not have the parameter quantity, the order

quantity will be taken from the quantity value set in the strategy dialog window when

running or backtesting a strategy

Parameters

NinjaTrader 82900

© 2023 NinjaTrader, LLC

signalName User defined signal name identifying the order

generated. Max 50 characters.

limitPrice The limit price of the order.

stopPrice The stop price of the order.

quantity Entry order quantity (if 0 is passed in, will be set

to 1, except for stocks 100).

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar, but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterLongStopLimit(High[0] + 2 * TickSize, High[0], "SMA

Cross Entry");

}

11.6.14.35.1.8 EnterLongStopMarket()

Definition
Generates a buy stop market order to enter a long position.

NinjaScript 2901

© 2023 NinjaTrader, LLC

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
EnterLongStopMarket(double stopPrice)

EnterLongStopMarket(double stopPrice, string signalName)

EnterLongStopMarket(int quantity, double stopPrice)

EnterLongStopMarket(int quantity, double stopPrice, string signalName)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

EnterLongStopMarket(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double stopPrice, string signalName)

Note: If using a method signature that does not have the parameter quantity, the order

quantity will be taken from the quantity value set in the strategy dialog window when

running or backtesting a strategy

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

stopPrice The stop price of the order.

quantity Entry order quantity (if 0 is passed in, will be set

to 1, except for stocks 100).

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar, but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

NinjaTrader 82902

© 2023 NinjaTrader, LLC

Examples

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterLongStopMarket(GetCurrentAsk() + TickSize, "SMA

Cross Entry");

}

11.6.14.35.1.9 EnterShort()

Definition
Generates a sell short market order to enter a short position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
EnterShort()

EnterShort(string signalName)

EnterShort(int quantity)

EnterShort(int quantity, string signalName)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

EnterShort(int barsInProgressIndex, int quantity, string signalName)

Note: If using a method signature that does not have the parameter quantity, the order

quantity will be taken from the quantity value set in the strategy dialog window when

running or backtesting a strategy

Parameters

NinjaScript 2903

© 2023 NinjaTrader, LLC

signalName User defined signal name identifying the order

generated. Max 50 characters.

quantity Entry order quantity (if 0 is passed in, will be set

to 1, except for stocks 100).

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterShort("SMA Cross Entry");

}

11.6.14.35.1.10 EnterShortLimit()

Definition
Generates a sell short limit order to enter a short position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
EnterShortLimit(double limitPrice)

EnterShortLimit(double limitPrice, string signalName)

EnterShortLimit(int quantity, double limitPrice)

EnterShortLimit(int quantity, double limitPrice, string signalName)

NinjaTrader 82904

© 2023 NinjaTrader, LLC

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

EnterShortLimit(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double limitPrice, string signalName)

Note: If using a method signature that does not have the parameter quantity, the order

quantity will be taken from the quantity value set in the strategy dialog window when

running or backtesting a strategy

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

limitPrice The limit price of the order.

quantity Entry order quantity (if 0 is passed in, will be set

to 1, except for stocks 100).

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar, but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2905

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterShortLimit(GetCurrentAsk(), "SMA Cross Entry");

}

11.6.14.35.1.11 EnterShortMIT()

Definition
Generates a sell MIT order to enter a short position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
EnterShortMIT(double stopPrice)

EnterShortMIT(double stopPrice, string signalName)

EnterShortMIT(int quantity, double stopPrice)

EnterShortMIT(int quantity, double stopPrice, string signalName)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:
EnterShortMIT(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity, double

 stopPrice, string signalName)

Note: If using a method signature that does not have the parameter quantity, the order

quantity will be taken from the quantity value set in the strategy dialog window when

running or backtesting a strategy

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

NinjaTrader 82906

© 2023 NinjaTrader, LLC

stopPrice The stop price of the order.

quantity Entry order quantity (if 0 is passed in, will be set

to 1, except for stocks 100).

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar, but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterShortMIT(GetCurrentAsk() + TickSize, "SMA Cross

Entry");

}

11.6.14.35.1.12 EnterShortStopLimit()

Definition
Generates a sell short stop limit order to enter a short position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

NinjaScript 2907

© 2023 NinjaTrader, LLC

Syntax
EnterShortStopLimit(double limitPrice, double stopPrice)

EnterShortStopLimit(double limitPrice, double stopPrice, string signalName)

EnterShortStopLimit(int quantity, double limitPrice, double stopPrice)

EnterShortStopLimit(int quantity, double limitPrice, double stopPrice, string

signalName)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

EnterShortStopLimit(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double limitPrice, double stopPrice, string signalName)

Note: If using a method signature that does not have the parameter quantity, the order

quantity will be taken from the quantity value set in the strategy dialog window when

running or backtesting a strategy

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

limitPrice The limit price of the order.

stopPrice The stop price of the order.

quantity Entry order quantity (if 0 is passed in, will be set

to 1, except for stocks 100).

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar, but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaTrader 82908

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterShortStopLimit(Low[0] - 2 * TickSize, Low[0], "SMA

Cross Entry");

}

11.6.14.35.1.13 EnterShortStopMarket()

Definition
Generates a sell short stop order to enter a short position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
EnterShortStopMarket(double stopPrice)

EnterShortStopMarket(double stopPrice, string signalName)

EnterShortStopMarket(int quantity, double stopPrice)

EnterShortStopMarket(int quantity, double stopPrice, string signalName)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

EnterShortStopMarket(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double stopPrice, string signalName)

Note: If using a method signature that does not have the parameter quantity, the order

quantity will be taken from the quantity value set in the strategy dialog window when

running or backtesting a strategy

Parameters

signalName User defined signal name identifying the order

NinjaScript 2909

© 2023 NinjaTrader, LLC

generated. Max 50 characters.

stopPrice The stop price of the order.

quantity Entry order quantity (if 0 is passed in, will be set

to 1, except for stocks 100).

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar, but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterShortStopMarket(GetCurrentBid() - TickSize, "SMA

Cross Entry");

}

11.6.14.35.1.14 ExitLong()

Definition
Generates a sell market order to exit a long position.

Method Return Value

NinjaTrader 82910

© 2023 NinjaTrader, LLC

An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
ExitLong()

ExitLong(int quantity)

ExitLong(string fromEntrySignal)

ExitLong(string signalName, string fromEntrySignal)

ExitLong(int quantity, string signalName, string fromEntrySignal)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

ExitLong(int barsInProgressIndex, int quantity, string signalName, string

fromEntrySignal)

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

fromEntrySignal The entry signal name. This ties the exit to the

entry and exits the position quantity represented

by the actual entry.

Note: Using an empty string will attach the exit

order to all entries.

quantity Entry order quantity.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2911

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterLong("SMA Cross Entry");

 // Exits position

 if (CrossBelow(SMA(10), SMA(20), 1))

 ExitLong();

}

Tips (also see Overview):

· This method is ignored if a long position does not exist

· It is helpful to provide a signal name if your strategy has multiple exit points to help

identify your exits on a chart

· You can tie an exit to an entry by providing the entry signal name in the parameter

"fromEntrySignal"

· If you do not specify a quantity the entire position is exited rendering your strategy

flat

· If you do not specify a "fromEntrySignal" parameter the entire position is exited

rendering your strategy flat

11.6.14.35.1.15 ExitLongLimit()

Definition
Generates a sell limit order to exit a long position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
ExitLongLimit(double limitPrice)

ExitLongLimit(int quantity, double limitPrice)

ExitLongLimit(double limitPrice, string fromEntrySignal)

ExitLongLimit(double limitPrice, string signalName, string fromEntrySignal)

ExitLongLimit(int quantity, double limitPrice, string signalName, string

fromEntrySignal)

NinjaTrader 82912

© 2023 NinjaTrader, LLC

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

ExitLongLimit(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity, double

 limitPrice, string signalName, string fromEntrySignal)

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

fromEntrySignal The entry signal name. This ties the exit to the

entry and exits the position quantity represented

by the actual entry.

Note: Using an empty string will attach the exit

order to all entries.

limitPrice The limit price of the order.

quantity Entry order quantity.

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2913

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 EnterLong("SMA Cross Entry");

 // Exits position

 if (CrossBelow(SMA(10), SMA(20), 1))

 ExitLongLimit(GetCurrentBid());

}

Tips (also see Overview):

· This method is ignored if a long position does not exist

· It is helpful to provide a signal name if your strategy has multiple exit points to help

identify your exits on a chart

· You can tie an exit to an entry by providing the entry signal name in the parameter

"fromEntrySignal"

· If you do not specify a quantity the entire position is exited rendering your strategy

flat

· If you do not specify a "fromEntrySignal" parameter the entire position is exited

rendering your strategy flat

11.6.14.35.1.16 ExitLongMIT()

Definition
Generates a sell MIT order to exit a long position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
ExitLongMIT(double stopPrice)

ExitLongMIT(int quantity, double stopPrice)

ExitLongMIT(double stopPrice, string fromEntrySignal)

ExitLongMIT(double stopPrice, string signalName, string fromEntrySignal)

ExitLongMIT(int quantity, double stopPrice, string signalName, string fromEntrySignal)

NinjaTrader 82914

© 2023 NinjaTrader, LLC

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

ExitLongMIT(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity, double

stopPrice, string signalName, string fromEntrySignal)

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

fromEntrySignal The entry signal name. This ties the exit to the

entry and exits the position quantity represented

by the actual entry.

Note: Using an empty string will attach the exit

order to all entries.

stopPrice The stop price of the order.

quantity Entry order quantity.

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2915

© 2023 NinjaTrader, LLC

private double stopPrice = 0;

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 {

 EnterLong("SMA Cross Entry");

 stopPrice = High[0];

 }

 // Exits position

 ExitLongMIT(stopPrice);

}

Tips (also see Overview):

· This method is ignored if a long position does not exist

· It is helpful to provide a signal name if your strategy has multiple exit points to help

identify your exits on a chart

· You can tie an exit to an entry by providing the entry signal name in the parameter

"fromEntrySignal"

· If you do not specify a quantity the entire position is exited rendering your strategy

flat

· If you do not specify a "fromEntrySignal" parameter the entire position is exited

rendering your strategy flat

11.6.14.35.1.17 ExitLongStopLimit()

Definition
Generates a sell stop limit order to exit a long position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
ExitLongStopLimit(double limitPrice, double stopPrice)

NinjaTrader 82916

© 2023 NinjaTrader, LLC

ExitLongStopLimit(int quantity, double limitPrice, double stopPrice)

ExitLongStopLimit(double limitPrice, double stopPrice, string fromEntrySignal)

ExitLongStopLimit(double limitPrice, double stopPrice, string signalName, string

fromEntrySignal)

ExitLongStopLimit(int quantity, double limitPrice, double stopPrice, string

signalName, string fromEntrySignal)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

ExitLongStopLimit(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double limitPrice, double stopPrice, string signalName, string fromEntrySignal)

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

fromEntrySignal The entry signal name. This ties the exit to the

entry and exits the position quantity represented

by the actual entry.

Note: Using an empty string will attach the exit

order to all entries.

limitPrice The limit price of the order

stopPrice The stop price of the order.

quantity Entry order quantity.

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2917

© 2023 NinjaTrader, LLC

private double stopPrice = 0;

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 {

 EnterLong("SMA Cross Entry");

 stopPrice = Low[0] - 5 * TickSize;

 }

 // Exits position

 ExitLongStopLimit(stopPrice - (10 * TickSize), stopPrice);

}

Tips (also see Overview):

· This method is ignored if a long position does not exist

· It is helpful to provide a signal name if your strategy has multiple exit points to help

identify your exits on a chart

· You can tie an exit to an entry by providing the entry signal name in the parameter

"fromEntrySignal"

· If you do not specify a quantity the entire position is exited rendering your strategy

flat

· If you do not specify a "fromEntrySignal" parameter the entire position is exited

rendering your strategy flat

11.6.14.35.1.18 ExitLongStopMarket()

Definition
Generates a sell stop market order to exit a long position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
ExitLongStopMarket(double stopPrice)

NinjaTrader 82918

© 2023 NinjaTrader, LLC

ExitLongStopMarket(int quantity, double stopPrice)

ExitLongStopMarket(double stopPrice, string fromEntrySignal)

ExitLongStopMarket(double stopPrice, string signalName, string fromEntrySignal)

ExitLongStopMarket(int quantity, double stopPrice, string signalName, string

fromEntrySignal)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

ExitLongStopMarket(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double stopPrice, string signalName, string fromEntrySignal)

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

fromEntrySignal The entry signal name. This ties the exit to the

entry and exits the position quantity represented

by the actual entry.

Note: Using an empty string will attach the exit

order to all entries.

stopPrice The stop price of the order.

quantity Entry order quantity.

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2919

© 2023 NinjaTrader, LLC

private double stopPrice = 0;

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossAbove(SMA(10), SMA(20),

1))

 {

 EnterLong("SMA Cross Entry");

 stopPrice = Low[0];

 }

 // Exits position

 ExitLongStopMarket(stopPrice);

}

Tips (also see Overview):

· This method is ignored if a long position does not exist

· It is helpful to provide a signal name if your strategy has multiple exit points to help

identify your exits on a chart

· You can tie an exit to an entry by providing the entry signal name in the parameter

"fromEntrySignal"

· If you do not specify a quantity the entire position is exited rendering your strategy

flat

· If you do not specify a "fromEntrySignal" parameter the entire position is exited

rendering your strategy flat

11.6.14.35.1.19 ExitShort()

Definition
Generates a buy to cover market order to exit a short position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
ExitShort()

NinjaTrader 82920

© 2023 NinjaTrader, LLC

ExitShort(int quantity)

ExitShort(string fromEntrySignal)

ExitShort(string signalName, string fromEntrySignal)

ExitShort(int quantity, string signalName, string fromEntrySignal)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

ExitShort(int barsInProgressIndex, int quantity, string signalName, string

fromEntrySignal)

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

fromEntrySignal The entry signal name. This ties the exit to the

entry and exits the position quantity represented

by the actual entry.

Note: Using an empty string will attach the exit

order to all entries.

quantity Entry order quantity.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2921

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossBelow(SMA(10), SMA(20),

1))

 EnterShort("SMA Cross Entry");

 // Exits position

 if (CrossBelow(SMA(10), SMA(20), 1))

 ExitShort();

}

Tips (also see Overview):

· This method is ignored if a short position does not exist

· It is helpful to provide a signal name if your strategy has multiple exit points to help

identify your exits on a chart

· You can tie an exit to an entry by providing the entry signal name in the parameter

"fromEntrySignal"

· If you do not specify a quantity the entire position is exited rendering your strategy

flat

· If you do not specify a "fromEntrySignal" parameter the entire position is exited

rendering your strategy flat

11.6.14.35.1.20 ExitShortLimit()

Definition
Generates a buy to cover limit order to exit a short position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
ExitShortLimit(double limitPrice)

ExitShortLimit(int quantity, double limitPrice)

ExitShortLimit(double limitPrice, string fromEntrySignal)

ExitShortLimit(double limitPrice, string signalName, string fromEntrySignal)

NinjaTrader 82922

© 2023 NinjaTrader, LLC

ExitShortLimit(int quantity, double limitPrice, string signalName, string

fromEntrySignal)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

ExitShortLimit(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double limitPrice, string signalName, string fromEntrySignal)

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

fromEntrySignal The entry signal name. This ties the exit to the

entry and exits the position quantity represented

by the actual entry.

Note: Using an empty string will attach the exit

order to all entries.

limitPrice The limit price of the order.

quantity Entry order quantity.

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2923

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossBelow(SMA(10), SMA(20),

1))

 EnterShort("SMA Cross Entry");

 // Exits position

 if (CrossAbove(SMA(10), SMA(20), 1))

 ExitShortLimit(GetCurrentAsk());

}

Tips (also see Overview):

· This method is ignored if a short position does not exist

· It is helpful to provide a signal name if your strategy has multiple exit points to help

identify your exits on a chart

· You can tie an exit to an entry by providing the entry signal name in the parameter

"fromEntrySignal"

· If you do not specify a quantity the entire position is exited rendering your strategy

flat

· If you do not specify a "fromEntrySignal" parameter the entire position is exited

rendering your strategy flat

11.6.14.35.1.21 ExitShortMIT()

Definition
Generates a buy to cover MIT order to exit a short position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
ExitShortMIT(double stopPrice)

ExitShortMIT(int quantity, double stopPrice)

ExitShortMIT(double stopPrice, string fromEntrySignal)

ExitShortMIT(double stopPrice, string signalName, string fromEntrySignal)

NinjaTrader 82924

© 2023 NinjaTrader, LLC

ExitShortMIT(int quantity, double stopPrice, string signalName, string

fromEntrySignal)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

ExitShortMIT(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity, double

stopPrice, string signalName, string fromEntrySignal)

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

fromEntrySignal The entry signal name. This ties the exit to the

entry and exits the position quantity represented

by the actual entry.

Note: Using an empty string will attach the exit

order to all entries.

stopPrice The stop price of the order.

quantity Entry order quantity.

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

See the BarsInProgress property.

Examples

NinjaScript 2925

© 2023 NinjaTrader, LLC

private double stopPrice = 0;

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossBelow(SMA(10), SMA(20),

1))

 {

 EnterShort("SMA Cross Entry");

 stopPrice = Low[0];

 }

 // Exits position

 ExitShortMIT(stopPrice);

}

Tips (also see Overview):

· This method is ignored if a short position does not exist

· It is helpful to provide a signal name if your strategy has multiple exit points to help

identify your exits on a chart

· You can tie an exit to an entry by providing the entry signal name in the parameter

"fromEntrySignal"

· If you do not specify a quantity the entire position is exited rendering your strategy

flat

· If you do not specify a "fromEntrySignal" parameter the entire position is exited

rendering your strategy flat

11.6.14.35.1.22 ExitShortStopLimit()

Definition
Generates a buy to cover stop limit order to exit a short position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
ExitShortStopLimit(double limitPrice, double stopPrice)

NinjaTrader 82926

© 2023 NinjaTrader, LLC

ExitShortStopLimit(int quantity, double limitPrice, double stopPrice)

ExitShortStopLimit(double limitPrice, double stopPrice, string fromEntrySignal)

ExitShortStopLimit(double limitPrice, double stopPrice, string signalName, string

fromEntrySignal)

ExitShortStopLimit(int quantity, double limitPrice, double stopPrice, string

signalName, string fromEntrySignal)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

ExitShortStopLimit(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double limitPrice, double stopPrice, string signalName, string fromEntrySignal)

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

fromEntrySignal The entry signal name. This ties the exit to the

entry and exits the position quantity represented

by the actual entry.

Note: Using an empty string will attach the exit

order to all entries.

limitPrice The limit price of the order

stopPrice The stop price of the order.

quantity Entry order quantity.

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2927

© 2023 NinjaTrader, LLC

private double stopPrice = 0;

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossBelow(SMA(10), SMA(20),

1))

 {

 EnterShort("SMA Cross Entry");

 stopPrice = Low[0] + 5 * TickSize;

 }

 // Exits position

 ExitShortStopLimit(stopPrice + (10 * TickSize), stopPrice);

}

Tips (also see Overview):

· This method is ignored if a short position does not exist

· It is helpful to provide a signal name if your strategy has multiple exit points to help

identify your exits on a chart

· You can tie an exit to an entry by providing the entry signal name in the parameter

"fromEntrySignal"

· If you do not specify a quantity the entire position is exited rendering your strategy

flat

· If you do not specify a "fromEntrySignal" parameter the entire position is exited

rendering your strategy flat

11.6.14.35.1.23 ExitShortStopMarket()

Definition
Generates a buy to cover stop market order to exit a short position.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Advanced Order Handling section.

Syntax
ExitShortStopMarket(double stopPrice)

NinjaTrader 82928

© 2023 NinjaTrader, LLC

ExitShortStopMarket(int quantity, double stopPrice)

ExitShortStopMarket(double stopPrice, string fromEntrySignal)

ExitShortStopMarket(double stopPrice, string signalName, string fromEntrySignal)

ExitShortStopMarket(int quantity, double stopPrice, string signalName, string

fromEntrySignal)

The following method variation is for experienced programmers who fully understand

Advanced Order Handling concepts:

ExitShortStopMarket(int barsInProgressIndex, bool isLiveUntilCancelled, int quantity,

double stopPrice, string signalName, string fromEntrySignal)

Parameters

signalName User defined signal name identifying the order

generated. Max 50 characters.

fromEntrySignal The entry signal name. This ties the exit to the

entry and exits the position quantity represented

by the actual entry.

Note: Using an empty string will attach the exit

order to all entries.

stopPrice The stop price of the order.

quantity Entry order quantity.

isLiveUntilCancelle

d

The order will NOT expire at the end of a bar but

instead remain live until the CancelOrder()

method is called or its time in force is reached.

barsInProgressInd

ex

The index of the Bars object the order is to be

submitted against. Used to determines what

instrument the order is submitted for.

 See the BarsInProgress property.

Examples

NinjaScript 2929

© 2023 NinjaTrader, LLC

private double stopPrice = 0;

protected override void OnBarUpdate()

{

 if (CurrentBar < 20)

 return;

 // Only enter if at least 10 bars has passed since our last

entry

 if ((BarsSinceEntryExecution() > 10 ||

BarsSinceEntryExecution() == -1) && CrossBelow(SMA(10), SMA(20),

1))

 {

 EnterShort("SMA Cross Entry");

 stopPrice = Low[0];

 }

 // Exits position

 ExitShortStopMarket(stopPrice);

}

Tips (also see Overview):

· This method is ignored if a short position does not exist

· It is helpful to provide a signal name if your strategy has multiple exit points to help

identify your exits on a chart

· You can tie an exit to an entry by providing the entry signal name in the parameter

"fromEntrySignal"

· If you do not specify a quantity the entire position is exited rendering your strategy

flat

· If you do not specify a "fromEntrySignal" parameter the entire position is exited

rendering your strategy flat

11.6.14.35.1.24 GetRealtimeOrder()

Definition
Returns a matching real-time order object based on a specified historical order object

reference.

Note: This method is only needed if you have historical order references which you wish

to transition and manage in real-time (i.e., you had a working order which was submitted

historically and re-submitted in real-time as the strategy is enabled). This method only

NinjaTrader 82930

© 2023 NinjaTrader, LLC

needs to be called once per order object, and should be done in OnOrderUpdate to handle

all scenarios. Please see the Advanced Order Handling section on transition orders for

more details.

Method Return Value
Returns a real-time order reference associated with the historical order object. If no

associated order exists (i.e. OrderState is Filled, Canceled, Rejected, Unknown), a null value

returns

Syntax
GetRealtimeOrder(Order historicalOrder)

Parameters

historicalOrder The historical order object to update to real-time

Examples

NinjaScript 2931

© 2023 NinjaTrader, LLC

private Order myOrder;

protected override void OnOrderUpdate(Order order, double
limitPrice, double stopPrice, int quantity, int filled, double
averageFillPrice, OrderState orderState, DateTime time, ErrorCode
error, string nativeError)
{
 // One time only, as we transition from historical
 // Convert any old historical order object references to the
live order submitted to the real-time account
 if (myOrder != null && myOrder.IsBacktestOrder && State ==
State.Realtime)
 myOrder = GetRealtimeOrder(myOrder);

 // Assign Order objects here
 // This is more reliable than assigning Order objects in
OnBarUpdate, as the assignment is not guaranteed to be complete if
it is referenced immediately after submitting
 if (order.Name == "myOrder Signal Name")
 myOrder = order;

 // Null Entry order if filled or cancelled. We do not use the
Order objects after the order is filled, so we can null it here
 if (myOrder != null && myOrder == order)
 {
 if (order.OrderState == OrderState.Cancelled &&
order.Filled == 0)
 myOrder = null;
 if (order.OrderState == OrderState.Filled)
 myOrder = null;
 }
}

11.6.14.35.1.25 SetParabolicStop

Definition
Generates a parabolic type trail stop order with the signal name "Parabolic stop" to exit a

position. Parabolic stops are amended on a bar update basis, so dependent upon the

Calculate setting of the parent strategy. Parabolic stop orders are real working orders (unless

simulated is specified in which case the stop order is locally simulated and submitted as

market once triggered) submitted immediately to the market upon receiving an execution from

an entry order.

Although logic wise very similiar, this technique works different from the ParablicSAR

indicator. The indicator will provide trailing stop levels 'always in the market' assuming a

constant market position switch, either long or short (reversing). The SetParabolicStop()

method in contrast will apply the same parabolic trailing technique sensitive to price

acceleration to the custom strategy entry signal / position it is associated with.

Notes:

NinjaTrader 82932

© 2023 NinjaTrader, LLC

· The SetParabolicStop() method can NOT be used concurrently with the SetStopLoss()

or SetTrailStop() method for the same position, if any of methods are called for the

same position (fromEntrySignal) the SetStopLoss() will always take precedence. You

can however, use all three methods in the same strategy if they reference different

signal names.

· Parabolic stop orders are submitted in real-time on incoming executions from entry

orders

· Since they are submitted upon receiving an execution, the Set method should be called

prior to submitting the associated entry order to ensure an initial level is set.

· A strategy will either generate a trail stop order for each partial fill of an entry order or

one order for all fills. See additional information under the Strategies tab of the Options

dialog window.

· If a profit target order is generated in addition to a trail stop order, they are submitted as

OCO (one cancels other)

· Parabolic stop orders are submitted as stop-market orders

· A parabolic stop order is automatically canceled if the managing position is closed by

another strategy generated exit order

· Should you have multiple Bars objects of the same instrument while using

SetParabolicStop() in your strategy, you should only submit orders for this instrument to

the first Bars context of that instrument. This is to ensure your order logic is processed

correctly and any necessary order amendments are done properly.

· Parabolic stop orders are modified based on the strategies 'Calculate' settings. In the

case of 'Calculate' on bar close, when the bar closes the parabolic stop order

modification will occur using the closing price of the bar as the reference price to apply

the trail offset. Subsequently if the open price of the next bar is significantly higher or

lower then the current close price then there is a possibility that the calculated parabolic

stop price is now an invalid stop price. This is a risk with modifying any stop order closer

to the current market price since any modification above/below the current price would

be rejected.

Syntax
SetParabolicStop(CalculationMode mode, double value)

SetParabolicStop(string fromEntrySignal, CalculationMode mode, double value, bool

isSimulatedStop, double acceleration, double accelerationMax, double accelerationStep)

Warnings:

· This method CANNOT be called from the OnStateChange() method during

State.SetDefaults

· CalculationMode.Price is irrelevant for trail stops. Attempting to use this mode will log a

message and the stop order be ignored. Please use SetStopLoss() for this mode

instead.

NinjaScript 2933

© 2023 NinjaTrader, LLC

Parameters

mode Determines the manner in which the value

parameter is calculated

Possible values are:

CalculationMod

e.Currency

Initial PnL away

from average

entry.

Calculated by

the dollar per

tick value for the

order quantity

used. When

this mode is

used,

StopTargetHan

dling will

automatically be

set to

ByStrategyPos

ition. The Stop

loss will then

continue to

update following

each parabolic

step.

CalculationMod

e.Percent

Percentage

away from the

average entry,

based on the

average entry

price.

CalculationMod

e.Pips

Pips away from

average entry.

CalculationMod

e.Ticks

Ticks away

from entry

NinjaTrader 82934

© 2023 NinjaTrader, LLC

average entry.

Please note in percentage calculation mode a

value of 1 is equal to 100%, a value of 0.1 is

equal to 10%, and a value of 0.01 will be 1%

isSimulatedStop If true, will simulate the stop order and submit as

market once triggered

value The value the trail stop order is offset from the

position entry price

fromEntrySignal The entry signal name. This ties the trail stop exit

to the entry and exits the position quantity

represented by the actual entry. Using an empty

string will attach the exit order to all entries.

acceleration Sets the acceleration value

accelerationMax Sets the maximum acceleration value

accelerationStep Sets the step value used to increment

acceleration value

Tips (also see Overview):

· It is suggested to call this method from within the strategy OnStateChange() method if

your stop loss price/offset is static

· You may call this method from within the strategy OnBarUpdate() method should you

wish to dynamically change the stop loss price while in an open position

· Should you call this method to dynamically change the stop loss price in the strategy

OnBarUpdate() method, you should always reset the stop loss price / offset value when

your strategy is flat otherwise, the last price/offset value set will be used to generate

your stop loss order on your next open position

· The signal name generated internally by this method is "Parabolic stop" which can be

used with various methods such as BarsSinceExitExecution(), or other order concepts

which rely on identifying a signal name

Examples

NinjaScript 2935

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Sets a parabolic stop using default acceleration

(0.02), accelerationMax (0.2), accelerationStep (0.02) settings and

a floor value of 12 ticks

 SetParabolicStop(CalculationMode.Ticks, 12);

 // Sets a parabolic stop of with a currency floor of 500

 SetParabolicStop("MyLongEntry", CalculationMode.Currency,

 500, false, 0.03, 0.3, 0.01);

 }

}

11.6.14.35.1.26 SetProfitTarget()

Definition
Generates a profit target order with the signal name "Profit target" to exit a position. Profit

target orders are real working orders submitted immediately to the market upon receiving an

execution from an entry order.

Notes:

· Profit target orders are submitted in real-time on incoming executions from entry orders

· Since they are submitted upon receiving an execution, the Set method should be called

prior to submitting the associated entry order to ensure an initial level is set.

· A strategy will either generate a target order for each partial fill of an entry order or one

order for all fills. See additional information under the Strategies tab of the Options dialog

window.

· If a stop loss or trail stop order is generated in addition to a profit target order, they are

submitted as OCO (one cancels other)

· A profit target order is automatically cancelled if the managing position is closed by

another strategy generated exit order

· Should you have multiple Bars objects of the same instrument while using

SetProfitTarget() in your strategy, you should only submit orders for this instrument to

the first Bars context of that instrument. This is to ensure your order logic is processed

correctly and any necessary order amendments are done properly.

Syntax
SetProfitTarget(CalculationMode mode, double value)

SetProfitTarget(CalculationMode mode, double value, bool isMIT)

SetProfitTarget(string fromEntrySignal, CalculationMode mode, double value)

NinjaTrader 82936

© 2023 NinjaTrader, LLC

SetProfitTarget(string fromEntrySignal, CalculationMode mode, double value, bool

isMIT)

Warning: This method CANNOT be called from the OnStateChange() method during

State.SetDefaults

Parameters

currency Sets the profit target amount in currency ($500

profit for example)

isMIT Sets the profit target as a market-if-touched

order

mode Determines the manner in which the value

parameter is calculated

Possible values are:

CalculationMod

e.Currency

PnL away from

average entry.

Calculated by

the dollar per

tick value for the

order quantity

used. When

this mode is

used,

StopTargetHan

dling will

automatically be

set to

ByStrategyPos

ition

CalculationMod

e.Percent

Percentage

away from the

average entry,

based on the

average entry

price.

NinjaScript 2937

© 2023 NinjaTrader, LLC

CalculationMod

e.Pips

Pips away from

average entry.

CalculationMod

e.Price

The absolute

price point

specified.

CalculationMod

e.Ticks

Ticks away

from entry

average entry.

Please note in percentage calculation mode a

value of 1 is equal to 100%, a value of 0.1 is

equal to 10%, and a value of 0.01 will be 1%

value The value the profit target order is offset from the

position entry price (exception is using .Price

mode where 'value' will represent the actual

price)

fromEntrySignal The entry signal name. This ties the profit target

exit to the entry and exits the position quantity

represented by the actual entry. Using an empty

string will attach the exit order to all entries.

Tips (also see Overview):

· It is suggested to call this method from within the strategy OnStateChange() method if

your profit target price/offset is static

· You may call this method from within the strategy OnBarUpdate() method should you

wish to dynamically change the target price while in an open position

· Should you call this method to dynamically change the target price in the strategy

OnBarUpdate() method, you should always reset the target price / offset value when

your strategy is flat otherwise, the last price/offset value set will be used to generate

your profit target order on your next open position

· The signal name generated internally by this method is "Profit target" which can be

used with various methods such as BarsSinceExitExecution(), or other order concepts

which rely on identifying a signal name

NinjaTrader 82938

© 2023 NinjaTrader, LLC

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Submits a profit target order 10 ticks away from the

avg entry price

 SetProfitTarget(CalculationMode.Ticks, 10);

 }

}

11.6.14.35.1.27 SetStopLoss()

Definition
Generates a stop loss order with the signal name "Stop loss" used to exit a position. Stop

loss orders are real working orders (unless simulated is specified in which case the stop

order is locally simulated and submitted as market once triggered) submitted immediately to

the market upon receiving an execution from an entry order.

Notes:

· Stop loss orders are submitted in real-time on incoming executions from entry orders

· Since they are submitted upon receiving an execution, the Set method should be called

prior to submitting the associated entry order to ensure an initial level is set.

· A strategy will either generate a stop loss order for each partial fill of an entry order or

one order for all fills. See additional information under the Strategies tab of the Options

dialog window.

· If a profit target order is generated in addition to a stop loss order, they are submitted as

OCO (one cancels other)

· Stop loss orders are submitted as stop-market orders

· A stop loss order is automatically canceled if the managing position is closed by another

strategy generated exit order

· Should you have multiple Bars objects of the same instrument while using

SetStopLoss() in your strategy, you should only submit orders for this instrument to the

first Bars context of that instrument. This is to ensure your order logic is processed

correctly and any necessary order amendments are done properly.

· The SetStopLoss() method can NOT be used concurrently with the SetTrailStop() or

SetParabolicStop() method for the same position, if any methods are called for the

same position (fromEntrySignal) the SetStopLoss() will always take precedence. You

can however, use all three methods in the same strategy if they reference different

signal names.

NinjaScript 2939

© 2023 NinjaTrader, LLC

Syntax
SetStopLoss(CalculationMode mode, double value)

SetStopLoss(string fromEntrySignal, CalculationMode mode, double value, bool

isSimulatedStop)

Warning: This method CANNOT be called from the OnStateChange() method during

State.SetDefaults

Parameters

mode Determines the manner in which the value

parameter is calculated

Possible values are:

CalculationMod

e.Currency

PnL away from

average entry.

Calculated by

the dollar per

tick value for the

order quantity

used. When

this mode is

used,

StopTargetHan

dling will

automatically be

set to

ByStrategyPos

ition

CalculationMod

e.Percent

Percentage

away from the

average entry,

based on the

average entry

price.

NinjaTrader 82940

© 2023 NinjaTrader, LLC

CalculationMod

e.Pips

Pips away from

average entry.

CalculationMod

e.Price

The absolute

price point

specified.

CalculationMod

e.Ticks

Ticks away

from entry

average entry.

Please note in percentage calculation mode a

value of 1 is equal to 100%, a value of 0.1 is

equal to 10%, and a value of 0.01 will be 1%

isSimulatedStop If true, will simulate the stop order and submit as

market once triggered

value The value the stop loss order is offset from the

position entry price (exception is using .Price

mode where 'value' will represent the actual

price)

fromEntrySignal The entry signal name. This ties the stop loss

exit to the entry and exits the position quantity

represented by the actual entry. Using an empty

string will attach the exit order to all entries.

Tips (also see Overview):

· It is suggested to call this method from within the strategy OnStateChange() method if

your stop loss price/offset is static

· You may call this method from within the strategy OnBarUpdate() method should you

wish to dynamically change the stop loss price while in an open position

· Should you call this method to dynamically change the stop loss price in the strategy

OnBarUpdate() method, you should always reset the stop loss price / offset value when

your strategy is flat otherwise, the last price/offset value set will be used to generate

your stop loss order on your next open position

NinjaScript 2941

© 2023 NinjaTrader, LLC

· The signal name generated internally by this method is "Stop loss" which can be used

with various methods such as BarsSinceExitExecution(), or other order concepts which

rely on identifying a signal name

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Submits a stop loss of $500

 SetStopLoss(CalculationMode.Currency, 500);

 }

}

11.6.14.35.1.28 SetTrailStop()

Definition
Generates a trail stop order with the signal name "Trail stop" to exit a position. Trail stops are

amended on a bar update basis, so dependent upon the Calculate setting of the parent

strategy. Trail stop orders are real working orders (unless simulated is specified in which

case the stop order is locally simulated and submitted as market once triggered) submitted

immediately to the market upon receiving an execution from an entry order.

Notes:

· The SetTrailStop() method can NOT be used concurrently with the SetStopLoss() or

SetParabolicStop() method for the same position, if any of methods are called for the

same position (fromEntrySignal) the SetStopLoss() will always take precedence. You

can however, use all three methods in the same strategy if they reference different

signal names.

· Trail stop orders are submitted in real-time on incoming executions from entry orders

· Since they are submitted upon receiving an execution, the Set method should be called

prior to submitting the associated entry order to ensure an initial level is set.

· A strategy will either generate a trail stop order for each partial fill of an entry order or

one order for all fills. See additional information under the Strategies tab of the Options

dialog window.

· If a profit target order is generated in addition to a trail stop order, they are submitted as

OCO (one cancels other)

· Trail stop orders are submitted as stop-market orders

NinjaTrader 82942

© 2023 NinjaTrader, LLC

· A trail stop order is automatically canceled if the managing position is closed by another

strategy generated exit order

· Should you have multiple Bars objects of the same instrument while using

SetTrailStop() in your strategy, you should only submit orders for this instrument to the

first Bars context of that instrument. This is to ensure your order logic is processed

correctly and any necessary order amendments are done properly.

· Trail stop orders are modified based on the strategies 'Calculate' settings. In the case of

'Calculate' on bar close, when the bar closes the trail stop order modification will occur

using the lowest/highest price of the bar as the reference price to apply the trail offset.

Subsequently if the open price of the next bar is significantly higher or lower than this

price then there is a possibility that the calculated trail stop price is now an invalid stop

price. This is a risk with modifying any stop order closer to the current market price

since any modification above/below the current price would be rejected.

Syntax
SetTrailStop(CalculationMode mode, double value)

SetTrailStop(string fromEntrySignal, CalculationMode mode, double value, bool

isSimulatedStop)

Warnings:

· This method CANNOT be called from the OnStateChange() method during

State.SetDefaults

· CalculationMode.Price and CalculationMode.Currency are irrelevant for trail stops.

Attempting to use one of these modes will log a message and the stop order be ignored.

 Please use SetStopLoss() for these modes instead.

Parameters

mode Determines the manner in which the value

parameter is calculated

Possible values are:

CalculationMod

e.Percent

Percentage

away from the

average entry,

based on the

average entry

price.

NinjaScript 2943

© 2023 NinjaTrader, LLC

CalculationMod

e.Pips

Pips away from

average entry.

CalculationMod

e.Ticks

Ticks away

from entry

average entry.

Please note in percentage calculation mode a

value of 1 is equal to 100%, a value of 0.1 is

equal to 10%, and a value of 0.01 will be 1%

isSimulatedStop If true, will simulate the stop order and submit as

market once triggered

value The value the trail stop order is offset from the

position entry price (exception is using .Price

mode where 'value' will represent the actual

price)

fromEntrySignal The entry signal name. This ties the trail stop exit

to the entry and exits the position quantity

represented by the actual entry. Using an empty

string will attach the exit order to all entries.

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Sets a trail stop of 12 ticks

 SetTrailStop(CalculationMode.Ticks, 12);

 }

}

Tips (also see Overview):

· It is suggested to call this method from within the strategy OnStateChange() method if

your trail stop price/offset is static

NinjaTrader 82944

© 2023 NinjaTrader, LLC

· You may call this method from within the strategy OnBarUpdate() method should you

wish to dynamically change the trail stop price while in an open position

· Should you call this method to dynamically change the trail stop price in the strategy

OnBarUpdate() method, you should always reset the trail stop price / offset value when

your strategy is flat otherwise, the last price/offset value set will be used to generate

your trail stop order on your next open position

· The signal name generated internally by this method is "Trail stop" which can be used

with various methods such as BarsSinceExitExecution(), or other order concepts which

rely on identifying a signal name

11.6.14.35.2 Unmanaged Approach

The Unmanaged approach is reserved for VERY EXPERIENCED programmers. In place of

the convenience layer that the Managed approach offered, the Unmanaged approach instead

offers ultimate flexibility in terms of order submission and management. This section will

discuss some of the basics of working with Unmanaged order methods.

Getting started with Unmanaged order methods

To be able to offer you the flexibility required to achieve more complex order

submission techniques, NinjaTrader needs to be able to know if you are going to

be using the Unmanaged approach beforehand.

In the OnStateChange() method designating the IsUnmanaged property as true

signifies to NinjaTrader that you will be using the Unmanaged approach. Setting

this will effectively prevent any of the signal tracking and internal order handling

rules that were present in the Managed approach.

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 IsUnmanaged = true;

 }

}

Please note that you will not be able to mix order methods from the two

approaches. When setting IsUnmanaged to true, you can only use Unmanaged

order methods in the strategy.

NinjaScript 2945

© 2023 NinjaTrader, LLC

Working with Unmanaged order methods

Order Submission
Order submission with the Unmanaged approach is done solely from a single

order method. Parameterizing the SubmitOrderUnmanaged() method differently

will determine what kind of order you will be submitting. Please note that these

orders are live until cancelled. Should you want to cancel these orders you will

need to use the CancelOrder() method or wait till the orders expire due to the

strategy's time in force setting.

In the example below, a buy limit order to enter a long position is working at the bid

price provided that the close price of the current bar is greater than the current

value of the 20 period simple moving average.

protected override void OnBarUpdate()

{

 // Entry condition

 if (Close[0] > SMA(20)[0] && entryOrder == null)

 entryOrder = SubmitOrderUnmanaged(0,

OrderAction.Buy, OrderType.Limit, 1, GetCurrentBid(), 0,

"", "Long Limit");

}

It is critical to assign an Order object to keep track of your order or else you will not

be able to identify it in your code later since there is no signal tracking when using

Unmanaged order methods. Please be aware of the following information about

Order objects:

· An Order object returned from calling an order method is dynamic in that its

properties will always reflect the current state of an order

· The property <Order>.OrderId is NOT a unique value since it can change

throughout an order's lifetime

· To check for equality you can compare Order objects directly

Order Modification
Unlike the Managed approach where you could modify a working order by calling

the entry order method again with your new parameters, the Unmanaged

approach requires the utilization of the ChangeOrder() method. The

ChangeOrder() method requires you to have access to the Order object you wish

NinjaTrader 82946

© 2023 NinjaTrader, LLC

to modify so it is important to hold onto those for any active order you have in your

strategy.

protected override void OnBarUpdate()

{

 // Raise stop loss to breakeven when you are at least

4 ticks in profit

 if (stopOrder != null && stopOrder.StopPrice <

Position.AveragePrice && Close[0] >= Position.AveragePrice

+ 4 * TickSize)

 ChangeOrder(stopOrder, stopOrder.Quantity, 0,

Position.AveragePrice);

}

Order Cancellation
Similar to the live until canceled technique from the Managed approach, canceling

orders can be done through the CancelOrder() method.

protected override void OnBarUpdate()

{

 // Cancel entry order if price is moving away from our

limit price

 if (entryOrder != null && Close[0] <

entryOrder.LimitPrice - 4 * TickSize)

 {

 CancelOrder(entryOrder);

 // If the entryOrder Order object is no longer

needed I should reset it to null in the OnOrderUpdate()

method

 }

}

Signal Tracking
Since the Unmanaged approach does not utilize NinjaScript's signal tracking the

features associated with it will no longer be relevant. The following properties and

their associated concept cannot be used with Unmanaged order methods:

EntriesPerDirection

NinjaScript 2947

© 2023 NinjaTrader, LLC

EntryHandling

SetOrderQuantity

Methods utilizing signal names like BarsSinceEntryExecution() and

BarsSinceExitExecution() can still be used though.

Critical considerations when using Unmanaged order methods

When using the Unmanaged approach it is imperative to understand that

NinjaTrader has many safety mechanisms that were present in the Managed

approach turned off. There are critical issues that must be considered and your

strategy must be programmed in a manner that addresses these concerns.

Failure to do so may result in a serious adverse affect on your trading account.

Overfills
Overfills is a serious issue that can occur when using complex entry conditions

that bracket the market in both directions end up with both entries being filled

instead of one being canceled. Overfills can also occur when you place a trade

quickly hoping to close a position while a prior order to close the same position

already had an in-flight execution. The exact scenarios in which an overfill can

occur is highly dependent on the specific strategy programming. By default,

NinjaTrader will protect against overfills even though you are using the Unmanaged

approach by halting the strategy, but should you decide to custom program your

own overfill handling it is up to you to either prevent overfills from being a possibility

in your code or by introducing logic to address overfills should one occur.

Order rejections
Order rejections are not local to using Unmanaged order methods, but the impact

of improper rejection management is just as detrimental. Please be sure the

strategy has significant contingency programming to handle order rejections so as

to prevent your strategy from being left in some sort of limbo state. This is

especially important if you decide to turn off RealtimeErrorHandling protection.

Connection Loss
Even though NinjaTrader provides connection loss handling features it is still

important to ensure your recovered strategy's internal state is not in limbo. Should

you have internal variables tracking various information it may be necessary for

you to program your own additional connection loss handling into

OnConnectionStatusUpdate() to properly recover all aspects of your strategy in

the manner you desired.

NinjaTrader 82948

© 2023 NinjaTrader, LLC

CancelO

rder()

Cancels a specified order.

Change

Order()

Amends a specified Order.

IgnoreOv

erfill

An unmanaged order property which defines the behavior

of a strategy when an overfill is detected.

IsUnman

aged

Determines if the strategy will be using Unmanaged order

methods.

SubmitO

rderUnm

anaged()

Generates an Unmanaged order.

11.6.14.35.2.1 CancelOrder()

Please see the "CancelOrder()" section under the "Managed Approach".

11.6.14.35.2.2 ChangeOrder()

Please see the "ChangeOrder()" section under the "Managed Approach".

11.6.14.35.2.3 IgnoreOverfill

Definition
An unmanaged order property which defines the behavior of a strategy when an overfill is

detected. An overfill is categorized as when an order returns a "Filled" or "PartFilled" state

after the order was already marked for cancellation. The cancel request could have been

induced by an explicit CancelOrder() call, from more implicit cancellations like those that

occur when another order sharing the same OCO ID is filled, or from things like order

expiration.

Critical:

· Setting this property value to true can have serious adverse affects on a running

strategy unless you have programmed your own overfill handling

· User defined overfill handling is advanced and should ONLY be addressed by

experienced programmers. Additional information can be found on overfills in the

Unmanaged approach section

Property Value

NinjaScript 2949

© 2023 NinjaTrader, LLC

This property returns true if the strategy will ignore overfills; otherwise, false. Default is set to

false.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
IgnoreOverfill

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Allows for custom overfill handling

 IgnoreOverfill = true;

 }

}

11.6.14.35.2.4 IsUnmanaged

Definition
Determines if the strategy will be using Unmanaged order methods.

Note: Unmanaged order methods and Managed order methods CANNOT be used

interchangeably. When IsUnmanaged is set to true, calling managed order methods

such as EnterLong(), SetStopLoss(), etc, will generate an error which will be displayed on

the Log tab of the Control Center.

Property Value
This property returns true if the strategy will use Unmanaged order methods; otherwise,

false. Default is set to false.

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

NinjaTrader 82950

© 2023 NinjaTrader, LLC

Syntax
IsUnmanaged

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 // Use Unmanaged order methods

 IsUnmanaged = true;

 }

}

11.6.14.35.2.5 SubmitOrderUnmanaged()

Definition
Generates an Unmanaged order.

Method Return Value
An Order read-only object that represents the order. Reserved for experienced programmers,

additional information can be found within the Unmanaged Approach section.

Syntax
SubmitOrderUnmanaged(int selectedBarsInProgress, OrderAction orderAction, OrderType

orderType, int quantity)

SubmitOrderUnmanaged(int selectedBarsInProgress, OrderAction orderAction, OrderType

orderType, int quantity, double limitPrice)

SubmitOrderUnmanaged(int selectedBarsInProgress, OrderAction orderAction, OrderType

orderType, int quantity, double limitPrice, double stopPrice)

SubmitOrderUnmanaged(int selectedBarsInProgress, OrderAction orderAction, OrderType

orderType, int quantity, double limitPrice, double stopPrice, string oco)

SubmitOrderUnmanaged(int selectedBarsInProgress, OrderAction orderAction, OrderType

orderType, int quantity, double limitPrice, double stopPrice, string oco, string

signalName)

Parameters

selectedBarsInPro

gress

The index of the Bars object the order is to be

submitted against. This determines what

instrument the order is submitted for.

Note: See the BarsInProgress property.

NinjaScript 2951

© 2023 NinjaTrader, LLC

orderAction Determines if the order is a buy or sell order

Possible values:

OrderAction.Buy

OrderAction.BuyToCover

OrderAction.Sell

OrderAction.SellShort

orderType Determines the type of order submitted

Possible values:

OrderType.Limit

OrderType.Market

OrderType.MIT

OrderType.StopMarket

OrderType.StopLimit

quantity Sets the number of contracts to submit with the

order

limitPrice Order limit price. Use "0" should this parameter

be irrelevant for the OrderType being submitted.

stopPrice Order stop price. Use "0" should this parameter

be irrelevant for the OrderType being submitted.

oco A string representing the OCO ID used to link

OCO orders together

Note: OCO strings should not be reused. Use

unique strings for each OCO group, and reset

after orders in that group are filled/canceled

signalName A string representing the name of the order. Max

50 characters.

Examples

NinjaTrader 82952

© 2023 NinjaTrader, LLC

private Order entryOrder = null;

protected override void OnBarUpdate()

{

 // Entry condition

 if (Close[0] > SMA(20)[0] && entryOrder == null)

 SubmitOrderUnmanaged(0, OrderAction.Buy,

OrderType.Market, 1, 0, 0, "", "Enter Long");

}

protected override void OnOrderUpdate(Order order, double

limitPrice, double stopPrice, int quantity, int filled, double

averageFillPrice, OrderState orderState, DateTime time, ErrorCode

error, string nativeError)

{

 // Assign entryOrder in OnOrderUpdate() to ensure the

assignment occurs when expected.

 // This is more reliable than assigning Order objects in

OnBarUpdate, as the assignment is not gauranteed to be complete if

it is referenced immediately after submitting

 if (order.Name == "Enter Long" && orderState ==

OrderState.Filled)

 entryOrder = order;

}

11.6.14.36OrderFillResolution

Definition
Determines how strategy orders are filled during historical states.

Please see Understanding Historical Fill Processing for general information on historical fill

processing.

Property Value
An enum value that determines how the strategy orders are filled. Default value is set to

OrderFillResolution.Standard. Possible values are:

OrderFillResolutio

n.Standard

Faster - Uses the existing bar type and interval

that you are running the backtest on to fill your

orders.

OrderFillResolutio

n.High

More granular - Allows you to set a secondary

bar series to be used as the price data to fill your

orders. (See also OrderFillResolutionType and

OrderFillResolutionValue)

NinjaScript 2953

© 2023 NinjaTrader, LLC

Syntax
OrderFillResolution

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "ExampleStrategy";

 OrderFillResolution = OrderFillResolution.Standard;

 }

}

11.6.14.37OrderFillResolutionType

Definition
Determines the bars type which will be used for historical fill processing.

Note: This property will only be valid if the OrderFillResolution is set to
OrderFillResolution.High

Property Value
A BarsPeriodType representing the type of bars during historical order processing. Default

value is set to BarsPeriodType.Minute.

Syntax
OrderFillResolutionType

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults

Examples

NinjaTrader 82954

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "ExampleStrategy";

 // use one second bars for filling orders

 OrderFillResolution = OrderFillResolution.High;

 OrderFillResolutionType = BarsPeriodType.Second;

 OrderFillResolutionValue = 1;

 }

}

11.6.14.38OrderFillResolutionValue

Definition
Determines the bars period interval value which will be used for historical fill processing.

Note: This property will only be valid if the OrderFillResolution is set to
OrderFillResolution.High

Property Value
A int representing the interval used for the bars period during historical order processing.

Default value is set to 1.

Syntax
OrderFillResolutionValue

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults

Examples

NinjaScript 2955

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "ExampleStrategy";

 // use one second bars for filling orders

 OrderFillResolution = OrderFillResolution.High;

 OrderFillResolutionType = BarsPeriodType.Second;

 OrderFillResolutionValue = 1;

 }

}

11.6.14.39PerformanceMetrics

Definition
Holds an array of PerformanceMetrics objects that represent custom metrics that can be

used for strategy calcuations.

Index value is based on the the array of Bars objects added via the AddPerformanceMetric

method.

Property Value
An array of PerformanceMetrics objects.

Syntax
PerformanceMetrics[int index]

Examples

NinjaTrader 82956

© 2023 NinjaTrader, LLC

// Define a new SampleCumProfit object

NinjaTrader.NinjaScript.PerformanceMetrics.SampleCumProfit

myProfit;

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 // Instantiate myProfit to a new instance of SampleCumProfit

 myProfit = new

NinjaTrader.NinjaScript.PerformanceMetrics.SampleCumProfit();

 // Use AddPerformanceMetric to add myProfit to the strategy

 AddPerformanceMetric(myProfit);

 }

}

protected override void OnBarUpdate()

{

 // Print a string representing the Type of the performance

metric at Index 0 of the PerformanceMetrics collection

 Print(PerformanceMetrics[0]);

}

11.6.14.40Plots

Plotting functionality for NinjaScript Strategies is largely identical to the framework for

Indicators. Please review the Plots / AddPlot() page under the Indicators section.

An overview of the draw or plotting related methods / properties available to NinjaScript

Strategies vs. Indicators is listed below -

Method or Property Strategy Indicator

AddChartIndicator()

AddLine()

AddPlot()

AllowRemovalOfDrawObjects

AreLinesConfigurable

ArePlotsConfigurable

BackBrush

BackBrushAll

BackBrushes

BackBrushesAll

BarBrush

NinjaScript 2957

© 2023 NinjaTrader, LLC

BarBrushes

CandleOutlineBrush

CandleOutlineBrushes

ChartBars

ChartControl

ChartIndicators[]

ChartObjects

ChartPanel

DisplayInDataBox

Draw.Methods()

DrawHorizontalGridLines

DrawObjects

DrawOnPricePanel

DrawVerticalGridLines

ForceRefresh()

FormatPriceMarker()

GetValueAt()

IsAutoScale

IsOverlay

IsTradingHoursBreakLineVisible

IsValidDataPoint()

Lines[]

MaxValue

MinValue

OnCalculateMinMax()

OnRender()

OnRenderTargetChanged()

PaintPriceMarkers

Panel

PanelUI

PlotBrushes[]

Plots[]

RemoveDrawObject()

RemoveDrawObjects()

RenderTarget

ScaleJustification

SetZOrder()

ShowTransparentPlotsInDataBox

NinjaTrader 82958

© 2023 NinjaTrader, LLC

UserControllCollection[]

ZOrder

11.6.14.41Position

Definition
Represents position related information that pertains to an instance of a strategy.

Tips:

· For multi-instrument scripts, please see Positions object which holds an array of all

instrument positions managed by the strategy's account

· For a real-world Account Position, please see PositionAccount.

Methods and Properties

Account An Account object which corresponds to the

position

AveragePrice Gets the average entry price of the strategy

position

GetUnrealizedProfi

tLoss()

Gets the unrealized PnL

Instrument An Instrument value representing the instrument

of an order

MarketPosition Gets the current market position

Possible values:

MarketPosition.Flat

MarketPosition.Long

MarketPosition.Short

Quantity Gets the current position size

ToString() A string representation of a position

Examples

NinjaScript 2959

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the average entry price

 Print("The average entry price is " + Position.AveragePrice);

}

11.6.14.41.1 AveragePrice

Definition
Gets the average price of a strategy position.

Property Value
A double value representing the position's average price per unit.

Syntax
Position.AveragePrice

Examples

protected override void OnBarUpdate()

{

 // Raise stop loss to breakeven when there is at least 10

ticks in profit

 if (Close[0] >= Position.AveragePrice + 10 * TickSize)

 ExitLongStopMarket(Position.Quantity,

Position.AveragePrice);

}

11.6.14.41.2 GetUnrealizedProfitLoss()

Definition
Calculates the unrealized PnL for the strategy position.

Method Return Value
A double value representing the unrealized PnL.

Syntax
Position.GetUnrealizedProfitLoss(PerformanceUnit unit, [double price])

Note:

NinjaTrader 82960

© 2023 NinjaTrader, LLC

· If no double argument is provided in the call, the current (real-time) Last price will be

substituted in. In case Tools > Options > Trading > 'Use last price for Pnl' is unchecked

or the instrument type is Forex / CFD the bid (for a long position) / ask (for a short

position) would be used as a substitute.

· For back-testing a double price to compare against should be provided like in our

example below.

Parameters

unit Possible values:

PerformanceUnit.Currency

PerformanceUnit.Percent

PerformanceUnit.Pips

PerformanceUnit.Points

PerformanceUnit.Ticks

price Optional price passed in used to calculate the

PnL such as Close[0]. This value is used as the

current price and compared against your entry

price for the PnL.

Examples

protected override void OnBarUpdate()

{

 // If not flat print our unrealized PnL

 if (Position.MarketPosition != MarketPosition.Flat)

 Print("Open PnL: " +

Position.GetUnrealizedProfitLoss(PerformanceUnit.Points,

Close[0]));

}

11.6.14.41.3 Instrument

Definition
Gets the instrument of a strategy position.

Property Value
An Instrument representing the position's instrument.

Syntax
Position.Instrument

NinjaScript 2961

© 2023 NinjaTrader, LLC

Examples

protected override void OnPositionUpdate(Position position, double

averagePrice, int quantity, MarketPosition marketPosition)

{

 // If the position is an AAPL position

 if (position.Instrument.MasterInstrument.Name == "AAPL")

 {

 //do something

 }

}

11.6.14.41.4 MarketPosition

Definition
Gets the strategy's current market position

Property Value
MarketPosition.Flat

MarketPosition.Long

MarketPosition.Short

Syntax
Position.MarketPosition

Examples

protected override void OnBarUpdate()

{

 // If not flat print our open PnL

 if (Position.MarketPosition != MarketPosition.Flat)

 Print("Open PnL: " +

Position.GetUnrealizedProfitLoss(PerformanceUnit.Points,

Close[0]));

}

11.6.14.41.5 Quantity

Definition
Gets the strategy's current position size.

Property Value
An int value representing the position size.

NinjaTrader 82962

© 2023 NinjaTrader, LLC

Syntax
Position.Quantity

Examples

protected override void OnBarUpdate()

{

 // Prints out the current market position

 Print(Position.MarketPosition.ToString() + " " +

Position.Quantity.ToString());

}

11.6.14.42PositionAccount

Definition
Represents position related information that pertains to real-world account (live or simulation).

Tips:

· For multi-instrument scripts, please see PositionsAccount object which holds an array

of all instrument positions managed by the strategy's account

· For a Strategy Position, please see Position

Methods and Properties

Account An Account object which corresponds to the

position

AveragePrice Gets the average entry price of the account

position

GetUnrealizedProfi

tLoss()

Gets the unrealized PnL for the account

Instrument An Instrument value representing the instrument

of an order

MarketPosition Gets the current market position of the account

Possible values:

MarketPosition.Flat

NinjaScript 2963

© 2023 NinjaTrader, LLC

MarketPosition.Long

MarketPosition.Short

Quantity Gets the current account position size

ToString() A string representation of an account position

Examples

protected override void OnBarUpdate()

{

 // Print out the average entry price

 Print("The average entry price is " +

PositionAccount.AveragePrice);

}

11.6.14.42.1 AveragePrice

Definition
Gets the average price of an account position.

Property Value
A double value representing the account position's average price per unit.

Syntax
PositionAccount.AveragePrice

Examples

protected override void OnBarUpdate()

{

 // Raise stop loss to breakeven when there is at least 10

ticks in profit

 if (Close[0] >= PositionAccount.AveragePrice + 10 * TickSize)

 ExitLongStopMarket(PositionAccount.Quantity,

PositionAccount.AveragePrice);

}

NinjaTrader 82964

© 2023 NinjaTrader, LLC

11.6.14.42.2 GetUnrealizedProfitLoss()

Definition
Calculates the unrealized PnL for the account position.

Method Return Value
A double value representing the account's unrealized PnL.

Syntax
PositionAccount.GetUnrealizedProfitLoss(PerformanceUnit unit, [double price])

Note:

· If no double argument is provided in the call, the current (real-time) Last price will be

substituted in. In case Tools > Options > Trading > 'Use last price for Pnl' is unchecked

or the instrument type is Forex / CFD the bid (for a long position) / ask (for a short

position) would be used as a substitute.

· For back-testing a double price to compare against should be provided like in our

example below.

Parameters

unit Possible values:

PerformanceUnit.Currency

PerformanceUnit.Percent

PerformanceUnit.Pips

PerformanceUnit.Points

PerformanceUnit.Ticks

price Optional price passed in used to calculate the

PnL such as Close[0]. This value is used as the

current price and compared against your entry

price for the PnL.

Examples

NinjaScript 2965

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // If not flat print our unrealized PnL

 if (PositionAccount.MarketPosition != MarketPosition.Flat)

 Print("Open PnL: " +

PositionAccount.GetUnrealizedProfitLoss(PerformanceUnit.Points,

Close[0]));

}

11.6.14.42.3 Instrument

Definition
Gets the instrument of an account position.

Property Value
An Instrument representing the account's instrument position

Syntax
PositionAccount.Instrument

Examples

protected override void OnPositionUpdate(Position position, double

averagePrice, int quantity, MarketPosition marketPosition)

{

 // If the position is an AAPL position

 if (PositionAccount.Instrument.MasterInstrument.Name ==

"AAPL")

 {

 //do something

 }

}

11.6.14.42.4 MarketPosition

Definition
Gets the account's current market position

Property Value
MarketPosition.Flat

MarketPosition.Long

MarketPosition.Short

Syntax

NinjaTrader 82966

© 2023 NinjaTrader, LLC

PositionAccount.MarketPosition

Examples

protected override void OnBarUpdate()

{

 // If not flat print our open PnL

 if (PositionAccount.MarketPosition != MarketPosition.Flat)

 Print("Open PnL: " +

PositionAccount.GetUnrealizedProfitLoss(PerformanceUnit.Points,

Close[0]));

}

11.6.14.42.5 Quantity

Definition
Gets the current account's position size.

Property Value
An int value representing the account's position size.

Syntax
PositionAccount.Quantity

Examples

protected override void OnBarUpdate()

{

 // Prints out the current market position

 Print(PositionAccount.MarketPosition.ToString() + " " +

PositionAccount.Quantity.ToString());

}

11.6.14.43Positions

Definition
Holds an array of Position objects that represent positions managed by the strategy. This

property should only be used when your strategy is executing orders against multiple

instruments.

Index value is based on the the array of Bars objects added via the AddDataSeries() method.

For example:

NinjaScript 2967

© 2023 NinjaTrader, LLC

First Bars is ES 1 Minute

Secondary Bars is ES 5 Minute

Third Bars is NQ 5 Minute

Positions[0] == ES position

Positions[1] == Always a flat position, ES position will always be Positions[0]

Positions[2] == NQ position

Tips:

· For single instrument scripts, please see Position object

· For a real-world Account Positions, please see PositionsAccount

Property Value
An array of Position objects.

Syntax
Positions[int index]

Examples

NinjaTrader 82968

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 AddDataSeries("ES 09-14", BarsPeriodType.Minute, 5);

 AddDataSeries("NQ 09-14", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 Print("ES position is " + Positions[0].MarketPosition);

 Print("NQ positions is " + Positions[2].MarketPosition);

 // Alternative approach. By checking what Bars object is

calling the OnBarUpdate()

 // method, we can just use the Position property since its

pointing to the correct

 // position.

 if (BarsInProgress == 0)

 Print("ES position is " + Position.MarketPosition);

 else if (BarsInProgress = 2)

 Print("NQ position is " + Position.MarketPosition);

}

11.6.14.44PositionsAccount

Definition
Holds an array of PositionAccount objects that represent positions managed by the strategy's

account. This property should only be used when your strategy is executing orders against

multiple instruments.

Index value is based on the the array of Bars objects added via the AddDataSeries() method.

For example:

First Bars is ES 1 Minute

Secondary Bars is ES 5 Minute

Third Bars is NQ 5 Minute

PositionsAccount[0] == ES position

PositionsAccount[1] == Always a flat position, ES position will always be PositionsAccount[0]

PositionsAccount[2] == NQ position

Tips:

· For single instrument scripts, please see PositionAccount object

NinjaScript 2969

© 2023 NinjaTrader, LLC

· For Strategy Positions, please see Positions

Property Value
An array of PositionAccount objects.

Syntax
PositionsAccount[int index]

Examples

NinjaTrader 82970

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Name = "ExampleStrategy";

 }

 else if (State == State.Configure)

 {

 AddDataSeries("ES 03-15", BarsPeriodType.Minute, 5);

 AddDataSeries("NQ 03-15", BarsPeriodType.Minute, 5);

 }

}

protected override void OnBarUpdate()

{

 Print("ES account position is " +

PositionsAccount[0].MarketPosition);

 Print("NQ account position is " +

PositionsAccount[2].MarketPosition);

 // Alternative approach. By checking what Bars object is

calling the OnBarUpdate()

 // method, we can just use the Position property since its

pointing to the correct

 // position.

 if (BarsInProgress == 0)

 Print("ES account position is " +

PositionAccount.MarketPosition);

 else if (BarsInProgress == 2)

 Print("NQ account position is " +

PositionAccount.MarketPosition);

}

11.6.14.45RealtimeErrorHandling

Definition
Defines the behavior of a strategy when a strategy generated order is returned from the

broker's server in a "Rejected" state. Default behavior is to stop the strategy, cancel any

remaining working orders, and then close any open positions managed by the strategy by

submitting one "Close" order for each unique position.

Critical:

NinjaScript 2971

© 2023 NinjaTrader, LLC

· Setting this property value to IgnoreAllErrors can have serious adverse affects on a

running strategy unless you have programmed your own order rejection handling in the

OnOrderUpdate() method

· User defined rejection handling is advanced and should ONLY be addressed by

experienced programmers

Property Value
An enum value determining how the strategy behaves. Default value is set to

RealtimeErrorHandling.StopCancelClose. Possible values include:

RealtimeErrorHandling.IgnoreAllE

rrors

Ignores any order errors received

by the strategy and will continue

running.

RealtimeErrorHandling.StopCanc

elClose

Default behavior of a strategy

RealtimeErrorHandling.StopCanc

elCloseIgnoreRejects

Will perform default behavior on

all errors except order rejections

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
RealtimeErrorHandling

Examples

NinjaTrader 82972

© 2023 NinjaTrader, LLC

private Order stopLossOrder = null;

private Order entryOrder = null;

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 RealtimeErrorHandling =

RealtimeErrorHandling.IgnoreAllErrors;

 }

}

protected override void OnBarUpdate()

{

 if (entryOrder == null && Close[0] > Open[0])

 EnterLong("myEntryOrder");

 if (stopLossOrder == null)

 stopLossOrder = ExitLongStopMarket(Position.AveragePrice - 10

 * TickSize, "myStopLoss", "myEntryOrder");

}

protected override void OnOrderUpdate(Order order, double

limitPrice, double stopPrice, int quantity, int filled, double

averageFillPrice,

 OrderState orderState,

DateTime time, ErrorCode error, string nativeError)

{

 // Assign stopLossOrder in OnOrderUpdate() to ensure the

assignment occurs when expected.

 // This is more reliable than assigning Order objects in

OnBarUpdate,

 // as the assignment is not guaranteed to be complete if it is

referenced immediately after submitting

 if (order.Name == "myStopLoss" && orderState ==

OrderState.Filled)

 stopLossOrder = order;

 if (stopLossOrder != null && stopLossOrder == order)

 {

 // Rejection handling

 if (order.OrderState == OrderState.Rejected)

 {

 // Stop loss order was rejected !!!!

 // Do something about it here

 }

 }

}

NinjaScript 2973

© 2023 NinjaTrader, LLC

11.6.14.46RestartsWithinMinutes

Definition
Determines within how many minutes the strategy will attempt to restart. The strategy will

only restart off a reestablished connection when there have been fewer restart attempts than

NumberRestartAttempts in the last NumberRestartAttempts time span. The purpose of these

settings is to stop the strategy should your connection be unstable and incapable of

maintaining a consistent connected state.

Property Value
An int value representing the maximum number of minutes in the time span in which restart

attempts have to be less than NumberRestartAttempts for a strategy to be restarted when a

connection is reestablished. Default value is set to 5.

Syntax
RestartsWithinMinutes

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 /* Allow for restarting the strategy only if there were

less restart attempts than

 MaxRestartAttempts within the last 5 minutes */

 RestartsWithinMinutes = 5;

 }

}

11.6.14.47SetOrderQuantity

Definition
Determines how order sizes are calculated for a given strategy.

Property Value
An enum determining how order quantities are set. Default value is set to

SetOrderQuantity.Strategy.

Possible values are:

SetOrderQuantity.DefaultQuantity User defined order size based on

NinjaTrader 82974

© 2023 NinjaTrader, LLC

the DefaultQuantity property

SetOrderQuantity.Strategy Takes the order size specified

programmatically within the

strategy

Warning: This property should ONLY bet set from the OnStateChange() method during

State.SetDefaults or State.Configure

Syntax
SetOrderQuantity

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 SetOrderQuantity = SetOrderQuantity.DefaultQuantity; //

calculate orders based off default size

 }

}

11.6.14.48Slippage

Definition
Sets the amount of slippage in ticks per execution used in performance calculations during

backtests.

Property Value
An int value representing the number ticks. Default value is set to 0.

Syntax
Slippage

Examples

NinjaScript 2975

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 Slippage = 2;

 }

}

11.6.14.49StartBehavior

Definition
Sets the start behavior of the strategy. See Syncing Account Positions for more information.

Note: In order to use AdoptAccountPosition you will need to first set

IsAdoptAccountPositionAware to true. Please be sure that your strategy is specifically

programmed in a manner that can accommodate account positions before using this

mode.

Property Value
An enum value that determines how the strategy behaves; Default value is set to

StartBehavior.WaitUntilFlat. Possible values are:

StartBehavior.AdoptAccountPosition

StartBehavior.ImmediatelySubmit

StartBehavior.ImmediatelySubmitSynchronizeAccount

StartBehavior.WaitUntilFlat

StartBehavior.WaitUntilFlatSynchronizeAccount

Syntax
StartBehavior

Examples

NinjaTrader 82976

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 StartBehavior = StartBehavior.WaitUntilFlat;

 }

}

11.6.14.50StopTargetHandling

Definition
Determines how stop and target orders are submitted during an entry order execution.

Property Value
An enum value that determines how the strategy behaves. Default value is set to

StopTargetHandling.PerEntryExecution. Possible values are:

StopTargetHand

ling.ByStrategyP

osition

Stop and Target order quantities will match the

current strategy position. (Stops and targets may

result in "stacked" orders on partial fills)

StopTargetHand

ling.PerEntryEx

ecution

Stop and Target orders will match the total entry

execution. (Stops and targets order quantities may

not match strategy position under a partial fill

scenario)

Warning: If your strategy executes to an Interactive Brokers or TD Ameritrade account,

the StopTargetHandling will always be forced to .ByStrategyPosition

Syntax
StopTargetHandling

Tip: The default strategy behavior is to match the order quantity used for the stops and

targets to the total entry execution. However in cases where the strategy's entry order is

partially filled, StopTargetHandling.PerEntryExecution will result in a new set of stop loss

and profit target orders for each entry execution. If you would prefer all of your stops and

targets to be placed at the same time within the same order, it is suggested to use

StopTargetHandling.ByStrategyPosition. However this may result in more stop and target

NinjaScript 2977

© 2023 NinjaTrader, LLC

orders being submitted than the overall strategy position in a scenario in which the

strategy's entire entry orders are not filled in one fill.

Example

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 StopTargetHandling =

StopTargetHandling.PerEntryExecution;

 }

}

11.6.14.51StrategyBaseConverter

Definition
A custom TypeConverter class handling the designed behavior of a strategy's property

descriptor collection. Use this as a base class for any custom TypeConverter you are

applying to a strategy class.

Notes:

· A working NinjaScript demo can be found through the reference sample on "Using a

TypeConverter to Customize Property Grid Behavior"

· When applying the custom converter, you must fully qualify the name (e.g.,

"NinjaTrader.NinjaScript.Strategies.MyCustomConveter")

· Additional TypeConverter information can be found from the MSDN documentation

· See also TypeConverterAttribute

· For Indicators, see the IndicatorBaseConverter class

Relevant base methods

TypeConverter.GetProperties() When overriding

GetProperties(), calling

base.GetProperties() ensures

that all default property grid

behavior works as designed

TypeConverter.GetPropertiesSup

ported()

In your custom converter class,

you must override

https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter%28v=vs.110%29.aspx
http://ninjatrader.com/support/forum/showthread.php?t=97919
http://ninjatrader.com/support/forum/showthread.php?t=97919
https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter.getproperties(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter.getpropertiessupported(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.typeconverter.getpropertiessupported(v=vs.110).aspx

NinjaTrader 82978

© 2023 NinjaTrader, LLC

GetPropertiesSupported() and

return a value of true in order for

your custom type converter to

work

Syntax
public class StrategyBaseConverter : TypeConverter

Warning: Failure to apply a type of StrategyBaseConverter on an strategy class can

result in unpredictable behavior of the standard NinjaTrader WPF property grid.

Tip: Common strategy functions like Print() are not available to a type converter instance.

 To debug a type converter class, you can use the AddOn Debug Concepts or attach to a

debugger (recommended)

Examples

NinjaScript 2979

© 2023 NinjaTrader, LLC

//This namespace holds Strategies in this folder and is required.

Do not change it.

namespace NinjaTrader.NinjaScript.Strategies

{

 // When applying the type converter, you must fully qualify the

name

 [TypeConverter("NinjaTrader.NinjaScript.Strategies.MyCustomConve

ter")]

 public class MyCustomStrategy : Strategy

 {

 protected override void OnStateChange()

 {

 if (State == State.SetDefaults)

 {

 Name = "MyCustomStrategy";

 }

 }

 protected override void OnBarUpdate()

 {

 //Add your custom strategy logic here.

 }

 }

 // custom converter class for strategies

 public class MyCustomConveter : StrategyBaseConverter

 {

 // A general TypeConveter method used for converting types

 public override PropertyDescriptorCollection

GetProperties(ITypeDescriptorContext context, object component,

Attribute[] attrs)

 {

 // sometimes you may need the strategy instance which

actually exists on the grid

 MyCustomStrategy strategy = component as MyCustomStrategy;

 // base.GetProperties ensures we have all the properties

(and associated property grid editors)

 // NinjaTrader internal logic handles for a given strategy

 PropertyDescriptorCollection propertyDescriptorCollection

= base.GetPropertiesSupported(context)

 ? base.GetProperties(context, component, attrs) :

TypeDescriptor.GetProperties(component, attrs);

 if (strategy == null || propertyDescriptorCollection ==

null)

 return propertyDescriptorCollection;

 // example of why you may need the instance that exists on

the grid....

 if (strategy.EntryHandling == EntryHandling.UniqueEntries)

 {

 // do something in the event a property contains some

value...

 }

 // Loop all of the properties of the strategy

 foreach (PropertyDescriptor property in

propertyDescriptorCollection)

 {

 // do something with a specific property

 // cannot call Print() here

 // but you can call the static Output window

"Process()"

 NinjaTrader.Code.Output.Process(property.Name,

PrintTo.OutputTab1);

 }

 // must return the collection after making changes

 return propertyDescriptorCollection;

 }

 // Important: This must return true otherwise the type

converter will not be called

 public override bool

GetPropertiesSupported(ITypeDescriptorContext context)

 { return true; }

 }

}

NinjaTrader 82980

© 2023 NinjaTrader, LLC

11.6.14.52SystemPerformance

Definition
The SystemPerformance object holds all trades and trade performance data generated by a

strategy.

Notes:

· A NinjaScript strategy can generate both synthetic trades (historical backtest trades)

and real-time trades executed on a real-time data stream. If you wish to access only

real-time trades, access the "RealTimeTrades" collection

· The first trade of the "RealTimeTrades" collection will contain a synthetic entry execution

if the strategy was NOT flat at the time you start the strategy.

· These properties require that IncludeTradeHistoryInBacktest be set to true.

Methods and Properties

AllTrades Gets a TradeCollection object of all trades

generated by the strategy

LongTrades Gets a TradeCollection object of long trades

generated by the strategy

RealTimeTrades Gets a TradeCollection object of real-time trades

generated by the strategy

ShortTrades Gets a TradeCollection object of short trades

generated by the strategy

Examples

protected override void OnBarUpdate()

{

 // Print out the number of long trades

 Print("The strategy has taken " +

SystemPerformance.LongTrades.Count + " long trades.");

}

11.6.14.52.1 AllTrades

Definition
A TradeCollection object of all trades generated by a strategy.

NinjaScript 2981

© 2023 NinjaTrader, LLC

Syntax
SystemPerformance.AllTrades

Examples

protected override void OnBarUpdate()

{

 // Print out the number of long trades

 Print("The strategy has taken " +

SystemPerformance.AllTrades.Count + " trades.");

}

11.6.14.52.2 LongTrades

Definition
LongTrades is a TradeCollection object of long trades generated by a strategy.

Syntax
SystemPerformance.LongTrades

Examples

protected override void OnBarUpdate()

{

 // Print out the number of long trades

 Print("The strategy has taken " +

SystemPerformance.LongTrades.Count + " long trades.");

}

11.6.14.52.3 RealTimeTrades

Definition
RealTimeTrades is a TradeCollection object of real-time trades generated by a strategy.

Syntax
SystemPerformance.RealTimeTrades

Examples

NinjaTrader 82982

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the number of real-time trades

 Print("The strategy has taken " +

SystemPerformance.RealTimeTrades.Count + " real-time trades.");

}

11.6.14.52.4 ShortTrades

Definition
ShortTrades is a TradeCollection object of short trades generated by a strategy.

Syntax
SystemPerformance.ShortTrades

Examples

protected override void OnBarUpdate()

{

 // Print out the number of short trades

 Print("The strategy has taken " +

SystemPerformance.ShortTrades.Count + " short trades.");

}

11.6.14.53TestPeriod

Definition
Reserved for Walk-Forward Optimization, this property determines the number of days used

for the "out of sample" backtest period for a given strategy. See also OptimizationPeriod.

Note: This property should ONLY be called from the OnStateChange() method during

State.SetDefaults

Property Value
An int value representing the number of "out of sample" days used for walk-forward

optimization; Default value is set to 28

Syntax
TestPeriod

NinjaScript 2983

© 2023 NinjaTrader, LLC

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 //set the default TestPeriod to 31 days for WFOs

 TestPeriod = 31;

 }

}

11.6.14.54TimeInForce

Definition
Sets the time in force property for all orders generated by a strategy. The selected TIF

parameter is sent to your broker on order submission and will instruct how long you would like

the order to be active before it is cancelled.

Note: This property is dependent on what time in force your broker may or may not

support. If a brokerage / exchange combination is not compatible with a particular time in

force, the order will be rejected by the broker. NinjaTrader does not have a method to

prevent an unsupported TIF to be sent to a particular exchange. For questions about what

TIF may be supported, please contact your broker directly.

Property Value
An enum value that determines the time in force. Default value is set to TimeInForce.Gtc.

Possible values are:

TimeInForce.Day Orders will be canceled by the

broker at the end of the trading

session

TimeInForce.Gtc Order will remain working until the

order is explicitly cancelled.

TimeInForce.Gtd Order will remain working until the

specified date

Syntax
TimeInForce

NinjaTrader 82984

© 2023 NinjaTrader, LLC

Examples

Setting default TIF for all

strategy orders

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 TimeInForce = TimeInForce.Day;

 }

}

Setting TIF conditionally

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

if (Instrument != null)

{

if (Instrument.Exchange == Exchange.Nybot)

TimeInForce = TimeInForce.Day;

else if (Instrument.Exchange == Exchange.Globex)

TimeInForce = TimeInForce.Gtc;

}

 }

}

11.6.14.55TraceOrders

Definition
Determines if OnOrderTrace() would be called for a given strategy. When enabled, traces

are generated and displayed in the NinjaScript Output window for each call of an order

method providing confirmation that the method is entered and providing information if order

methods are ignored and why. This is valuable for debugging if you are not seeing expected

behavior when calling an order method. This property can be set programatically in the

OnStateChange() method.

The output will reference a method "PlaceOrder()" which is an internal method that all Enter()

and Exit() methods use.

Property Value
This property returns true if the strategy will output trace information; otherwise, false.

Default value is false.

Syntax

NinjaScript 2985

© 2023 NinjaTrader, LLC

TraceOrders

Examples

protected override void OnStateChange()

{

 if (State == State.SetDefaults)

 {

 TraceOrders = true;

 }

}

Tips

1. See this article for more examples of how to utilize this property.

2. You can override the default output by using OnOrderTrace() in your strategy.

11.6.14.56Trade

Definition
A Trade is a completed buy/sell or sell/buy transaction. It consists of an entry and exit

execution.

Example 1 Example 2

Buy 1 contract at a price of 1000

and sell 1 contract at a price of

1001 is one complete trade.

Buy 2 contracts at a price of 1000

and sell the 1st contract at a price

of 1001, then sell the 2nd contract

at a price of 1002 are two

completed trades.

In the second example above, two trade objects are created to represent each individual

trade. Each trade object will hold the same entry execution for two contracts since this single

execution was the opening execution for both individual trades.

Methods and Properties

Commission A double value representing the commission of

NinjaTrader 82986

© 2023 NinjaTrader, LLC

the trade

Entry Gets an Execution object representing the entry

EntryEfficiency A double value representing the entry efficiency

of the trade

Exit Gets an Execution object representing the exit

ExitEfficiency A double value representing the exit efficiency of

the trade

MaeCurrency A double value representing max adverse

excursion in currency

MaePercent A double value representing max adverse

excursion as a percentage

MaePips A double value representing max adverse

excursion in pips

MaePoints A double value representing max adverse

excursion in points

MaeTicks A double value representing max adverse

excursion in ticks

MfeCurrency A double value representing max favorable

excursion in currency

MfePercent A double value representing max favorable

excursion as a percentage

MfePips A double value representing max favorable

excursion in pips

MfePoints A double value representing max favorable

excursion in points

MfeTicks A double value representing max favorable

excursion in ticks

NinjaScript 2987

© 2023 NinjaTrader, LLC

ProfitCurrency A double value representing profit quoted in

currency.

ProfitPercent A double value representing profit as a

percentage

ProfitPips A double value representing profit in pips

ProfitPoints A double value representing profit in points

ProfitTicks A double value representing profit in ticks

Quantity An int value representing the quantity of the

trade

TotalEfficiency A double value representing the total efficiency of

the trade

TradeNumber An int value representing the trade numbed by

the sequence it occurred

ToString() A string representation of the Trade object

Examples

NinjaTrader 82988

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 if (SystemPerformance.RealTimeTrades.Count > 0)

 {

 // Check to make sure there is at least one trade in the

collection

 Trade lastTrade =

SystemPerformance.RealTimeTrades[SystemPerformance.RealTimeTrades.C

ount - 1];

 // Calculate the PnL for the last completed real-time trade

 double lastProfitCurrency = lastTrade.ProfitCurrency;

 // Store the quantity of the last completed real-time trade

 double lastTradeQty = lastTrade.Quantity;

 // Pring the PnL to the NinjaScript Output window

 Print("The last trade's profit in currency is " +

lastProfitCurrency);

 // The trade profit is quantity aware, we can easily print

the profit per traded unit as well

 Print("The last trade's profit in currency per traded unit

is " + (lastProfitCurrency / lastTradeQty));

 }

}

11.6.14.57TradeCollection

Definition
A collection of Trade objects. You can access a trade object by providing an index value.

Trades are indexed sequentially meaning the oldest trade taken in a strategy will be at an

index value of zero. The most recent trade taken will be at an index value of the total trades in

the collection minus 1.

Methods and Properties

TradesCount An int value representing the number of trades

in the collection

EvenTrades Gets a TradeCollection object of even trades

GetTrades() Gets a TradeCollection object representing a

specified position

LosingTrades Gets a TradeCollection object of losing trades

NinjaScript 2989

© 2023 NinjaTrader, LLC

TradesPerformanc

e

Gets a TradesPerformance object

WinningTrades Gets a TradeCollection object of winning trades

Examples

Example 1

protected override void OnBarUpdate()

{

 // Accesses the first/last trade in the strategy (oldest trade

is at index 0)

 // and prints out the profit as a percentage to the output

window

 if (SystemPerformance.AllTrades.Count > 1)

 {

 Trade lastTrade =

SystemPerformance.AllTrades[SystemPerformance.AllTrades.Count - 1];

 Trade firstTrade = SystemPerformance.AllTrades[0];

 Print("The last trade profit is " +

lastTrade.ProfitPercent);

 Print("The first trade profit is " +

firstTrade.ProfitPercent);

 }

}

NinjaTrader 82990

© 2023 NinjaTrader, LLC

Example 2

protected override void OnBarUpdate()

{

 // Once the strategy has executed 20 trades loop through the

losing trades

 // collection and print out the PnL on only long trades

 if (SystemPerformance.AllTrades.Count == 20)

 {

 Print("There are " +

SystemPerformance.AllTrades.LosingTrades.Count + " losing

trades.");

 foreach (Trade myTrade in

SystemPerformance.AllTrades.LosingTrades)

 {

 if (myTrade.Entry.MarketPosition ==

MarketPosition.Long)

 Print(myTrade.ProfitCurrency);

 }

 }

}

11.6.14.57.1 TradesCount

Definition
Indicates the number of trades in the collection.

Property Value
An int value that represents the number of trades in the collection.

Syntax
<TradeCollection>.Count

Examples

protected override void OnBarUpdate()

{

 // Print out the number of long trades

 Print("The strategy has taken " +

SystemPerformance.LongTrades.TradesCount + " long trades.");

}

11.6.14.57.2 EvenTrades

Definition
A subcollection of Trade objects consisting of only the non-winning and non-losing trades in a

TradeCollection.

NinjaScript 2991

© 2023 NinjaTrader, LLC

Note: You can access a trade object by providing an index value. Trades are indexed

sequentially meaning the oldest trade taken in a strategy will be at an index value of zero.

The most recent trade taken will be at an index value of the total trades in the collection

minus 1.

Methods and Properties

Count An int value representing the number of trades

in the collection

GetTrades() Gets a TradeCollection object representing a

specified position

TradesPerformanc

e

Gets a TradesPerformance object

Syntax
<TradeCollection>.EvenTrades

Examples

protected override void OnBarUpdate()

{

 // Accesses the first/last losing trade in the strategy

(oldest trade is at index 0)

 // and prints out the quantity NinjaScript Output window

 if (SystemPerformance.AllTrades.EvenTrades.Count > 1)

 {

 Trade lastTrade =

SystemPerformance.AllTrades.EvenTrades[SystemPerformance.AllTrades.

Count - 1];

 Trade firstTrade =

SystemPerformance.AllTrades.EvenTrades[0];

 Print("The last even trade's quantity was " +

lastTrade.Quantity);

 Print("The first even trade's quantity was " +

firstTrade.Quantity);

 }

}

NinjaTrader 82992

© 2023 NinjaTrader, LLC

11.6.14.57.3 GetTrades()

Definition
Returns a TradeCollection object representing all trades that make up the specified position.

Method Return Value
A TradeCollection object.

Syntax
<TradeCollection>.GetTrades(string instrument, string entrySignalName, int instance)

Parameters

instrument An instrument name such as "MSFT"

entrySignalName The name of your entry signal

instance The occurrence to check for (1 is the most

recent, 2 is the 2nd most recent position, etc...)

Examples

protected override void OnBarUpdate()

{

 TradeCollection myTrades =

SystemPerformance.AllTrades.GetTrades("MSFT", "myEntrySignal", 1);

 Print("The last position was comprised of " + myTrades.Count +

 " trades.");

}

11.6.14.57.4 LosingTrades

Definition
A subcollection of Trade objects consisting of only the losing trades in a TradeCollection. You

can access a trade object by providing an index value. Trades are indexed sequentially

meaning the oldest trade taken in a strategy will be at an index value of zero. The most recent

trade taken will be at an index value of the total trades in the collection minus 1.

Methods and Properties

Count An int value representing the number of trades

in the collection

NinjaScript 2993

© 2023 NinjaTrader, LLC

GetTrades() Gets a TradeCollection object representing a

specified position

TradesPerformanc

e

Gets a TradesPerformance object

Syntax
<TradeCollection>.LosingTrades

Examples

protected override void OnBarUpdate()

{

 // Accesses the first/last losing trade in the strategy

(oldest trade is at index 0)

 // and prints out the profit as a percentage to the output

window

 if (SystemPerformance.AllTrades.LosingTrades.Count > 1)

 {

 Trade lastTrade =

SystemPerformance.AllTrades.LosingTrades[SystemPerformance.AllTrade

s.Count - 1];

 Trade firstTrade =

SystemPerformance.AllTrades.LosingTrades[0];

 Print("The last losing trade's profit was " +

lastTrade.ProfitPercent);

 Print("The first losing trade's profit was " +

firstTrade.ProfitPercent);

 }

}

11.6.14.57.5 TradesPerformance

Definition
Performance profile of a collection of Trade objects.

Methods and Properties

AverageBarsInTrade A double value representing the average

number of bars per trade

NinjaTrader 82994

© 2023 NinjaTrader, LLC

AverageEntryEfficien

cy

A double value representing the average entry

efficiency

AverageExitEfficiency A double value representing the average exit

efficiency

AverageTimeInMarket A TimeSpan value representing quantity-

weighted average duration of a trade

AverageTotalEfficien

cy

A double value representing the average total

efficiency

TotalCommission A double value representing the total

commission

Currency Gets a TradesPerformanceValues object in

currency

GrossLoss A double value representing the gross loss

GrossProfit A double value representing the gross profit

LongestFlatPeriod A TimeSpan value representing longest duration

of being flat

MaxConsecutiveLose

r

An int value representing the maximum

number of consecutive losses seen

MaxConsecutiveWin

ner

An int value representing the maximum

number of consecutive winners seen

MaxTime2Recover A TimeSpan value representing maximum time

to recover from a draw down

MonthlyStdDev A double value representing the monthly

standard deviation

MonthlyUlcer A double value representing the monthly Ulcer

index

NetProfit A double value representing the net profit

http://msdn.microsoft.com/en-us/library/system.timespan.aspx
http://msdn2.microsoft.com/en-us/library/system.timespan.aspx
http://msdn2.microsoft.com/en-us/library/system.timespan.aspx

NinjaScript 2995

© 2023 NinjaTrader, LLC

Percent Gets a TradesPerformanceValues object in

percent

PerformanceMetrics An array of custom NinjaScript performance

metrics

Pips Gets a TradesPerformanceValues object in

pips

Points Gets a TradesPerformanceValues object in

points

ProfitFactor A double value representing the profit factor

R2 A double value representing the R-squared

value

RiskFreeReturn A double value representing the risk free return

rate

SharpeRatio A double value representing the Sharpe Ratio

SortinoRatio A double value representing the Sortino Ratio

Ticks Gets a TradesPerformanceValues object in

ticks

TotalQuantity An int value representing the total quantity

TotalSlippage An double value representing the total

slippage. This is presented in points, I.E. 0.25

for 1 execution on E-mini S&P 500 Futures.

TradesCount An int value representing the trades count

TradesPerDay An int value representing the avg trades per

day

Examples

NinjaTrader 82996

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()
{
 // Only trade if you have less than 5 consecutive losers in a
row
 if
(SystemPerformance.RealTimeTrades.TradesPerformance.MaxConsecutiveL
oser < 5)
 {
 // Trade logic here
 }
}

11.6.14.57.5.1 AverageBarsInTrade

Definition
Returns the average number of bars per trade.

Property Value
A double value that represents the average number of bars per trade.

Syntax
<TradeCollection>.TradesPerformance.AverageBarsInTrade

Examples

protected override void OnBarUpdate()

{

 // Print out the average number of bars per trade of all

trades

 Print("Average # bars per trade is: " +

SystemPerformance.AllTrades.TradesPerformance.AverageBarsInTrade);

}

11.6.14.57.5.2 AverageEntryEff iciency

Definition
Returns the average entry efficiency.

Property Value
A double value that represents the average entry efficiency.

Syntax
<TradeCollection>.TradesPerformance.AverageEntryEfficiency

NinjaScript 2997

© 2023 NinjaTrader, LLC

Examples

protected override void OnBarUpdate()

{

 // Print out the average entry efficiency

 Print("Average entry efficiency is: " +

SystemPerformance.AllTrades.TradesPerformance.AverageEntryEfficienc

y);

}

11.6.14.57.5.3 AverageExitEff iciency

Definition
Returns the average exit efficiency.

Property Value
A double value that represents the average exit efficiency.

Syntax
<TradeCollection>.TradesPerformance.AverageExitEfficiency

Examples

protected override void OnBarUpdate()

{

 // Print out the average exit efficiency

 Print("Average exit efficiency is: " +

SystemPerformance.AllTrades.TradesPerformance.AverageExitEfficiency

);

}

11.6.14.57.5.4 AverageTimeInMarket

Definition
Returns the average duration of a trade weighted by quantity.

Property Value
A TimeSpan value that represents the quantity-weighted average duration of a trade.

Syntax
<TradeCollection>.TradesPerformance.AverageTimeInMarket

NinjaTrader 82998

© 2023 NinjaTrader, LLC

Examples

protected override void OnBarUpdate()

{

 // Print out the quantity-weighted average duration of all

trades

 Print("Average time in market: " +

SystemPerformance.AllTrades.TradesPerformance.AverageTimeInMarket);

}

11.6.14.57.5.5 AverageTotalEff iciency

Definition
Returns the average total efficiency.

Property Value
A double value that represents the average total efficiency.

Syntax
<TradeCollection>.TradesPerformance.AverageTotalEfficiency

Examples

protected override void OnBarUpdate()

{

 // Print out the average total efficiency

 Print("Average total efficiency is: " +

SystemPerformance.AllTrades.TradesPerformance.AverageTotalEfficienc

y);

}

11.6.14.57.5.6 Currency

Definition
Returns a TradesPerformanceValues object in currency.

Property Value
A TradesPerformanceValues object that is represented in currency.

Syntax
<TradeCollection>.TradesPerformance.Currency

NinjaScript 2999

© 2023 NinjaTrader, LLC

Examples

protected override void OnBarUpdate()

{

 // Print out the avg. profit of all trades in currency

 Print("Average profit: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.AverageProfi

t);

}

11.6.14.57.5.7 GrossLoss

Definition
Returns the gross loss.

Property Value
A double value that represents the gross loss.

Syntax
<TradeCollection>.TradesPerformance.GrossLoss

Examples

protected override void OnBarUpdate()

{

 // Print out the gross loss of all trades

 Print("Gross loss is: " +

SystemPerformance.AllTrades.TradesPerformance.GrossLoss);

}

11.6.14.57.5.8 GrossProfit

Definition
Returns the gross profit.

Property Value
A double value that represents the gross profit.

Syntax
<TradeCollection>.TradesPerformance.GrossProfit

NinjaTrader 83000

© 2023 NinjaTrader, LLC

Examples

protected override void OnBarUpdate()

{

 // Print out the gross profit of all trades

 Print("Gross profit is: " +

SystemPerformance.AllTrades.TradesPerformance.GrossProfit);

}

11.6.14.57.5.9 LongestFlatPeriod

Definition
Returns the longest duration of being flat.

Property Value
A TimeSpan value that represents the longest duration of being flat.

Syntax
<TradeCollection>.TradesPerformance.LongestFlatPeriod

Examples

protected override void OnBarUpdate()

{

 // Print out the longest duration of being flat

 Print("Longest flat period: " +

SystemPerformance.AllTrades.TradesPerformance.LongestFlatPeriod);

}

11.6.14.57.5.10 MaxConsecutiveLoser

Definition
Returns the maximum number of consecutive losers seen.

Property Value
An int value that represents the maximum number of consecutive losers seen.

Syntax
<TradeCollection>.TradesPerformance.MaxConsecutiveLoser

Examples

NinjaScript 3001

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the max consecutive losers of all trades

 Print("Max # of consecutive losers is: " +

SystemPerformance.AllTrades.TradesPerformance.MaxConsecutiveLoser);

}

11.6.14.57.5.11 MaxConsecutiveWinner

Definition
Returns the maximum number of consecutive winners seen.

Property Value
An int value that represents the maximum number of consecutive winners seen.

Syntax
<TradeCollection>.TradesPerformance.MaxConsecutiveWinner

Examples

protected override void OnBarUpdate()

{

 // Print out the max consecutive winners of all trades

 Print("Max # of consecutive winners is: " +

SystemPerformance.AllTrades.TradesPerformance.MaxConsecutiveWinner)

;

}

11.6.14.57.5.12 MaxTimeToRecover

Definition
Returns the maximum time to recover from a draw down.

Property Value
A TimeSpan value that represents the maximum time to recover from a draw down.

Syntax
<TradeCollection>.TradesPerformance.MaxTimeToRecover

Examples

NinjaTrader 83002

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the maximum time to recover from a draw down

 Print("Max time to recover is: " +

SystemPerformance.AllTrades.TradesPerformance.MaxTimeToRecover);

}

11.6.14.57.5.13 MonthlyStdDev

Definition
Returns the monthly standard deviation.

Property Value
A double value that represents the monthly standard deviation.

Syntax
<TradeCollection>.TradesPerformance.MonthlyStdDev

Examples

protected override void OnBarUpdate()

{

 // Print out the monthly standard deviation

 Print("Monthly standard deviation is: " +

SystemPerformance.AllTrades.TradesPerformance.MonthlyStdDev);

}

11.6.14.57.5.14 MonthlyUlcer

Definition
Returns the monthly Ulcer index.

Property Value
A double value that represents the monthly Ulcer index.

Syntax
<TradeCollection>.TradesPerformance.MonthlyUlcer

Examples

NinjaScript 3003

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the monthly Ulcer index

 Print("Monthly Ulcer index is: " +

SystemPerformance.AllTrades.TradesPerformance.MonthlyUlcer);

}

11.6.14.57.5.15 NetProfit

Definition
Returns the net profit.

Property Value
A double value that represents the net profit.

Syntax
<TradeCollection>.TradesPerformance.NetProfit

Examples

protected override void OnBarUpdate()

{

 // Print out the net profit of all trades

 Print("Net profit is: " +

SystemPerformance.AllTrades.TradesPerformance.NetProfit);

}

11.6.14.57.5.16 Percent

Definition
Returns a TradesPerformanceValues object in percent.

Property Value
A TradesPerformanceValues object that is represented in percent.

Syntax
<TradeCollection>.TradesPerformance.Percent

Examples

NinjaTrader 83004

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the avg. profit of all trades in percent

 Print("Average profit: " +

SystemPerformance.AllTrades.TradesPerformance.Percent.AverageProfit

);

}

11.6.14.57.5.17 PerformanceMetrics

Definition
Returns a collection of custom Performance Metrics. These need to have been enabled in

Tools > Options > General to be able to use them.

Syntax
<TradeCollection>.TradesPerformance.PerformanceMetrics

Examples

NinjaScript 3005

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the number of enabled custom Performance Metrics

 Print("Number of Performance Metrics: "

 +

SystemPerformance.AllTrades.TradesPerformance.PerformanceMetrics.Le

ngth);

 // Find a the value of a specific custom Performance Metric

named "MyPerformanceMetric"

 for (int i = 0; i <

SystemPerformance.AllTrades.TradesPerformance.PerformanceMetrics.Le

ngth; i++)

 {

 if

(SystemPerformance.AllTrades.TradesPerformance.PerformanceMetrics[i

] is

 NinjaTrader.NinjaScript.PerformanceMetrics.MyPerform

anceMetric)

 {

 Print((SystemPerformance.AllTrades.TradesPerformance

.PerformanceMetrics[i] as

 NinjaTrader.NinjaScript.PerformanceMetrics.MyPe

rformanceMetric).Values[0]);

 }

 }

}

11.6.14.57.5.18 Pips

Definition
Returns a TradesPerformanceValues object in pips.

Property Value
A TradesPerformanceValues object that is represented in pips.

Syntax
<TradeCollection>.TradesPerformance.Pips

Examples

NinjaTrader 83006

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the avg. profit of all trades in pips

 Print("Average profit: " +

SystemPerformance.AllTrades.TradesPerformance.Pips.AverageProfit);

}

11.6.14.57.5.19 Points

Definition
Returns a TradesPerformanceValues object in points.

Property Value
A TradesPerformanceValues object that is represented in points.

Syntax
<TradeCollection>.TradesPerformance.Points

Examples

protected override void OnBarUpdate()

{

 // Print out the avg. profit of all trades in points

 Print("Average profit: " +

SystemPerformance.AllTrades.TradesPerformance.Points.AverageProfit)

;

}

11.6.14.57.5.20 ProfitFactor

Definition
Returns the profit factor.

Property Value
A double value that represents the profit factor.

Syntax
<TradeCollection>.TradesPerformance.ProfitFactor

Examples

NinjaScript 3007

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the profit factor of all trades

 Print("Profit factor is: " +

SystemPerformance.AllTrades.TradesPerformance.ProfitFactor);

}

11.6.14.57.5.21 RSquared

Definition
Returns the trade performance R-Squared value.

Property Value
A double value that represents the R-Squared (R2)

Syntax
<TradeCollection>.TradesPerformance.RSquared

Examples

protected override void OnBarUpdate()

{

 // Print out the R2 value of all trades

 Print("R-Squared is: " +

SystemPerformance.AllTrades.TradesPerformance.RSquared);

}

11.6.14.57.5.22 RiskFreeReturn

Definition
The risk free return used in calculations of Sharpe and Sortino ratios.

Property Value
A double value that represents the risk free return.

Syntax
<TradeCollection>.TradesPerformance.RiskFreeReturn

Examples

NinjaTrader 83008

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Set a 3.5% risk free return

 SystemPerformance.AllTrades.TradesPerformance.RiskFreeReturn =

 0.035;

 // Print out the Sharpe ratio of all trades based on a 3.5%

risk free return

 Print("Sharpe ratio is: " +

SystemPerformance.AllTrades.TradesPerformance.SharpeRatio);

}

11.6.14.57.5.23 SharpeRatio

Definition
Returns the Sharpe ratio using a risk free return.

Property Value
A double value that represents the Sharpe ratio using a risk free return.

Syntax
<TradeCollection>.TradesPerformance.SharpeRatio

Examples

protected override void OnBarUpdate()

{

 // Set a 0% risk free return

 SystemPerformance.AllTrades.TradesPerformance.RiskFreeReturn =

 0;

 // Print out the Sharpe ratio of all trades based on a zero

risk free return

 Print("Sharpe ratio is: " +

SystemPerformance.AllTrades.TradesPerformance.SharpeRatio);

}

11.6.14.57.5.24 SortinoRatio

Definition
Returns the Sortino ratio using a risk free return.

Property Value

NinjaScript 3009

© 2023 NinjaTrader, LLC

A double value that represents the Sortino ratio using a risk free return.

Syntax
<TradeCollection>.TradesPerformance.SortinoRatio

Examples

protected override void OnBarUpdate()

{

 // Set a 0% risk free return

 SystemPerformance.AllTrades.TradesPerformance.RiskFreeReturn =

 0;

 // Print out the Sortino ratio of all trades based on a zero

risk free return

 Print("Sortino ratio is: " +

SystemPerformance.AllTrades.TradesPerformance.SortinoRatio);

}

11.6.14.57.5.25 Ticks

Definition
Returns a TradesPerformanceValues object in ticks.

Property Value
A TradesPerformanceValues object that is represented in ticks.

Syntax
<TradeCollection>.TradesPerformance.Ticks

Examples

protected override void OnBarUpdate()

{

 // Print out the avg. profit of all trades in ticks

 Print("Average profit: " +

SystemPerformance.AllTrades.TradesPerformance.Ticks.AverageProfit);

}

NinjaTrader 83010

© 2023 NinjaTrader, LLC

11.6.14.57.5.26 TotalCommission

Definition
Returns the total commission.

Property Value
A double value that represents the total commission.

Syntax
<TradeCollection>.TradesPerformance.TotalCommission

Examples

protected override void OnBarUpdate()

{

 // Print out the total commission of all trades

 Print("Total commission is: " +

SystemPerformance.AllTrades.TradesPerformance.TotalCommission);

}

11.6.14.57.5.27 TotalQuantity

Definition
Returns the total quantity.

Property Value
A double value that represents the total quantity.

Syntax
<TradeCollection>.TradesPerformance.TotalQuantity

Examples

protected override void OnBarUpdate()

{

 // Print out the total quantity of all trades

 Print("Total quantity is: " +

SystemPerformance.AllTrades.TradesPerformance.TotalQuantity);

}

NinjaScript 3011

© 2023 NinjaTrader, LLC

11.6.14.57.5.28 TotalSlippage

Definition
Returns the total slippage.

Property Value
A double value that represents the total slippage. This is presented in points, I.E. 0.25 for 1

execution on E-mini S&P 500 Futures.

Syntax
<TradeCollection>.TradesPerformance.TotalSlippage

Examples

protected override void OnBarUpdate()

{

 // Print out the total slippage of all trades

 Print("Total slippage is: " +

SystemPerformance.AllTrades.TradesPerformance.TotalSlippage);

}

11.6.14.57.5.29 TradesCount

Definition
Returns the total # of trades.

Property Value
A double value that represents the total # of trades.

Syntax
<TradeCollection>.TradesPerformance.TradesCount

Examples

protected override void OnBarUpdate()

{

 // Print out the total # of trades

 Print("Trades count is: " +

SystemPerformance.AllTrades.TradesPerformance.TradesCount);

}

NinjaTrader 83012

© 2023 NinjaTrader, LLC

11.6.14.57.5.30 TradesPerDay

Definition
Returns the average number of trades per day.

Property Value
An int value that represents the average number of trades per day.

Syntax
<TradeCollection>.TradesPerformance.TradesPerDay

Examples

protected override void OnBarUpdate()

{

 // Print out the average number of trades per day of all

trades

 Print("Average # of trades per day is: " +

SystemPerformance.AllTrades.TradesPerformance.TradesPerDay);

}

11.6.14.57.6 WinningTrades

Definition
A subcollection of Trade objects consisting of only the winning trades in a TradeCollection.

You can access a trade object by providing an index value. Trades are indexed sequentially

meaning the oldest trade taken in a strategy will be at an index value of zero. The most recent

trade taken will be at an index value of the total trades in the collection minus 1.

Methods and Properties

Count An int value representing the number of trades

in the collection

GetTrades() Gets a TradeCollection object representing a

specified position

TradesPerformanc

e

Gets a TradesPerformance object

Syntax
<TradeCollection>.WinningTrades

Examples

NinjaScript 3013

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Accesses the first/last winning trade in the strategy

(oldest trade is at index 0)

 // and prints out the profit as a percentage to the output

window

 if (SystemPerformance.AllTrades.WinningTrades.Count > 1)

 {

 Trade lastTrade =

SystemPerformance.AllTrades.WinningTrades[SystemPerformance.AllTrad

es.Count - 1];

 Trade firstTrade =

SystemPerformance.AllTrades.WinningTrades[0];

 Print("The last winning trade's profit was " +

lastTrade.ProfitPercent);

 Print("The first winning trade's profit was " +

firstTrade.ProfitPercent);

 }

}

11.6.14.58TradesPerformanceValues

Definition
Performance values of a collection of Trade objects.

· Currency and Point based calculations are per trade

· Percent based calculations are per traded unit

Methods and Properties

AverageEtd A double value representing avg end trade draw

down

AverageMae A double value representing avg maximum

adverse excursion

AverageMfe A double value representing avg maximum

favorable excursion

AverageProfit A double value representing avg profit

CumProfit A double value representing cumulative profit

(percent is compounded)

NinjaTrader 83014

© 2023 NinjaTrader, LLC

Drawdown A double value representing draw down

LargestLoser A double value representing largest loss

LargestWinner A double value representing largest gain

ProfitPerMonth A double value representing profit per month

always as a percent

StdDev A double value representing standard deviation

on a per unit basis

Turnaround A double value representing the turnaround

Ulcer A double value representing the Ulcer value

Examples

protected override void OnBarUpdate()

{

 // If the profit on real-time trades is > $1000 stop trading

 if

(SystemPerformance.RealTimeTrades.TradesPerformance.Currency.CumPro

fit > 1000)

 return;

}

11.6.14.58.1 AverageEtd

Definition
Returns the average ETD (end trade draw down) of the collection.

Property Value
A double value that represents the average ETD of the collection.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.AverageEtd

Examples

NinjaScript 3015

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the average ETD of all trades in currency

 Print("Average ETD of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.AverageEtd);

}

11.6.14.58.2 AverageMae

Definition
Returns the average MAE (max adverse excursion) of the collection.

Property Value
A double value that represents the average MAE of the collection.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.AverageMae

Examples

protected override void OnBarUpdate()

{

 // Print out the average MAE of all trades in currency

 Print("Average MAE of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.AverageMae);

}

11.6.14.58.3 AverageMfe

Definition
Returns the average MFE (max favorable excursion) of the collection.

Property Value
A double value that represents the average MFE of the collection.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.AverageMfe

Examples

NinjaTrader 83016

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the average MFE of all trades in currency

 Print("Average MFE of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.AverageMfe);

}

11.6.14.58.4 AverageProfit

Definition
Returns the average profit of the collection.

Property Value
A double value that represents the average profit of the collection.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.AverageProfit

Examples

protected override void OnBarUpdate()

{

 // Print out the average profit of all trades in currency

 Print("Average profit of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.AverageProfi

t);

}

11.6.14.58.5 CumProfit

Definition
Returns the cumulative profit of the collection.

Property Value
A double value that represents the cumulative profit of the collection.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.CumProfit

Examples

NinjaScript 3017

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the cumulative profit of all trades in currency

 Print("Average cumulative profit of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.CumProfit);

}

11.6.14.58.6 Draw dow n

Definition
Returns the draw down of the trade collection.

Property Value
A double value that represents the average ETD of the collection.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.Drawdown

Examples

protected override void OnBarUpdate()

{

 // Print out the draw down of all trades in currency

 Print("Draw down of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.Drawdown);

}

11.6.14.58.7 LargestLoser

Definition
Returns the largest loss amount of the collection.

Property Value
A double value that represents the largest loss amount of the collection.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.LargestLoser

Examples

NinjaTrader 83018

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the largest loss of all trades in currency

 Print("Largest loss of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.LargestLoser

);

}

11.6.14.58.8 LargestWinner

Definition
Returns the largest win amount of the collection.

Property Value
A double value that represents the largest win amount of the collection.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.LargestWinner

Examples

protected override void OnBarUpdate()

{

 // Print out the largest win of all trades in currency

 Print("Largest win of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.LargestWinne

r);

}

11.6.14.58.9 ProfitPerMonth

Definition
Returns the profit per month of the collection. This value is always returned as a percentage.

Property Value
A double value that represents the profit per month of the collection as a percentage.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.ProfitPerMonth

Examples

NinjaScript 3019

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the profit per month of all trades

 Print("Profit per month of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.ProfitPerMon

th);

}

11.6.14.58.10 StdDev

Definition
Returns the standard deviation of the collection on a per unit basis.

Property Value
A double value that represents the standard deviation of the collection on a per unit basis.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.StdDev

Examples

protected override void OnBarUpdate()

{

 // Print out the standard deviation of all trades

 Print("Standard deviation of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.StdDev);

}

11.6.14.58.11 Turnaround

Definition
Returns the amount of turnaround.

Property Value
A double value that represents the amount of turnaround.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.Turnaround

Examples

NinjaTrader 83020

© 2023 NinjaTrader, LLC

protected override void OnBarUpdate()

{

 // Print out the turnaround of all trades

 Print("Turnaround of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.Turnaround);

}

11.6.14.58.12 Ulcer

Definition
Returns the Ulcer.

Property Value
A double value that represents the Ulcer.

Syntax
<TradeCollection>.TradesPerformance.<TradesPerformanceValues>.Ulcer

Examples

protected override void OnBarUpdate()

{

 // Print out the Ulcer index of all trades

 Print("Turnaround of all trades is: " +

SystemPerformance.AllTrades.TradesPerformance.Currency.Ulcer);

}

11.6.14.59WaitForOcoClosingBracket

Definition
Determines if the strategy will submit both legs of an OCO bracket before submitting the pair

to the broker.

Why would this be needed?
There may be brokers who require that OCO orders are submitted simultaneously in a single

API call vs sending them in sequence with an include user defined OCO identifier. For

brokers that require OCO orders to be submitted in a single function call, a NinjaScript

strategy must wait until it has both legs of the OCO pair generated by SetStopLoss(),

SetTrailStop() and SetProfitTarget().

Warning:

NinjaScript 3021

© 2023 NinjaTrader, LLC

· If you only wish to send a stop loss or profit target (but not both) via any of the Set...()

methods mentioned above, when WaitForOcoClosingBracket is enabled, your exit

orders will NOT be sent since NinjaTrader needs to wait until it has both orders of the

OCO bracket. Disabling WaitForOcoClosingBracket NinjaTrader will immediately

submit a stop or profit target order, whichever is submitted first.

· This property only effects Set...() methods and does not affect other order methods (i.e.

ExitLongLimit() / SubmitOrderUnmanaged()).

Property Value
This property returns true if the strategy will wait for both legs of an OCO bracket to be called

in a strategy before submitting the order pair to the broker; otherwise, false. Default value is

set to true.

Note: Current affected brokers: TD AMERITRADE. For any other broker, this property

has no effect.

Syntax
WaitForOcoClosingBracket

Examples

protected override void OnStateChange()

{

 if (State == State.Configure)

 {

 WaitForOcoClosingBracket = false;

 }

}

11.6.15 SuperDOM Column

Custom SuperDOM Columns can be used to add additional functionality to the SuperDOM

window. The methods and properties covered in this section are unique to custom

SuperDOM column development.

Tip: The system SuperDOM Columns which ship with NinjaTrader are open source and

you can review their implementation from the NinjaScript Editor SuperDOMColumn

NinjaTrader 83022

© 2023 NinjaTrader, LLC

folder, or by using the text editor of your choice by reviewing the source code located in

Documents\NinjaTrader 8\bin\Custom\SuperDomColumns

In this section

Market

Depth

Provides Level 2 information for a SuperDOMColumn.

OnMar

ketDat

a()

Called and guaranteed to be in the correct sequence for

every change in level one market data for the underlying

instrument. The OnMarketData() method updates can

include but is not limited to the bid, ask, last price and

volume.

OnOrd

erUpda

te()

Called every time an order changes state. An order will

change state when a change in order quantity, price or state

(e.g. working to filled) occurs.

OnPos

itionUp

date()

Called every time a position changes state.

OnPro

pertyC

hange

d()

This method should be used any time you wish to repaint the

column instead of calling OnRender() directly.

OnRen

der()

Used to draw custom content to the SuperDOM Column,

such as a Grid.

OnRes

toreVal

ues()

Called when the column is restored (e.g. from a workspace).

11.6.15.1 MarketDepth

Definition
Provides Level 2 information for a SuperDOMColumn

Note: In order to ensure you are using the same exact MarketDepth subscription that

the SuperDOM's main price ladder is using, it is required that you create your own

NinjaScript 3023

© 2023 NinjaTrader, LLC

MarketDepth handler. The NinjaScript Code Wizard was designed to automatically

complete this process for you, and an example is outlined at the bottom of this page

Property Value

SuperDom.MarketDepth A collection of MarketDepthRows

SuperDom.MarketDepth.Asks A collection of orders on the ask

side of the market

SuperDom.MarketDepth.Bids A collection of orders on the bid

side of the market

SuperDom.MarketDepth.Instrume

nt

The instrument which is being

updated

Syntax
SuperDom.MarketDepth

SuperDom.MarketDepth.Asks[int idx];

SuperDom.MarketDepth.Bids[int idx];

SuperDom.MarketDepth.Instrument

Examples

NinjaTrader 83024

© 2023 NinjaTrader, LLC

protected override void OnStateChange()

{

 if (State == State.Active)

 {

 // subscribe to the same market depth events as the primary

SuperDOM Price Ladder

 if (SuperDom.MarketDepth != null)

 {

 WeakEventManager<Data.MarketDepth<LadderRow>,

Data.MarketDepthEventArgs>.AddHandler(SuperDom.MarketDepth,

"Update", OnMarketDepthUpdate);

 }

 }

 else if (State == State.Terminated)

 {

 // unsubscribe to the same market depth events as the primary

SuperDOM Price Ladder

 if (SuperDom == null) return;

 if (SuperDom.MarketDepth != null)

 {

 WeakEventManager<Data.MarketDepth<LadderRow>,

Data.MarketDepthEventArgs>.RemoveHandler(SuperDom.MarketDepth,

"Update", OnMarketDepthUpdate);

 }

 }

}

// custom market depth handler

private void OnMarketDepthUpdate(object sender,

Data.MarketDepthEventArgs e)

{

 // Print some data to the Output window

 if (e.MarketDataType == MarketDataType.Ask && e.Operation ==

Operation.Update)

 Print(string.Format("The most recent ask change is {0} {1}",

e.Price, e.Volume));

}

11.6.15.2 OnMarketData()

Definition
Called and guaranteed to be in the correct sequence for every change in level one market

data for the underlying instrument. The OnMarketData() method updates can include but is

not limited to the bid, ask, last price and volume.

Method Return Value

NinjaScript 3025

© 2023 NinjaTrader, LLC

This method does not return a value.

Syntax
protected override void OnMarketData(MarketDataEventArgs marketDataUpdate)

{

}

Parameters

marketDataUpdate A MarketDataEventArgs

representing the change in market

data

Examples

protected override void OnMarketData(MarketDataEventArgs

marketDataUpdate)

{

 if (marketDataUpdate.MarketDataType == Data.MarketDataType.Last)

 {

 // Do something

 }

}

11.6.15.3 OnOrderUpdate()

Definition
Called every time an order changes state. An order will change state when a change in order

quantity, price or state (e.g. working to filled) occurs.

Note: The OnOrderUpdate() method is called on ALL order updates (e.g., any account

and instrument combination) and NOT just the specific items which are selected in the

SuperDOM.

Method Return Value
This method does not return a value.

Syntax
protected override void OnOrderUpdate(OrderEventArgs orderUpdate)

{

}

NinjaTrader 83026

© 2023 NinjaTrader, LLC

Method Parameters

orderUpdate An OrderEventArgs representing

the change in order state

Examples

protected override void OnOrderUpdate(OrderEventArgs orderUpdate)

{

 // Do not take action if the order update does not come from the

selected SuperDOM instrument/account

 if (orderUpdate.Order.Instrument != SuperDom.Instrument ||

orderUpdate.Order.Account != SuperDom.Account)

 return;

 // Do something

}

11.6.15.4 OnPositionUpdate()

Definition
Called every time a position changes state.

Note: The OnPositionUpdate() method is called on ALL position updates (e.g., any

account and instrument combination) and NOT just the specific items which are selected

in the SuperDOM.

Method Return Value
This method does not return a value.

Syntax
protected override void OnPositionUpdate(PositionEventArgs positionUpdate)

{

}

Method Parameters

positionUpdate A PositionEventArgs representing

the change in position

NinjaScript 3027

© 2023 NinjaTrader, LLC

Examples

protected override void OnPositionUpdate(PositionEventArgs

positionUpdate)

{

 // Do not take action if the position update does not come from

the selected SuperDOM instrument/account

 if (positionUpdate.Position.Instrument != SuperDom.Instrument

 || positionUpdate.Position.Account != SuperDom.Account)

 return;

 // Do something

}

11.6.15.5 OnPropertyChanged()

Definition
This method should be used any time you wish to repaint the column instead of calling

OnRender() directly.

Method Return Value
This method does not return a value

Syntax
OnPropertyChanged()

Parameters
This method does not require any parameters

Examples

// Repaint the SuperDOM column

OnPropertyChanged();

11.6.15.6 OnRender()

Definition
Used to draw custom content to the SuperDOM Column, such as a Grid.

This method is called during the following conditions:

· The SuperDOM is centered (either automatically or when the user presses the Center

button)

· The SuperDOM is scrolled

NinjaTrader 83028

© 2023 NinjaTrader, LLC

· All accounts are disconnected

· A simulation account is reset

· A position is updated

· The user changes the SuperDOM's properties through the Properties menu

· The SuperDOM first loads (e.g. restoring from a workspace)

· The user changes the PnL display unit by clicking on the Position display

· The height/width of the SuperDOM window changes

· A user resizes the content area by dragging the splitter between price ladder and the

columns

Note: While similar to a Chart Indicator's OnRender() method, the SuperDOM Column

uses WPF Drawing Context class, rather than the SharpDX library used for chart

rendering. Concepts between these two methods are guaranteed to be different.

Method Return Value
This method does not return a value.

Syntax
You must override the method in your SuperDOM column with the following syntax:

protected override void OnRender(DrawingContext dc, double renderWidth)

{

}

Method Parameters

dc The drawing context for the column

renderWidth The rendering width for the column

Tip: In order to force OnRender() to be called under a specific condition, call the

OnPropertyChanged() method which will force the entire column to repaint. This

approach should be used instead of calling OnRender() directly.

Examples

https://msdn.microsoft.com/en-us/library/system.windows.media.drawingcontext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.drawingcontext(v=vs.110).aspx

NinjaScript 3029

© 2023 NinjaTrader, LLC

protected override void OnRender(DrawingContext dc, double

renderWidth)

{

 // Rendering logic for our column

}

11.6.15.7 OnRestoreValues()

Definition
Called when the column is restored (e.g. from a workspace). All public properties in a

SuperDOM Column are saved to the workspace upon closing and selecting save. You may

choose to do something explicit with a certain property when the OnRestoreValues()

method is called.

Method Return Value
This method does not return a value

Syntax
You may override the method in your SuperDOM column with the following syntax:

public override void OnRestoreValues()

{

}

Parameters
This method does not require any parameters

Examples

public override void OnRestoreValues()

{

 // Do something with the restored values. Can also trigger a

repaint via OnPropertyChanged()

}

11.7 SharpDX SDK Reference

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

http://sharpdx.org/

NinjaTrader 83030

© 2023 NinjaTrader, LLC

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX / Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

SharpDX is an open-source managed .NET wrapper of the DirectX API allowing the

development of high performance game, 2D and 3D graphics rendering as well as realtime

sound application.

Tip: The concepts discussed in this section only apply to NinjaScript objects which use

the Chart's OnRender() method. For code examples which demonstrate usage, please

refer to the Using SharpDX for Custom Chart Rendering educational resource. You may

also use view the source code of various ChartStyles, DrawingTools, and Indicators which

come pre-installed in the NinjaTrader.Custom project (Documents\NinjaTrader

8\bin\Custom).

In this section

SharpDX The SharpDX namespace

contains fundamental classes

used by SharpDX.

SharpDX.Direct2D1 The SharpDX.Direct2D1
namespace provides a managed
Direct2D API. Direct2D is a
hardware-accelerated,
immediate-mode, 2-D graphics
API that provides high
performance and high-quality
rendering for 2-D geometry,
bitmaps, and text.

SharpDX.DirectWrite The SharpDX.DirectWrite

namespace provides a managed

DirectWrite API. DirectWrite

supports high-quality text

rendering, resolution-independent

outline fonts, and full Unicode text

and layouts.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://github.com/sharpdx/SharpDX

NinjaScript 3031

© 2023 NinjaTrader, LLC

11.7.1 SharpDX

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

The SharpDX namespace contains fundamental classes used by SharpDX.

In this section

Color Represents a 32-bit color (4

bytes) in the form of RGBA (in

byte order: R, G, B, A).

Color3 Represents a color in the form of

rgb.

Color4 Represents a color in the form of

rgba.

DisposeBase Base class for a

System.IDisposable class.

Matrix3x2 Represents a 3x2 mathematical

matrix.

RectangleF Structure using similar layout as

System.Drawing.RectangleF

Size2F Structure using the same layout

as System.Drawing.SizeF

Vector2 Represents a two dimensional

mathematical vector.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/aax125c9
https://www.google.com/search?q=system.drawing.rectangleF&ie=utf-8&oe=utf-8
https://msdn.microsoft.com/en-us/library/system.drawing.sizef(v=vs.110).aspx

NinjaTrader 83032

© 2023 NinjaTrader, LLC

11.7.1.1 Color

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Represents a 32-bit color (4 bytes) in the form of RGBA (in byte order: R, G, B, A).

Notes:

1. The color of each pixel is represented as a 32-bit number: 8 bits each for alpha, red,

green, and blue (ARGB). Each of the four components is a number from 0 through 255,

with 0 representing no intensity and 255 representing full intensity. The alpha

component specifies the transparency of the color: 0 is fully transparent, and 255 is

fully opaque. To determine the alpha, red, green, or blue component of a color, use the

A, R, G, or B property, respectively.

2. Named colors are represented by using the properties of the Color structure. Please

see the table of Static Named Colors below

Syntax
struct Color

Constructors

new Color() Initializes a new instance of the

Color struct

new Color(float red, float

green, float blue)
Initializes a new instance of the

Color struct using float values

new Color(float red, float

green, float blue, float alpha)
Initializes a new instance of the

Color struct using float values

with alpha transparency

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaScript 3033

© 2023 NinjaTrader, LLC

new Color(int red, int green,

int blue)
Initializes a new instance of the

Color struct using int values

new Color(int red, int green,

int blue, int alpha)
Initializes a new instance of the

Color struct using int values with

alpha transparency

new Color(byte red, byte green,

 byte blue)
Initializes a new instance of the

Color struct using byte values

new Color(byte red, byte green,

 byte blue, byte alpha)
Initializes a new instance of the

Color struct using byte values

with alpha transparency

Methods and Properties

R The red component of the color

G The green component of the color

B The blue component of the color

A The alpha component of the color

ToColor3() Converts the color into a three

component color

ToColor4() Converts the color into a four

component color

Static Named Colors

Colors by name

SharpDX.Color.Zero Zero color

SharpDX.Color.Transpar

ent

Transparent color

NinjaTrader 83034

© 2023 NinjaTrader, LLC

SharpDX.Color.AliceBlue AliceBlue color

SharpDX.Color.AntiqueW

hite

AntiqueWhite color

SharpDX.Color.Aqua Aqua color

SharpDX.Color.Aquamari

ne

Aquamarine color

SharpDX.Color.Azure Azure color

SharpDX.Color.Beige Beige color

SharpDX.Color.Bisque Bisque color

SharpDX.Color.Black Black color

SharpDX.Color.Blanched

Almond

BlanchedAlmond color

SharpDX.Color.Blue Blue color

SharpDX.Color.BlueViolet BlueViolet color

SharpDX.Color.Brown Brown color

SharpDX.Color.BurlyWoo

d

BurlyWood color

SharpDX.Color.CadetBlu

e

CadetBlue color

SharpDX.Color.Chartreus

e

Chartreuse color

SharpDX.Color.Chocolat

e

Chocolate color

SharpDX.Color.Coral Coral color

NinjaScript 3035

© 2023 NinjaTrader, LLC

SharpDX.Color.Cornflow

erBlue

CornflowerBlue color

SharpDX.Color.Cornsilk Cornsilk color

SharpDX.Color.Crimson Crimson color

SharpDX.Color.Cyan Cyan color

SharpDX.Color.DarkBlue DarkBlue color

SharpDX.Color.DarkCyan DarkCyan color

SharpDX.Color.DarkGold

enrod

DarkGoldenrod color

SharpDX.Color.DarkGray DarkGray color

SharpDX.Color.DarkGree

n

DarkGreen color

SharpDX.Color.DarkKhak

i

DarkKhaki color

SharpDX.Color.DarkMag

enta

DarkMagenta color

SharpDX.Color.DarkOlive

Green

DarkOliveGreen color

SharpDX.Color.DarkOran

ge

DarkOrange color

SharpDX.Color.DarkOrch

id

DarkOrchid color

SharpDX.Color.DarkRed DarkRed color

SharpDX.Color.DarkSalm

on

DarkSalmon color

NinjaTrader 83036

© 2023 NinjaTrader, LLC

SharpDX.Color.DarkSea

Green

DarkSeaGreen color

SharpDX.Color.DarkSlate

Blue

DarkSlateBlue color

SharpDX.Color.DarkSlate

Gray

DarkSlateGray color

SharpDX.Color.DarkTurq

uoise

DarkTurquoise color

SharpDX.Color.DarkViole

t

DarkViolet color

SharpDX.Color.DeepPink DeepPink color

SharpDX.Color.DeepSky

Blue

DeepSkyBlue color

SharpDX.Color.DimGray DimGray color

SharpDX.Color.DodgerBl

ue

DodgerBlue color

SharpDX.Color.Firebrick Firebrick color

SharpDX.Color.FloralWhi

te

FloralWhite color

SharpDX.Color.ForestGr

een

ForestGreen color

SharpDX.Color.Fuchsia Fuchsia color

SharpDX.Color.Gainsbor

o

Gainsboro color

SharpDX.Color.GhostWhi

te

GhostWhite color

NinjaScript 3037

© 2023 NinjaTrader, LLC

SharpDX.Color.Gold Gold color

SharpDX.Color.Goldenro

d

Goldenrod color

SharpDX.Color.Gray Gray color

SharpDX.Color.Green Green color

SharpDX.Color.GreenYell

ow

GreenYellow color

SharpDX.Color.Honeyde

w

Honeydew color

SharpDX.Color.HotPink HotPink color

SharpDX.Color.IndianRed IndianRed color

SharpDX.Color.Indigo Indigo color

SharpDX.Color.Ivory Ivory color

SharpDX.Color.Khaki Khaki color

SharpDX.Color.Lavender Lavender color

SharpDX.Color.Lavender

Blush

LavenderBlush color

SharpDX.Color.LawnGre

en

LawnGreen color

LemonChiffon LemonChiffon color

SharpDX.Color.LightBlue LightBlue color

SharpDX.Color.LightCora

l

LightCoral color

NinjaTrader 83038

© 2023 NinjaTrader, LLC

SharpDX.Color.LightCyan LightCyan color

SharpDX.Color.LightGold

enrodYellow

LightGoldenrodYellow color

SharpDX.Color.LightGray LightGray color

SharpDX.Color.LightGree

n

LightGreen color

SharpDX.Color.LightPink LightPink color

SharpDX.Color.LightSalm

on

LightSalmon color

SharpDX.Color.LightSea

Green

LightSeaGreen color

SharpDX.Color.LightSkyB

lue

LightSkyBlue color

SharpDX.Color.LightSlate

Gray

LightSlateGray color

SharpDX.Color.LightSteel

Blue

LightSteelBlue color

SharpDX.Color.LightYello

w

LightYellow color

SharpDX.Color.Lime Lime color

SharpDX.Color.LimeGree

n

LimeGreen color

SharpDX.Color.Linen Linen color

SharpDX.Color.Magenta Magenta color

SharpDX.Color.Maroon Maroon color

NinjaScript 3039

© 2023 NinjaTrader, LLC

SharpDX.Color.MediumA

quamarine

MediumAquamarine color

SharpDX.Color.MediumBl

ue

MediumBlue color

SharpDX.Color.MediumO

rchid

MediumOrchid color

SharpDX.Color.MediumP

urple

MediumPurple color

SharpDX.Color.MediumS

eaGreen

MediumSeaGreen color

SharpDX.Color.MediumSl

ateBlue

MediumSlateBlue color

SharpDX.Color.MediumS

pringGreen

MediumSpringGreen color

SharpDX.Color.MediumT

urquoise

MediumTurquoise color

SharpDX.Color.MediumVi

oletRed

MediumVioletRed color

SharpDX.Color.MidnightB

lue

MidnightBlue color

SharpDX.Color.MintCrea

m

MintCream color

SharpDX.Color.MistyRos

e

MistyRose color

SharpDX.Color.Moccasin Moccasin color

SharpDX.Color.NavajoW

hite

NavajoWhite color

NinjaTrader 83040

© 2023 NinjaTrader, LLC

SharpDX.Color.Navy Navy color

SharpDX.Color.OldLace OldLace color

SharpDX.Color.Olive Olive color

SharpDX.Color.OliveDrab OliveDrab color

SharpDX.Color.Orange Orange color

SharpDX.Color.OrangeR

ed

OrangeRed color

SharpDX.Color.Orchid Orchid color

SharpDX.Color.PaleGold

enrod

PaleGoldenrod color

SharpDX.Color.PaleGree

n

PaleGreen color

SharpDX.Color.PaleTurq

uoise

PaleTurquoise color

SharpDX.Color.PaleViolet

Red

PaleVioletRed color

SharpDX.Color.PapayaW

hip

PapayaWhip color

SharpDX.Color.PeachPuf

f

PeachPuff color

SharpDX.Color.Peru Peru color

SharpDX.Color.Pink Pink color

SharpDX.Color.Plum Plum color

NinjaScript 3041

© 2023 NinjaTrader, LLC

SharpDX.Color.PowderBl

ue

PowderBlue color

SharpDX.Color.Purple Purple color

SharpDX.Color.Red Red color

SharpDX.Color.RosyBro

wn

RosyBrown color

SharpDX.Color.RoyalBlu

e

RoyalBlue color

SharpDX.Color.SaddleBr

own

SaddleBrown color

SharpDX.Color.Salmon Salmon color

SharpDX.Color.SandyBro

wn

SandyBrown color

SharpDX.Color.SeaGree

n

SeaGreen color

SharpDX.Color.SeaShell SeaShell color

SharpDX.Color.Sienna Sienna color

SharpDX.Color.Silver Silver color

SharpDX.Color.SkyBlue SkyBlue color

SharpDX.Color.SlateBlue SlateBlue color

SharpDX.Color.SlateGray SlateGray color

SharpDX.Color.Snow Snow color

SharpDX.Color.SpringGr

een

SpringGreen color

NinjaTrader 83042

© 2023 NinjaTrader, LLC

SharpDX.Color.SteelBlue SteelBlue color

SharpDX.Color.Tan Tan color

SharpDX.Color.Teal Teal color

SharpDX.Color.Thistle Thistle color

SharpDX.Color.Tomato Tomato color

SharpDX.Color.Turquoise Turquoise color

SharpDX.Color.Violet Violet color

SharpDX.Color.Wheat Wheat color

SharpDX.Color.White White color

SharpDX.Color.WhiteSm

oke

WhiteSmoke color

SharpDX.Color.Yellow Yellow color

SharpDX.Color.YellowGr

een

YellowGreen color

11.7.1.2 Color3

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaScript 3043

© 2023 NinjaTrader, LLC

Definition
Represents a color in the form of rgb.

Syntax
struct Color3

Constructors

new Color3() Initializes a new instance of the

Color3 struct.

new Color3(float red, float

green, float blue)
Initializes a new instance of the

Color3 struct using float values

for red, green, blue

Properties

Black The Black color (0, 0, 0)

White The White color (1, 1, 1)

Red The red component of the color

Green The green component of the color

Blue The green component of the color

11.7.1.3 Color4

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83044

© 2023 NinjaTrader, LLC

Represents a color in the form of rgba.

Syntax
struct Color4

Constructor

Color4() Initializes a new instance of the

Color4 struct

Color4(Color3 color) Initializes a new instance of the

Color4 struct using a

SharpDX.Color3 struct

Color4(Color3 color, float

alpha)
Initializes a new instance of the

Color4 struct using a

SharpDX.Color3 struct with a float

for alpha values

Color4(float red, float green,

float blue, float alpha)
Initializes a new instance of the

Color4 struct using float values

for red, green, blue

Properties

Black The Black color (0, 0, 0, 1)

White The White color (1, 1, 1, 1)

Red The red component of the color

Green The green component of the color

Blue The green component of the color

Alpha The alpha component of the color

11.7.1.4 DisposeBase

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

http://sharpdx.org/

NinjaScript 3045

© 2023 NinjaTrader, LLC

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Base class for a System.IDisposable class.

Tip: For NinjaScript development purposes, the following documented SharpDX objects

require Dispose() after they are used:

Brush, GeometrySink, GradientStopCollection, LinearGradientBrush, PathGeometry,

RadialGradientBrush, SolidColorBrush, StrokeStyle, TextFormat, TextLayout

There are other undocumented SharpDX objects which are NOT included in this

reference. Please be careful to dispose of any object (SharpDX or otherwise) which

implements the IDisposeable interface - NinjaTrader is NOT guaranteed to dispose of

these objects for you!

Methods and Properties

IsDisposed Gets a value indicating whether

this instance is disposed.

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Implements

IDisposable.Dispose())

11.7.1.4.1 Dispose()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/aax125c9
https://msdn.microsoft.com/en-us/library/es4s3w1d
http://sharpdx.org/

NinjaTrader 83046

© 2023 NinjaTrader, LLC

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Performs application-defined tasks associated with freeing, releasing, or resetting

unmanaged resources. (Implements IDisposable.Dispose())

Tip: For NinjaScript development purposes, the following documented SharpDX objects

require Dispose() after they are used:

Brush, GeometrySink, GradientStopCollection, LinearGradientBrush, PathGeometry,

RadialGradientBrush, SolidColorBrush, StrokeStyle, TextFormat, TextLayout

There are other undocumented SharpDX objects which are NOT included in this

reference. Please be careful to dispose of any object (SharpDX or otherwise) which

implements the IDisposeable interface - NinjaTrader is NOT guaranteed to dispose of

these objects for you!

Method return value
This method does not return a value

Syntax
<DisposeBaseObject>.Dispose()

11.7.1.4.2 IsDisposed

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/es4s3w1d
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaScript 3047

© 2023 NinjaTrader, LLC

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets a value indicating whether this instance is disposed.

Property Value
A bool which is true if this instance is disposed; otherwise, false.

Syntax
<DisposeBaseObject>.IsDisposed

11.7.1.5 Matrix3x2

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Represents a 3x2 mathematical matrix.

Tip: For more information on Direct2D transforms, please see the MSDN Direct2D

Transforms Overview

Syntax
struct Matrix3x2

Constructors

new Matrix3x2() Initializes a new instance of the

Matrix3x2 struct

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd756655(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756655(v=vs.85).aspx

NinjaTrader 83048

© 2023 NinjaTrader, LLC

Methods and Properties

Identity Gets the identity matrix.

M11 A float for the first element of the

first row.

M12 A float for the second element of

the first row.

M21 A float for the first element of the

second row.

M22 A float for the second element of

the second row.

M31 A float for the first element of the

third row.

M32 A float for the second element of

the third row.

TranslationVector A SharpDX.Vector2 for the

translation component of this

matrix.

Matrix3x2.Rotation(float angle) Creates a matrix that rotates.

Matrix3x2.Scaling(float scale) Creates a matrix that uniformally

scales along all three axis.

Translation(Vector2 value) Creates a translation matrix using

the specified offsets.

11.7.1.6 RectangleF

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

http://sharpdx.org/

NinjaScript 3049

© 2023 NinjaTrader, LLC

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Structure using similar layout as System.Drawing.RectangleF.

Note: This structure is slightly different from System.Drawing.RectangleF as It is

internally storing Left,Top,Right,Bottom instead of Left,Top,Width,Height. Although

automatic casting from a to System.Drawing.Rectangle is provided.

Syntax
struct RectangleF

Constructors

new RectangleF() Initializes a new instance of the

RectangleF struct.

new RectangleF(float x, float

y, float width, float height)
Initializes a new instance of the

RectangleF with specific

dimensions

Properties

Bottom Gets or sets the bottom.

Height Gets or sets the height.

Left Gets or sets the left.

Right Gets or sets the right.

Top Gets or sets the top.

Width Gets or sets the width.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://www.google.com/search?q=system.drawing.rectangleF&ie=utf-8&oe=utf-8
https://www.google.com/search?q=system.drawing.rectangleF&ie=utf-8&oe=utf-8

NinjaTrader 83050

© 2023 NinjaTrader, LLC

X Gets or sets the left position.

Y Gets or sets the top position.

11.7.1.7 Size2F

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Structure using the same layout as System.Drawing.SizeF

Syntax
struct Size2F

Constructors

new Size2F() Initializes a new instance of the

SizeF struct

new Size2F(float width, float

height)
Initializes a new instance of the

SizeF struct from the specified

dimensions.

Properties

Height Gets or sets the vertical

component of this SizeF

structure.

Width Gets or sets the horizontal

component of this SizeF

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/system.drawing.sizef(v=vs.110).aspx

NinjaScript 3051

© 2023 NinjaTrader, LLC

structure.

11.7.1.8 Vector2

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX / Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Represents a two dimensional mathematical vector.

Syntax
struct Vector2

Tip: For NinjaScript Development Purposes, you can use the

NinjaTrader.Gui.DxExtensions.ToVector2() helper method to convert a

System.Windows.Point structure to a SharpDX.Vector2 used for SharpDX rendering.

Constructors

Vector2() Initializes a new instance of the

Vector2 struct.

Vector2(float x, float y) Initializes a new instance of the

Vector2 struct using float values

for x and y components

Properties

X A float for the X component of

the vector.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83052

© 2023 NinjaTrader, LLC

Y A float for the Y component of

the vector.

11.7.2 SharpDX.Direct2D1

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

The SharpDX.Direct2D1 namespace provides a managed Direct2D API. Direct2D is a
hardware-accelerated, immediate-mode, 2-D graphics API that provides high performance
and high-quality rendering for 2-D geometry, bitmaps, and text.
(See also unmanaged API documentation)

In this section

AntialiasMode Specifies how the edges of

nontext primitives are rendered.

ArcSegment Describes an elliptical arc

between two points.

ArcSize Specifies whether an arc should

be greater than 180 degrees.

Brush Defines an object that paints an

area. Interfaces that derive from

Brush describe how the area is

painted.

BrushProperties Describes the opacity and

transformation of a brush.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd370990.aspx

NinjaScript 3053

© 2023 NinjaTrader, LLC

DrawTextOptions Specifies whether text snapping is

suppressed or clipping to the

layout rectangle is enabled. This

enumeration allows a bitwise

combination of its member

values.

Ellipse Contains the center point, x-

radius, and y-radius of an ellipse.

FigureBegin Indicates whether a specific

GeometrySink figure is filled or

hollow.

FigureEnd Indicates whether a specific

GeometrySink figure is open or

closed.

FillMode Specifies how the intersecting

areas of geometries or figures are

combined to form the area of the

composite geometry.

GeometrySink Describes a geometric path that

can contain lines, arcs, cubic

Bezier curves, and quadratic

Bezier curves.

MeasuringMode Indicates the measuring method

used for text layout.

PathGeometry Represents a complex shape that

may be composed of arcs,

curves, and lines.

RenderTarget Represents an object that can

receive drawing commands.

SolidColorBrush Paints an area with a solid color.

StrokeStyle Describes the caps, miter limit,

line join, and dash information for

NinjaTrader 83054

© 2023 NinjaTrader, LLC

a stroke.

SweepDirection Defines the direction that an

elliptical arc is drawn.

11.7.2.1 AntialiasMode

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Specifies how the edges of nontext primitives are rendered.

(See also unmanaged API documentation)

Syntax
enum AntialiasMode

Enumerators

PerPrimitive Edges are antialiased using the

Direct2D per-primitive method of

high-quality antialiasing.

Aliased Objects are aliased in most

cases. Objects are antialiased

only when they are drawn to a

render target created by the

CreateDxgiSurfaceRenderTarget

method and Direct3D

multisampling has been enabled

on the backing DirectX Graphics

Infrastructure (DXGI) surface.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368061.aspx

NinjaScript 3055

© 2023 NinjaTrader, LLC

11.7.2.2 ArcSegment

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Describes an elliptical arc between two points.

(See also unmanaged API documentation)

Syntax
struct ArcSegment

Properties

Point The end point of the arc.

Size The x-radius and y-radius of the

arc.

RotationAngle A value that specifies how many

degrees in the clockwise direction

the ellipse is rotated relative to the

current coordinate system.

SweepDirection A SweepDirection enum value

that specifies whether the arc

sweep is clockwise or

counterclockwise.

ArcSize A value that specifies whether the

given arc is larger than 180

degrees.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368065.aspx

NinjaTrader 83056

© 2023 NinjaTrader, LLC

11.7.2.3 ArcSize

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Specifies whether an arc should be greater than 180 degrees.

(See also unmanaged API documentation)

Syntax
enum ArcSize

Enumerators

Small An arc's sweep should be 180

degrees or less.

Large An arc's sweep should be 180

degrees or greater.

11.7.2.4 Brush

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368068.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaScript 3057

© 2023 NinjaTrader, LLC

Definition
Defines an object that paints an area. Interfaces that derive from Brush describe how the

area is painted.

(See also unmanaged API documentation)

Notes:

1. An Brush is a device-dependent resource: your application should create brushes after

it initializes the render target with which the brush will be used, and recreate the brush

whenever the render target needs recreated. Please see the MSDN Direct2D

Resources Overview for more information.

2. Brush space in Direct2D is specified differently than in XPS and Windows

Presentation Foundation (WPF). In Direct2D, brush space is not relative to the object

being drawn, but rather is the current coordinate system of the render target,

transformed by the brush transform, if present. To paint an object as it would be

painted by a WPF brush, you must translate the brush space origin to the upper-left

corner of the object's bounding box, and then scale the brush space so that the base

tile fills the bounding box of the object.

3. For convenience, Direct2D provides the BrushProperties function for creating new a

Brush.

Syntax
class Brush

Tips:

1. For NinjaScript Development purposes, you can use the

NinjaTrader.Gui.DxExtensions.ToDxBrush() helper method to convert a

System.Windows.Media.Brush to a SharpDX.Direct2D1.Brush s

2. General information on Direct2D brushes can be found on the MSDN Direct2D

Brushes Overview

Methods and Properties

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Inherited from

SharpDX.DisposeBase.)

IsDisposed Gets a value indicating whether

this instance is disposed.

http://msdn.microsoft.com/en-us/library/dd371173.aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756651(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756651(v=vs.85).aspx

NinjaTrader 83058

© 2023 NinjaTrader, LLC

(Inherited from

SharpDX.DisposeBase.)

Opacity Gets or sets the degree of opacity

of this brush.

Transform Gets or sets the transform applied

to this brush.

11.7.2.4.1 Opacity

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets or sets the degree of opacity of this brush.

(See also unmanaged API documentation)

Property Value
A float value between zero and 1 that indicates the opacity of the brush. This value is a

constant multiplier that linearly scales the alpha value of all pixels filled by the brush. The

opacity values are clamped in the range 0–1 before they are multipled together.

Syntax
<SolidColorBrush>.Opacity

11.7.2.4.2 Transform

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd371176.aspx
http://sharpdx.org/

NinjaScript 3059

© 2023 NinjaTrader, LLC

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets or sets the transform applied to this brush.

(See also unmanaged API documentation)

Note: When the brush transform is the identity matrix, the brush appears in the same

coordinate space as the render target in which it is drawn.

Property Value
A Matrix3x2 transform applied to this brush.

Syntax
<Brush>.Transform

11.7.2.5 BrushProperties

Disclaimer: The SharpDX SDK Reference section was compiled from

the official SharpDX Documentation and was NOT authored by

NinjaTrader. The contents of this section are provided as-is and only

cover a fraction of what is available from the SharpDX SDK. This

page was intended only as a reference guide to help you get started

with some of the 2D Graphics concepts used in the

NinjaTrader.Custom assembly. Please refer to the official SharpDX

Documentation for additional members not covered in this reference.

For more seasoned graphic developers, the original MSDN Direct2D1

and DirectWrite unmanaged API documentation can also be helpful for

understanding the DirectX/Direct2D run-time environment. For

NinjaScript development purposes, we document only essential

members in the structure of this page.

Definition
Describes the opacity and transformation of a brush.

(See also unmanaged API documentation)

Syntax

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd371179(v=vs.85).aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368077.aspx

NinjaTrader 83060

© 2023 NinjaTrader, LLC

struct BrushProperties

Constructors

new BrushProperties() Initializes a new instance of the

BrushProperties structure

Properties

Opacity A value between 0.0f and 1.0f,

inclusive, that specifies the

degree of opacity of the brush.

Transform The transformation that is applied

to the brush.

11.7.2.6 CapStyle

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Describes the shape at the end of a line or segment.

(See also unmanaged API documentation)

Syntax
enum CapStyle

Enumerators

Flat A cap that does not extend past

the last point of the line.

Comparable to cap used for

objects other than lines.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368079.aspx

NinjaScript 3061

© 2023 NinjaTrader, LLC

Square Half of a square that has a length

equal to the line thickness.

Round A semicircle that has a diameter

equal to the line thickness.

Triangle An isosceles right triangle whose

hypotenuse is equal in length to

the thickness of the line.

11.7.2.7 DrawTextOptions

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Specifies whether text snapping is suppressed or clipping to the layout rectangle is enabled.

This enumeration allows a bitwise combination of its member values.

(See also unmanaged API documentation)

Syntax
enum DrawTextOptions

Enumerators

NoSnap Text is not vertically snapped to

pixel boundaries. This setting is

recommended for text that is

being animated.

Clip Text is clipped to the layout

rectangle.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368095.aspx

NinjaTrader 83062

© 2023 NinjaTrader, LLC

None Text is vertically snapped to pixel

boundaries and is not clipped to

the layout rectangle.

11.7.2.8 Ellipse

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Contains the center point, x-radius, and y-radius of an ellipse.

(See also unmanaged API documentation)

Syntax
struct Ellipse

Constructors

new Ellipse() Initializes a new instance of the

Ellipse struct

new Ellipse(Vector2 center,

float radiusX, float radiusY)
Initializes a new instance of the

Ellipse struct with specific

dimensions

Properties

Point A SharpDX.Vector for the center

point of the ellipse

RadiusX A float for the X-radius of the

ellipse

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368097.aspx

NinjaScript 3063

© 2023 NinjaTrader, LLC

RadiusY A float for the Y-radius of the

ellipse

11.7.2.9 FigureBegin

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Indicates whether a specific GeometrySink figure is filled or hollow.

(See also unmanaged API documentation)

Syntax
enum FigureBegin

Enumerators

Filled Indicates the figure will be filled by

the FillGeometry() method

Hollow Indicates the figure will not be

filled by the FillGeometry() method

and will only consist of an outline.

Moreover, the bounds of a hollow

figure are zero.

FigureBegin.Hollow should be

used for stroking, or for other

geometry operations.

11.7.2.10 FigureEnd

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368106.aspx
http://sharpdx.org/

NinjaTrader 83064

© 2023 NinjaTrader, LLC

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Indicates whether a specific GeometrySink figure is open or closed

(See also unmanaged API documentation)

Syntax
enum FigureEnd

Enumerators

Open The figure is open.

Closed The figure is closed.

11.7.2.11 FillMode

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Specifies how the intersecting areas of geometries or figures are combined to form the area

of the composite geometry.

(See also unmanaged API documentation)

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368108.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368110.aspx

NinjaScript 3065

© 2023 NinjaTrader, LLC

Notes:

· Use the FillMode enumeration when creating an when modifying the fill mode of a

GeometrySink with the SetFillMode() method.

· Direct2D fills the interior of a path by using one of the two fill modes specified by this

enumeration: Alternate (alternate) or Winding (winding). Because the modes determine

how to fill the interior of a closed shape, all shapes are treated as closed when they are

filled. If there is a gap in a segment in a shape, draw an imaginary line to close it.

Syntax
enum FillMode

Enumerators

Alternate Determines whether a point is in

the fill region by drawing a ray

from that point to infinity in any

direction, and then counting the

number of path segments within

the given shape that the ray

crosses. If this number is odd, the

point is in the fill region; if even,

the point is outside the fill region.

Winding Determines whether a point is in

the fill region of the path by

drawing a ray from that point to

infinity in any direction, and then

examining the places where a

segment of the shape crosses

the ray. Starting with a count of

zero, add one each time a

segment crosses the ray from left

to right and subtract one each

time a path segment crosses the

ray from right to left, as long as

left and right are seen from the

perspective of the ray. After

counting the crossings, if the

result is zero, then the point is

outside the path. Otherwise, it is

inside the path.

NinjaTrader 83066

© 2023 NinjaTrader, LLC

11.7.2.12 GeometrySink

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Describes a geometric path that can contain lines, arcs, cubic Bezier curves, and quadratic

Bezier curves.

(See also unmanaged API documentation)

Notes:

1. To create a GeometrySink, describe a PathGeometry and retrive the object using the

PathGeometry.Open() method

2. A geometry sink consists of one or more figures. Each figure is made up of one or

more line, curve, or arc segments. To create a figure, call the BeginFigure method,

specify the figure's start point, and then use its Add methods (such as AddLine) to add

segments. When you are finished adding segments, call the EndFigure method. You

can repeat this sequence to create additional figures. When you are finished creating

figures, call the Close method.

Syntax
interface GeometrySink

Methods

AddArc() Adds a single arc to the path

geometry.

AddLine() Creates a line segment between

the current point and the specified

end point and adds it to the

geometry sink.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd316592.aspx

NinjaScript 3067

© 2023 NinjaTrader, LLC

AddLines() Creates a sequence of lines using

the specified points and adds

them to the geometry sink.

BeginFigure() Starts a new figure at the

specified point.

Close() Closes the geometry sink,

indicates whether it is in an error

state, and resets the sink's error

state.

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Inherited from

SharpDX.DisposeBase.)

EndFigure() Ends the current figure; optionally,

closes it.

SetFillMode() Specifies the method used to

determine which points are inside

the geometry described by this

geometry sink and which points

are outside.

11.7.2.12.1 AddArc()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83068

© 2023 NinjaTrader, LLC

Adds a single arc to the path geometry.

(See also unmanaged API documentation)

Method Return Value
This method does not return a value

Syntax
<GeometrySink>.AddArc(ArcSegment arc)

Parameters

arc The

SharpDX.Direct2D1.ArcSegment

segment to add to the figure.

11.7.2.12.2 AddLine()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Creates a line segment between the current point and the specified end point and adds it to

the geometry sink.

(See also unmanaged API documentation)

Method Return Value
This method does not return a value

Syntax
<GeometrySink>.AddLine(Vector2 vector2)

Parameters

vector2 A SharpDX.Vector2 which

represents the end point of the

https://msdn.microsoft.com/en-us/library/dd742733.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316604.aspx

NinjaScript 3069

© 2023 NinjaTrader, LLC

line to draw.

11.7.2.12.3 AddLines()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Creates a sequence of lines using the specified points and adds them to the geometry sink.

(See also unmanaged API documentation)

Method Return Value
This method does not return a value

Syntax
<GeometrySink>.AddLines(Vector2[] pointsRef)

Parameters

pointsRef A SharpDX.Vector2 array of one

or more points that describe the

lines to draw. A line is drawn from

the geometry sink's current point

(the end point of the last segment

drawn or the location specified by

BeginFigure() to the first point in

the array. If the array contains

additional points, a line is drawn

from the first point to the second

point in the array, from the second

point to the third point, and so on.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316925.aspx

NinjaTrader 83070

© 2023 NinjaTrader, LLC

11.7.2.12.4 BeginFigure()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Starts a new figure at the specified point.

(See also unmanaged API documentation)

Method Return Value
This method does not return a value

Syntax
<GeometrySink>.BeginFigure(Vector2 vector2, FigureBegin figureBegin)

Parameters

vector2 The SharpDX.Vector2 at which to

begin the new figure.

figureBegin The

SharpDX.Direct2D1.FigureBegin

which determines whether the

new figure should be hollow or

filled.

11.7.2.12.5 Close()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316929.aspx
http://sharpdx.org/

NinjaScript 3071

© 2023 NinjaTrader, LLC

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Closes the geometry sink, indicates whether it is in an error state, and resets the sink's error

state.

(See also unmanaged API documentation)

Note: Do not close the geometry sink while a figure is still in progress; doing so puts the

geometry sink in an error state. For the close operation to be successful, there must be

one EndFigure() call for each call to BeginFigure(). After calling this method, the geometry

sink might not be usable. Direct2D implementations of this interface do not allow the

geometry sink to be modified after it is closed, but other implementations might not

impose this restriction.

Method Return Value
This method does not return a value

Syntax
<GeometrySink>.Close()

Parameters
This method does not accept any parameters

11.7.2.12.6 EndFigure()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316932.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83072

© 2023 NinjaTrader, LLC

Definition
Ends the current figure; optionally, closes it.

(See also unmanaged API documentation)

Method Return Value
This method does not return a value

Syntax
<GeometrySink>.EndFigure(FigureEnd figureEnd)

Parameters

figureEnd A SharpDX.Direct2D1.FigureEnd

value that indicates whether the

current figure is closed. If the

figure is closed, a line is drawn

between the current point and the

start point specified by

BeginFigure().

11.7.2.12.7 SetFillMode()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Specifies the method used to determine which points are inside the geometry described by

this geometry sink and which points are outside.

(See also unmanaged API documentation)

Method Return Value
This method does not return a value

Syntax
<GeometrySink>.SetFillMode(FillMode fillMode)

https://msdn.microsoft.com/en-us/library/dd316934.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316937.aspx

NinjaScript 3073

© 2023 NinjaTrader, LLC

Parameters

fillMode The SharpDX.Direct2D1.FillMode

used to determine whether a

given point is part of the

geometry.

11.7.2.13 GradientStop

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Contains the position and color of a gradient stop.

(See also unmanaged API documentation)

Notes:

1. Gradient stops can be specified in any order if they are at different positions. Two stops

may share a position. In this case, the first stop specified is treated as the "low" stop

(nearer 0.0f) and subsequent stops are treated as "higher" (nearer 1.0f). This behavior

is useful if a caller wants an instant transition in the middle of a stop.

2. Typically, there are at least two points in a collection, although creation with only one

stop is permitted. For example, one point is at position 0.0f, another point is at position

1.0f, and additional points are distributed in the [0, 1] range. Where the gradient

progression is beyond the range of [0, 1], the stops are stored, but may affect the

gradient.

3. When drawn, the [0, 1] range of positions is mapped to the brush, in a brush-

dependent way. For details, see LinearGradientBrush and RadialGradientBrush.

4. Gradient stops with a position outside the [0, 1] range cannot be seen explicitly, but

they can still affect the colors produced in the [0, 1] range. For example, a two-stop

gradient 0.0f, Black}, {2.0f, White is indistinguishable visually from 0.0f, Black}, {1.0f,

Mid-level gray. Also, the colors are clamped before interpolation.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368119.aspx

NinjaTrader 83074

© 2023 NinjaTrader, LLC

Syntax
struct GradientStop

Properties

Position A float value that indicates the

relative position of the gradient

stop in the brush. This value must

be in the [0.0f, 1.0f] range if the

gradient stop is to be seen

explicitly.

Color The SharpDX.Color of the

gradient stop.

11.7.2.14 GradientStopCollection

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Describes an elliptical arc between two points.

(See also unmanaged API documentation)

Note: A gradient stop collection is a device-dependent resource: your application should

create gradient stop collections after it initializes the render target with which the gradient

stop collection will be used, and recreate the gradient stop collection whenever the render

target needs recreated. Please see the MSDN Direct2D Resources Overview for more

information.

Syntax
class GradientStopCollection

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368065.aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx

NinjaScript 3075

© 2023 NinjaTrader, LLC

Constructors

new

GradientStopCollection(RenderTa

rget renderTarget,

GradientStop[] gradientStops)

Creates an

GradientStopCollection from

the specified gradient stops, a

Gamma.StandardRgb, and

ExtendMode.Clamp

new

GradientStopCollection(RenderTa

rget renderTarget,

GradientStop[] gradientStops,

ExtendMode extendMode)

Creates an

GradientStopCollection from

the specified gradient stops, color

Gamma.StandardRgb, and

extend mode

new

GradientStopCollection(RenderTa

rget renderTarget,

GradientStop[] gradientStops,

Gamma colorInterpolationGamma)

Creates an

GradientStopCollection from

the specified gradient stops, color

interpolation gamma, and

ExtendMode.Clamp

new

GradientStopCollection(RenderTa

rget renderTarget,

GradientStop[] gradientStops,

Gamma colorInterpolationGamma,

ExtendMode extendMode)

Creates an

GradientStopCollection from

the specified gradient stops, color

interpolation gamma, and extend

mode

Methods and Properties

ColorInterpolationGamma Indicates the gamma space in

which the gradient stops are

interpolated

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Inherited from

SharpDX.DisposeBase.)

ExtendMode Indicates the behavior of the

gradient outside the normalized

gradient range

NinjaTrader 83076

© 2023 NinjaTrader, LLC

GradientStopCount Retrieves the number of gradient

stops in the collection

IsDisposed Gets a value indicating whether

this instance is disposed.

(Inherited from

SharpDX.DisposeBase.)

11.7.2.14.1

ColorInterpolationGamma

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Indicates the gamma space in which the gradient stops are interpolated.

(See also unmanaged API documentation)

Note: Interpolating in a linear gamma space (Gamma.Linear) can avoid changes in

perceived brightness caused by the effect of gamma correction in spaces where the

gamma is not 1.0, such as the default sRGB color space, where the gamma is 2.2.

Property Value
A SharpDX.Direct2D1.Gamma enum value specifies which gamma is used for interpolation.

Possible values include:

StandardRgb Interpolation is performed in the

standard RGB (sRGB) gamma.

Linear Interpolation is performed in the

linear-gamma color space.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316786.aspx

NinjaScript 3077

© 2023 NinjaTrader, LLC

(see also unmanaged API documentation)

Syntax
<GradientStopCollection>.ColorInterpolationGamma

11.7.2.14.2 ExtendMode

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Indicates the behavior of the gradient outside the normalized gradient range.

(See also unmanaged API documentation)

Note: For an LinearGradientBrush, the brush's content area is the gradient axis. For an

RadialGradientBrush, the brush's content is the area within the gradient ellipse

Property Value
A SharpDX.ExtendMode enum value which determines how a brush paints areas outside of its

normal content area.

Possible values include:

Clamp Repeat the edge pixels of the

brush's content for all regions

outside the normal content area.

Wrap Repeat the brush's content.

Mirror The same as Wrap, except that

alternate tiles of the brush's

https://msdn.microsoft.com/en-us/library/dd368113.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316789.aspx

NinjaTrader 83078

© 2023 NinjaTrader, LLC

content are flipped. (The brush's

normal content is drawn

untransformed.)

(see also unmanaged API documentation)

Syntax
<GradientStopCollection>.ExtendMode

11.7.2.14.3 GradientStopCount

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the number of gradient stops in the collection.

(See also unmanaged API documentation)

Note: For an LinearGradientBrush, the brush's content area is the gradient axis. For an

RadialGradientBrush, the brush's content is the area within the gradient ellipse

Property Value
An int value representing the number of gradient stops in the collection.

Syntax
<GradientStopCollection>.GradientStopCount

http://msdn.microsoft.com/en-us/library/dd368100.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371454.aspx

NinjaScript 3079

© 2023 NinjaTrader, LLC

11.7.2.15 LinearGradientBrush

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Paints an area with a linear gradient.

(See also unmanaged API documentation)

Notes:

1. An LinearGradientBrush paints an area with a linear gradient along a line between

the brush start point and end point. The gradient, defined by the brush

GradientStopCollection, is extruded perpendicular to this line, and then transformed by

a brush transform (if specified).

2. The start point and end point are described in the brush space and are mappped to the

render target when the brush is used. Note the starting and ending coordinates are

absolute, not relative to the render target size. A value of (0, 0) maps to the upper-left

corner of the render target, while a value of (1, 1) maps one pixel diagonally away from

(0, 0). If there is a nonidentity brush transform or render target transform, the brush

start point and end point are also transformed.

3. It is possible to specify a gradient axis that does not completely fill the area that is being

painted. When this occurs, the ExtendMode, specified by the GradientStopCollection,

determines how the remaining area is painted.

4. The LinearGradientBrush can only be used with the render target that created it or

with the compatible targets for that render target.

5. A LinearGradientBrush is a device-dependent resource: your application should

create linear gradient brushes after it initializes the render target with which the

brushes will be used, and recreate the brushes whenever the render target needs

recreated. Please see the MSDN Direct2D Resources Overview for more information.

6. For convenience, Direct2D provides the RadialGradientBrushProperties function for

creating new a LinearGradientBrush.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371488.aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx

NinjaTrader 83080

© 2023 NinjaTrader, LLC

Syntax
class SolidColorBrush

Tips:

1. For NinjaScript Development purposes, you can use the

NinjaTrader.Gui.DxExtensions.ToDxBrush() helper method to convert a

System.Windows.Media.LinearGradientBrush to a

SharpDX.Direct2D1.LinearGradientBrush

2. General information on Direct2D brushes can be found on the MSDN Direct2D

Brushes Overview

Constructors

new

LinearGradientBrush(RenderTarge

t renderTarget,

LinearGradientBrushProperties

linearGradientBrushProperties,

GradientStopCollection

gradientStopCollection)

Creates an

LinearGradientBrush that

contains the specified gradient

stops and has the specified

transform and base opacity.

new

LinearGradientBrush(RenderTarge

t renderTarget,

LinearGradientBrushProperties

linearGradientBrushProperties,

Nullable<BrushProperties>

brushProperties,

GradientStopCollection

gradientStopCollection)

Creates an

LinearGradientBrush that

contains the specified gradient

stops and has the specified

transform and base opacity.

Methods and Properties

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Inherited from

SharpDX.DisposeBase.)

EndPoint Retrieves or sets the ending

coordinates of the linear gradient.

https://msdn.microsoft.com/en-us/library/dd756651(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756651(v=vs.85).aspx

NinjaScript 3081

© 2023 NinjaTrader, LLC

GradientStopCollection Retrieves the

GradientStopCollection

associated with this linear

gradient brush.

IsDisposed Gets a value indicating whether

this instance is disposed.

(Inherited from

SharpDX.DisposeBase.)

Opacity Gets or sets the degree of opacity

of this brush.

 (Inherited from Brush.)

StartPoint Retrieves or sets the starting

coordinates of the linear gradient.

Transform Gets or sets the transform applied

to this brush.

 (Inherited from Brush.)

11.7.2.15.1 EndPoint

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves or sets the ending coordinates of the linear gradient.

(See also unmanaged API documentation)

Note: The start point and end point are described in the brush's space and are mapped

to the render target when the brush is used. If there is a non-identity brush transform or

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd371492.aspx

NinjaTrader 83082

© 2023 NinjaTrader, LLC

render target transform, the brush's start point and end point are also transformed.

Property Value
A SharpDX.Vector2 representing the ending two-dimensional coordinates of the linear

gradient, in the brush's coordinate space.

Syntax
<LinearGradientBrush>.EndPoint

11.7.2.15.2 GradientStopCollection

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
 Retrieves the GradientStopCollection associated with this linear gradient brush.

(See also unmanaged API documentation)

Property Value
A SharpDX.Direct2D1.GradientStopCollection object associated with this linear gradient

brush object. This parameter is passed uninitialized.

Syntax
<LinearGradientBrush>.GradientStopCollection

11.7.2.15.3 StartPoint

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd371492.aspx
http://sharpdx.org/

NinjaScript 3083

© 2023 NinjaTrader, LLC

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the starting coordinates of the linear gradient.

(See also unmanaged API documentation)

Note: The start point and end point are described in the brush's space and are mapped

to the render target when the brush is used. If there is a non-identity brush transform or

render target transform, the brush's start point and end point are also transformed.

Property Value
A SharpDX.Vector2 representing the starting two-dimensional coordinates of the linear

gradient, in the brush's coordinate space.

Syntax
<LinearGradientBrush>.StartPoint

11.7.2.16 LinearGradientBrushProperties

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Contains the starting point and endpoint of the gradient axis for an LinearGradientBrush.

(See also unmanaged API documentationth)

Syntax
struct LinearGradientBrushProperties

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd371497.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83084

© 2023 NinjaTrader, LLC

Constructors

new

LinearGradientBrushProperties()
Initializes a new instance of the

LinearGradientBrushPropertie

s structure

Properties

StartPoint A SharpDX.Vector2 representing

brush's coordinate space, the

starting point of the gradient axis.

EndPoint A SharpDX.Vector2 representing

the brush's coordinate space, the

endpoint of the gradient axis.

11.7.2.17 MeasuringMode

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Indicates the measuring method used for text layout.

(See also unmanaged API documentation)

Syntax
enum MeasuringMode

Enumerators

Natural Specifies that text is measured

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368133.aspx

NinjaScript 3085

© 2023 NinjaTrader, LLC

using glyph ideal metrics whose

values are independent to the

current display resolution.

GdiClassic Specifies that text is measured

using glyph display-compatible

metrics whose values tuned for

the current display resolution.

GdiNatural Specifies that text is measured

using the same glyph display

metrics as text measured by GDI

using a font created with

CLEARTYPE_NATURAL_QUALIT

Y.

11.7.2.18 PathGeometry

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Represents a complex shape that may be composed of arcs, curves, and lines.

(See also unmanaged API documentation)

Notes:

1. A PathGeometry object enables you to describe a geometric path. To describe an

PathGeometry object's path, use the object's Open method to retrieve an

GeometrySink. Use the sink to populate the path geometry with figures and segments.

2. PathGeometry objects are device-independent resources created by Factory. In

general, you should create geometries once and retain them for the life of the

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371512.aspx

NinjaTrader 83086

© 2023 NinjaTrader, LLC

application, or until they need to be modified. Please see the MSDN Direct2D

Resources Overview for more information.

Syntax
class PathGeometry

Constructors

new PathGeometry(Factory

factory)
Creates an empty

PathGeometry.

Tips:

1. For NinjaScript development purposes, when creating a PathGemeory object you

should use the NinjaTrader.Core.Globals.D2DFactory property

2. General information Direct2D Path Geometries can be found on the MSDN Path

Geometries Overview

Methods and Properties

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Inherited from

SharpDX.DisposeBase.)

FigureCount Retrieves the number of figures in

the path geometry.

FillContainsPoint() Indicates whether the area filled

by the geometry would contain the

specified point given the specified

flattening tolerance.

GetBounds() Retrieves the bounds of the

geometry.

IsDisposed Gets a value indicating whether

this instance is disposed.

https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ee264309(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ee264309(v=vs.85).aspx

NinjaScript 3087

© 2023 NinjaTrader, LLC

(Inherited from

SharpDX.DisposeBase.)

Open() Retrieves the geometry sink that

is used to populate the path

geometry with figures and

segments.

SegmentCount Retrieves the number of

segments in the path geometry.

StrokeContainsPoint() Determines whether the

geometry's stroke contains the

specified point given the specified

stroke thickness, style, and

transform.

11.7.2.18.1 FigureCount

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the number of figures in the path geometry.

(See also unmanaged API documentation)

Property Value
An int representing the number of figures

Syntax
<PathGeometry>.FigureCount

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371515.aspx

NinjaTrader 83088

© 2023 NinjaTrader, LLC

11.7.2.18.2 FillContainsPoint()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Indicates whether the area filled by the geometry would contain the specified point given the

specified flattening tolerance.

(See also unmanaged API documentation)

Method Return Value
A bool value which is true if the area filled by the geometry contains point; otherwise, false.

Syntax
<PathGeometry>.FillContainsPoint(Vector2 point)

Parameters

point The SharpDX.Vector2 point to

test.

11.7.2.18.3 GetBounds()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd316687.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaScript 3089

© 2023 NinjaTrader, LLC

Definition
Retrieves the bounds of the geometry.

(See also unmanaged API documentation)

Method Return Value
A SharpDX.RectangleF which contains the bounds of this geometry. If the bounds are empty,

this will be a rect where bounds.left > bounds.right.

Syntax
<PathGeometry>.GetBounds()

Parameters
This method does not accept any parameters

11.7.2.18.4 Open()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the geometry sink that is used to populate the path geometry with figures and

segments.

(See also unmanaged API documentation)

Notes:

1. Because path geometries are immutable and can only be populated once, it is an error

to call Open() on a path geometry more than once.

2. Note that the fill mode defaults to Alternate. To set the fill mode, call SetFillMode()

before the first call to BeginFigure(). Failure to do so will put the geometry sink in an

error state.

Method Return Value

http://msdn.microsoft.com/en-us/library/dd742751.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371522.aspx

NinjaTrader 83090

© 2023 NinjaTrader, LLC

A SharpDX.Direct2D1.GeometrySink which contains the address of a reference to the

geometry sink that is used to populate the path geometry with figures and segments.

Syntax
<PathGeometry>.Open()

Parameters
This method does not accept any parameters

11.7.2.18.5 SegmentCount

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the number of segments in the path geometry.

(See also unmanaged API documentation)

Method Return Value
An int representing the number of segments

Syntax
<PathGeometry>.SegmentCount

11.7.2.18.6 StrokeContainsPoint()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371520.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx

NinjaScript 3091

© 2023 NinjaTrader, LLC

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Determines whether the geometry's stroke contains the specified point given the specified

stroke thickness, style, and transform.

(See also unmanaged API documentation)

Method Return Value
A bool value set to true if the geometry's stroke contains the specified point; otherwise, false.

Syntax
<PathGeometry>.StrokeContainsPoint(Vector2 point, float strokeWidth)

<PathGeometry>.StrokeContainsPoint(Vector2 point, float strokeWidth, StrokeStyle

strokeStyle)

<PathGeometry>.StrokeContainsPoint(Vector2 point, float strokeWidth, StrokeStyle

strokeStyle, Matrix3x2 transform)

Parameters

point The SharpDX.Vector2 point to test

for containment.

strokeStyle The

SharpDX.Direct2D1.StrokeStyle

style of stroke to apply.

strokeWidth The thickness of the stroke to

apply.

transform The SharpDX.Matrix3x2 transform

to apply to the stroked geometry.

11.7.2.19 RadialGradientBrush

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd316742.aspx
http://sharpdx.org/

NinjaTrader 83092

© 2023 NinjaTrader, LLC

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Paints an area with a radial gradient.

(See also unmanaged API documentation)

Notes:

1. The RadialGradientBrush is similar to the LinearGradientBrush in that they both map

a collection of gradient stops to a gradient. However, the linear gradient has a start and

an end point to define the gradient vector, while the radial gradient uses an ellipse and

a gradient origin to define its gradient behavior. To define the position and size of the

ellipse, use the Center, RadiusX, and RadiusY properties to specify the center, x-

radius, and y-radius of the ellipse. The gradient origin is the center of the ellipse, unless

a gradient offset is specified by using the GradientOriginOffset method.

2. The brush maps the gradient stop position 0.0f of the gradient origin, and the position

1.0f is mapped to the ellipse boundary. When the gradient origin is within the ellipse,

the contents of the ellipse enclose the entire [0, 1] range of the brush gradient stops. If

the gradient origin is outside the bounds of the ellipse, the brush still works, but its

gradient is not well-defined.

3. The start point and end point are described in the brush space and are mappped to

the render target when the brush is used. Note the starting and ending coordinates are

absolute, not relative to the render target size. A value of (0, 0) maps to the upper-left

corner of the render target, while a value of (1, 1) maps just one pixel diagonally away

from (0, 0). If there is a nonidentity brush transform or render target transform, the

brush ellipse and gradient origin are also transformed.

4. It is possible to specify an ellipse that does not completely fill area being painted. When

this occurs, the ExtendMode and setting (specified by the brush

GradientStopCollection) determines how the remaining area is painted.

5. A RadialGradientBrush brush may be used only with the render target that created it

or with the compatible targets for that render target.

6. A RadialGradientBrush is a device-dependent resource: your application should

create radial gradient brushes after it initializes the render target with which the

brushes will be used, and recreate the brushes whenever the render target needs

recreated. Please see the MSDN Direct2D Resources Overview for more information.

7. For convenience, Direct2D provides the RadialGradientBrushProperties function for

creating new a RadialGradientBrush.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371529.aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx

NinjaScript 3093

© 2023 NinjaTrader, LLC

Syntax
class SolidColorBrush

Tips:

1. For NinjaScript Development purposes, you can use the

NinjaTrader.Gui.DxExtensions.ToDxBrush() helper method to convert a

System.Windows.Media.LinearGradientBrush to a

SharpDX.Direct2D1.LinearGradientBrush

2. General information on Direct2D brushes can be found on the MSDN Direct2D

Brushes Overview

Constructors

new

RadialGradientBrush(RenderTarge

t renderTarget,

RadialGradientBrushProperties

radialGradientBrushProperties,

GradientStopCollection

gradientStopCollection)

Creates an RadialGradientBrush

that contains the specified

gradient stops and has the

specified transform and base

opacity.

new

RadialGradientBrush(RenderTarge

t renderTarget,

RadialGradientBrushProperties

radialGradientBrushProperties,

GradientStopCollection

gradientStopCollection)

Creates an RadialGradientBrush

that contains the specified

gradient stops and has the

specified transform and base

opacity.

new

RadialGradientBrush(RenderTarge

t renderTarget,

RadialGradientBrushProperties

radialGradientBrushProperties,

BrushProperties

brushProperties,

GradientStopCollection

gradientStopCollection)

Creates an RadialGradientBrush

that contains the specified

gradient stops and has the

specified transform and base

opacity.

new

RadialGradientBrush(RenderTarge

t renderTarget,

RadialGradientBrushProperties

Creates an RadialGradientBrush

that contains the specified

gradient stops and has the

https://msdn.microsoft.com/en-us/library/dd756651(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756651(v=vs.85).aspx

NinjaTrader 83094

© 2023 NinjaTrader, LLC

radialGradientBrushProperties,

Nullable<BrushProperties>

brushProperties,

GradientStopCollection

gradientStopCollection)

specified transform and base

opacity.

Methods and Properties

Center Retrieves or sets the center of the

gradient ellipse.

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Inherited from

SharpDX.DisposeBase.)

IsDisposed Gets a value indicating whether

this instance is disposed.

(Inherited from

SharpDX.DisposeBase.)

GradientOriginOffset Retrieves or sets the offset of the

gradient origin relative to the

gradient ellipse's center.

GradientStopCollection Retrieves the

GradientStopCollection

associated with this radial

gradient brush object.

Opacity Gets or sets the degree of opacity

of this brush.

 (Inherited from Brush.)

RadiusX Retrieves or sets the x-radius of

the gradient ellipse.

RadiusY Retrieves or sets the y-radius of

the gradient ellipse.

NinjaScript 3095

© 2023 NinjaTrader, LLC

Transform Gets or sets the transform applied

to this brush.

 (Inherited from Brush.)

11.7.2.19.1 Center

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves or sets the center of the gradient ellipse.

(See also unmanaged API documentation)

Property Value
A SharpDX.Vector2 representing the center of the gradient ellipse. This value is expressed in

the brush's coordinate space.

Syntax
<RadialGradientBrush>.Center

11.7.2.19.2 GradientOriginOffset

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd371532.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83096

© 2023 NinjaTrader, LLC

Definition
Retrieves or sets the offset of the gradient origin relative to the gradient ellipse's center.

(See also unmanaged API documentation)

Property Value
A SharpDX.Vector2 representing the offset of the gradient origin from the center of the

gradient ellipse. This value is expressed in the brush's coordinate space.

Syntax
<RadialGradientBrush>.GradientOriginOffset

11.7.2.19.3 GradientStopCollection

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the GradientStopCollection associated with this radial gradient brush object

(See also unmanaged API documentation)

Note: The GradientStopCollection contains an array of

SharpDX.GradientStopCollection structures and additional information, such as the extend

mode and the color interpolation mode.

Property Value
The SharpDX.GradientStopCollection object associated with this linear gradient brush object.

This parameter is passed uninitialized.

Syntax
<RadialGradientBrush>.GradientStopCollection

https://msdn.microsoft.com/en-us/library/dd371535.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371539.aspx

NinjaScript 3097

© 2023 NinjaTrader, LLC

11.7.2.19.4 RadiusX

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves or sets the x-radius of the gradient ellipse.

(See also unmanaged API documentation)

Property Value
A float value representing the x-radius of the gradient ellipse. This value is expressed in the

brush's coordinate space.

Syntax
<RadialGradientBrush>.RadiusX

11.7.2.19.5 RadiusY

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves or sets the y-radius of the gradient ellipse.

(See also unmanaged API documentation)

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd371542(v=vs.85).aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd371544(v=vs.85).aspx

NinjaTrader 83098

© 2023 NinjaTrader, LLC

Property Value
A float value representing the y-radius of the gradient ellipse. This value is expressed in the

brush's coordinate space.

Syntax
<RadialGradientBrush>.RadiusY

11.7.2.20 RadialGradientBrushProperties

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Contains the gradient origin offset and the size and position of the gradient ellipse for an

RadialGradientBrush.

(See also unmanaged API documentation)

Syntax
struct RadialGradientBrushProperties

Constructors

new

RadialGradientBrushProperties()
Initializes a new instance of the

RadialGradientBrushPropertie

s structure

Properties

Center A SharpDX.Vector2 representing

the brush's coordinate space, the

center of the gradient ellipse.

GradientOriginOffset A SharpDX.Vector2 representing

brush's coordinate space, the

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368149.aspx

NinjaScript 3099

© 2023 NinjaTrader, LLC

offset of the gradient origin relative

to the gradient ellipse's center.

RadiusX A float in the brush's coordinate

space, the x-radius of the gradient

ellipse.

RadiusY A float in the brush's coordinate

space, the y-radius of the gradient

ellipse.

11.7.2.21 RenderTarget

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Represents an object that can receive drawing commands.

(See also unmanaged API documentation)

Syntax
class RenderTarget

Tips:

1. For NinjaScript Development purposes, DrawingTools, ChartStyles, Indicators, and

Strategies implement the Chart's RenderTarget ready to be used in the OnRender()

method

2. General information on Direct2D Render Targets can be found on the MSDN

Direct2D Render Targets Overview

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371766.aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx

NinjaTrader 83100

© 2023 NinjaTrader, LLC

Methods and Properties

AntialiasMode Retrieves or sets the current

antialiasing mode for nontext

drawing operations.

DrawEllipse() Draws the outline of the specified

ellipse using the specified stroke

style.

DrawGeometry() Draws the outline of the specified

geometry.

DrawLine() Draws a line between the

specified points.

DrawRectangle() Draws the outline of a rectangle

that has the specified dimensions.

DrawText() Draws the specified text using the

format information provided by an

SharpDX.DirectWrite.TextFormat

object.

DrawTextLayout() Draws the formatted text

described by the specified

SharpDX.DirectWrite.TextLayout

object.

FillEllipse() Paints the interior of the specified

ellipse.

FillGeometry() Paints the interior of the specified

geometry.

FillRectangle() Paints the interior of the specified

rectangle.

IsDisposed Gets a value indicating whether

this instance is disposed.

(Inherited from

SharpDX.DisposeBase.)

NinjaScript 3101

© 2023 NinjaTrader, LLC

Transform Gets or sets the current transform

of the render target.

11.7.2.21.1 AntialiasMode

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves or sets the current antialiasing mode for nontext drawing operations.

(See also unmanaged API documentation)

Property Value
A SharpDX.Direct2D1.AntialiasMode enum value

Syntax
RenderTarget.AntialiasMode

11.7.2.21.2 Draw Ellipse()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd316805.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83102

© 2023 NinjaTrader, LLC

Draws the outline of the specified ellipse using the specified stroke style.

(See also unmanaged API documentation)

Note: This method doesn't return an error code if it fails.

Method Return Value
This method does not return a value

Syntax
RenderTarget.DrawEllipse(Ellipse ellipse, Brush brush)

RenderTarget.DrawEllipse(Ellipse ellipse, Brush brush, float strokeWidth)

RenderTarget.DrawEllipse(Ellipse ellipse, Brush brush, float strokeWidth, StrokeStyle

strokeStyle)

Parameters

ellipse The SharpDX.Direct2D1.Ellipse

position and radius of the ellipse

to draw, in device-independent

pixels.

brush The SharpDX.Direct2D1.Brush

used to paint the ellipse's outline.

strokeWidth The thickness of the ellipse's

stroke. The stroke is centered on

the ellipse's outline.

strokeStyle The

SharpDX.Direct2D1.StrokeStyle

to apply to the ellipse's outline, or

null to paint a solid stroke.

11.7.2.21.3 Draw Geometry()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

http://msdn.microsoft.com/en-us/library/dd371886.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx

NinjaScript 3103

© 2023 NinjaTrader, LLC

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Draws the outline of the specified geometry using the specified stroke style.

(See also unmanaged API documentation)

Note: This method doesn't return an error code if it fails.

Method Return Value
This method does not return a value

Syntax
RenderTarget.DrawGeometry(Geometry geometry, Brush brush)

RenderTarget.DrawGeometry(Geometry geometry, Brush brush, float strokeWidth)

RenderTarget.DrawGeometry(Geometry geometry, Brush brush, float strokeWidth,

StrokeStyle strokeStyle)

Parameters

brush An int which represents the

method input

geometry The

SharpDX.Direct2D1.Geometry to

draw

strokeStyle The

SharpDX.Direct2D1.StrokeStyle

to apply to the geometry's outline,

or null to paint a solid stroke.

strokeWidth The thickness of the geometry's

stroke. The stroke is centered on

the geometry's outline.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371890.aspx

NinjaTrader 83104

© 2023 NinjaTrader, LLC

11.7.2.21.4 Draw Line()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Draws a line between the specified points.

(See also unmanaged API documentation)

Note: This method doesn't return an error code if it fails.

Method Return Value
This method does not return a value

Syntax
RenderTarget.DrawLine(Vector2 point0, Vector2 point1, Brush brush)

RenderTarget.DrawLine(Vector2 point0, Vector2 point1, Brush brush, float strokeWidth)

RenderTarget.DrawLine(Vector2 point0, Vector2 point1, Brush brush, float strokeWidth,

StrokeStyle strokeStyle)

Parameters

brush The SharpDX.Direct2D1.Brush

brush used to paint the line's

stroke.

point0 A SharpDX.Vector2 which

determines the start point of the

line, in device-independent pixels.

point1 A SharpDX.Vector2 which

determines the end point of the

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371895.aspx

NinjaScript 3105

© 2023 NinjaTrader, LLC

line, in device-independent pixels.

strokeStyle The

SharpDX.Direct2D1.StrokeStyle

to paint, or null to paint a solid line.

strokeWidth A value greater than or equal to

0.0f that specifies the width of the

stroke. If this parameter isn't

specified, it defaults to 1.0f. The

stroke is centered on the line.

11.7.2.21.5 Draw Rectangle()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Draws the outline of a rectangle that has the specified dimensions and stroke style.

(See also unmanaged API documentation)

Note: This method doesn't return an error code if it fails.

Method Return Value
This method does not return a value

Syntax
RenderTarget.DrawRectangle(RectangleF rect, Brush brush)

RenderTarget.DrawRectangle(RectangleF rect, Brush brush, float strokeWidth)

RenderTarget.DrawRectangle(RectangleF rect, Brush brush, float strokeWidth,

StrokeStyle strokeStyle)

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371902.aspx

NinjaTrader 83106

© 2023 NinjaTrader, LLC

Parameters

brush The SharpDX.Direct2D1.Brush

used to paint the rectangle's

stroke.

rect The SharpDX.RectangleF which

determines the dimensions of the

rectangle to draw, in device-

independent pixels.

strokeStyle The

SharpDX.Direct2D1.StrokeStyle

used to paint, or null to paint a

solid stroke.

strokeWidth A value greater than or equal to

0.0f that specifies the width of the

rectangle's stroke. The stroke is

centered on the rectangle's

outline.

11.7.2.21.6 Draw Text()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Draws the specified text using the format information provided by an

SharpDX.DirectWrite.TextFormat object.

(See also unmanaged API documentation)

Note: This method doesn't return an error code if it fails.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd742848.aspx

NinjaScript 3107

© 2023 NinjaTrader, LLC

Method Return Value
This method does not return a value.

Syntax
RenderTarget.DrawText(string text, TextFormat textFormat, RectangleF layoutRect, Brush

 defaultForegroundBrush)

RenderTarget.DrawText(string text, TextFormat textFormat, RectangleF layoutRect, Brush

 defaultForegroundBrush, DrawTextOptions options)

RenderTarget.DrawText(string text, TextFormat textFormat, RectangleF layoutRect, Brush

 defaultForegroundBrush, DrawTextOptions options, MeasuringMode measuringMode)

RenderTarget.DrawText(string text, int stringLength, TextFormat textFormat, RectangleF

 layoutRect, Brush defaultForegroundBrush, RenderTarget.DrawTextOptions options,

MeasuringMode measuringMode)

Parameters

defaultForegroundBrush The SharpDX.Direct2D1.Brush

used to paint the text.

layoutRect A SharpDX.RectangleF which

determines size and position of

the area in which the text is

drawn.

measuringMode A

SharpDX.Direct2D1.MeasuringMo

de value that indicates how glyph

metrics are used to measure text

when it is formatted. The default

value is

DWRITE_MEASURING_MODE_

NATURAL.

options A

SharpDX.Direct2D1.DrawTextOpt

ions value that indicates whether

the text should be snapped to

pixel boundaries and whether the

text should be clipped to the

layout rectangle. The default value

is None, which indicates that text

should be snapped to pixel

NinjaTrader 83108

© 2023 NinjaTrader, LLC

boundaries and it should not be

clipped to the layout rectangle.

stringLength An int value which represents the

number of characters in string.

text A string reference to an array of

Unicode characters to draw.

textFormat A

SharpDX.DirectWrite.TextFormat

object that describes formatting

details of the text to draw, such as

the font, the font size, and flow

direction.

11.7.2.21.7 Draw TextLayout()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Draws the formatted text described by the specified SharpDX.DirectWrite.TextLayout object.

(See also unmanaged API documentation)

Notes:

1. When drawing the same text repeatedly, using the DrawTextLayout() method is more

efficient than using the DrawText() method because the text doesn't need to be

formatted and the layout processed with each call.

2. This method doesn't return an error code if it fails.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371913.aspx

NinjaScript 3109

© 2023 NinjaTrader, LLC

Method Return Value
This method does not return a value

Syntax
RenderTarget.DrawTextLayout(Vector2 origin, TextLayout textLayout, Brush

defaultForegroundBrush)

RenderTarget.DrawTextLayout(Vector2 origin, TextLayout textLayout, Brush

defaultForegroundBrush, DrawTextOptions options)

Parameters

defaultForegroundBrush The SharpDX.Direct2D1.Brush

used to paint any text in

textLayout that does not already

have a brush associated with it as

a drawing effect (specified by the

SetDrawingEffect method).

options A

SharpDX.Direct2D1.DrawTextOpt

ions value that indicates whether

the text should be snapped to

pixel boundaries and whether the

text should be clipped to the

layout rectangle. The default value

is None, which indicates that text

should be snapped to pixel

boundaries and it should not be

clipped to the layout rectangle.

origin A SharpDX.Vector2 described in

device-independent pixels, at

which the upper-left corner of the

text described by textLayout is

drawn.

textLayout A

SharpDX.DirectWrite.TextLayout

representing the formatted text to

draw. Any drawing effects that do

not inherit from Resource are

ignored. If there are drawing

effects that inherit from

ID2D1Resource that are not

brushes, this method fails and the

NinjaTrader 83110

© 2023 NinjaTrader, LLC

render target is put in an error

state.

11.7.2.21.8 FillEllipse()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Paints the interior of the specified ellipse.

(See also unmanaged API documentation)

Note: This method doesn't return an error code if it fails.

Method Return Value
This method does not return a value

Syntax
RenderTarget.FillEllipse(Ellipse ellipse, Brush brush)

Parameters

brush A SharpDX.Direct2D1.Brush used

to paint the interior of the ellipse.

ellipse A SharpDX.Direct2D1.Ellipse

which describes the position and

radius, in device-independent

pixels, of the ellipse to paint.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371928.aspx

NinjaScript 3111

© 2023 NinjaTrader, LLC

11.7.2.21.9 FillGeometry()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Paints the interior of the specified geometry.

(See also unamanged API documentation)

Note:

1. If the opacityBrush parameter is not null, the alpha value of each pixel of the mapped

opacityBrush is used to determine the resulting opacity of each corresponding pixel of

the geometry. Only the alpha value of each color in the brush is used for this

processing; all other color information is ignored. The alpha value specified by the

brush is multiplied by the alpha value of the geometry after the geometry has been

painted by brush.

2. This method doesn't return an error code if it fails.

Method Return Value
This method does not return a value.

Syntax
RenderTarget.FillGeometry(Geometry geometry, Brush brush)

RenderTarget.FillGeometry(Geometry geometry, Brush brush, Brush opacityBrush)

Parameters

brush The SharpDX.Direct2D1.Brush

used to paint the geometry's

interior.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371933.aspx

NinjaTrader 83112

© 2023 NinjaTrader, LLC

geometry The

SharpDX.Direct2D1.Geometry to

paint.

opacityBrush The SharpDX.Direct2D1.Brush

opacity mask to apply to the

geometry, or null for no opacity

mask. For more information, see

the note section above

11.7.2.21.10 FillRectangle()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Paints the interior of the specified rectangle.

(See also unamanged API documentation)

Note: This method doesn't return an error code if it fails.

Method Return Value
This method does not return a value

Syntax
RenderTarget.FillRectangle(RectangleF rect, Brush brush)

Parameters

brush The SharpDX.Direct2D1.Brush

used to paint the rectangle's

interior.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd371954.aspx

NinjaScript 3113

© 2023 NinjaTrader, LLC

rect A SharpDX.RectangleF

describing the dimension of the

rectangle to paint, in device-

independent pixels.

11.7.2.21.11 Transform

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets or sets the current transform of the render target.

(See also unmanaged API documentation)

Property Value
A SharpDX.Matrix3x2

Syntax
RenderTarget.Transform

11.7.2.22 SolidColorBrush

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd316845.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83114

© 2023 NinjaTrader, LLC

Definition
Paints an area with a solid color.

(See also unmanaged API documentation)

Notes:

1. The SolidColorBrush can only be used with the render target that created it or with

the compatible targets for that render target.

2. A SolidColorBrush is a device-dependent resource. Please see the MSDN Direct2D

Resources Overview for more information.

3. For convenience, Direct2D provides the BrushProperties function for creating new a

SolidColorBrush.

Syntax
class SolidColorBrush

Tips:

1. For NinjaScript Development purposes, you can use the

NinjaTrader.Gui.DxExtensions.ToDxBrush() helper method to convert a

System.Windows.Media.SolidColorBrush to a

SharpDX.Direct2D1.SolidColorBrush

2. General information on Direct2D brushes can be found on the MSDN Direct2D

Brushes Overview

Constructors

new

SolidColorBrush(RenderTarget

renderTarget, Color4 color)

Creates a new SolidColorBrush

that has the specified color and

opacity.

new

SolidColorBrush(RenderTarget

renderTarget, Color4 color,

Nullable<BrushProperties>

brushProperties)

Creates a new SolidColorBrush

that has the specified color and

opacity.

Methods and Properties

http://msdn.microsoft.com/en-us/library/dd372207.aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756651(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd756651(v=vs.85).aspx

NinjaScript 3115

© 2023 NinjaTrader, LLC

Color Retrieves or sets the color of the

solid color brush.

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Inherited from

SharpDX.DisposeBase.)

IsDisposed Gets a value indicating whether

this instance is disposed.

(Inherited from

SharpDX.DisposeBase.)

Opacity Gets or sets the degree of opacity

of this brush.

 (Inherited from Brush.)

Transform Gets or sets the transform applied

to this brush.

 (Inherited from Brush.)

11.7.2.22.1 Color

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the color of the solid color brush.

(See also unmanaged API documentation)

Property Value
The SharpDX.Color4 of this solid color brush.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd372209.aspx

NinjaTrader 83116

© 2023 NinjaTrader, LLC

Syntax
<SolidColorBrush>.Color

11.7.2.23 StrokeStyle

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Describes the caps, miter limit, line join, and dash information for a stroke.

(See also unmanaged API documentation)

Notes:

1. A stroke style is a device-independent resource; you can create it once then retain it for

the life of your application. Please see the MSDN Direct2D Resources Overview for

more information.

2. For convenience, Direct2D provides the StrokeStyleProperties function for creating

new a StrokeStyle.

Syntax
class StrokeStyle

Constructors

new StrokeStyle(Factory

factory, StrokeStyleProperties

properties)

Creates an StrokeStyle that

describes start cap, dash pattern,

and other features of a stroke.

new StrokeStyle(Factory

factory, StrokeStyleProperties

properties, float[] dashes)

Creates an StrokeStyle that

describes start cap, dash pattern,

and other features of a stroke.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd372217.aspx
https://msdn.microsoft.com/en-us/library/dd756757(v=vs.85).aspx

NinjaScript 3117

© 2023 NinjaTrader, LLC

Tip: For NinjaScript development purposes, when creating a StrokeStyle object you

should use the NinjaTrader.Core.Globals.D2DFactory property

Method and Properties

DashCap Gets a value that specifies how

the ends of each dash are drawn.

DashesCount Retrieves the number of entries in

the dashes array.

DashOffset Retrieves a value that specifies

how far in the dash sequence the

stroke will start.

DashStyle Gets a value that describes the

stroke's dash pattern.

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Inherited from

SharpDX.DisposeBase.)

EndCap Retrieves the type of shape used

at the end of a stroke.

GetDashes() Copies the dash pattern to the

specified array.

IsDisposed Gets a value indicating whether

this instance is disposed.

(Inherited from DisposeBase.)

LineJoin Retrieves the type of joint used at

the vertices of a shape's outline.

MiterLimit Retrieves the limit on the ratio of

the miter length to half the

stroke's thickness.

NinjaTrader 83118

© 2023 NinjaTrader, LLC

StartCap Retrieves the type of shape used

at the beginning of a stroke.

11.7.2.23.1 DashCap

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets a value that specifies how the ends of each dash are drawn.

(See also unmanaged API documentation)

Property Value
A SharpDX.Direct2D1.CapStyle value that specifies how the ends of each dash are drawn.

Syntax
<StrokeStyle>.DashCap

11.7.2.23.2 DashesCount

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd372218.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaScript 3119

© 2023 NinjaTrader, LLC

Definition
Retrieves the number of entries in the dashes array.

(See also unmanaged API documentation)

Property Value
An int for the number of entries in the dashes array if the stroke is dashed; otherwise, 0.

Syntax
<StrokeStyle>.DashesCount

11.7.2.23.3 DashOffset

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the number of entries in the dashes array.

(See also unmanaged API documentation)

Property Value
A float value that specifies how far in the dash sequence the stroke will start.

Syntax
<StrokeStyle>.DashesCount

11.7.2.23.4 DashStyle

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

https://msdn.microsoft.com/en-us/library/dd372232.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd372234.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx

NinjaTrader 83120

© 2023 NinjaTrader, LLC

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets a value that describes the stroke's dash pattern.

(See also unmanaged API documentation)

Note: If a custom dash style is specified, the dash pattern is described by the dashes

array, which can be retrieved by calling the GetDashes() method.

Property Value
A SharpDX.Direct2D1.DashStyle enum value that describes the predefined dash pattern used,

or DashStyle.Custom if a custom dash style is used.

Possible Values are:

Solid A solid line with no breaks.

Dash A dash followed by a gap of equal

length. The dash and the gap are

each twice as long as the stroke

thickness. The equivalent dash

array for Dash is {2, 2}.

Dot A dot followed by a longer gap.

The equivalent dash array for Dot

is {0, 2}.

DashDot A dash, followed by a gap,

followed by a dot, followed by

another gap. The equivalent dash

array for DashDot is {2, 2, 0, 2}.

DashDotDot A dash, followed by a gap,

followed by a dot, followed by

another gap, followed by another

dot, followed by another gap. The

equivalent dash array for

DashDotDot is {2, 2, 0, 2, 0, 2}.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd372217.aspx

NinjaScript 3121

© 2023 NinjaTrader, LLC

Custom The dash pattern is specified by

an array of floating-point values.

(See also unmanaged API documentation)

Syntax
<StrokeStyle>.DashStyle

11.7.2.23.5 EndCap

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the type of shape used at the end of a stroke.

(See also unmanaged API documentation)

Property Value
A SharpDX.Direct2D1.CapStyle value that specifies the type of joint used at the vertices of a

shape's outline.

Syntax
<StrokeStyle>.EndCap

11.7.2.23.6 GetDashes()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

http://msdn.microsoft.com/en-us/library/dd368087.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd372238.aspx
http://sharpdx.org/

NinjaTrader 83122

© 2023 NinjaTrader, LLC

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Copies the dash pattern to the specified array.

(See also unmanaged API documentation)

Note: The dashes are specified in units that are a multiple of the stroke width, with

subsequent members of the array indicating the dashes and gaps between dashes: the

first entry indicates a filled dash, the second a gap, and so on.

Method return value
This method does not return a value.

Syntax
<StrokeStyle>.GetDashes(float[] dashes, int dashesCount)

dashes A float pointer to an array that will

receive the dash pattern. The

array must be able to contain at

least as many elements as

specified by dashesCount. You

must allocate storage for this

array.

dashesCount The int number of dashes to

copy. If this value is less than the

number of dashes in the stroke

style's dashes array, the returned

dashes are truncated to

dashesCount. If this value is

greater than the number of

dashes in the stroke style's

dashes array, the extra dashes

are set to 0.0f. To obtain the

actual number of dashes in the

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd372230.aspx

NinjaScript 3123

© 2023 NinjaTrader, LLC

stroke style's dashes array, use

the DashesCount property.

11.7.2.23.7 LineJoin

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the type of joint used at the vertices of a shape's outline.

(See also unmanaged API documentation)

Note: A miter limit affects how sharp miter joins are allowed to be. If the line join style is

MiterOrBevel, then the join will be mitered with regular angular vertices if it doesn't extend

beyond the miter limit; otherwise, the line join will be beveled.

Property Value
A SharpDX.Direct2D1.LineJoin enum value that specifies the type of joint used at the vertices

of a shape's outline.

Possible values are:

Miter Regular angular vertices.

Bevel Beveled vertices.

Round Rounded vertices.

MiterOrBevel Regular angular vertices unless

the join would extend beyond the

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd372240.aspx

NinjaTrader 83124

© 2023 NinjaTrader, LLC

miter limit; otherwise, beveled

vertices.

(See also unmanaged API documentation)

Syntax
<StrokeStyle>.LineJoin

11.7.2.23.8 MiterLimit

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the limit on the ratio of the miter length to half the stroke's thickness.

(See also unmanaged API documentation)

Property Value
A positive float value greater than or equal to 1.0f that describes the limit on the ratio of the

miter length to half the stroke's thickness.

Syntax
<StrokeStyle>.MiterLimit

11.7.2.23.9 StartCap

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

http://msdn.microsoft.com/en-us/library/dd368130.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd372242.aspx
http://sharpdx.org/

NinjaScript 3125

© 2023 NinjaTrader, LLC

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the type of shape used at the beginning of a stroke.

(See also unmanaged API documentation)

Property Value
A SharpDX.Direct2D1.CapStyle value for the type of shape used at the beginning of a stroke.

Syntax
<StrokeStyle>.StartCap

11.7.2.24 StrokeStyleProperties

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Describes the stroke that outlines a shape.

(See also unmanaged API documentation)

Syntax
struct StrokeStyleProperties

Properties

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd372244.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368164.aspx

NinjaTrader 83126

© 2023 NinjaTrader, LLC

StartCap The StartCap value applied to the

start of all the open figures in a

stroked geometry.

EndCap The EndCap value applied to the

end of all the open figures in a

stroked geometry.

DashCap The DashCap value for the shape

at either end of each dash

segment.

LineJoin A LineJoin value that describes

how segments are joined. This

value is ignored for a vertex if the

segment flags specify that the

segment should have a smooth

join.

MiterLimit The MeterLImit value of the

thickness of the join on a mitered

corner. This value is always

treated as though it is greater than

or equal to 1.0f.

DashStyle A DashStyle value that specifies

whether the stroke has a dash

pattern and, if so, the dash style.

DashOffset A DashOffset value that specifies

an offset in the dash sequence. A

positive dash offset value shifts

the dash pattern, in units of stroke

width, toward the start of the

stroked geometry. A negative

dash offset value shifts the dash

pattern, in units of stroke width,

toward the end of the stroked

geometry.

NinjaScript 3127

© 2023 NinjaTrader, LLC

11.7.2.25 SweepDirection

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Defines the direction that an elliptical arc is drawn.

(See also unmanaged API documentation)

Syntax
enum SweepDirection

Enumerators

CounterClockwise Arcs are drawn in a

counterclockwise (negative-angle)

direction.

Clockwise Arcs are drawn in a clockwise

(positive-angle) direction.

11.7.3 SharpDX.DirectWrite

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd368166.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83128

© 2023 NinjaTrader, LLC

The SharpDX.DirectWrite namespace provides a managed DirectWrite API. DirectWrite

supports high-quality text rendering, resolution-independent outline fonts, and full Unicode text

and layouts.

(See also unmanaged API documentation)

In this section

TextFormat The TextFormat interface

describes the font and paragraph

properties used to format text,

and it describes locale

information.

TextLayout The TextLayout interface

represents a block of text after it

has been fully analyzed and

formatted.

11.7.3.1 TextFormat

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
The TextFormat interface describes the font and paragraph properties used to format text,

and it describes locale information.

(See also unmanaged API documentation)

Notes:

1. These properties cannot be changed after the TextFormat object is created. To

change these properties, a new TextFormat object must be created with the desired

properties.

https://msdn.microsoft.com/en-us/library/dd368038.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316628.aspx

NinjaScript 3129

© 2023 NinjaTrader, LLC

2. The TextFormat interface is used to draw text with a single format. To draw text with

multiple formats, or to use a custom text renderer, use the TextLayout interface.

TextLayout enables the application to change the format for ranges of text within the

string.

3. This object may not be thread-safe, and it may carry the state of text format change.

4. To draw simple text with a single format, Direct2D provides the DrawText() method,

which draws a string using the format information provided by an TextFormat object.

Syntax
class TextFormat

Constructors

new TextFormat(Factory factory,

 string fontFamilyName, float

fontSize)

Creates a text format object used

for text layout with normal weight,

style and stretch.

new TextFormat(Factory factory,

 string fontFamilyName,

FontWeight fontWeight,

FontStyle fontStyle, float

fontSize)

Creates a text format object used

for text layout with normal

stretch.

new TextFormat(Factory factory,

 string fontFamilyName,

FontWeight fontWeight,

FontStyle fontStyle,

FontStretch fontStretch, float

fontSize)

Creates a text format object used

for text layout.

Tip: For NinjaScript development purposes, when creating a TextFormat object you

should use the NinjaTrader.Core.Globals.DirectWriteFactory property

Methods and Properties

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Inherited from

SharpDX.DisposeBase.)

NinjaTrader 83130

© 2023 NinjaTrader, LLC

FlowDirection Gets or sets the direction that text

lines flow.

FontFamilyName Creates a text format object used

for text layout with normal weight,

style and stretch.

FontSize Creates a text format object used

for text layout with normal

stretch.

FontStretch Creates a text format object used

for text layout.

FontStyle Gets the font style of the text.

FontWeight Gets the font weight of the text.

IsDisposed Gets a value indicating whether

this instance is disposed.

(Inherited from

SharpDX.DisposeBase.)

ParagraphAlignment Gets or sets the alignment option

of a paragraph which is relative to

the top and bottom edges of a

layout box.

ReadingDirection Gets or sets the current reading

direction for text in a paragraph.

TextAlignment Gets or sets the alignment option

of text relative to the layout box's

leading and trailing edge.

WordWrapping Gets or sets the word wrapping

option.

11.7.3.1.1 Flow Direction

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

http://sharpdx.org/

NinjaScript 3131

© 2023 NinjaTrader, LLC

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets the direction that text lines flow.

(See also unmanaged API documentation)

Property Value
A SharpDX.DirectWrite.FlowDirection enum which determines text lines flow within their

parent container.

Possible values are:

TopToBottom Specifies that text lines are placed

from top to bottom.

Syntax
<TextLayout>.FlowDirection

11.7.3.1.2 FontFamilyName

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316631.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83132

© 2023 NinjaTrader, LLC

Gets a copy of the font family name.

(See also unmanaged API documentation)

Property Value
A string value representing the current font family name

Syntax
<TextLayout>.FontFamilyName

11.7.3.1.3 FontSize

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets the font size in DIP unites.

(See also unmanaged API documentation)

Property Value
A float representing the current font size in DIP units.

Syntax
<TextLayout>.FontSize

11.7.3.1.4 FontStretch

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

https://msdn.microsoft.com/en-us/library/dd316636(v=vs.85).aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316643.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaScript 3133

© 2023 NinjaTrader, LLC

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets the font stretch of the text.

(See also unmanaged API documentation)

Note:

1. A font stretch describes the degree to which a font form is stretched from its normal

aspect ratio, which is the original width to height ratio specified for the glyphs in the

font.

2. Values other than the ones defined in the enumeration are considered to be invalid, and

are rejected by font API functions.

Property Value
A SharpDX.DirectWrite.FontStretch enum value which indicates the type of font stretch (such

as normal or condensed). See table below

Syntax
<TextLayout>.FontStretch

Possible values are:

Undefined Predefined font stretch : Not

known (0).

UltraCondensed Predefined font stretch : Ultra-

condensed (1).

ExtraCondensed Predefined font stretch : Extra-

condensed (2).

Condensed Predefined font stretch :

Condensed (3).

SemiCondensed Predefined font stretch : Semi-

condensed (4).

Normal Predefined font stretch : Normal

(5).

https://msdn.microsoft.com/en-us/library/dd316646.aspx

NinjaTrader 83134

© 2023 NinjaTrader, LLC

Medium Predefined font stretch : Medium

(5).

SemiExpanded Predefined font stretch : Semi-

expanded (6).

Expanded Predefined font stretch :

Expanded (7).

ExtraExpanded Predefined font stretch : Extra-

expanded (8).

UltraExpanded Predefined font stretch : Ultra-

expanded (9).

11.7.3.1.5 FontStyle

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets the font style of the text.

(See also unmanaged API documentation)

Property Value
A SharpDX.DirectWrite.FontStyle enum value which indicates the type of font style (such as

slope or incline).

Possible values are:

Normal The characters in a normal, or

roman, font are upright.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316649.aspx

NinjaScript 3135

© 2023 NinjaTrader, LLC

Oblique The characters in an oblique font

are artificially slanted.

Italic The characters in an italic font are

truly slanted and appear as they

were designed.

Syntax
<TextLayout>.FontStyle

11.7.3.1.6 FontWeight

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets the font weight of the text.

(See also unmanaged API documentation)

Notes:

1. Weight differences are generally differentiated by an increased stroke or thickness that

is associated with a given character in a typeface, as compared to a "normal"

character from that same typeface.

2. Not all weights are available for all typefaces. When a weight is not available for a

typeface, the closest matching weight is returned.

3. Font weight values less than 1 or greater than 999 are considered invalid, and they are

rejected by font API functions.

Property Value
A SharpDX.DirectWrite.FontWeight enum value that indicates the type of weight (such as

normal, bold, or black). See table below

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316652.aspx

NinjaTrader 83136

© 2023 NinjaTrader, LLC

Syntax
<TextLayout>.FontWeight

Possible values are:

Thin Predefined font weight : Thin

(100).

ExtraLight Predefined font weight : Extra-light

(200).

UltraLight Predefined font weight : Ultra-light

(200).

Light Predefined font weight : Light

(300).

Normal Predefined font weight : Normal

(400).

Regular Predefined font weight : Regular

(400).

Medium Predefined font weight : Medium

(500).

DemiBold Predefined font weight : Demi-

bold (600).

SemiBold Predefined font weight : Semi-

bold (600).

Bold Predefined font weight : Bold

(700).

ExtraBold Predefined font weight : Extra-

bold (800).

UltraBold Predefined font weight : Extra-

bold (800).

NinjaScript 3137

© 2023 NinjaTrader, LLC

Black Predefined font weight : Black

(900).

Heavy Predefined font weight : Heavy

(900).

ExtraBlack Predefined font weight : Extra-

black (950).

UltraBlack Predefined font weight : Ultra-

black (950).

SemiLight Predefined font weight : Normal

(400).

11.7.3.1.7 ParagraphAlignment

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets or sets the alignment option of a paragraph which is relative to the top and bottom edges

of a layout box.

(See also unmanaged API documentation)

Property Value
A SharpDX.DirectWrite.ParagraphAlignment enum value that indicates the current paragraph

alignment option.

Possible values are:

Near The top of the text flow is aligned

to the top edge of the layout box.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316675.aspx

NinjaTrader 83138

© 2023 NinjaTrader, LLC

Far The bottom of the text flow is

aligned to the bottom edge of the

layout box.

Center The center of the flow is aligned to

the center of the layout box.

Syntax
<TextLayout>.ParagraphAlignment

11.7.3.1.8 ReadingDirection

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets or sets the current reading direction for text in a paragraph.

(See also unmanaged API documentation)

Property Value
A SharpDX.DirectWrite.ReadingDirection enum value that indicates the current reading

direction for text in a paragraph.

Possible values are:

LeftToRight Indicates that reading progresses

from left to right.

RightToLeft Indicates that reading progresses

from right to left.

Syntax
<TextLayout>.ReadingDirection

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd316678.aspx

NinjaScript 3139

© 2023 NinjaTrader, LLC

11.7.3.1.9 TextAlignment

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets or sets the alignment option of text relative to the layout box's leading and trailing edge.

(See also unmanaged API documentation)

Property Value
A SharpDX.DirectWrite.TextAlignment enum value of the current paragraph.

Possible values are:

Leading The leading edge of the paragraph

text is aligned to the leading edge

of the layout box.

Trailing The trailing edge of the paragraph

text is aligned to the trailing edge

of the layout box.

Center The center of the paragraph text

is aligned to the center of the

layout box.

Justified Align text to the leading side, and

also justify text to fill the lines.

Syntax
<TextLayout>.TextAlignment

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd316681.aspx

NinjaTrader 83140

© 2023 NinjaTrader, LLC

11.7.3.1.10 WordWrapping

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets or sets the word wrapping option.

(See also unmanaged API documentation)

Property Value
The SharpDX.DirectWrite.WordWraping enum value which determines the word wrapping

option.

Possible values are:

Wrap Indicates that words are broken

across lines to avoid text

overflowing the layout box.

NoWrap Indicates that words are kept

within the same line even when it

overflows the layout box. This

option is often used with scrolling

to reveal overflow text.

Syntax
<TextLayout>.WordWrapping

11.7.3.2 LineMetrics

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316688.aspx
http://sharpdx.org/

NinjaScript 3141

© 2023 NinjaTrader, LLC

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Contains information about a formatted line of text.

(See also unmanaged API documentation)

Syntax
LineMetrics[int idx]

Properties

Baseline A float for the distance from the

top of the text line to its baseline.

Height A float for the height of the text

line.

IsTrimmed A bool indicating the line is

trimmed.

Length An int value for the number of

text positions in the text line. This

includes any trailing whitespace

and newline characters.

NewlineLength An int value for the number of

characters in the newline

sequence at the end of the text

line. If the count is zero, then the

text line was either wrapped or it

is the end of the text.

TrailingWhitespaceLength Ant int value for the number of

whitespace positions at the end of

the text line. Newline sequences

are considered whitespace.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd368099(v=vs.85).aspx

NinjaTrader 83142

© 2023 NinjaTrader, LLC

11.7.3.3 TextLayout

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
The TextLayout interface represents a block of text after it has been fully analyzed and

formatted.

(See also unmanaged API documentation)

Note: To draw a formatted string represented by an TextLayout object, Direct2D provides

the DrawTextLayout method.

Syntax
class TextLayout

Constructors

new TextLayout(Factory factory,

 string text, TextFormat

textFormat, float maxWidth,

float maxHeight)

Takes a string, text format, and

associated constraints, and

produces an object that

represents the fully analyzed and

formatted result.

Tip: For NinjaScript development purposes, when creating a TextLayout object you

should use the NinjaTrader.Core.Globals.DirectWriteFactory property

Methods and Properties

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
http://msdn.microsoft.com/en-us/library/dd316718.aspx

NinjaScript 3143

© 2023 NinjaTrader, LLC

Dispose() Performs application-defined

tasks associated with freeing,

releasing, or resetting unmanaged

resources. (Inherited from

SharpDX.DisposeBase.)

FlowDirection Gets or sets the direction that text

lines flow. (Inherited from

TextFormat.)

FontFamilyName Gets a copy of the font family

name.(Inherited from

TextFormat.)

FontSize Gets the font size in DIP unites.

(Inherited from TextFormat.)

FontStretch Gets the font stretch of the text.

(Inherited from TextFormat.)

FontStyle Gets the font style of the text.

(Inherited from TextFormat.)

FontWeight Gets the font weight of the text.

(Inherited from TextFormat.)

IsDisposed Gets a value indicating whether

this instance is disposed.

(Inherited from

SharpDX.DisposeBase.)

MaxHeight Gets or sets the layout maximum

height.

MaxWidth Gets or sets the layout maximum

width.

Metrics Contains the metrics associated

with text after layout. All

coordinates are in device

independent pixels (DIPs).

NinjaTrader 83144

© 2023 NinjaTrader, LLC

ParagraphAlignment Gets or sets the alignment option

of a paragraph which is relative to

the top and bottom edges of a

layout box.(Inherited from

TextFormat.)

ReadingDirection Gets or sets the current reading

direction for text in a paragraph.

(Inherited from TextFormat.)

TextAlignment Gets or sets the alignment option

of text relative to the layout box's

leading and trailing edge.

(Inherited from TextFormat.)

WordWrapping Gets or sets the word wrapping

option.

(Inherited from TextFormat.)

11.7.3.3.1 GetLineMetrics()

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Retrieves the information about each individual text line of the text string.

(See also unmanaged API documentation)

Method Return Value
A LineMetrics[] contains a pointer to an array of structures containing various calculated

length values of individual text lines.

Syntax
<TextLayout>.GetLineMetrics()

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316763(v=vs.85).aspx

NinjaScript 3145

© 2023 NinjaTrader, LLC

Parameters
This method does not accept any parameters

11.7.3.3.2 MaxHeight

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Gets or sets the layout maximum height.

(See also unmanaged API documentation)

Property Value
A float representing the text layout maximum height.

Syntax
<TextLayout>.MaxHeight

11.7.3.3.3 MaxWidth

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd316776.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx

NinjaTrader 83146

© 2023 NinjaTrader, LLC

Definition
Gets or sets the layout maximum width.

(See also unmanaged API documentation)

Property Value
A float representing the text layout maximum width.

Syntax
<TextLayout>.MaxWidth

11.7.3.3.4 Metrics

Disclaimer: The SharpDX SDK Reference section was compiled from the official

SharpDX Documentation and was NOT authored by NinjaTrader. The contents of this

section are provided as-is and only cover a fraction of what is available from the SharpDX

SDK. This page was intended only as a reference guide to help you get started with some

of the 2D Graphics concepts used in the NinjaTrader.Custom assembly. Please refer to

the official SharpDX Documentation for additional members not covered in this

reference. For more seasoned graphic developers, the original MSDN Direct2D1 and

DirectWrite unmanaged API documentation can also be helpful for understanding the

DirectX/Direct2D run-time environment. For NinjaScript development purposes, we

document only essential members in the structure of this page.

Definition
Contains the metrics associated with text after layout. All coordinates are in device

independent pixels (DIPs).

(See also unmanaged API documentation)

Syntax
<TextLayout>.Metrics

Properties

Left A float value that indicates the

left-most point of formatted text

relative to the layout box, while

excluding any glyph overhang.

Top A float value that indicates the

top-most point of formatted text

https://msdn.microsoft.com/en-us/library/dd316781.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd368038.aspx
https://msdn.microsoft.com/en-us/library/dd368135.aspx

NinjaScript 3147

© 2023 NinjaTrader, LLC

relative to the layout box, while

excluding any glyph overhang.

Width A float value that indicates the

width of the formatted text, while

ignoring trailing whitespace at the

end of each line.

WidthIncludingTrailingWhitespace A float value that indicates width

of the formatted text, taking into

account the trailing whitespace at

the end of each line.

Height A float value that indicates the

height of the formatted text. The

height of an empty string is set to

the same value as that of the

default font.

LayoutWidth A float value that indicates the

initial width given to the layout. It

can be either larger or smaller

than the text content width,

depending on whether the text

was wrapped.

LayoutHeight A float value that indicates the

initial height given to the layout.

Depending on the length of the

text, it may be larger or smaller

than the text content height.

MaxBidiReorderingDepth An int value representing the

maximum reordering count of any

line of text, used to calculate the

most number of hit-testing boxes

needed. If the layout has no

bidirectional text, or no text at all,

the minimum level is 1.

LineCount An int value representing total

number of lines.

Endnotes 2... (after index)

NinjaTrader 83148

© 2023 NinjaTrader, LLC

	Welcome to NinjaTrader
	Video Library
	Release Notes
	8.1.2.0
	8.1.1.7
	8.0
	8.0.28.0
	8.0.27.1
	8.0.26.1
	8.0.25.0
	8.0.24.3
	8.0.23.2
	8.0.22.2
	8.0.21.1
	8.0.20.1
	8.0.19.1
	8.0.18.1
	8.0.17.2
	8.0.16.3
	8.0.15.1
	8.0.14.2
	8.0.13.1
	8.0.12.0
	8.0.11.1
	8.0.10.0
	8.0.9.0
	8.0.8.0
	8.0.7.1
	8.0.6.1
	8.0.5.2
	8.0.4.0
	8.0.3.0
	8.0.2.0
	8.0.1.0

	Risk Disclosures
	Risks of Electronic Trading with NinjaTrader
	Terms of Service
	Copyrights
	Introduction
	Getting Started
	Getting Help & Support
	Learning to Use NinjaTrader
	Using 3rd Party Add-Ons

	Configuration
	Installation
	Minimum System Requirements
	Installation Guide
	Clear Browser Cache

	Connecting
	General
	Creating your own Skin

	Log In
	Trading Mode
	Playback Connection
	Multi-provider Connections
	Connecting to Multi-provider Connections
	Connecting to Kinetick - End Of Day (Free)
	External Data Feed Connection
	Simulated Data Feed Connection

	Options
	Enabling/Disabling Multi-provider Mode
	Trading
	Strategies
	Automated trading interface
	Market data
	Splits and Dividends
	Merge Policy
	Real-time Tick Filter
	Multiple Connections

	Performance Tips

	Operations
	Advanced Trade Management (ATM)
	Server Side vs Local ATMs
	ATM Strategy
	ATM Strategy Parameters
	ATM Strategy Selection Mode
	Stop Strategy
	Auto Breakeven
	Auto Trail

	Manage ATM Strategy Templates
	Tutorial: ATM Strategy Example #1
	Tutorial: ATM Strategy Example #2
	Advanced Options
	Auto Chase
	Auto Reverse
	Shadow Strategy

	FAQ

	Server Side ATMs
	Server Side Stop Strategy
	Manage Server Side ATM Templates

	Auto Close Position

	Alerts
	Using Alerts
	Alerts Dialog
	Configuring Alerts
	Condition Builder
	Alerts Examples

	Alerts Log
	Using the Alerts Log Window
	Alerts Log Properties
	Window Linking

	Automated Trading
	Automated Trading Interface (ATI)
	What can I do and how?
	Commands and Valid Parameters
	Initialization
	File Interface
	Order Instruction Files (OIF)
	Information Update Files

	DLL Interface
	Functions

	TradeStation Email Integration
	Running concurrent strategies in the same market
	Set Up
	Symbol Mapping
	Order Handling Options
	Stop Order Handling
	Workspace Options

	Running NinjaScript Strategies
	Setting Real-Time Strategy Options
	Strategy Position vs. Account Position
	Syncing Account Positions
	Running a NinjaScript Strategy from a Chart
	Running a NinjaScript Strategy from the Strategies Tab
	Working with Strategy Templates

	Backup & Restore
	Creating a Backup Archive
	Restoring a Backup Archive

	Charts
	Creating a Chart
	Navigating a Chart
	Chart Panels
	Working with Objects on Charts
	Working with Price Data
	Working with Multiple Data Series
	Bar Types
	Chart Styles
	Working with Indicators
	Working with Drawing Tools & Objects
	Working with Automated Strategies
	Saving Chart Defaults and Templates
	Data Box
	Cross Hair
	Trading from a Chart
	Chart Properties
	Reload Historical Data
	How Bars are Built
	How Trade Executions are Plotted
	Break at EOD
	Order Flow +
	Order Flow Volumetric Bars
	Order Flow Cumulative Delta
	Order Flow VWAP
	Order Flow Volume Profile
	Order Flow Trade Detector
	Order Flow Market Depth Map

	Tick Replay
	Tick Replay Indicators

	COT
	Wiseman

	Commissions
	Working With Commission Templates
	Applying Commission Templates

	Control Center
	New Menu
	Tools Menu
	Workspaces Menu
	Connections Menu
	Help Menu
	Orders Tab
	Strategies Tab
	Executions Tab
	Positions Tab
	Accounts Tab
	Log Tab
	Messages Tab
	Connection Status

	Database
	Database Operations

	Data Grids
	Working with Data Grids

	Depth Chart
	Using the Depth Chart Window
	Depth Chart Properties
	Window Linking

	FX Correlation
	Using the FX Correlation Window
	FX Correlation Properties
	Window Linking

	Historical Data
	Loading Historical Data
	Data by Provider
	Importing
	Exporting
	Editing
	Download

	Hot Keys
	Working with Hot Keys
	Trading with Hot Keys

	Hot List Analyzer
	Using the Hot List Analyzer
	Customizing the Hot List Analyzer
	Hot List Analyzer Properties

	Instrument Lists
	Working with Instrument Lists
	Updating Splits and Dividends

	Instruments
	Instrument Types
	Searching for Instruments
	Managing Instruments
	Editing Instruments
	Rolling Over Futures Contracts
	Adding Splits and Dividends
	TradeStation Symbol Mapping
	Importing a List of Stock Symbols

	Level II
	Using the Level II Window
	Level II Properties
	Window Linking

	Market Analyzer
	Creating a Market Analyzer Window
	Working with Instrument Rows
	Working with Columns
	Dynamic Ranking and Sorting
	Creating Cell and Filter Conditions
	Market Analyzer Properties
	Working with Templates
	Performance Tips
	Reloading Indicators & Columns
	Window Linking

	Market Watch
	Display Overview
	Working with Instrument Tiles
	Market Watch Properties

	News
	News Window
	News Properties

	Option Chain
	Display Overview
	Submitting Orders
	Properties

	Order Entry
	Attaching Orders To Indicators
	Simulated Stop Orders
	Order State Definitions
	FIFO Optimization
	Working With Forex
	Where do your orders reside?
	Trade Controls
	Closing a Position or ATM Strategy Position
	Position Display
	Price Selector
	Quantity Selector
	TIF Selector

	Basic Entry
	Display Overview
	Submitting Orders
	Modifying and Cancelling Orders
	Managing Positions
	Properties

	Chart Trader
	Order & Position Display
	Hidden View
	Submitting Orders
	Modifying and Cancelling Orders
	Attach to Indicator
	Chart Trader Properties

	FX Pro
	Display Overview
	Submitting Orders
	Modifying and Cancelling Orders
	Managing Positions
	Properties

	FX Board
	Display Overview
	Working with Instrument Tiles
	Submitting Orders
	Modifying and Cancelling Orders
	Managing Positions
	Properties

	Order Ticket
	Display Overview
	Submitting Orders
	Properties

	SuperDOM
	Price Ladder Display
	Static vs Dynamic Price Ladder Display
	Order Display
	Submitting Orders
	Modifying and Cancelling Orders
	Managing Positions
	Using SuperDOM Columns
	SuperDOM Templates
	Working with Indicators
	Properties

	Playback Connection
	Set Up
	Playback
	Data Files

	Risk
	Using the Risk window

	Simulator
	The Sim101 Account
	Multiple Simulation Accounts
	Live/Simulation Environment
	Global Simulation Mode
	Trading in Simulation

	Strategy Analyzer
	Understanding the Layout
	Backtest a Strategy
	Optimization
	Genetic Algorithm
	Optimization Fitness Metrics

	Walk Forward Optimization
	Multi-Objective Optimization
	AI Generate
	Understanding Historical Fill Processing
	Basket testing multiple instruments
	Understanding Backtest Logs
	Reviewing Performance Results
	Monte Carlo Simulation
	Running a Monte Carlo Simulation

	2D & 3D Optimization Graphs
	Discrepancies: Real-Time vs Backtest
	Strategy Parameter Templates
	Strategy Analyzer Properties
	Working with Historical Trade Data

	Strategy Builder
	Builder Screens
	Condition Builder
	Actions

	Time & Sales
	Using the Time & Sales Window
	Time & Sales Properties
	Window Linking

	Trade Performance
	Using Trade Performance
	Performance Displays
	Statistics Definitions
	Profit and Loss Calculation Modes
	Trade Performance Properties

	Trading Hours
	Using the Trading Hours window

	Windows
	Using Window Linking
	Using the Instrument Selector
	Using the Overlay Instrument Selector
	Using Tabs
	Sharing Content
	Printing Content
	Using Color Pickers

	NinjaScript
	Code Breaking Changes
	NinjaScript Best Practices
	Distribution
	Considerations For Compiled Assemblies
	Import
	Export
	Remove NinjaScript Assembly
	Export Problems
	Protection/DLL Security
	Commercial Distribution
	Licensing/User Authentication
	Best Practices for Distribution
	Distribution Procedure

	Editor
	Compile Error Codes
	CS0006
	CS0019
	CS0021
	CS0029
	CS0103
	CS0200
	CS0201
	CS0234
	CS0246
	CS0428
	CS0443
	CS1002
	CS1061
	CS1501
	CS1502
	CS1503
	CS1513
	CS1525
	NoDoc

	NinjaScript Editor Components
	NinjaScript Explorer
	NinjaScript Wizard
	Code Snippets
	Compile Errors
	Intelliprompt
	Output
	Visual Studio Debugging
	Editor Keyboard Shortcuts

	Educational Resources
	AddOn Development Overview
	Developing Add Ons
	Creating Your Own AddOn Window
	Other Uses for an Addon

	C# Method (Functions) Reference
	Developing for Tick Replay
	Developing Indicators
	Advanced - Custom Drawing
	Set Up
	Entering Calculation Logic
	Compiling
	Using

	Advanced - Custom Plot Colors via Thresholds
	Set Up
	Entering Calculation Logic
	Compiling
	Using

	Intermediate - Historical Custom Data Series
	Set Up
	Entering Calculation Logic
	Compiling
	Using

	Intermediate - Your own SMA
	Set Up
	Entering Calculation Logic
	Compiling
	Using

	Beginner - Indicator on Indicator
	Set Up
	Entering Calculation Logic
	Compiling
	Using

	Beginner - Using price variables
	Set Up
	Entering Calculation Logic
	Compiling
	Using

	Developing Outside of the NinjaScript Editor

	Developing Strategies
	Intermediate - RSI with Stop Loss & Profit Target
	Set Up
	Entering Strategy Logic
	Compiling

	Beginner - Simple MA Cross Over
	Set Up
	Creating the Strategy via the Wizard
	Creating the Strategy via Self Programming
	Compiling

	The Strategy Development Process
	Working with Accounts

	Historical Order Backfill Logic
	Multi-Threading Consideration for NinjaScript
	Multi-Time Frame & Instruments
	NinjaScript Lifecycle
	Using 3rd Party Indicators
	Using ATM Strategies
	Using BitmapImage Objects with Buttons
	Using Historical Bid/Ask Series
	Using Images and Geometry with Custom Icons
	Using SharpDX for Custom Chart Rendering
	Working with Brushes
	Working with Chart Object Coordinates
	Working with Pixel Coordinates
	Working with Price Series
	Reference Samples
	Indicator
	Calculating the highest high or lowest low for a specified time range
	Changing fonts for draw objects
	Coloring a region
	Creating a user-defined parameter type (enum)
	Creating your own Level II data book (Accessing market depth)
	Draw Objects
	Ensuring indicator plots are valid before programmatically accessing them
	Exposing indicator values that are not plots
	Getting indicator values from a specified time
	Manipulating DateTime objects
	Manipulating string objects
	Multi-Colored Plots
	Removing and Custom Formatting an Indicator’s Chart Label
	Using a secondary series as an input series for an indicator
	Using a Series or DataSeries object to store calculations
	Using a TypeConverter to Customize Property Grid Behavior
	Using custom events to output the current Level II data book
	Using StreamReader to read from a text file
	Using StreamWriter to write to a text file
	Using System.IO File properties to write to and read from a text file
	Using Try-Catch Blocks
	Creating Chart WPF (UI) Modifications from an Indicator

	Strategy
	Backtesting NinjaScript Strategies with an intrabar granularity
	Entering on one time frame and exiting on another
	Getting PnL from an ATM strategy
	Halting a Strategy Once User Defined Conditions Are Met
	Keeping orders alive
	Modifying the price of stop loss and profit target orders
	Monitoring for and trading a breakout
	Monitoring Stop-Loss and Profit Target Orders
	Plotting from within a NinjaScript Strategy
	Removing draw objects from the chart
	Resetting values at the beginning of new trading sessions
	Rounding values to the nearest tick size
	Scaling out of a position
	Separating logic to either calculate once on bar close or on every tick
	Stopping a strategy after consecutive losers
	Trading crossovers
	Using a time filter to limit trading hours
	Using CancelOrder() method to cancel orders
	Using multiple entry/exit signals simultaneously
	Using OnOrderUpdate() and OnExecution() methods to submit protective orders
	Using IsRising and IsFalling conditions in the Strategy Builder
	Using trade performance statistics for money management

	Tips
	Adding Indicators to Strategies
	Checking for Null References
	Creating User Defined Input Parameters
	Debugging your NinjaScript Code
	Floating-Point Arithmetic
	Formatting numbers
	How do I resolve NinjaScript Programming Errors?
	Make sure you have enough bars in the data series you are accessing
	Order Types
	Parameter sequencing
	Referencing the correct bar
	Strategy Position vs. Account Position
	TraceOrders
	User Definable Color Inputs
	Using [] brackets

	Language Reference
	Alphabetical Reference
	Common
	AddDataSeries()
	AddHeikenAshi()
	AddKagi()
	AddLineBreak()
	AddPointAndFigure()
	AddRenko()
	AddVolumetric()
	BarsArray
	BarsInProgress
	BarsPeriods
	CurrentBars

	Alert, Debug, Share
	Alert()
	ClearOutputWindow()
	Log()
	PlaySound()
	Print()
	PrintTo
	RearmAlert()
	SendMail()
	Share()

	Analytical
	ApproxCompare()
	CountIf()
	CrossAbove()
	CrossBelow()
	GetCurrentAsk()
	GetCurrentAskVolume()
	GetCurrentBid()
	GetCurrentBidVolume()
	GetMedian()
	HighestBar()
	IsFalling()
	IsRising()
	Least Recent Occurrence (LRO)
	LowestBar()
	Most Recent Occurrence (MRO)
	Slope()
	TickSize
	ToDay()
	ToTime()

	Attributes
	BrowsableAttribute
	CategoryOrderAttribute
	DisplayAttribute
	NinjaScriptPropertyAttribute
	RangeAttribute
	TypeConverterAttribute
	XmlIgnoreAttribute

	Bars
	BarsSinceNewTradingDay
	GetAsk()
	GetBar()
	GetBid()
	GetClose()
	GetDayBar()
	GetHigh()
	GetLow()
	GetOpen()
	GetSessionEndTime()
	GetTime()
	GetVolume()
	IsFirstBarOfSession
	IsFirstBarOfSessionByIndex()
	IsLastBarOfSession
	IsResetOnNewTradingDay
	IsTickReplay
	PercentComplete
	TickCount
	ToChartString()

	Charts
	ChartBars
	Bars
	Count
	FromIndex
	GetBarIdxByTime()
	GetBarIdxByX()
	GetTimeByBarIdx()
	Panel
	Properties
	ToChartString()
	ToIndex

	ChartControl
	AxisXHeight
	AxisYLeftWidth
	AxisYRightWidth
	BarMarginLeft
	BarsArray
	BarSpacingType
	BarsPeriod
	BarWidth
	BarWidthArray
	CanvasLeft
	CanvasRight
	CanvasZoomState
	ChartPanels
	CrosshairType
	FirstTimePainted
	GetBarPaintWidth()
	GetSlotIndexByTime()
	GetSlotIndexByX()
	GetTimeBySlotIndex()
	GetTimeByX()
	GetXByBarIndex()
	GetXByTime()
	Indicators
	IsScrollArrowVisible
	IsStayInDrawMode
	IsYAxisDisplayedLeft
	IsYAxisDisplayedOverlay
	IsYAxisDisplayedRight
	LastSlotPainted
	LastTimePainted
	MouseDownPoint
	PresentationSource
	Properties
	SlotsPainted
	Strategies
	TimePainted

	ChartingExtensions
	ConvertFromHorizontalPixels
	ConvertFromVerticalPixels
	ConvertToHorizontalPixels
	ConvertToVerticalPixels

	ChartPanel
	ChartObjects
	H (Height)
	IsYAxisDisplayedLeft
	IsYAxisDisplayedOverlay
	IsYAxisDisplayedRight
	MaxValue
	MinValue
	PanelIndex
	Scales
	W (Width)
	X (Coordinate)
	Y (Coordinate)

	ChartScale
	GetPixelsForDistance()
	GetValueByY()
	GetValueByYWpf()
	GetYByValue()
	GetYByValueWpf()
	Height
	IsVisible
	MaxMinusMin
	MaxValue
	MinValue
	PanelIndex
	Properties
	ScaleJustification
	Width

	Rendering
	D2DFactory
	DirectWriteFactory
	DxExtensions
	ToDxBrush()
	ToVector2()

	ForceRefresh()
	IsInHitTest
	IsSelected
	IsVisibleOnChart()
	MaxValue
	MinValue
	OnCalculateMinMax()
	OnRender()
	OnRenderTargetChanged()
	PanelUI
	RenderTarget
	SetZOrder
	ZOrder

	FormatPriceMarker()
	IsAutoScale
	IsOverlay
	IsSeparateZOrder
	ScaleJustification
	Stroke Class
	UserControlCollection

	Drawing
	Draw.AndrewsPitchfork()
	AndrewsPitchfork

	Draw.Arc()
	Arc

	Draw.ArrowDown()
	ArrowDown

	Draw.ArrowLine()
	ArrowLine

	Draw.ArrowUp()
	ArrowUp

	Draw.Diamond()
	Diamond

	Draw.Dot()
	Dot

	Draw.Ellipse()
	Ellipse

	Draw.ExtendedLine()
	ExtendedLine

	Draw.FibonacciCircle()
	FibonacciCircle

	Draw.FibonacciExtensions()
	FibonacciExtensions

	Draw.FibonacciRetracements()
	FibonacciRetracements

	Draw.FibonacciTimeExtensions()
	FibonacciTimeExtensions

	Draw.GannFan()
	GannFan

	Draw.HorizontalLine()
	HorizontalLine

	Draw.Line()
	Line

	Draw.PathTool()
	PathTool

	Draw.Polygon()
	Polygon

	Draw.Ray()
	Ray

	Draw.Rectangle()
	Rectangle

	Draw.Region()
	Region

	Draw.RegionHighlightX()
	RegionHighlightX

	Draw.RegionHighlightY()
	RegionHighlightY

	Draw.RegressionChannel()
	RegressionChannel

	Draw.RiskReward()
	RiskReward

	Draw.Ruler()
	Ruler

	Draw.Square()
	Square

	Draw.Text()
	Text

	Draw.TextFixed()
	TextFixed

	Draw.TimeCycles()
	TimeCycles

	Draw.TrendChannel()
	TrendChannel

	Draw.Triangle()
	Triangle

	Draw.TriangleDown()
	TriangleDown

	Draw.TriangleUp()
	TriangleUp

	Draw.VerticalLine()
	VerticalLine

	Brushes
	AllowRemovalOfDrawObjects
	BackBrush
	BackBrushAll
	BackBrushes
	BackBrushesAll
	BarBrush
	BarBrushes
	CandleOutlineBrush
	CandleOutlineBrushes
	DrawObjects
	IDrawingTool
	PriceLevels
	RemoveDrawObject()
	RemoveDrawObjects()

	Instruments
	Instrument
	Exchange
	Expiry
	FullName
	GetInstrument()
	MasterInstrument
	Compare()
	Currency
	Description
	Dividends
	Exchanges
	FormatPrice()
	InstrumentType
	MergePolicy
	Name
	GetNextExpiry()
	PointValue
	RolloverCollection
	RoundToTickSize()
	RoundDownToTickSize()
	Splits
	TickSize
	Url

	ISeries<T>
	Series<T>
	Reset()

	PriceSeries<double>
	Close
	Closes
	High
	Highs
	Input
	Inputs
	Low
	Lows
	Median
	Medians
	Open
	Opens
	Typical
	Typicals
	Value
	Values
	Weighted
	Weighteds

	TimeSeries<DateTime>
	Time
	Times

	VolumeSeries<double>
	Volume
	Volumes

	Count
	GetValueAt()
	IsValidDataPoint()
	IsValidDataPointAt()
	MaximumBarsLookBack

	OnBarUpdate()
	BarsPeriod
	Calculate
	Count
	CurrentBar
	IsDataSeriesRequired
	IsFirstTickOfBar
	IsResetOnNewTradingDays
	IsTickReplays
	Update()

	OnConnectionStatusUpdate()
	ConnectionStatusEventArgs

	OnFundamentalData()
	FundamentalDataEventArgs

	OnMarketData()
	MarketDataEventArgs

	OnMarketDepth()
	MarketDepthEventArgs

	OnStateChange()
	SetState()
	State

	SessionIterator
	ActualSessionBegin
	ActualSessionEnd
	ActualTradingDayEndLocal
	ActualTradingDayExchange
	CalculateTradingDay()
	GetNextSession()
	GetTradingDay()
	GetTradingDayBeginLocal()
	GetTradingDayEndLocal()
	IsInSession()
	IsNewSession()
	IsTradingDayDefined()

	SimpleFont
	ApplyTo()
	ToDirectWriteTextFormat()

	System Indicator Methods
	Valid Input Data for Indicator Methods
	Accumulation/Distribution (ADL)
	Adaptive Price Zone (APZ)
	Aroon
	Aroon Oscillator
	Average Directional Index (ADX)
	Average Directional Movement Rating (ADXR)
	Average True Range (ATR)
	Balance of Power (BOP)
	Block Volume
	Bollinger Bands
	BuySell Pressure
	BuySell Volume
	Camarilla Pivots
	CandleStickPattern
	Chaikin Money Flow
	Chaikin Oscillator
	Chaikin Volatility
	Chande Momentum Oscillator (CMO)
	Choppiness Index
	Commitment Of Traders (COT)
	Commodity Channel Index (CCI)
	Correlation
	Current Day OHL
	Darvas
	Directional Movement (DM)
	Directional Movement Index (DMI)
	Disparity Index
	Donchian Channel
	Double Stochastics
	Dynamic Momentum Index (DMIndex)
	Ease of Movement
	Fibonacci Pivots
	Fisher Transform
	Forecast Oscillator (FOSC)
	Keltner Channel
	KeyReversalDown
	KeyReversalUp
	Linear Regression
	Linear Regression Intercept
	Linear Regression Slope
	MA Envelopes
	Maximum (MAX)
	McClellan Oscillator
	Minimum (MIN)
	Momentum
	Money Flow Index (MFI)
	Money Flow Oscillator
	Moving Average - Double Exponential (DEMA)
	Moving Average - Exponential (EMA)
	Moving Average - Hull (HMA)
	Moving Average - Kaufman's Adaptive (KAMA)
	Moving Average - Mesa Adaptive (MAMA)
	Moving Average - Simple (SMA)
	Moving Average - T3 (T3)
	Moving Average - Triangular (TMA)
	Moving Average - Triple Exponential (TEMA)
	Moving Average - Triple Exponential (TRIX)
	Moving Average - Variable (VMA)
	Moving Average - Volume Weighted (VWMA)
	Moving Average - Weighted (WMA)
	Moving Average - Zero Lag Exponential (ZLEMA)
	Moving Average Convergence-Divergence (MACD)
	Moving Average Ribbon
	Net Change Display
	n Bars Down
	n Bars Up
	On Balance Volume (OBV)
	Order Flow Cumulative Delta
	Order Flow Volumetric Bars
	Order Flow VWAP
	Parabolic SAR
	Percentage Price Oscillator (PPO)
	Pivots
	Polarized Fractal Efficiency (PFE)
	Price Oscillator
	Prior Day OHLC
	Psychological Line
	Range
	Range Indicator (RIND)
	Rate of Change (ROC)
	Regression Channel
	Relative Spread Strength (RSS)
	Relative Strength Index (RSI)
	Relative Vigor Index
	Relative Volatility Index (RVI)
	R-squared
	Standard Deviation (StdDev)
	Standard Error (StdError)
	Stochastics
	Stochastics Fast
	Stochastics RSI (StochRSI)
	Summation (SUM)
	Swing
	Time Series Forecast (TSF)
	Trend Lines
	True Strength Index (TSI)
	Ultimate Oscillator
	Volume (VOL)
	Volume Moving Average (VOLMA)
	Volume Oscillator
	Volume Rate of Change (VROC)
	Volume Up Down
	Vortex
	Williams %R
	Wiseman Alligator
	Wiseman Awesome Oscillator
	Woodies CCI
	Woodies Pivots
	ZigZag

	TradingHours
	Get
	GetPreviousTradingDayEnd()
	Holidays
	Name
	PartialHolidays
	Sessions
	TimeZoneInfo

	Clone()
	Description
	DisplayName
	IsVisible
	Name
	TriggerCustomEvent()

	Add On
	NinjaTrader Controls
	AccountSelector
	AtmStrategySelector
	InstrumentSelector
	IntervalSelector
	TifSelector
	QuantityUpDown

	Account
	AccountItem
	AccountItemUpdate
	AccountStatusUpdate
	All
	Cancel()
	CancelAllOrders()
	Change()
	Connection
	ConnectOptions
	CreateOrder()
	Denomination
	Executions
	ExecutionUpdate
	Flatten()
	Get()
	Name
	Orders
	OrderUpdate
	Positions
	PositionUpdate
	SimulationAccountReset
	Strategies
	Submit()

	BarsRequest
	Request()
	MergePolicy

	Connection
	CancelAllOrders()
	Connect()
	ConnectionStatusUpdate
	Disconnect()
	Options
	PriceStatus
	Status
	ReloadAllHistoricalData()
	PlaybackConnection

	IInstrumentProvider Interface
	Instrument

	IIntervalProvider Interface
	BarsPeriod

	INTTabFactory Interface
	CreateParentWindow()
	CreateTabPage()

	IWorkspacePersistence Interface
	Restore()
	Save()
	WorkspaceOptions

	NTTabPage Class
	Cleanup()
	GetHeaderPart()
	Restore()
	Save()

	Alert and Debug Concepts
	AlertCallback()
	RearmAlert()

	AtmStrategy
	ControlCenter
	FundamentalData
	MarketData
	MarketDepth
	NewsItems
	NewsSubscription
	NTMenuItem
	NTMessageBoxSimple.Show()
	NTWindow
	NumericTextBox
	OnWindowCreated()
	OnWindowDestroyed()
	OnWindowRestored()
	OnWindowSaved()
	StartAtmStrategy()
	StrategyBase
	PropagateInstrumentChange()
	PropagateIntervalChange()
	TabControl
	TabControlManager

	Bars Type
	AddBar()
	ApplyDefaultBasePeriodValue
	ApplyDefaultValue
	BuiltFrom
	DefaultChartStyle
	GetInitialLookBackDays()
	GetPercentComplete()
	Icon
	IsRemoveLastBarSupported
	IsTimeBased
	OnDataPoint()
	RemoveLastBar()
	SetPropertyName
	SessionIterator
	UpdateBar()

	Chart Style
	BarWidth
	BarWidthUI
	ChartStyleType
	DownBrush
	DownBrushDX
	GetBarPaintWidth()
	Icon
	IsTransparent
	OnRender()
	SetPropertyName()
	TransformBrush()
	UpBrush
	UpBrushDX

	Drawing Tool
	AddPastedOffset()
	Anchors
	AttachedTo
	ChartAnchor
	CopyDataValues()
	DisplayName
	DrawingTool
	DrawnOnBar
	GetPoint()
	IsBrowsable
	IsEditing
	IsNinjaScriptDrawn
	IsXPropertiesVisibile
	IsYPropertyVisibile
	MoveAnchor()
	MoveAnchorX()
	MoveAnchorY()
	Price
	SlotIndex
	Time
	UpdateFromPoint()
	UpdateXFromPoint()
	UpdateYFromPoint()

	ConvertToVerticalPixels()
	CreateAnchor()
	DisplayOnChartsMenus
	Dispose()
	DrawingState
	DrawnBy
	GetAttachedToChartBars()
	GetClosestAnchor()
	GetCursor()
	GetSelectionPoints()
	Icon
	IgnoresSnapping
	IgnoresUserInput
	IsAttachedToNinjaScript
	IsGlobalDrawingTool
	IsLocked
	IsUserDrawn
	OnBarsChanged()
	OnMouseDown()
	OnMouseMove()
	OnMouseUp()
	SupportsAlerts
	ZOrderType

	Import Type
	OnNextInstrument()
	OnNextDataPoint()

	Indicator
	AddLine()
	AreLinesConfigurable
	Line Class
	Lines

	AddPlot()
	ArePlotsConfigurable
	Displacement
	PlotBrushes
	Plots

	BarsRequiredToPlot
	DisplayInDataBox
	DrawHorizontalGridLines
	DrawOnPricePanel
	DrawVerticalGridLines
	IndicatorBaseConverter
	IsChartOnly
	IsSuspendedWhileInactive
	PaintPriceMarkers
	ShowTransparentPlotsInDataBox

	Market Analyzer Column
	CurrentText
	CurrentValue
	DataType
	FormatDecimals
	IsEditable
	OnRender()
	PriorValue

	Optimization Fitness
	OnCalculatePerformanceValue()
	Value

	Optimizer
	NumberOfIterations
	OnOptimize()
	OptimizationParameters
	RunIteration()
	SupportsMultiObjectiveOptimization

	Performance Metrics
	Format()
	OnAddTrade()
	OnCopyTo()
	OnMergePerformanceMetric()
	PerformanceUnit
	Values

	Share Service
	CharacterLimit
	CharactersReservedPerMedia
	Icon
	UseOAuth
	IsConfigured
	IsDefault
	IsImageAttachmentSupported
	OnAuthorizeAccount()
	OnShare()
	Signature

	Strategy
	Account
	AddChartIndicator()
	AddPerformanceMetric()
	ATM Strategy Methods
	AtmStrategyCancelEntryOrder()
	AtmStrategyChangeEntryOrder()
	AtmStrategyChangeStopTarget()
	AtmStrategyClose()
	AtmStrategyCreate()
	GetAtmStrategyEntryOrderStatus()
	GetAtmStrategyMarketPosition()
	GetAtmStrategyPositionAveragePrice()
	GetAtmStrategyPositionQuantity()
	GetAtmStrategyRealizedProfitLoss()
	GetAtmStrategyStopTargetOrderStatus()
	GetAtmStrategyUnrealizedProfitLoss()
	GetAtmStrategyUniqueId()

	BarsRequiredToTrade
	BarsSinceEntryExecution()
	BarsSinceExitExecution()
	ChartIndicators
	CloseStrategy()
	ConnectionLossHandling
	DaysToLoad
	DefaultQuantity
	DisconnectDelaySeconds
	EntriesPerDirection
	EntryHandling
	Execution
	ExitOnSessionCloseSeconds
	IncludeCommission
	IncludeTradeHistoryInBacktest
	IsAdoptAccountPositionAware
	IsExitOnSessionCloseStrategy
	IsFillLimitOnTouch
	IsInstantiatedOnEachOptimizationIteration
	IsInStrategyAnalyzer
	IsTradingHoursBreakLineVisible
	IsWaitUntilFlat
	NumberRestartAttempts
	OnAccountItemUpdate()
	AccountItemEventArgs

	OnExecutionUpdate()
	OnOrderTrace()
	OnOrderUpdate()
	OnPositionUpdate()
	OptimizationPeriod
	Order
	IsTerminalState()

	Order Methods
	Managed Approach
	Advanced Order Handling
	CancelOrder()
	ChangeOrder()
	EnterLong()
	EnterLongLimit()
	EnterLongMIT()
	EnterLongStopLimit()
	EnterLongStopMarket()
	EnterShort()
	EnterShortLimit()
	EnterShortMIT()
	EnterShortStopLimit()
	EnterShortStopMarket()
	ExitLong()
	ExitLongLimit()
	ExitLongMIT()
	ExitLongStopLimit()
	ExitLongStopMarket()
	ExitShort()
	ExitShortLimit()
	ExitShortMIT()
	ExitShortStopLimit()
	ExitShortStopMarket()
	GetRealtimeOrder()
	SetParabolicStop
	SetProfitTarget()
	SetStopLoss()
	SetTrailStop()

	Unmanaged Approach
	CancelOrder()
	ChangeOrder()
	IgnoreOverfill
	IsUnmanaged
	SubmitOrderUnmanaged()

	OrderFillResolution
	OrderFillResolutionType
	OrderFillResolutionValue
	PerformanceMetrics
	Plots
	Position
	AveragePrice
	GetUnrealizedProfitLoss()
	Instrument
	MarketPosition
	Quantity

	PositionAccount
	AveragePrice
	GetUnrealizedProfitLoss()
	Instrument
	MarketPosition
	Quantity

	Positions
	PositionsAccount
	RealtimeErrorHandling
	RestartsWithinMinutes
	SetOrderQuantity
	Slippage
	StartBehavior
	StopTargetHandling
	StrategyBaseConverter
	SystemPerformance
	AllTrades
	LongTrades
	RealTimeTrades
	ShortTrades

	TestPeriod
	TimeInForce
	TraceOrders
	Trade
	TradeCollection
	TradesCount
	EvenTrades
	GetTrades()
	LosingTrades
	TradesPerformance
	AverageBarsInTrade
	AverageEntryEfficiency
	AverageExitEfficiency
	AverageTimeInMarket
	AverageTotalEfficiency
	Currency
	GrossLoss
	GrossProfit
	LongestFlatPeriod
	MaxConsecutiveLoser
	MaxConsecutiveWinner
	MaxTimeToRecover
	MonthlyStdDev
	MonthlyUlcer
	NetProfit
	Percent
	PerformanceMetrics
	Pips
	Points
	ProfitFactor
	RSquared
	RiskFreeReturn
	SharpeRatio
	SortinoRatio
	Ticks
	TotalCommission
	TotalQuantity
	TotalSlippage
	TradesCount
	TradesPerDay

	WinningTrades

	TradesPerformanceValues
	AverageEtd
	AverageMae
	AverageMfe
	AverageProfit
	CumProfit
	Drawdown
	LargestLoser
	LargestWinner
	ProfitPerMonth
	StdDev
	Turnaround
	Ulcer

	WaitForOcoClosingBracket

	SuperDOM Column
	MarketDepth
	OnMarketData()
	OnOrderUpdate()
	OnPositionUpdate()
	OnPropertyChanged()
	OnRender()
	OnRestoreValues()

	SharpDX SDK Reference
	SharpDX
	Color
	Color3
	Color4
	DisposeBase
	Dispose()
	IsDisposed

	Matrix3x2
	RectangleF
	Size2F
	Vector2

	SharpDX.Direct2D1
	AntialiasMode
	ArcSegment
	ArcSize
	Brush
	Opacity
	Transform

	BrushProperties
	CapStyle
	DrawTextOptions
	Ellipse
	FigureBegin
	FigureEnd
	FillMode
	GeometrySink
	AddArc()
	AddLine()
	AddLines()
	BeginFigure()
	Close()
	EndFigure()
	SetFillMode()

	GradientStop
	GradientStopCollection
	
ColorInterpolationGamma
	ExtendMode
	GradientStopCount

	LinearGradientBrush
	EndPoint
	GradientStopCollection
	StartPoint

	LinearGradientBrushProperties
	MeasuringMode
	PathGeometry
	FigureCount
	FillContainsPoint()
	GetBounds()
	Open()
	SegmentCount
	StrokeContainsPoint()

	RadialGradientBrush
	Center
	GradientOriginOffset
	GradientStopCollection
	RadiusX
	RadiusY

	RadialGradientBrushProperties
	RenderTarget
	AntialiasMode
	DrawEllipse()
	DrawGeometry()
	DrawLine()
	DrawRectangle()
	DrawText()
	DrawTextLayout()
	FillEllipse()
	FillGeometry()
	FillRectangle()
	Transform

	SolidColorBrush
	Color

	StrokeStyle
	DashCap
	DashesCount
	DashOffset
	DashStyle
	EndCap
	GetDashes()
	LineJoin
	MiterLimit
	StartCap

	StrokeStyleProperties
	SweepDirection

	SharpDX.DirectWrite
	TextFormat
	FlowDirection
	FontFamilyName
	FontSize
	FontStretch
	FontStyle
	FontWeight
	ParagraphAlignment
	ReadingDirection
	TextAlignment
	WordWrapping

	LineMetrics
	TextLayout
	GetLineMetrics()
	MaxHeight
	MaxWidth
	Metrics

